KR102633422B1 - Energy saving building air conditioning management system - Google Patents

Energy saving building air conditioning management system Download PDF

Info

Publication number
KR102633422B1
KR102633422B1 KR1020230141173A KR20230141173A KR102633422B1 KR 102633422 B1 KR102633422 B1 KR 102633422B1 KR 1020230141173 A KR1020230141173 A KR 1020230141173A KR 20230141173 A KR20230141173 A KR 20230141173A KR 102633422 B1 KR102633422 B1 KR 102633422B1
Authority
KR
South Korea
Prior art keywords
underground
heat
building
casing
air conditioning
Prior art date
Application number
KR1020230141173A
Other languages
Korean (ko)
Inventor
양현수
양진수
유효석
Original Assignee
양현수
양진수
유효석
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양현수, 양진수, 유효석 filed Critical 양현수
Priority to KR1020230141173A priority Critical patent/KR102633422B1/en
Application granted granted Critical
Publication of KR102633422B1 publication Critical patent/KR102633422B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F5/005Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using energy from the ground by air circulation, e.g. "Canadian well"
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

본 발명은, 건축물 내부의 공기조화를 실시할 수 있는 히트펌프를 이용한 건축물 공조관리시스템(1000)에 있어서,
지중열을 이용 가능한 히트펌프를 이용한 건축물 공조관리시스템(1000)은 ; 건축물(BD)의 내부를 냉난방할 수 있도록, 난방운전과 냉방운전이 선택 가능하고 ; 압축기(1), 사방변(2), 제1열교환기(3), 팽창밸브, 제2열교환기(7)를 포함하며;
지중열을 수집하는 지중케이싱(30)이 구비되고;
지중케이싱(30)에는 전기에너지를 생산할 수 있도록 발전기(50)가 구비되며;
지중케이싱(30)과, 건축물(BD) 내부에 설치된 공조조절유니트(20)간에는 지중에어이송관(60-P)이 상호 연통하여 설치되고;
축열조(10)에 연통 연결된 제1축열배관(10-1P)은, 제1열교환기(3)를 통과하면서 제1열교환기(3)에 설치된 냉매배관과 열교환이 가능하며;
축열조(10)에 연통 연결된 제2축열배관(10-2P)은, 건축물(BD) 내부에 설치된 제3열교환기(20-1)를 통과하도록 설치되고,
공조조절유니트(20)의 내부에는 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)가 내장되어 있는 것을 특징으로 하는 건축물 공조관리시스템에 관한 것이다.
The present invention relates to a building air conditioning management system (1000) using a heat pump that can perform air conditioning inside the building,
The building air conditioning management system (1000) using a heat pump that can utilize ground heat is; In order to cool and heat the interior of the building (BD), heating operation and cooling operation can be selected; It includes a compressor (1), a four-way valve (2), a first heat exchanger (3), an expansion valve, and a second heat exchanger (7);
An underground casing (30) for collecting underground heat is provided;
The underground casing (30) is equipped with a generator (50) to produce electrical energy;
An underground air transfer pipe (60-P) is installed in communication between the underground casing (30) and the air conditioning control unit (20) installed inside the building (BD);
The first heat storage pipe (10-1P) connected to the heat storage tank (10) can exchange heat with the refrigerant pipe installed in the first heat exchanger (3) while passing through the first heat exchanger (3);
The second heat storage pipe (10-2P) connected to the heat storage tank (10) is installed to pass through the third heat exchanger (20-1) installed inside the building (BD),
Building air conditioning, characterized in that a third heat exchanger (20-1), a heater (20-2), a humidity controller (20-3), and a blower (20-4) are built into the air conditioning control unit (20). It's about the management system.

Description

에너지 절감형 건축물 공조관리시스템{Energy saving building air conditioning management system}Energy saving building air conditioning management system {Energy saving building air conditioning management system}

본 발명은 히트펌프를 이용한 건축물 공조관리시스템에 관한 것이다. The present invention relates to a building air conditioning management system using a heat pump.

히트펌프는 냉매가 냉매배관에 따라 순차적으로 형성된 압축기, 응축기, 팽창기, 증발기 등을 순환하면서, 열을 방출하거나 흡수하는 시스템이다.A heat pump is a system in which refrigerant circulates sequentially through a compressor, condenser, expander, and evaporator along refrigerant pipes, releasing or absorbing heat.

아래 선행기술문헌에 기재된 종래발명에도 히트펌프를 이용한 건축물 공조관리시스템이 개시되어 있다.A building air conditioning management system using a heat pump is also disclosed in the prior invention described in the prior art literature below.

종래발명의 히트펌프를 이용하여 건축물을 효율적으로 냉난방 할 수 있지만, 히트펌프의 열원으로 전기를 사용하고, 또한 히트펌프에서 에너지 소비를 절감시킬 수 있는 기술적 수단이나 구성이 효율적으로 구비되어 있지 않다.Although the heat pump of the prior invention can be used to efficiently cool and heat a building, electricity is used as a heat source for the heat pump, and technical means or configurations that can reduce energy consumption in the heat pump are not efficiently provided.

따라서, 히트펌프 작동과정에서 많은 에너지가 소비되고, 결국 지구환경에 악영향을 끼칠 수 있는 문제점이 있다.Therefore, there is a problem that a lot of energy is consumed during the operation of the heat pump, which may ultimately have a negative impact on the global environment.

일본특허공보 6345088호(2018.6.20. 공고)Japanese Patent Publication No. 6345088 (announced on June 20, 2018)

본 발명에서는 히트펌프의 에너지 효율을 향상시키기 위해, 히트펌프의 열원으로 지열을 이용하고, 히트펌프의 응축기에서 발생되어 낭비되는 열량을 증발기에서 이용할 수 있도록 한다.In the present invention, in order to improve the energy efficiency of the heat pump, geothermal heat is used as the heat source of the heat pump, and the amount of heat generated in the condenser of the heat pump and wasted can be used in the evaporator.

그리고, 지중케이싱 내부에 설치·회전되어, 전기 에너지를 생산할 수 있는 터빈이 설치되고, 상기 터빈의 회전에 의해, 전력이 생산될 뿐 만 아니라, 상기 터빈의 회전에 의해 와류가 발생되어, 열효율을 배가시키고, 와류에 의해 지중케이싱 내부의 공기를 건축물에 바로 공급하여, 건축물 공조관리시스템의 열효율을 높일 수 있다.In addition, a turbine is installed and rotated inside the underground casing and can produce electrical energy. Not only is power produced by the rotation of the turbine, but also a vortex is generated by the rotation of the turbine, thereby improving thermal efficiency. By doubling the amount and supplying the air inside the underground casing directly to the building through eddy currents, the thermal efficiency of the building's air conditioning management system can be increased.

그리고, 히프펌프을 기본으로 하는 냉난방장치는, 가역의 2개의 사이클에서 각각 필요로 하는 냉매량이 차이가 있는 것을 발명인은 연구과정중 알게 되었고, 냉매량은 많이 필요로 하는 사이클에 맞추어서 냉매 충진을 하고 있다. 또한, 본 발명의 히트펌프 공조 관리시스템의 경우에도, 히트펌프의 열효율을 높이기 위해서는, 난방사이클에 비해 냉방사이클의 냉매순환량이 많이 필요한 것을 본 발명인은 연구과정 중 알게 되었다.In addition, the inventor discovered during the research process that there is a difference in the amount of refrigerant required in the two reversible cycles of the heating and cooling device based on the hip pump, and the refrigerant is charged according to the cycle that requires the largest amount of refrigerant. In addition, in the case of the heat pump air conditioning management system of the present invention, the present inventor learned during the research process that in order to increase the thermal efficiency of the heat pump, a larger amount of refrigerant circulation in the cooling cycle is required than in the heating cycle.

따라서, 본 발명에서는 난방사이클에서 유동되는 냉매량과, 냉방사이클에서 유동되는 냉매량이 서로 다르게 조절할 수 있도록 하는 수단을 구비시키고, 건축물 공조관리시스템에 설치된 지중케이싱에 수차와 발전기를 설치하여, 지중케이싱 내부에서 낙하되는 지하수에 의해 전기도 생산할 수 있게 한다.Therefore, in the present invention, a means is provided to differently adjust the amount of refrigerant flowing in the heating cycle and the amount of refrigerant flowing in the cooling cycle, and a water wheel and generator are installed in the underground casing installed in the building air conditioning management system, so that the inside of the underground casing It also allows electricity to be produced using groundwater that falls from the ground.

그리고, 지중수순환파이프는 합금으로 제조되고, 상기 합금의 조성비에 의해 제작된 지중수순환파이프는, 본 발명인의 장기간의 연구를 통하여, 지중수순환파이프의 제작 및 설치의 용이성을 위해, 지중수순환파이프의 굴곡성을 매우 우수하게 할 수 있고, 지중에 설치 후에도 단열성, 내식성을 탁월하게 하여, 히트펌프의 열효율을 배가시킬 수 있고, 지중수순환파이프의 수명을 최대화 할 수 있다.In addition, the underground water circulation pipe is made of an alloy, and the underground water circulation pipe manufactured according to the composition ratio of the alloy is, through long-term research by the present inventor, for the ease of manufacturing and installation of the underground water circulation pipe. The flexibility of the circulation pipe can be greatly improved, and the thermal insulation and corrosion resistance can be excellent even after installation in the ground, thereby doubling the thermal efficiency of the heat pump and maximizing the lifespan of the underground water circulation pipe.

그리고, 본 발명의 지중케이싱(30)은, SUS304 스테인레스 스틸로 내부케이싱과 외부케이싱과의 사이에 충진되는 황토로 이루어져서, 내식성이 우수하면서, 열효율성이 우수하고, 인간의 건강에 기여하는 친환경적인 케이싱의 제작이 가능하게 한다.In addition, the underground casing (30) of the present invention is made of SUS304 stainless steel and is made of red clay filled between the inner casing and the outer casing, and has excellent corrosion resistance, excellent thermal efficiency, and is an environmentally friendly material that contributes to human health. It makes the production of casing possible.

또는, 본 발명의 지중케이싱(30)은, 미세하게 분말가공 처리된 다수의 성분으로 된 자기 재료를 진공에서 반죽, 반죽 내부에 기포 형성을 방지하여 케이싱의 형상을 형성한 후, 2500℃ 이상의 고온에서 소성하여 고강도와 내구성 및 내수성을 갖는 지중케이싱으로 활용할 수 있다.Alternatively, the underground casing 30 of the present invention is made by kneading finely powdered magnetic material made of a number of components in a vacuum, forming the shape of the casing by preventing the formation of bubbles inside the dough, and kneading it at a high temperature of 2500°C or higher. It can be fired and used as an underground casing with high strength, durability, and water resistance.

또한, 상기와 같이 지중케이싱(30)을 친환경적인 재질인 자기(30-CE)로 제작하여, 지중공기를 보다 친환경적으로 냉각 또는 가열할 수 있다.In addition, as described above, the underground casing 30 is made of porcelain (30-CE), an environmentally friendly material, so that underground air can be cooled or heated in a more environmentally friendly manner.

상기 문제점을 해결하기 위한 본 발명의 건축물 공조관리시스템은;The building air conditioning management system of the present invention to solve the above problems is;

히트펌프를 이용하여 건축물 내부의 공기조화를 실시할 수 있는 제어부(70C)를 구비한 건축물 공조관리시스템에 있어서,In the building air conditioning management system equipped with a control unit (70C) that can perform air conditioning inside the building using a heat pump,

히트펌프에 의한 건축물(BD)의 내부를 난방하는 난방운전시 히트펌프의 냉매유동은; The refrigerant flow of the heat pump during heating operation to heat the interior of a building (BD) by a heat pump is;

압축기(1), 사방변(2), 제1열교환기(3), 제1체크밸브(4), 제1팽창밸브(5), 냉매유량제어관(6), 제2체크밸브(4-2), 제2열교환기(7), 사방변(2), 어큐뮬레이터(8), 압축기(1)의 순서로 냉매가 유동하고;Compressor (1), four-way valve (2), first heat exchanger (3), first check valve (4), first expansion valve (5), refrigerant flow control pipe (6), second check valve (4- 2), the refrigerant flows in the order of the second heat exchanger (7), the four-way valve (2), the accumulator (8), and the compressor (1);

냉매유량제어관(6)은, 냉매저장공간을 가진 냉매유량제어기(6-1)의 내부를 관통하면서 설치되되, 냉매유량제어관(6)에는 제1유량조절밸브(6-V1)가 설치되고, 냉매유량제어기(6-1) 하부 일측에는 제2유량조절밸브(6-V2)가 설치되며;The refrigerant flow control pipe (6) is installed penetrating the inside of the refrigerant flow controller (6-1) having a refrigerant storage space, and a first flow control valve (6-V1) is installed in the refrigerant flow control pipe (6). A second flow control valve (6-V2) is installed on one side of the lower part of the refrigerant flow controller (6-1);

히트펌프에 의한 건축물(BD) 내부를 냉방하는 냉방운전시 히트펌프의 냉매유동은; The refrigerant flow of the heat pump during cooling operation to cool the inside of a building (BD) using a heat pump is;

압축기(1), 사방변(2), 제2열교환기(7), 제3체크밸브(4-3), 냉매유량제어관(6), 제1유량조절밸브(6-V1), 냉매유량제어기(6-1), 제2유량조절밸브(6-V2), 제2팽창밸브(5-2), 제1열교환기(3), 사방변(2), 어큐뮬레이터(8), 압축기(1)의 순서로 냉매가 유동하고;Compressor (1), four-way valve (2), second heat exchanger (7), third check valve (4-3), refrigerant flow control pipe (6), first flow control valve (6-V1), refrigerant flow rate Controller (6-1), second flow control valve (6-V2), second expansion valve (5-2), first heat exchanger (3), four-way valve (2), accumulator (8), compressor (1) ) The refrigerant flows in the following order;

히트펌프 제어부(70C)의 제어에 의해; 난방운전시에는, 냉매유량제어관(6)을 유동하는 냉매 중의 일부 냉매는, 제1유량조절밸브(6-V1)를 통과하여, 냉매유량제어기(6-1)의 내부에 저장될 수 있고;By control of the heat pump control unit 70C; During heating operation, some of the refrigerant flowing through the refrigerant flow control pipe 6 may pass through the first flow control valve 6-V1 and be stored inside the refrigerant flow controller 6-1. ;

히트펌프가 냉방운전시에는, 냉매유량제어관(6)에 유입되는 냉매의 전량은, 제1유량조절밸브(6-V1)를 통과하여, 냉매유량제어기(6-1)의 하부를 따라 제2유량조절밸브(6-V2)로 유출되며;When the heat pump is in cooling operation, the entire amount of refrigerant flowing into the refrigerant flow control pipe (6) passes through the first flow control valve (6-V1) and flows through the lower part of the refrigerant flow controller (6-1). 2It flows out to the flow control valve (6-V2);

냉매유량제어관(6)의 일측 단부는, 제3체크밸브(4-3)와 제1팽창밸브(5)를 연결하는 냉매 배관의 중앙에 연통연결되고;One end of the refrigerant flow control pipe (6) is connected in communication with the center of the refrigerant pipe connecting the third check valve (4-3) and the first expansion valve (5);

냉매유량제어관(6)의 타측 단부는, 제2체크밸브(4-2)가 설치된 냉매배관과 직접 연통연결되며;The other end of the refrigerant flow control pipe (6) is directly connected to the refrigerant pipe in which the second check valve (4-2) is installed;

축열조(10)에 연통 연결된 제1축열배관(10-1P)은, 제1열교환기(3)에 통과하면서 제1열교환기(3)에 설치된 냉매배관과 열교환이 가능하며;The first heat storage pipe (10-1P) connected to the heat storage tank (10) can exchange heat with the refrigerant pipe installed in the first heat exchanger (3) while passing through the first heat exchanger (3);

축열조(10)에 연결된 제2축열배관(10-2P)은, 건축물(BD) 내부에 설치된 제3열관기(20-1)를 통과하도록 설치되고, The second heat storage pipe (10-2P) connected to the heat storage tank (10) is installed to pass through the third heat pipe (20-1) installed inside the building (BD),

건축물(BD) 내부에는 공조조절유니트(20)가 설치되며, 공조조절유니트(20)의 내부에는 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)가 내장되어 있는 것을 특징으로 한다.An air conditioning control unit (20) is installed inside the building (BD), and inside the air conditioning control unit (20) is a third heat exchanger (20-1), a heater (20-2), a humidity controller (20-3), It is characterized by a built-in blower (20-4).

그리고, 상기 문제점을 해결하기 위한 본 발명의 건축물 공조관리시스템은;and, The building air conditioning management system of the present invention to solve the above problems is;

건축물 내부의 공기조화를 실시할 수 있는 히트펌프를 이용한 건축물 공조관리시스템(1000)에 있어서,In the building air conditioning management system (1000) using a heat pump that can perform air conditioning inside the building,

지중열을 이용 가능한 히트펌프를 이용한 건축물 공조관리시스템(1000)은; 건축물(BD)의 내부를 냉난방할 수 있도록, 난방운전과 냉방운전이 선택 가능하고; 압축기(1), 사방변(2), 제1열교환기(3), 팽창밸브, 제2열교환기(7)를 포함하며;The building air conditioning management system (1000) using a heat pump that can utilize ground heat is; In order to cool and heat the interior of the building (BD), heating operation and cooling operation can be selected; It includes a compressor (1), a four-way valve (2), a first heat exchanger (3), an expansion valve, and a second heat exchanger (7);

상기 팽창밸브는 제1팽창밸브(5)와 제2팽창밸브(5-2)로 구성되고;The expansion valve consists of a first expansion valve (5) and a second expansion valve (5-2);

지중열을 수집하는 지중케이싱(30)이 구비되고;An underground casing (30) for collecting underground heat is provided;

지중케이싱(30)에는 전기에너지를 생산할 수 있도록 발전기(50)가 구비되며;The underground casing (30) is equipped with a generator (50) to produce electrical energy;

지중케이싱(30)과, 건축물(BD) 내부에 설치된 공조조절유니트(20)간에는 지중에어이송관(60-P)이 상호 연통하여 설치되고;An underground air transfer pipe (60-P) is installed in communication between the underground casing (30) and the air conditioning control unit (20) installed inside the building (BD);

축열조(10)에 연통 연결된 제1축열배관(10-1P)은, 제1열교환기(3)를 통과하면서 제1열교환기(3)에 설치된 냉매배관과 열교환이 가능하며;The first heat storage pipe (10-1P) connected to the heat storage tank (10) can exchange heat with the refrigerant pipe installed in the first heat exchanger (3) while passing through the first heat exchanger (3);

축열조(10)에 연통 연결된 제2축열배관(10-2P)은, 건축물(BD) 내부에 설치된 제3열교환기(20-1)를 통과하도록 설치되고, The second heat storage pipe (10-2P) connected to the heat storage tank (10) is installed to pass through the third heat exchanger (20-1) installed inside the building (BD),

공조조절유니트(20)의 내부에는 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)가 내장되어 있는 것을 특징으로 한다.The air conditioning control unit 20 is characterized by having a third heat exchanger (20-1), a heater (20-2), a humidity controller (20-3), and a blower (20-4) built into the interior.

그리고, 지중케이싱(30) 내부에 저장되어 지중열을 흡수한 지중수(W)는, 지중수순환파이프(50) 내부를 따라 이송되어, 다시 지중케이싱(30)의 내부로 귀환할 수 있고;In addition, the ground water (W) stored inside the underground casing 30 and absorbing ground heat can be transported along the inside of the ground water circulation pipe 50 and returned to the inside of the underground casing 30;

지중수순환파이프(50)는, 제2열교환기(7)를 통과하면서 제2열교환기(7)에 설치된 냉매배관과 열교환 할 수 있으며;The underground water circulation pipe (50) can exchange heat with the refrigerant pipe installed in the second heat exchanger (7) while passing through the second heat exchanger (7);

브라켓(40-1)에 의해 터빈(40)이 회전 가능하게 지중케이싱(30)의 내부에 설치되고, 지중케이싱(30)의 외부에 발전기가 설치되어, 지중수귀환파이프(50-2)에서 낙하되는 지중수에 의해 터빈(40)을 회전시키고, 터빈(40)에 연결된 발전기를 회전시켜 전기 에너지를 생산할 수 있는 것을 특징으로 한다.The turbine 40 is installed inside the underground casing 30 to be rotatable by the bracket 40-1, and a generator is installed outside the underground casing 30, and is connected to the underground water return pipe 50-2. The turbine 40 is rotated by falling groundwater and a generator connected to the turbine 40 is rotated to produce electrical energy.

또한, 지중케이싱(30) 내부에 설치된 터빈(40)의 회전에 의해 지중케이싱(30)의 내부에는 와류가 발생되고, 와류에 의해 지중케이싱(30)의 내부에 저장된 지중수(W)와, 지중케이싱 내부에 저장된 공기는 상호 열교환할 수 있고;In addition, the rotation of the turbine 40 installed inside the underground casing 30 generates a vortex inside the underground casing 30, and the underground water (W) stored inside the underground casing 30 by the vortex, The air stored inside the underground casing can exchange heat with each other;

열교환된 공기는, 지중에어이송관(60-P)의 내부를 통하여 건축물(BD) 내부에 설치된 공기조절유니트(20)로 이송될 수 있고, The heat exchanged air can be transferred to the air conditioning unit 20 installed inside the building BD through the inside of the underground air transfer pipe 60-P,

지중에어이송관(60-P)이 분기되어, 건축물의 바닥으로 지중열을 공급할 수 있도록 바닥지중에어이송관(60-P1)이 구비되며,The underground air transfer pipe (60-P) is branched and an underground air transfer pipe (60-P1) is provided to supply ground heat to the floor of the building.

지중에어이송관(60-P)이 분기되어, 건축물의 실내로 지중열을 공급할 수 있도록 실내지중에어이송관(60-P2)이 구비되고;The underground air transfer pipe (60-P) is branched and an indoor underground air transfer pipe (60-P2) is provided to supply ground heat to the interior of the building;

지중에어이송관(60-P)에는 제1이송관제어밸브(60-V)가 설치되고, A first transfer pipe control valve (60-V) is installed in the underground air transfer pipe (60-P),

바닥지중에어이송관(60-P1)에는 제2이송관제어밸브(60-V2)가 설치되며,A second transfer pipe control valve (60-V2) is installed in the underground air transfer pipe (60-P1),

실내지중에어이송관(60-P2)에는 제3이송관제어밸브(60-V3)가 설치된 것을 특징으로 한다.The indoor underground air transfer pipe (60-P2) is characterized in that a third transfer pipe control valve (60-V3) is installed.

그리고, 제1열교환기(3)와 제2열교환기(7)가 서로 접하고 있어, 제1열교환기(3)와 제2열교환기(7)는 상호 열교환할 수 있는 것을 특징으로 한다.In addition, the first heat exchanger (3) and the second heat exchanger (7) are in contact with each other, so the first heat exchanger (3) and the second heat exchanger (7) can exchange heat with each other.

한편, 지중수순환파이프(50)는 합금으로 제조되고, 상기 합금의 조성은, Ni 25중량% ~ 30중량%, Cr 21중량% ~ 23중량%, Al 3중량% ~ 5중량%, V 5중량% ~ 7중량%, Fe 35중량% ~ 45중량%, 나머지는 불가피한 불순물로 이루어진 것을 특징으로 한다.Meanwhile, the underground water circulation pipe 50 is made of an alloy, and the composition of the alloy is Ni 25% by weight to 30% by weight, Cr 21% by weight to 23% by weight, Al 3% by weight to 5% by weight, V 5 It is characterized by weight % to 7 weight %, Fe 35 weight % to 45 weight %, and the remainder is made up of inevitable impurities.

그리고, 지중케이싱(30)은 SUS304 스테인레스 스틸로 된 외부케이싱과(30-OT)과, 외부케이싱과(30-OT)의 내부에 외부케이싱(30-OT)과 간격을 두고 배치되는 SUS304 스테인레스 스틸로 된 내부케이싱(30-IN)과, 내부케이싱(30-IN)과 외부케이싱과(30-OT)의 사이에 충진되는 황토(30-MI)로 이루어진 것을 특징으로 한다.In addition, the underground casing (30) includes an outer casing (30-OT) made of SUS304 stainless steel, and an SUS304 stainless steel disposed inside the outer casing (30-OT) at a distance from the outer casing (30-OT). It is characterized by consisting of an inner casing (30-IN) and red clay (30-MI) filled between the inner casing (30-IN) and the outer casing (30-OT).

한편, 지중케이싱(30) 전체를 자기로 하여 제작할 수도 있고, 상기 자기의 조성은 이산화규소 25중량%~29중량%, 산화알루미늄 5중량%~10중량%, 실리카 50중량%~59중량%, 알루미나 10중량%~15중량%, 산화철 1중량%~2중량%, 나머지 불가피한 불순물을 포함하여 이루어지고, 자기 조성 재료는 분말이고 평균입경은 0.3 ~ 0.4 ㎛인 것을 특징으로 한다On the other hand, the entire underground casing 30 can be made of porcelain, and the composition of the porcelain is 25% to 29% by weight of silicon dioxide, 5% to 10% by weight of aluminum oxide, 50% to 59% by weight of silica, It is composed of 10% to 15% by weight of alumina, 1% to 2% by weight of iron oxide, and the remaining inevitable impurities, and the porcelain composition material is powder and the average particle diameter is 0.3 to 0.4 ㎛.

본 발명에서는, 히트펌프의 열원으로 지열을 이용하고, 히트펌프의 응축기에서 발생되어 낭비되는 열량을 증발기에서 이용할 수 있도록 하여, 히트펌프의 성능 효율을 향상시킬 수 있다.In the present invention, geothermal heat is used as a heat source for a heat pump, and the heat generated in the condenser of the heat pump can be used in the evaporator, thereby improving the performance efficiency of the heat pump.

그리고, 지중케이싱 내부에, 전기 에너지를 생산할 수 있는 터빈이 설치되고, 상기 터빈의 회전에 의해, 전력이 생산될 뿐 만 아니라, 상기 터빈의 회전에 의해 와류가 발생되어, 열효율을 배가시키고, 와류에 의해 지중케이싱 내부의 공기를 건축물에 바로 공급하여, 건축물 공조관리시스템의 열효율을 높일 수 있다.And, inside the underground casing, a turbine capable of producing electrical energy is installed, and not only is power produced by the rotation of the turbine, but also a vortex is generated by the rotation of the turbine, doubling the thermal efficiency and creating a vortex. By supplying the air inside the underground casing directly to the building, the thermal efficiency of the building's air conditioning management system can be increased.

그리고, 본 발명에서는 난방사이클에서 유동되는 냉매량과, 냉방사이클에서 유동되는 냉매량이 서로 다르게 조절할 수 있도록 하는 수단을 구비시켜, 히트펌프의 열효율을 최대화하고, 히트펌프에서 순환하는 냉매량을 적정화시켜서, 압축기에 흡입되는 흡입 가스 냉매의 과도한 과열을 방지하고, 결과적으로 히트펌프 장치의 수명을 연장시킬 수 있는 효과가 있다.In addition, in the present invention, a means is provided to differently adjust the amount of refrigerant flowing in the heating cycle and the amount of refrigerant flowing in the cooling cycle, thereby maximizing the thermal efficiency of the heat pump and optimizing the amount of refrigerant circulating in the heat pump, so that the compressor This has the effect of preventing excessive overheating of the suction gas refrigerant being sucked in and, as a result, extending the life of the heat pump device.

건축물 공조관리시스템에 설치된 지중케이싱에 수차와 발전기를 설치하여, 지중케이싱 내부에서 낙하되는 지하수에 의해 전기도 생산할 수 있게 하여, 에너지 소비를 최소화시킨다.By installing a water wheel and generator in the underground casing installed in the building air conditioning management system, electricity can be produced from groundwater falling inside the underground casing, minimizing energy consumption.

그리고, 지중수순환파이프는 합금으로 제조되고, 상기 합금의 조성비에 의해 제작된 지중수순환파이프는, 굴곡성이 매우 우수하여, 지중수순환파이프의 설치을 용이하게 할 수 있는 효과가 있다.In addition, the underground water circulation pipe is made of an alloy, and the underground water circulation pipe manufactured according to the composition ratio of the alloy has very excellent flexibility, which has the effect of facilitating the installation of the underground water circulation pipe.

또한, 본 발명의 지중수순환파이프는 지중에 설치 후에도 단열성, 내식성을 탁월하게 하여, 히트펌프의 열효율을 배가시킬 수 있고, 지중수순환파이프의 수명을 최대화 할 수 있다.In addition, the ground water circulation pipe of the present invention has excellent insulation and corrosion resistance even after installation in the ground, which can double the thermal efficiency of the heat pump and maximize the life of the ground water circulation pipe.

그리고, 본 발명의 지중케이싱은, SUS304 스테인레스 스틸로 내부케이싱과 외부케이싱과의 사이에 충진되는 황토로 이루어져서, 내식성이 우수하면서, 열효율성이 우수하고, 인간의 건강에 기여하는 친환경적인 케이싱의 제작이 가능하게 한다.In addition, the underground casing of the present invention is made of red clay filled between the inner casing and the outer casing with SUS304 stainless steel, and has excellent corrosion resistance and thermal efficiency, producing an eco-friendly casing that contributes to human health. This makes it possible.

또는, 본 발명의 지중케이싱은, 미세하게 분말가공 처리된 다수의 성분으로 된 자기 재료를 진공에서 반죽, 반죽 내부에 기포 형성을 방지하여 케이싱의 형상을 형성한 후, 2500℃ 이상의 고온에서 소성하여 고강도와 내구성 및 내수성을 갖는 지중케이싱으로 활용할 수 있다.Alternatively, the underground casing of the present invention is made by kneading magnetic materials made of a number of finely powdered components in a vacuum, forming the shape of the casing by preventing the formation of bubbles inside the dough, and then firing at a high temperature of 2500°C or higher. It can be used as an underground casing with high strength, durability, and water resistance.

상기와 같이 지중케이싱을 친환경적인 재질인 자기(30-CE)로 제작하여, 지중공기를 보다 친환경적으로 냉각 또는 가열할 수 있다.As described above, the underground casing is made of porcelain (30-CE), an environmentally friendly material, so that underground air can be cooled or heated in a more environmentally friendly manner.

도 1은 본 발명의 히트펌프를 이용한 에너지 절감형 건축물 공조관리시스템의 전체 구성도이다.
도 2 및 도 3은 본 발명에 적용되는 케이싱의 단면도이다
Figure 1 is an overall configuration diagram of an energy-saving building air conditioning management system using a heat pump of the present invention.
2 and 3 are cross-sectional views of the casing applied to the present invention.

본 발명은, 지열, 지중수열 및 히트펌프 운전시 발생되는 폐열 등을 이용한 히트펌프를 이용한 에너지 절감형 건축물 공조관리시스템에 관한 것이다.The present invention relates to an energy-saving building air conditioning management system using a heat pump using geothermal heat, ground water heat, and waste heat generated during heat pump operation.

도 1에는 본 발명의 전체적 구성을 도시하고 있다.Figure 1 shows the overall configuration of the present invention.

본 발명은, 지중케이싱(30) 내부에 설치·회전될 수 있어, 전기 에너지를 생산할 수 있는 터빈(40)이 설치되고, 지중수귀환파이프(50-2)에서 낙하되는 지중수에 의해 터빈이 회전되어, 전력이 생산될 뿐 만 아니라, 상기 터빈의 회전에 의해 지중케이싱 내부의 공기에 와류가 발생되고, 상기 와류에 의해 지중케이싱 내부의 공기를 지중에어이송관(60-P)을 통해 자연의 공기를 직접 건축물에 바로 공급하여, 건축물 공조관리시스템의 에너지 소비를 저하시키고, 결국 전체적으로 건축물 공조 시스템의 열효율을 높일 수 있다.In the present invention, a turbine 40 that can be installed and rotated inside the underground casing 30 to produce electrical energy is installed, and the turbine is generated by groundwater falling from the groundwater return pipe 50-2. Not only does it rotate to produce power, but the rotation of the turbine generates a vortex in the air inside the underground casing, and the vortex causes the air inside the underground casing to be naturally transported through the underground air transfer pipe (60-P). By supplying air directly to the building, the energy consumption of the building's air conditioning management system can be reduced, ultimately increasing the thermal efficiency of the building's air conditioning system as a whole.

그리고, 본 발명의 도 1에 도시된 바와 같은, 히트펌프를 이용한 건축물 공조관리시스템은 2개의 사이클 즉, 냉방사이클과 난방사이클이 존재하는 것이 일반적이다. And, as shown in Figure 1 of the present invention, a building air conditioning management system using a heat pump generally has two cycles, that is, a cooling cycle and a heating cycle.

그런데, 본 발명에서는 냉방사이클과 난방사이클 작동시에 필요로 하는 냉매량의 차이가 존재한다는 것을 지득하게 되었고, 적정한 냉매량의 충진과 조절에 의해 히트펌프의 장치의 열효율을 배가시키는 것을 알게 되었다.However, in the present invention, it was realized that there is a difference in the amount of refrigerant required when operating the cooling cycle and the heating cycle, and it was found that the thermal efficiency of the heat pump device can be doubled by filling and controlling the appropriate amount of refrigerant.

특히, 본 발명과 같이, 지열을 열원으로 이용하는 히트펌프식 공조관리시스템인 경우, 히트펌프장치의 열효율 향상시키기 위해서는, 난방사이클에 비하여, 냉방사이클때에 순환 냉매량이 많이 필요하다는 것도 연구과정 중 확인하였다.In particular, in the case of a heat pump-type air conditioning management system that uses geothermal heat as a heat source, as in the present invention, it was also confirmed during the research that a larger amount of circulating refrigerant is needed during the cooling cycle compared to the heating cycle in order to improve the thermal efficiency of the heat pump device. did.

본 발명은, 압축기, 응축기, 팽창기, 증발기 등이 냉매배관으로 연통연결되고, 냉매가 냉매배관 내부로 순환하면서, 냉매의 압축, 응축, 팽창, 증발이 이루어지는 히트펌프를 이용하여, 건축물 내부의 공기조화를 실시하는 제어부(70C)를 구비한 건축물 공조관리시스템에 관한 것이다.The present invention uses a heat pump in which a compressor, condenser, expander, evaporator, etc. are connected in communication with a refrigerant pipe, and the refrigerant circulates inside the refrigerant pipe and compresses, condenses, expands, and evaporates the refrigerant, thereby purifying the air inside the building. This relates to a building air conditioning management system equipped with a control unit (70C) that performs air conditioning.

도 1에 개시된 바와 같이, 본 발명에 적용되는 히트펌프에 의한 건축물(BD)의 내부를 난방하는 난방운전시 히트펌프의 냉매유동은; As disclosed in FIG. 1, the refrigerant flow of the heat pump during heating operation to heat the interior of the building (BD) by the heat pump applied to the present invention is;

압축기(1), 사방변(2), 제1열교환기(3), 제1체크밸브(4), 제1팽창밸브(5), 냉매유량제어관(6), 제2체크밸브(4-2), 제2열교환기(7), 사방변(2), 어큐뮬레이터(8), 압축기(1)의 순서로 냉매가 유동하고;Compressor (1), four-way valve (2), first heat exchanger (3), first check valve (4), first expansion valve (5), refrigerant flow control pipe (6), second check valve (4- 2), the refrigerant flows in the order of the second heat exchanger (7), the four-way valve (2), the accumulator (8), and the compressor (1);

냉매유량제어관(6)은, 냉매저장공간을 가진 냉매유량제어기(6-1)의 내부를 관통하면서 설치되되, 냉매유량제어관(6)에는 제1유량조절밸브(6-V1)가 설치되고, 냉매유량제어기(6-1) 하부 일측에는 제2유량조절밸브(6-V2)가 설치되며;The refrigerant flow control pipe (6) is installed penetrating the inside of the refrigerant flow controller (6-1) having a refrigerant storage space, and a first flow control valve (6-V1) is installed in the refrigerant flow control pipe (6). A second flow control valve (6-V2) is installed on one side of the lower part of the refrigerant flow controller (6-1);

히트펌프에 의한 건축물(BD)을 내부를 냉방하는 냉방운전시 히트펌프의 냉매유동은; During cooling operation to cool the interior of a building (BD) using a heat pump, the refrigerant flow of the heat pump is;

압축기(1), 사방변(2), 제2열교환기(7), 제3체크밸브(4-3), 냉매유량제어관(6), 제1유량조절밸브(6-V1), 냉매유량제어기(6-1), 제2유량조절밸브(6-V2), 제2팽창밸브(5-2), 제1열교환기(3), 사방변(2), 어큐뮬레이터(8), 압축기(1)의 순서로 냉매가 유동하고;Compressor (1), four-way valve (2), second heat exchanger (7), third check valve (4-3), refrigerant flow control pipe (6), first flow control valve (6-V1), refrigerant flow rate Controller (6-1), second flow control valve (6-V2), second expansion valve (5-2), first heat exchanger (3), four-way valve (2), accumulator (8), compressor (1) ) The refrigerant flows in the following order;

히트펌프 제어부(70C)의 제어에 의해, 난방운전시에는, 냉매유량제어관(6)을 유동하는 냉매 중의 일부 냉매는, 제1유량조절밸브(6-V1)를 통과하여, 냉매유량제어기(6-1)의 내부에 저장될 수 있다.Under the control of the heat pump control unit 70C, during heating operation, some of the refrigerant flowing through the refrigerant flow control pipe 6 passes through the first flow rate control valve 6-V1, and the refrigerant flow rate controller ( It can be stored inside 6-1).

구체적으로는, 상기 난방운전시에는, 냉매유량제어관(6)을 통과하는 냉매유량 중에서 12중량% ~ 15중량%의 냉매가 제1유량조절밸브(6-V1)를 통과하여, 냉매유량제어기(6-1)의 내부에 저장시 킬 수 있고, 본 발명의 히트펌프 내부에 충진된 전체 냉매량 중 20중량% ~ 30중량%의 냉매가 냉매유량제어기(6-1)에 저장되면, 제1유량조절밸브(6-V1)를 제어부에 의해 폐쇄할 수 있다.Specifically, during the heating operation, 12% to 15% by weight of the refrigerant out of the refrigerant flow rate passing through the refrigerant flow control pipe 6 passes through the first flow control valve 6-V1, and the refrigerant flow rate controller It can be stored inside (6-1), and when 20% by weight to 30% by weight of the total refrigerant charged inside the heat pump of the present invention is stored in the refrigerant flow controller (6-1), the first The flow control valve (6-V1) can be closed by the control unit.

상기와 같이, 난방운전시 히트펌프에서 증발기가 되는 제2열교환기(7)에 공급되는 냉매의 량을 일정치 감소시킴으로써, 히트펌프의 열효율이 배가되고, 압축기에 흡입되는 흡입 가스 냉매의 과도한 과열을 방지하여, 히트펌프 장치의 수명을 연장시킬 수 있다.As described above, by reducing the amount of refrigerant supplied to the second heat exchanger (7), which becomes the evaporator in the heat pump during heating operation, by a certain amount, the thermal efficiency of the heat pump is doubled and excessive overheating of the suction gas refrigerant sucked into the compressor is prevented. By preventing this, the lifespan of the heat pump device can be extended.

한편, 난방운전시 냉매를 냉매유량제어기(6-1)의 내부에 저장하고자 할 때에는, 제어부(70C)의 제어의 의해 제2유량조절밸브(6-V2)를 폐쇄 시킬 수 있다.Meanwhile, when it is desired to store refrigerant inside the refrigerant flow controller 6-1 during heating operation, the second flow control valve 6-V2 can be closed under the control of the control unit 70C.

그리고, 히트펌프가 냉방운전시에는, 냉매유량제어관(6)에 유입되는 냉매의 전량은, 제1유량조절밸브(6-V1)를 통과하여, 냉매유량제어기(6-1)의 하부를 따라 제2유량조절밸브(6-V2)로 유출되며;And, when the heat pump is in cooling operation, the entire amount of refrigerant flowing into the refrigerant flow control pipe (6) passes through the first flow control valve (6-V1) and passes through the lower part of the refrigerant flow controller (6-1). Accordingly, it flows out to the second flow control valve (6-V2);

냉매유량제어관(6)의 일측 단부는, 제3체크밸브(4-3)와 제1팽창밸브(5)를 연결하는 냉매 배관의 중앙에 연통연결되고;One end of the refrigerant flow control pipe (6) is connected in communication with the center of the refrigerant pipe connecting the third check valve (4-3) and the first expansion valve (5);

냉매유량제어관(6)의 타측 단부는, 제2체크밸브(4-2)가 설치된 냉매배관과 직접 연통연결된다.The other end of the refrigerant flow control pipe (6) is directly connected to the refrigerant pipe in which the second check valve (4-2) is installed.

그리고, 축열조(10)에 연통 연결된 제1축열배관(10-1P)은, 제1열교환기(3)에 통과하면서 제1열교환기(3)에 설치된 냉매배관과 열교환이 가능하며;In addition, the first heat storage pipe (10-1P) connected to the heat storage tank (10) can exchange heat with the refrigerant pipe installed in the first heat exchanger (3) while passing through the first heat exchanger (3);

축열조(10)에 연결된 제2축열배관(10-2P)은, 건축물(BD) 내부에 설치된 제3열관기(20-1)를 통과하도록 설치된다.The second heat storage pipe 10-2P connected to the heat storage tank 10 is installed to pass through the third heat pipe 20-1 installed inside the building BD.

또한, 건축물(BD) 내부에는 공조조절유니트(20)가 설치되며, 공조조절유니트(20)의 내부에는 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)가 내장되어 있다.In addition, an air conditioning control unit 20 is installed inside the building (BD), and a third heat exchanger (20-1), a heater (20-2), and a humidity controller (20-3) are installed inside the air conditioning control unit (20). ), the blower (20-4) is built-in.

한편, 지중케이싱(30) 내부에 저장되어 지중열을 흡수한 지중수(W)는, 지중수순환파이프(50) 내부를 따라 이송되어, 다시 지중케이싱(30)의 내부로 귀환할 수 있다.Meanwhile, the ground water (W) stored inside the underground casing 30 and absorbing ground heat may be transported along the inside of the ground water circulation pipe 50 and returned to the inside of the underground casing 30.

그리고, 지중수순환파이프(50)는, 제2열교환기(7)를 통과하면서 제2열교환기(7)에 설치된 냉매배관과 열교환 할 수 있다.And, the underground water circulation pipe 50 can exchange heat with the refrigerant pipe installed in the second heat exchanger 7 while passing through the second heat exchanger 7.

아울러, 브라켓(40-1)에 의해 터빈(40)이 회전 가능하게 지중케이싱(30)의 내부에 설치되고, 지중케이싱(30)의 외부에 발전기가 설치되어, 지중수귀환파이프(50-2)에서 낙하되는 지중수에 의해 터빈(40)을 회전시키고, 터빈(40)에 연결된 발전기를 회전시켜 전기 에너지를 생산할 수 있다.In addition, the turbine 40 is installed inside the underground casing 30 to be rotatable by the bracket 40-1, and a generator is installed outside the underground casing 30, and the underground water return pipe 50-2 ), the turbine 40 is rotated by groundwater falling from the source, and the generator connected to the turbine 40 is rotated to produce electrical energy.

브라켓(40-1)은 복수의 볼트(BT)에 의해, 지중케이스에 고정된다.The bracket 40-1 is fixed to the underground case by a plurality of bolts BT.

또한, 지중케이싱(30) 내부에 설치된 터빈(40)의 회전에 의해 지중케이싱(30)의 내부에는 와류가 발생되고, 와류에 의해 지중케이싱(30)의 내부에 저장된 지중수(W)와, 지중케이싱 내부에 저장된 공기는 상호 열교환 할 수 있고;In addition, the rotation of the turbine 40 installed inside the underground casing 30 generates a vortex inside the underground casing 30, and the underground water (W) stored inside the underground casing 30 by the vortex, The air stored inside the underground casing can exchange heat with each other;

열교환된 공기는, 지중에어이송관(60-P)의 내부를 통하여 건축물(BD) 내부에 설치된 공기조절유니트(20)로 이송될 수 있다.The heat exchanged air can be transferred to the air conditioning unit 20 installed inside the building BD through the inside of the underground air transfer pipe 60-P.

상기 공기조절유니트(20)에 도착된 지중에서 공급된 에어는 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)에 의해 에어를 조절하여, 실내의 공조를 수행할 수 있다.The air supplied from the ground arriving at the air conditioning unit (20) is converted into air by the third heat exchanger (20-1), heater (20-2), humidity controller (20-3), and blower (20-4). By adjusting, you can perform indoor air conditioning.

즉, 지중케이싱(30) 내부에서 열교환되어 냉각 또는 가열된 공기는 건축물안의 공조조절유니트(20)의 내부에 설치된, 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)에 의해, 더 가열 또는 더 냉각 시키거나, 또는 습도도 조절하여, 상기 송풍기(20-4)에 의해 풍량도 조절하여, 건축물 내부로 공급할 수 있다.That is, the air cooled or heated by heat exchange inside the underground casing (30) is transferred to the third heat exchanger (20-1), heater (20-2), and humidity controller (20-2) installed inside the air conditioning control unit (20) in the building. 20-3), the air can be further heated or cooled by the blower 20-4, or the humidity can be adjusted, and the air volume can be adjusted by the blower 20-4 to supply it to the inside of the building.

한편, 지중에어이송관(60-P)이 분기되어, 건축물의 바닥으로 지중열을 공급할 수 있도록 바닥지중에어이송관(60-P1)이 구비되며,Meanwhile, the underground air transfer pipe (60-P) is branched and a floor underground air transfer pipe (60-P1) is provided to supply ground heat to the floor of the building.

지중에어이송관(60-P)이 분기되어, 건축물의 실내로 지중열을 공급할 수 있도록 실내지중에어이송관(60-P2)이 구비되고;The underground air transfer pipe (60-P) is branched and an indoor underground air transfer pipe (60-P2) is provided to supply ground heat to the interior of the building;

지중에어이송관(60-P)에는 제1이송관제어밸브(60-V)가 설치되고, A first transfer pipe control valve (60-V) is installed in the underground air transfer pipe (60-P),

바닥지중에어이송관(60-P1)에는 제2이송관제어밸브(60-V2)가 설치되며,A second transfer pipe control valve (60-V2) is installed in the underground air transfer pipe (60-P1),

실내지중에어이송관(60-P2)에는 제3이송관제어밸브(60-V3)가 설치된다.A third transfer pipe control valve (60-V3) is installed in the indoor underground air transfer pipe (60-P2).

제어부에 의해 상기 상기 다수의 제어밸브들는 필요에 대응하여 적의 제어될 수 있다.The plurality of control valves can be appropriately controlled by the control unit in response to needs.

그리고, 건축물(BD) 내부의 공기는 실내에어귀환관(60-R)의 내부를 통과하여 , 지중케이싱(30)내부로 이송될 수 있다. 실내에어귀환관(60-R)에는 제4이송관제어밸브(60-V4)가 설치되어 있어, 실내에어귀환관 내부를 유동하는 에어를 제어할 수 있다.Additionally, the air inside the building BD may pass through the interior of the indoor air return pipe 60-R and be transferred into the underground casing 30. A fourth transfer pipe control valve (60-V4) is installed in the indoor air return pipe (60-R), so that the air flowing inside the indoor air return pipe can be controlled.

그리고, 본 발명의 히트펌프의, 제1열교환기(3)와 제2열교환기(7)가 서로 접하고 있어, 제1열교환기(3)와 제2열교환기(7)는 상호 열교환할 수 있다.And, in the heat pump of the present invention, the first heat exchanger (3) and the second heat exchanger (7) are in contact with each other, and the first heat exchanger (3) and the second heat exchanger (7) can exchange heat with each other. .

즉, 히트펌프가 난방운전시, 응축기로 작용하는 제1열교환기(3)와, 증발기로 작용하는 제2열교환기(7)는, 상기 응축기에서 발생되는 고온의 열량이 증발기로 공급되어, 증발기의 증발작용을 높일 수 있어, 히트펌프이 열효율이 향상된다.That is, when the heat pump is in heating operation, the first heat exchanger 3, which acts as a condenser, and the second heat exchanger 7, which acts as an evaporator, supply high-temperature heat generated from the condenser to the evaporator, The evaporation action can be increased, thereby improving the thermal efficiency of the heat pump.

또한, 증발기에 발생되는 저온의 열량은 응축기에 공급되어, 응축기의 응축작용을 배가시켜, 히트펌프의 열효율을 배가시킨다.Additionally, the amount of low-temperature heat generated in the evaporator is supplied to the condenser, doubling the condensing action of the condenser and doubling the thermal efficiency of the heat pump.

그리고, 히트펌프가 냉방운전시에는, 제1열교환기(3)는 증발기로, 제2열교환기(7)는 응축기로 작용하지만, 난방운전시와 동일 작용에 의해(즉, 제1열교환기와 제2열교환기간의 열교환 작용) 히트펌프의 열효율이 향상된다.In addition, when the heat pump is in cooling operation, the first heat exchanger (3) acts as an evaporator and the second heat exchanger (7) acts as a condenser, but by the same action as in heating operation (i.e., the first heat exchanger and the second heat exchanger act as a condenser). 2Heat exchange action during the heat exchange period) The thermal efficiency of the heat pump is improved.

본 발명에서, 지중수순환파이프(50)는 합금으로 제조되고, 상기 합금의 조성은 Ni 25중량% ~ 30중량%, Cr 21중량% ~ 23중량%, Al 3중량% ~ 5중량%, V 5중량% ~ 7중량%, Fe 35중량% ~ 45중량%, 나머지는 불가피한 불순물로 이루어진다.In the present invention, the underground water circulation pipe 50 is made of an alloy, and the composition of the alloy is Ni 25% by weight to 30% by weight, Cr 21% by weight to 23% by weight, Al 3% by weight to 5% by weight, V 5% to 7% by weight, Fe 35% to 45% by weight, and the remainder is made up of inevitable impurities.

상기의 금속 성분의 조성에 의해 제조된 지중수순환파이프(50)는, 굴곡성, 단열성, 내식성 탁월하다.The underground water circulation pipe 50 manufactured with the above-mentioned composition of metal components has excellent flexibility, insulation, and corrosion resistance.

상기 지중수순환파이프(50)는, 단열성이 탁월하여 히트펌프의 성능효율을 향상시키고, 내식성이 뛰어나 그 수명도 연장시킬 수 있다.The underground water circulation pipe 50 has excellent insulation properties, which improves the performance efficiency of the heat pump, and has excellent corrosion resistance, thereby extending its lifespan.

또한 지중수순환파이프(50)는 탁월한 굴곡성능을 가지게 되어, 지중수순환파이프(50)를, 지중케이싱과 히트펌프의 제2열교환기간에 걸쳐서 연통연결하여 설치할 때 별도의 파이프 굴곡장치를 구비하지 않고도, 작업자의 손으로 굴곡하여 설치 가능하게 된다.In addition, the underground water circulation pipe (50) has excellent bending performance, so when installing the underground water circulation pipe (50) by connecting it across the second heat exchange period of the underground casing and the heat pump, a separate pipe bending device is not required. It can be installed by bending with the worker's hands without having to do so.

그리고, 도 2에 도시된 바와 같이, 지중케이싱(30)은 SUS304 스테인레스 스틸로 된 외부케이싱과(30-OT)과, 외부케이싱과(30-OT)의 내부에 외부케이싱(30-OT)과 간격을 두고 배치되는 SUS304 스테인레스 스틸로 된 내부케이싱(30-IN)과, 내부케이싱(30-IN)과 외부케이싱과(30-OT)의 사이에 충진되는 황토로 이루어질 수 있다.And, as shown in FIG. 2, the underground casing 30 includes an outer casing (30-OT) made of SUS304 stainless steel, and an outer casing (30-OT) inside the outer casing (30-OT). It may be made of an inner casing (30-IN) made of SUS304 stainless steel arranged at intervals, and red clay filled between the inner casing (30-IN) and the outer casing (30-OT).

내부케이싱과 외부케이싱 사이에 친환경 재료인 황토가 충진되고, 이를 활용한 공조시스템에 의해 이용자에게 보다 친환경적이고 건강한 공조 조건을 형성할 수 있다.Red clay, an eco-friendly material, is filled between the inner casing and the outer casing, and an air conditioning system using this can create more environmentally friendly and healthy air conditioning conditions for users.

또는, 도 3에 도시된 바와 같이, 지중케이싱(30)을 자기(30-CE)로 하여 제작할 수도 있고, 상기 자기의 조성은 이산화규소 25중량%~29중량%, 산화알루미늄 5중량%~10중량%, 실리카 50중량%~59중량%, 알루미나 10중량%~15중량%, 산화철 1중량%~2중량%, 나머지 불가피한 불순물을 포함하여 이루어지고, 자기 조성 재료는 분말이고 평균입경은 0.3 ~0.4 ㎛이다.Alternatively, as shown in FIG. 3, the underground casing 30 can be made of porcelain (30-CE), and the composition of the porcelain is 25% to 29% by weight of silicon dioxide and 5% to 10% by weight of aluminum oxide. % by weight, silica 50% to 59% by weight, alumina 10% to 15% by weight, iron oxide 1% to 2% by weight, and the remaining inevitable impurities. The porcelain composition material is powder and the average particle diameter is 0.3 ~ 0.3%. It is 0.4 ㎛.

상기와 같이 미세하게 분말가공 처리된 자기 재료를 진공에서 반죽, 반죽 내부에 기포 형성을 방지하여 케이싱의 형상을 형성한 후, 2500℃ 이상의 고온에서 소성하여 고강도와 내구성 및 내수성을 갖는 지중케이싱으로 활용할 수 있다.The magnetic material that has been finely powdered as described above is kneaded in a vacuum, formed into the shape of the casing by preventing the formation of bubbles inside the dough, and then fired at a high temperature of over 2500°C to be used as an underground casing with high strength, durability, and water resistance. You can.

또한, 상기와 같이 지중케이싱(30)을 친환경적인 재질인 자기로 제작하여, 지중공기를 보다 친환경적으로 냉각 또는 가열할 수 있다.In addition, as described above, the underground casing 30 is made of porcelain, an environmentally friendly material, so that underground air can be cooled or heated in a more environmentally friendly manner.

1 : 압축기
2 : 사방변
3 : 제1열교환기
4 : 제1체크밸브
5 : 제1팽창밸브
1: Compressor
2: Four sides
3: First heat exchanger
4: 1st check valve
5: First expansion valve

Claims (5)

건축물 내부의 공기조화를 실시할 수 있는 히트펌프를 이용한 건축물 공조관리시스템(1000)에 있어서,
지중열을 이용 가능한 히트펌프를 이용한 건축물 공조관리시스템(1000)은 ; 건축물(BD)의 내부를 냉난방할 수 있도록, 난방운전과 냉방운전이 선택 가능하고 ; 압축기(1), 사방변(2), 제1열교환기(3), 팽창밸브, 제2열교환기(7)를 포함하며;
지중열을 수집하는 지중케이싱(30)이 구비되고;
지중케이싱(30)에는 전기에너지를 생산할 수 있도록 발전기(50)가 구비되며;
지중케이싱(30)과, 건축물(BD) 내부에 설치된 공조조절유니트(20)간에는 지중에어이송관(60-P)이 상호 연통하여 설치되고;

축열조(10)에 연통 연결된 제1축열배관(10-1P)은, 제1열교환기(3)를 통과하면서 제1열교환기(3)에 설치된 냉매배관과 열교환이 가능하며;

축열조(10)에 연통 연결된 제2축열배관(10-2P)은, 건축물(BD) 내부에 설치된 제3열교환기(20-1)를 통과하도록 설치되고,

공조조절유니트(20)의 내부에는 제3열교환기(20-1), 가열기(20-2), 습도조절기(20-3), 송풍기(20-4)가 내장되어 있으며;

지중케이싱(30) 내부에 저장되어 지중열을 흡수한 지중수(W)는, 지중수순환파이프(50) 내부를 따라 이송되어, 다시 지중케이싱(30)의 내부로 귀환할 수 있고;

지중수순환파이프(50)는, 제2열교환기(7)를 통과하면서 제2열교환기(7)에 설치된 냉매배관과 열교환 할 수 있으며;

브라켓(40-1)에 의해 터빈(40)이 회전 가능하게 지중케이싱(30)의 내부에 설치되고, 지중케이싱(30)의 외부에 발전기가 설치되어, 지중수귀환파이프(50-2)에서 낙하되는 지중수에 의해 터빈(40)을 회전시키고, 터빈(40)에 연결된 발전기를 회전시켜 전기 에너지를 생산할 수 있으며;

지중케이싱(30) 내부에 설치된 터빈(40)의 회전에 의해 지중케이싱(30)의 내부에는 와류가 발생되고, 와류에 의해 지중케이싱(30)의 내부에 저장된 지중수(W)와, 지중케이싱 내부에 저장된 공기는 상호 열교환할 수 있고;
열교환된 공기는, 지중에어이송관(60-P)의 내부를 통하여 건축물(BD) 내부에 설치된 공기조절유니트(20)로 이송될 수 있고,
지중에어이송관(60-P)이 분기되어, 건축물의 바닥으로 지중열을 공급할 수 있도록 바닥지중에어이송관(60-P1)이 구비되며,
지중에어이송관(60-P)이 분기되어, 건축물의 실내로 지중열을 공급할 수 있도록 실내지중에어이송관(60-P2)이 구비되고;

지중에어이송관(60-P)에는 제1이송관제어밸브(60-V)가 설치되고,
바닥지중에어이송관(60-P1)에는 제2이송관제어밸브(60-V2)가 설치되며,
실내지중에어이송관(60-P2)에는 제3이송관제어밸브(60-V3)가 설치된 것을 특징으로 하는 건축물 공조관리시스템.
In the building air conditioning management system (1000) using a heat pump that can perform air conditioning inside the building,
The building air conditioning management system (1000) using a heat pump that can utilize ground heat is; In order to cool and heat the interior of the building (BD), heating operation and cooling operation can be selected; It includes a compressor (1), a four-way valve (2), a first heat exchanger (3), an expansion valve, and a second heat exchanger (7);
An underground casing (30) for collecting underground heat is provided;
The underground casing (30) is equipped with a generator (50) to produce electrical energy;
An underground air transfer pipe (60-P) is installed in communication between the underground casing (30) and the air conditioning control unit (20) installed inside the building (BD);

The first heat storage pipe (10-1P) connected to the heat storage tank (10) can exchange heat with the refrigerant pipe installed in the first heat exchanger (3) while passing through the first heat exchanger (3);

The second heat storage pipe (10-2P) connected to the heat storage tank (10) is installed to pass through the third heat exchanger (20-1) installed inside the building (BD),

Inside the air conditioning control unit 20, a third heat exchanger (20-1), a heater (20-2), a humidity controller (20-3), and a blower (20-4) are built;

The ground water (W) stored inside the underground casing 30 and absorbing ground heat can be transported along the inside of the ground water circulation pipe 50 and returned to the inside of the underground casing 30;

The underground water circulation pipe (50) can exchange heat with the refrigerant pipe installed in the second heat exchanger (7) while passing through the second heat exchanger (7);

The turbine 40 is installed inside the underground casing 30 to be rotatable by the bracket 40-1, and a generator is installed outside the underground casing 30, and is connected to the underground water return pipe 50-2. Falling groundwater rotates the turbine 40 and rotates a generator connected to the turbine 40 to produce electrical energy;

The rotation of the turbine 40 installed inside the underground casing 30 generates a vortex inside the underground casing 30, and the underground water (W) stored inside the underground casing 30 by the vortex, and the underground casing The air stored inside can exchange heat with each other;
The heat exchanged air can be transferred to the air conditioning unit 20 installed inside the building BD through the inside of the underground air transfer pipe 60-P,
The underground air transfer pipe (60-P) is branched and an underground air transfer pipe (60-P1) is provided to supply ground heat to the floor of the building.
The underground air transfer pipe (60-P) is branched and an indoor underground air transfer pipe (60-P2) is provided to supply ground heat to the interior of the building;

A first transfer pipe control valve (60-V) is installed in the underground air transfer pipe (60-P),
A second transfer pipe control valve (60-V2) is installed in the underground air transfer pipe (60-P1),
A building air conditioning management system characterized by a third transfer pipe control valve (60-V3) installed in the indoor underground air transfer pipe (60-P2).
삭제delete 삭제delete 제1항에 있어서, 지중수순환파이프(50)는 합금으로 제조되고, 상기 합금의 조성은, Ni 25중량% ~ 30중량%, Cr 21중량% ~ 23중량%, Al 3중량% ~ 5중량%, V 5중량% ~ 7중량%, Fe 35중량% ~ 45중량%, 나머지는 불가피한 불순물로 이루어진 것을 특징으로 하는 건축물 공조관리시스템.
According to claim 1, the underground water circulation pipe (50) is made of an alloy, and the composition of the alloy is 25% to 30% by weight of Ni, 21% to 23% by weight of Cr, and 3% to 5% by weight of Al. %, V 5% to 7% by weight, Fe 35% to 45% by weight, and the remainder is made up of inevitable impurities.
제4항에 있어서, 지중케이싱(30)은 SUS304 스테인레스 스틸로 된 외부케이싱과(30-OT)과, 외부케이싱과(30-OT)의 내부에 외부케이싱(30-OT)과 간격을 두고 배치되는 SUS304 스테인레스 스틸로 된 내부케이싱(30-IN)과, 내부케이싱(30-IN)과 외부케이싱과(30-OT)의 사이에 충진되는 황토(30-MI)로 이루어진 것을 특징으로 하는 건축물 공조관리시스템.
According to claim 4, the underground casing (30) is arranged with an outer casing (30-OT) made of SUS304 stainless steel and an outer casing (30-OT) inside the outer casing (30-OT). Building air conditioning characterized by consisting of an inner casing (30-IN) made of SUS304 stainless steel and red clay (30-MI) filled between the inner casing (30-IN) and the outer casing (30-OT). Management system.
KR1020230141173A 2023-10-20 2023-10-20 Energy saving building air conditioning management system KR102633422B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230141173A KR102633422B1 (en) 2023-10-20 2023-10-20 Energy saving building air conditioning management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230141173A KR102633422B1 (en) 2023-10-20 2023-10-20 Energy saving building air conditioning management system

Publications (1)

Publication Number Publication Date
KR102633422B1 true KR102633422B1 (en) 2024-02-07

Family

ID=89873040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230141173A KR102633422B1 (en) 2023-10-20 2023-10-20 Energy saving building air conditioning management system

Country Status (1)

Country Link
KR (1) KR102633422B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345088U (en) 1986-09-09 1988-03-26
KR20120082158A (en) * 2011-01-13 2012-07-23 김재휘 Cooling/heating equipment of water heat exchanging type having generator
KR20160019272A (en) * 2014-08-11 2016-02-19 (주) 제스코 Environment control system using underground air
KR101683578B1 (en) * 2016-04-14 2016-12-08 주식회사 티지이엔씨 Solar heat and geothermy used a cooling and heating device
KR101691189B1 (en) * 2016-09-22 2016-12-30 이은석 Heating and cooling system using geothermal pipe
KR101903295B1 (en) * 2017-12-22 2018-10-01 김철환 Earthquake-proof heating and cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345088U (en) 1986-09-09 1988-03-26
KR20120082158A (en) * 2011-01-13 2012-07-23 김재휘 Cooling/heating equipment of water heat exchanging type having generator
KR20160019272A (en) * 2014-08-11 2016-02-19 (주) 제스코 Environment control system using underground air
KR101683578B1 (en) * 2016-04-14 2016-12-08 주식회사 티지이엔씨 Solar heat and geothermy used a cooling and heating device
KR101691189B1 (en) * 2016-09-22 2016-12-30 이은석 Heating and cooling system using geothermal pipe
KR101903295B1 (en) * 2017-12-22 2018-10-01 김철환 Earthquake-proof heating and cooling system

Similar Documents

Publication Publication Date Title
CN100385184C (en) Combined system of fuel battery and air source heat pump water heater
CN101403521B (en) Solar energy absorption type refrigeration and ground source heat pump coupling combined supplying system
JP5381584B2 (en) Refrigeration system
CN211903306U (en) Low ebb electricity solid heat accumulation heating system
CN108487492B (en) A kind of passive type super low energy consumption combined wall for building
CN101614451A (en) Heat pump type air conditioning system and heat recovery system
CN204901909U (en) Indoor phase -change thermal heating system
CN107327997A (en) Air-conditioning system
CN103398505A (en) Combined heat pump and solar hot water heating and ventilation system
CN102937315A (en) Refrigeration and cold accumulation system
CN102635975A (en) Household cold and hot integrated machine with auxiliary power generating and heating by solar photovoltaic battery
KR102633422B1 (en) Energy saving building air conditioning management system
KR101678914B1 (en) Turbine-integrated Eddy Current Heater for Heat Pump System using Refrigerants
CN206944474U (en) A kind of new more cisten mechanism wall hanging type heat pump water heaters
CN103148553A (en) Ice storage type water heating cooling and heating central air conditioner
CN202885134U (en) Cold-accumulation and heat-accumulation type hot water air conditioner
CN102494439B (en) Photovoltaic photo-thermal energy-storage heat pump system
CN101936613B (en) Integrated heat exchange system
CN111750418A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system and method
CN101706179B (en) Air conditioning equipment of solar cell plate water heater
CN114413326B (en) Solar heat pipe air conditioning system and control method thereof
CN202598950U (en) Household cold and hot integrated machine heated by solar photovoltaic cell auxiliary power generation
CN100434823C (en) Air thermal energy heat pump type steam boiler
CN102353177A (en) VM (Vuilleumier) cycle heat pump type air-conditioning water heater driven by industrial exhaust heat
CN201753994U (en) Integrated heat exchange system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant