KR102631762B1 - 부하 변조 증폭기 - Google Patents

부하 변조 증폭기 Download PDF

Info

Publication number
KR102631762B1
KR102631762B1 KR1020180149302A KR20180149302A KR102631762B1 KR 102631762 B1 KR102631762 B1 KR 102631762B1 KR 1020180149302 A KR1020180149302 A KR 1020180149302A KR 20180149302 A KR20180149302 A KR 20180149302A KR 102631762 B1 KR102631762 B1 KR 102631762B1
Authority
KR
South Korea
Prior art keywords
amplifier
output
load modulation
load
supply voltage
Prior art date
Application number
KR1020180149302A
Other languages
English (en)
Other versions
KR20190093113A (ko
Inventor
케빈 웨슬리 고바야시
Original Assignee
코르보 유에스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코르보 유에스, 인크. filed Critical 코르보 유에스, 인크.
Publication of KR20190093113A publication Critical patent/KR20190093113A/ko
Application granted granted Critical
Publication of KR102631762B1 publication Critical patent/KR102631762B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/204A hybrid coupler being used at the output of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/516Some amplifier stages of an amplifier use supply voltages of different value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Microwave Amplifiers (AREA)

Abstract

부하 변조 증폭기가 개시된다. 부하 변조 증폭기는 무선 주파수 신호의 입력 전력이 미리 결정된 전력 임계 값보다 낮을 때 무선 주파수 신호를 증폭하기 위한 캐리어 증폭기 및 무선 신호의 입력 전력이 미리 결정된 전력 임계 값보다 높을 때 무선 주파수 신호를 증폭하기 위해 캐리어 증폭기와 병렬로 결합된 피크 증폭기를 포함한다. 부하 변조 증폭기는 캐리어 증폭기 및 피크 증폭기 모두로부터의 전력을 결합하여 출력 부하 단자를 통해 출력하도록 구성된 출력 직교 커플러를 더 포함한다. 피크 증폭기의 출력 임피던스는 출력 부하 단자에서 출력 전력이 증가함에 따라 단조 증가한다.

Description

부하 변조 증폭기{LOAD MODULATION AMPLIFIER}
관련 출원들
본 출원은 2016년 11월 1일자로 발행된, 재구성 가능한 부하 변조 증폭기(Reconfigurable Load Modulation Amplifier)라는 명칭의 미국 특허 제9,484,865호; 2016년 9월 28일자로 출원된 재구성 가능한 부하 변조 증폭기라는 명칭의 미국 특허 출원 제15/278,450호; 및 2016년 9월 28일자로 출원된, 재구성 가능한 부하 변조 증폭기라는 명칭의 미국 특허 출원 제15/278,270호와 연관되며, 그 개시 내용의 전체가 본원에 참고로 인용되어있다.
개시의 분야
본 발명은 증폭기에 관한 것으로, 특히 병렬로 결합된 캐리어 증폭기 및 피크 증폭기를 갖는 부하 변조 증폭기에 관한 것이다.
전통적인 도허티 전력 증폭기들(Doherty power amplifiers)은 넓은 전력 범위에서 높은 전력 백 오프 효율(backed off efficiency)을 향상시키기 위해 사용된다. 그러나 주파수가 증가함에 따라, 도허티 전력 증폭기 성능은 증폭기 디바이스 기생 커패시턴스 및 인덕턴스로 인해 전반적으로 저하된다. 약 15GHz에서, 도허티 전력 증폭기의 백 오프 효율은 주파수에 따라 선형적으로 쇠퇴하기 시작한다. 따라서, 28GHz, 38GHz 및 60GHz를 포함하는 5-세대(5G) 무선 네트워크 밀리미터 파 주파수에서 바람직한 출력 백 오프 효율을 유지하는 것과 관련된 과제가 남아 있다. 또한, 위상 어레이 어플리케이션들(phased array applications)을 사용하는 5G 무선 네트워크는 비용, 복잡성 및 출력 전력 선형성으로 인해 제약을 받는다. 또한, 디지털 전치-왜곡 기술(digital pre-distortion techniques)은 밀리미터 파 주파수에서의 비-선형 도허티 동작에 대한 해결책으로서 바람직하지 않다. 따라서, 5G 무선 네트워크 밀리미터 파 주파수에서 작동하기 위해 디지털 전치-왜곡 없이 출력 전력 백 오프 효율 및 선형 동작을 제공하는 부하 변조 전력 증폭기가 필요하다.
부하 변조 증폭기가 개시된다. 상기 부하 변조 증폭기는 무선 주파수 신호의 입력 전력이 미리 결정된 전력 임계 값보다 낮을 때 무선 주파수 신호를 증폭하기 위한 캐리어 증폭기 및 무선 신호의 입력 전력이 미리 결정된 전력 임계 값보다 높을 때 무선 주파수 신호를 증폭하기 위해 캐리어 증폭기와 병렬로 결합된 피크 증폭기를 포함한다. 상기 부하 변조 증폭기는 캐리어 증폭기 및 피크 증폭기 모두로부터의 전력을 결합하여 출력 부하 단자를 통해 출력하도록 구성된 출력 직교 커플러를 더 포함한다. 피크 증폭기의 출력 임피던스는 출력 부하 단자에서 출력 전력이 증가함에 따라 단조 증가한다.
당업자는 본 개시의 범위를 이해하고 첨부된 도면과 관련하여 바람직한 실시 예에 대한 다음의 상세한 설명을 읽은 후에 본 발명의 추가 양태를 실현할 것이다.
본 명세서에 통합되어 본 명세서의 일부를 형성하는 첨부된 도면들은 본 개시 물의 몇몇 양태들을 설명하고, 설명과 함께 본 개시의 원리를 설명하는 역할을 한다.
도 1은 본 개시에 따라 구조화되고 구성된 부하 변조 증폭기의 제1 실시 예의 개략도이다.
도 2는 본 개시에 따라 구조화되고 구성된 부하 변조 증폭기의 제2 실시 예의 개략도이다.
도 3은 매칭 네트워크에 대한 예시적인 회로 토폴로지이다.
도 4는 본 개시의 피크 증폭기의 출력 임피던스 대 부하 변조 증폭기 실시 예들의 출력 전력의 그래프이다.
5는 본 개시의 부하 변조 증폭기 실시 예들에 대한 캐리어 증폭기의 출력에 대한 결합 대 밀리미터 파 주파수의 그래프이다.
도 6은 본 개시의 부하 변조 증폭기 실시 예들에 대한 캐리어 증폭기의 출력에 대한 위상 시프트 대 밀리미터 파 주파수의 그래프이다.
도 7은 본 개시의 부하 변조 증폭기 실시 예들에 대한 피크 증폭기의 출력에 대한 결합 대 밀리미터 파 주파수의 그래프이다.
도 8은 본 개시의 부하 변조 증폭기 실시 예들에 대한 피크 증폭기의 출력에 대한 위상 시프트 대 밀리미터 파 주파수의 그래프이다.
도 9는 도 2의 부하 변조 증폭기의 제2 실시 예에 대한 전력 부가 효율 및 드레인 효율 대 출력 전력의 그래프이다.
도 10은 도 2의 부하 변조 증폭기의 제2 실시 예에 대한 출력 전력의 함수로서 3-차 상호 변조 왜곡(IM3) 및 선형성 성능 지수(LFOM)의 그래프이다.
도 11은 종래의 도허티 증폭기 대 도 2의 부하 변조 증폭기의 제2 실시 예에 대한 진폭 변조-진폭 변조(AM-AM) 왜곡에 대한 이득 델타(gain delta) 대 출력 전력의 그래프이다.
도 12는 종래의 도허티 증폭기 대 도 2의 부하 변조 증폭기의 제2 실시 예에 대한 AM-위상 변조(AM-PM) 왜곡에 대한 위상 델타 대 출력 전력의 그래프이다.
도 13은 종래의 도허티 증폭기와 비교하여 도 2의 부하 변조 증폭기의 제2 실시 예에 대한 오차 벡터 크기(EVM) 대 출력 전력의 그래프이다.
도 14는 도 2의 부하 변조 증폭기의 제2 실시 예에 대한 2:1 전압 정재파 비(VSWR) 미스매치 대 출력 전력 하에 EVM 의 그래프이다.
도 15는 종래의 도허티 증폭기에 대한 2:1 VSWR 미스매치 대 출력 전력 하의 EVM의 그래프이다.
이하에서 설명되는 실시 예는 당업자가 실시 예를 실시할 수 있고 실시 예를 실시하는 최선의 모드를 설명하는 데 필요한 정보를 나타낸다. 첨부 도면에 비추어 다음의 설명을 읽으면, 당업자는 개시의 개념을 이해할 것이고, 본 명세서에서 특별히 다루지 않는 이러한 개념의 어플리케이션을 인식할 것이다. 이들 개념 및 어플리케이션은 본 개시 및 부수적인 청구항들의 범위 내에 있다는 것을 이해해야 한다.
제1, 제2 등의 용어가 본 명세서에서 다양한 요소를 설명하기 위해 사용될 수 있지만, 이들 요소는 이들 용어에 의해 제한되어서는 안됨을 이해할 것이다. 이 용어는 하나의 요소를 다른 요소와 구별하기 위해서만 사용된다. 예를 들어, 본 개시의 범위를 벗어나지 않고 제1 요소는 제2 요소로 지칭될 수 있고, 마찬가지로, 제2 요소는 제1 요소로 지칭될 수 있다. 본 명세서에 사용된 바와 같이, "및/또는"이라는 용어는 하나 이상의 관련 열거된 항목의 임의 및 모든 조합을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 요소 "위에" 있거나 또는 다른 요소 "상으로" 연장되는 것으로 언급될 때, 그것은 직접적으로 다른 요소 상에 있을 수 있거나 다른 요소 상으로 직접 연장될 수 있거나, 또는 개재된 요소가 또한 존재할 수 있다고 이해될 것이다. 대조적으로, 요소가 다른 요소 "직접적으로 위에" 있거나 또는 다른 요소 " 직접적으로 위로" 연장되는 것으로 언급될 때, 개재된 요소가 존재하지 않는다. 마찬가지로, 층, 영역 또는 기판과 같은 요소가 다른 요소를 "넘어서" 있거나 또는 다른 요소를 "넘어서" 연장되는 것으로 언급될 때, 이는 다른 요소를 직접적으로 넘어서 있거나 또는 다른 요소를 직접적으로 넘어서 연장되거나, 또는 개재된 요소가 존재하는 것으로 이해될 수 있다. 대조적으로, 요소가 다른 요소의 "직접적으로 넘어서" 있거나 또는 다른 요소를 "직접적으로 넘어" 연장되는 것으로 언급될 때, 개재된 요소가 존재하지 않는다. 또한, 요소가 다른 요소에 "연결된" 또는 "결합된" 것으로 언급될 때, 그 요소는 다른 요소에 직접 연결되거나 결합될 수 있거나, 또는 개재된 요소가 존재할 수 있음을 이해할 것이다. 대조적으로, 요소가 다른 요소에 "직접적으로 연결"되거나 "직접적으로 결합"되는 것으로 언급되는 경우, 개재된 요소가 존재하지 않는다.
"아래" 또는 "위" 또는 "상부" 또는 "하부" 또는 "수평" 또는 "수직"과 같은 상대적인 용어는 도면에서 사용된 바와 같이 하나의 요소, 층 또는 영역과 다른 요소, 층 또는 영역과의 관계를 설명하기 위해 본원에서 사용될 수 있다. 이들 용어 및 위에서 논의된 용어는 도면에 도시된 방위뿐만 아니라 디바이스의 상이한 방위를 포함하도록 의도된 것으로 이해될 것이다.
본 명세서에서 사용되는 용어는 특정 실시 예를 설명하기 위한 것이며, 본 발명을 한정하는 것은 아니다. 본원에서 사용 된 단수 형태("a", "an"및 "the")는 문맥상 다르게 지시하지 않는 한 복수 형태를 포함하고자 한다. 본 명세서에서 사용된 용어 "포함한다", "포함하는", "포함한다" 및/또는 "포함하는"은 명시된 특징, 정수, 단계, 동작, 구성 요소 및/또는 구성 요소의 존재를 나타내지만, 하나 이상의 다른 특징, 정수, 단계, 동작, 요소, 구성 요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
달리 정의되지 않는 한, 본원에서 사용된 모든 용어(기술 및 과학 용어 포함)는 본 개시 내용이 속하는 기술 분야의 당업자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 본 명세서에서 사용되는 용어는 본 명세서 및 관련 기술의 문맥에서 그들의 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 여기에 명시적으로 정의되지 않는 한, 이상적이거나 지나치게 형식적으로 해석되지 않을 것이다.
도 1은 본 개시에 따라 구조화되고 구성된 부하 변조 증폭기(load modulation amplifier)(10)의 제1 실시 예의 개략도이다. 예시적인 실시 예들에서, 입력 직교 커플러(12) 및 출력 직교 커플러(14) 각각은 네 개의 포트들을 가지며 피크 증폭기(18) 및 캐리어 증폭기(16)의 출력 전력의 직교 전력 결합을 보장하는 기하학적 대칭성을 갖는 마이크로스트립 또는 스트립-라인 구조를 갖는 랭(Lange) 유형이다. 캐리어 증폭기(16) 및 피크 증폭기(18)는 RF IN으로 표시된 입력 단자(20)에서 입력 직교 커플러(12)의 방식에 의해 그리고 RF OUT로 표시된 출력 부하 단자(22)에서 출력 직교 커플러(14)의 방식에 의해 병렬로 결합된다.
입력 직교 커플러(12) 및 출력 직교 커플러(14)는 모두 통상 0.25 dB 미만의 삽입 손실(insertion loss) 및 대략 옥타브 주파수 동작 대역폭을 갖는다. 예를 들어, 일 실시 예에서 입력 직교 커플러(12) 및 출력 직교 커플러(14)는 모두 12 GHz의 최소 주파수 및 24 GHz의 최대 주파수를 갖는 랭 커플러들이다. 다른 실시 예에서, 입력 직교 커플러(12) 및 출력 직교 커플러(14)는 모두 18 GHz의 최소 주파수 및 36 GHz의 최대 주파수를 갖는 랭 커플러이다. 또 다른 실시 예에서, 입력 직교 커플러(12) 및 출력 직교 커플러(14)는 27 GHz의 최소 주파수 및 54 GHz의 최대 주파수를 갖는 랭 커플러이다.
입력 임피던스 종단 네트워크(24)는 입력 직교 커플러(12)의 입력 종단 포트와 접지 사이에 결합된다. 피크 증폭기(18)와 함께 포함된 매칭 네트워크(28)의 네트워크 출력 단자(26)는 출력 직교 커플러(14)의 제1 포트 (P1)에 결합된다. 적어도 하나의 실시 예에서, 매칭 네트워크(28)는 인덕턴스, 커패시턴스 및 저항을 갖는 수동 전기 구성 요소들로만 이루어진다. 입력 임피던스 종단 네트워크(24)의 고정 임피던스보다 높은 고정 임피던스를 갖는 절연 종단 네트워크(30)는 출력 직교 커플러(14)의 제2 포트(P2)와 접지 사이에 결합된다. 피크 증폭기(18)에 대한 바이어스 전류(IBIAS)는 매칭 네트워크(28)의 매칭 임피던스와 조합하여 설정 및/또는 제어되어, 네트워크 출력 단자(26)에서 보여지는 피크 증폭기(18)의 출력 임피던스(Z0)는 부하 변조 증폭기(10)의 출력 전력이 증가함에 따라 단조 증가한다. 본 실시 예에서, 바이어스 전류(IBIAS)는 매칭 네트워크(28)을 통해 피크 증폭기(18)에 공급된다.
예시적인 실시 예에서, 입력 임피던스 종단 네트워크(24)의 고정 임피던스는 50 Ω이고 절연 종단 네트워크(30)의 고정 임피던스는 실질적으로 50 Ω보다 크고, 몇몇 예시적인 실시 예들에서, 절연 종단 네트워크(30)의 고정 임피던스는 1000 Ω 정도이다. 도 1의 예시적인 실시 예에서, 캐리어 증폭기(16)로부터 출력된 증폭된 무선 주파수 신호는 제3 포트(P3)에 입력되고, 출력 부하 단자(22)에 결합된 제4 포트(P4)를 빠져 나가기 전에 0° 위상 시프트를 겪는다.
또한, 이 예시적인 실시 예에서, 하나 이상의 질화 갈륨 전계-효과 트랜지스터(32)는 입력 단자(20)에서 입력된 무선 주파수 신호의 증폭된 복사본을 매칭 네트워크(28)에 공급한다. 피크 증폭기(18)에 대한 바이어스 포인트(bias point)는 원하는 응답을 위해 증폭기를 구성하기 위해 A 또는 AB와 같은 다른 클래스들에 대해 설정될 수 있음을 알아야 한다.
도 2는 본 개시에 따라 구조화되고 구성된 부하 변조 증폭기(10)의 제2 실시 예의 개략도이다. 부하 변조 증폭기(10)의 예시적인 실시 예들은 90 GHz보다 큰 전이 주파수(transition frequency)를 갖는 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술(T-gate gallium nitride high electron mobility transistor technology)을 이용하여 제조될 수 있다. 도 2의 예시적인 실시 예에서, 캐리어 증폭기(16)로부터 출력된 증폭된 무선 주파수 신호는 제3 포트 (P3)에 입력되고, 출력 부하 단자(22)에 결합된 제4 포트(P4)를 빠져 나가기 전에 90° 위상 시프트를 겪는다.
일부 실시 예들에서, 캐리어 증폭기(16)는 제1 공급 전압으로 바이어싱되고 피크 증폭기(18)는 제2 공급 전압으로 바이어싱되며, 여기서, 제2 공급 전압은 제1 공급 전압보다 10 % 내지 50 % 크다. 일부 실시 예들에서, 제2 공급 전압은 제1 공급 전압보다 50 % 내지 100 % 크다. 도 1 및 도 2의 예시적인 실시 예들에서, 제1 공급 전압은 10 V이고, 제2 공급 전압은 제1 공급 전압보다 80 % 큰 18 V이다. 또 다른 실시 예에서, 제2 공급 전압은 제1 공급 전압보다 100 % 내지 200 % 크다. 또 다른 실시 예에서, 제2 공급 전압은 제1 공급 전압보다 200 % 내지 1000 % 크다.
도 3은 매칭 네트워크(28)에 대한 예시적인 회로 레이아웃(layout)이다. 이 예에서, 매칭 네트워크는 전계-효과 트랜지스터(32)와 네트워크 출력 단자(26) 사이에 직렬로 결합된 제1 전송 선로(TL1) 및 제2 전송 선로(TL2)로 이루어진다. 제1 전송 선로(TL1)와 제2 전송 선로(TL2) 사이의 노드에는 제1 튜닝 스터브(first tuning stub)(ST1)와 제2 튜닝 스터브(ST2)가 결합된다. 제1 커패시터(C1)는 제1 튜닝 스터브(ST1)의 외측 단부와 접지 비아 패드(34-1) 사이에 결합된다. 점선 원은 비아를 나타낸다. 제2 커패시터(C2)는 제2 튜닝 스터브(ST2)의 외측 단부와 접지 비아 패드(34-2) 사이에 결합된다. 이 예시적인 경우에, 바이어스 전류(IBIAS)의 바이어스 전류 레벨 설정과 함께 제1 튜닝 스터브(ST1)의 튜닝 및 제2 튜닝 스터브(ST2)의 튜닝은 네트워크 출력 단자(26)에서 피크 증폭기(18)(도 1 및 도 2)의 출력 임피던스(Z0)가 부하 변조 증폭기(10)의 출력 전력이 증가함에 따라 단조 증가하도록 보장하기 위해 수행된다.
이 예시적인 실시 예에서, 매칭 네트워크(28) 및 전계-효과 트랜지스터(32)는 공통 기판(36) 상에 제조된다. 이 예에서, 전계-효과 트랜지스터(32)는 개별적으로 M1, M2 및 M3로 표시된다. 증폭될 고주파 신호는 게이트들(G1, G2, G3)에 각각 입력된다. 소스들(S1, S2 및 S3)은 패드들(34-3, 34-4, 34-5 및 34-6)을 통해 각각 접지에 결합된다. 드레인들(D1, D2 및 D3)은 매니폴드(38)에 의해 매칭 네트워크(28)에 결합된다. 단조 증가하는 피크 증폭기 출력 임피던스(Z0)를 달성하기 위해 실현 가능한 매칭 구조들 및 바이어스 포인트들의 다른 조합들, 따라서 도 3의 예시적인 실시 예는 비-제한적이라는 것을 이해해야 한다.
예시적인 반복적 설계(iterative design) 방법은 부하 변조 증폭기(10)의 실시 예들의 성능을 시뮬레이팅하는 무선 주파수 집적 회로(radio frequency integrated circuit, RFIC) 시뮬레이션 소프트웨어를 사용한다. 예시적인 설계 방법의 목적은 피크 증폭기(18)의 출력 임피던스(Z0)가 출력 전력의 증가에 따라 단조 증가하는 것을 보장하는 것이다. 적어도 하나의 다른 목적은 10 dB 출력 전력에서 백 오프되는(backed off) 부하 변조 증폭기(10)의 효율적인 선형 동작을 달성하는 것이다.
예시적인 반복적 설계 방법은 매칭 네트워크(28)에 대한 적절한 회로 토폴로지를 선택하는 것으로 시작한다. 예시적인 실시 예에서, 적절한 회로 토폴로지는 마이크로스트립들(microstrips)로 구성된 L-네트워크이다. 매칭 네트워크(28)의 회로 토폴로지를 포함하는 부하 변조 증폭기(10)의 모델은 RFIC 시뮬레이션 소프트웨어를 실행하는 디지털 컴퓨터에 입력된다. 다음 단계들에는 회로 토폴로지를 구성하는 구성 요소들의 초기 값들의 설정과 바이어스 전류(IBIAS)의 초기 전류 레벨 설정이 포함된다. RFIC 시뮬레이션 소프트웨어를 사용하는 부하 변조 증폭기(10)의 모델의 시뮬레이션은 피크 증폭기(18)에 대한 산란 파라미터(scattering parameter)(S22)의 시뮬레이션된 측정을 생성하기 위해 스위핑(sweeping)되는 원하는 출력 전력 범위에 대해 적용된다. 출력 임피던스(Z0) 측정치들은 산란 파라미터(S22) 측정치들로부터 도출될 수 있다. 산란 파라미터(S22) 측정치들 또는 출력 임피던스(Z0) 측정치들 중 어느 하나가 처리되어, 캐리어 증폭기가 미리 결정된 전력 임계 값보다 낮은 저 출력 전력 레벨에서 결합(coupling)되고 미리 결정된 전력 임계 값보다 높은 고 출력 전력 레벨에서 결합 해제(decoupling)되는 것을 보장하는 원하는 출력 전력 범위에 걸쳐 출력 임피던스(Z0)가 출력 전력이 증가함에 따라 단조 증가하는지 여부를 결정한다.
출력 임피던스(Z0)가 원하는 출력 전력 범위에서 출력 전력이 증가함에 따라 단조 증가하지 않는다고 결정되면, 피크 증폭기(18)에 대한 산란 파라미터(S22)의 새로운 시뮬레이팅된 측정치들을 생성하기 위해 출력 전력 범위가 다시 스위핑되기 전에 매칭 네트워크의 적어도 하나의 성분 값이 조정되고/되거나 바이어스 전류(IBIAS)가 조정된다. 새로운 산란 파라미터(S22) 측정치들 또는 새로운 출력 임피던스(Z0) 측정치들 중 어느 하나가 처리되어 출력 임피던스(Z0)가 원하는 출력 전력 범위에서 출력 전력이 증가함에 따라 단조 증가 하는지를 결정한다. 결정이 긍정이면, 본 방법은 완료되고, 부하 변조 증폭기(10)는 실험실 테스트로 실현되고 검증된다. 그렇지 않으면, 반복적 설계 방법은 시뮬레이션이 피크 증폭기(18)의 출력 임피던스가 출력 부하 단자(22)에서 출력 전력이 증가함에 따라 단조 증가하는 것을 나타낼 때까지 계속된다. 본 개시의 반복적 설계 방법은 RFIC 시뮬레이션 소프트웨어의 실행을 제어하는 디지털 컴퓨터에 의해 실행되는 추가적인 프로그램 명령에 의해 완전히 자동화될 수 있음을 이해해야 한다. 또한, 프로그램 명령은 회로 토폴로지를 구성하는 구성들에 대한 값들을 조정할 수 있고/있거나 원하는 레벨의 출력 전력 선형성에 수렴하는 유전 방식(genetic fashion)으로 바이어스 전류(IBIAS)에 대한 전류 레벨을 조정할 수 있다.
도 4는 피크 증폭기(18)의 출력 임피던스(Z0) 대 부하 변조 증폭기(10)에 대한 출력 전력의 그래프이다. 도 4의 그래프는 2.5 dBm 내지 35 dBm 사이의 넓은 출력 전력 범위에 걸쳐 출력 부하 단자(22)에서 출력 전력이 증가함에 따라 단조 증가하는 피크 증폭기(18)의 비정형이지만 매우 바람직한 출력 임피던스를 나타낸다. 대조적으로, 도허티 증폭기와 같은 피크 증폭기를 갖는 다른 유형의 증폭기들은 전형적으로 피크 증폭기의 트랜지스터가 전류를 동적으로 바이어싱 업하고 출력 전력이 증가함에 따라 단조 증가하는 출력 임피던스를 갖지 않으므로 전력이 증가함에 따라 감소하는 출력 임피던스를 갖는다.
부하 변조 증폭기(10)의 적어도 일부 예시적인 실시 예들에서, 부하 변조 증폭기(10)는 15 GHz와 100 GHz 사이의 주파수를 갖는 무선 주파수 신호에 선형 전압 이득을 제공한다. 부하 변조 증폭기(10)의 다른 예시적인 실시 예들은 30 GHz와 50 GHz 사이의 주파수를 갖는 무선 주파수 신호에 선형 전압 이득을 제공한다.
본 실시 예들의 피크 증폭기(18)의 출력 임피던스의 증가는 캐리어 증폭기(16)로부터 피크 증폭기(18)로의 출력으로 전달되는 전력을 효과적으로 조종한다. 적어도 하나의 예시적인 실시 예에서, 피크 증폭기(18)의 출력 임피던스는 출력 부하 단자에서 2.5 dBm와 35 dBm 사이의 출력 전력 증가와 함께 30 Ω과 100 Ω 사이에서 단조 증가한다. 적어도 하나의 다른 예시적인 실시 예에서, 피크 증폭기의 출력 임피던스는 출력 부하 단자에서 2.5 dBm와 29 dBm 사이의 출력 전력 증가와 함께 30 Ω과 50 Ω 사이에서 단조 증가한다. 적어도 하나의 추가적인 예시적인 실시 예에서, 피크 증폭기(18)의 출력 임피던스(Z0)는 출력 부하 단자에서 29 dBm 내지 35 dBm 사이의 출력 전력 증가와 함께 50Ω 내지 100 Ω 사이에서 단조 증가한다. 다른 실시 예에서, 피크 증폭기(18)의 출력 임피던스(Z0)는 출력 부하 단자에서 3 dB와 16 dB 사이의 출력 전력 백-오프(output power back-off, OPBO) 범위에 걸쳐 출력 전력이 증가함에 따라 1.5 배와 4 배 사이에서 단조 증가한다.
도 5 내지 도 8의 그래프들은 50 Ω보다 작고 시뮬레이션들을 위해 특별히 0.1 Ω으로 설정된 절연 임피던스를 갖는 절연 종단 네트워크(30)를 구비한 도 2의 부하 변조 증폭기(10)의 제2 실시 예의 시뮬레이션으로부터 생성된다. 도 5는 본 개시의 부하 변조 증폭기 실시 예들에 대한 캐리어 증폭기의 출력에 대한 결합(carrier amplifier to output coupling) 대 밀리미터 파 주파수의 그래프이다. 특히, 도 5의 그래프는 피크 증폭기(18)의 출력 임피던스(Z0)가 증가함에 따라 캐리어 증폭기(16)가 출력 부하 단자(22)로부터 분리되는 것을 도시한다. 도 4의 그래프를 다시 참조하면, 2.5 dBm과 5 dBm 사이의 비교적 낮은 출력 전력에서 피크 증폭기(18)의 출력 임피던스(Z0)는 30Ω에 가깝다는 것을 알 수 있다. 도 5의 실선으로 도시된 바와 같이, 피크 증폭기(18)의 30 Ω 출력 임피던스(Z0)는 약 30 GHz 내지 50 GHz에 이르는 주파수 범위에 걸쳐서 캐리어 증폭기의 전력의 출력 부하 단자(22)에 대한 -3 dB 결합을 허용한다.
도 4의 그래프를 다시 참조하면, 29 dBm에 가까운 비교적 적당한 출력에서 피크 증폭기(18)의 출력 임피던스(Z0)는 50 Ω에 가깝다는 것을 알 수 있다. 도 5의 일점-쇄선(dot-dash line)으로 도시된 바와 같이, 피크 증폭기(18)의 50 Ω 출력 임피던스(Z0)는 약 36 GHz 내지 50 GHz에 이르는 주파수 범위에 걸쳐서 캐리어 증폭기의 전력의 출력 부하 단자(22)에 대한 약 -4 dB 결합을 허용한다.
다시 도 4의 그래프를 다시 참조하면, 32 dBm에 가까운 비교적 높은 출력에서 피크 증폭기(18)의 출력 임피던스(Z0)는 90 Ω에 가깝다는 것을 알 수 있다. 도 5의 점선으로 도시된 바와 같이, 피크 증폭기(18)의 90 Ω 출력 임피던스(Z0)는 약 30 GHz 내지 44 GHz에 이르는 주파수 범위에 걸쳐서 캐리어 증폭기의 전력의 출력 부하 단자(22)에 대한 약 -6 dB 결합을 허용한다. 피크 증폭기(18)의 90 Ω 출력 임피던스(Z0)의 경우에, 캐리어 증폭기(16)의 출력 전력의 기여는 캐리어 증폭기(16)가 출력 부하 단자(22)로부터 실제적으로 분리된 것으로 간주될 수 있을 정도로 충분히 작다. 0.1 Ω의 비교적 낮은 절연 임피던스에 대한 캐리어 증폭기(16)로부터 피크 증폭기(18)로의 출력 전력의 조정은 도허티-유형 증폭기에서는 발생하지 않으며, 이는 왜냐하면 도허티 동작은 전력이 증가함에 따라 피크 증폭기(18)의 출력 임피던스(Z0)를 증가를 제공하지 않기 때문이다.
도 6은 본 개시의 부하 변조 증폭기 실시 예들에 대한 캐리어 증폭기의 출력에 대한 위상 시프트 대 밀리미터 파 주파수의 그래프이다. 출력 직교 커플러(14)를 통한 캐리어 증폭기 출력 위상 시프트는 30 Ω 내지 90 Ω 범위의 피크 증폭기의 출력 임피던스(Z0)에 대해 30 GHz 내지 50 GHz 사이에서 0°의 ± 20°의 범위 내에서 유지된다.
도 7은 본 개시의 부하 변조 증폭기 실시 예들에 대한 피크 증폭기의 출력에 대한 결합 대 밀리미터 파 주파수의 그래프이다. 특히, 도 7의 그래프는 피크 증폭기(18)의 출력 임피던스(Z0)가 증가함에 따라 피크 증폭기(18)가 출력 부하 단자(22)에 결합되는 것을 도시한다. 도 7의 실선으로 도시된 바와 같이, 피크 증폭기(18)의 30 Ω 출력 임피던스(Z0)는 30 GHz내지 50 GHz의 주파수 범위에 걸쳐 피크 증폭기의 전력의 출력 부하 단자(22)에 대한 약 -3 dB 결합을 허용한다. 더욱이, 도 7의 일점-쇄선으로 도시된 바와 같이, 피크 증폭기(18)의 50 Ω 출력 임피던스(Z0)는 30 GHz 내지 50 GHz 주파수 범위에 걸쳐-2 dB 바로 아래 및 -2.5 dB 사이의 캐리어 증폭기의 전력의 출력 부하 단자(22)에 대한 보다 큰 결합을 생성한다. 도 7에서 점선으로 더 도시된 바와 같이, 피크 증폭기(18)의 90 Ω 출력 임피던스(Z0)는 30 GHz 내지 50 GHz 주파수 범위에 걸쳐 캐리어 증폭기의 전력의 출력 부하 단자(22)에 대한 약 -2 dB 내지 -2.5 사이의 결합을 제공한다. 피크 증폭기(18)의 90 Ω 출력 임피던스(Z0)의 경우에, 부하 변조 증폭기(10)의 출력 부하 단자(22)에서의 출력 전력의 기여는 피크 증폭기(18)가 출력 부하 단자(22)에 실질적으로 결합되는 것으로 간주될 수 있을 정도로 충분히 크다.
도 8은 본 개시의 부하 변조 증폭기 실시 예들에 대한 피크 증폭기의 출력에 대한 위상 시프트 대 밀리미터 파 주파수의 그래프이다. 출력 직교 커플러(14)를 통한 피크 증폭기 출력 위상 시프트는 30 Ω 내지 90 Ω 사이의 범위를 갖는 피크 증폭기의 출력 임피던스(Z0)에 대한 36 GHz 내지 42 GHz 사이에서 90°의 ± 10° 내에 머물러 있음을 주목해야 한다. 적어도 일부 실시 예에서, 부하 변조 증폭기(10)는 주어진 OPBO 범위의 절반에 대응되는 5dB 전력 범위에 걸친 출력 전력에 대해 ± 1 ° 이하의 위상 변화를 갖는다.
도 9는 도 2의 부하 변조 증폭기(10)의 제2 실시 예에 대한 전력 부가 효율(power added efficiency) 및 드레인 효율 대 출력 전력의 그래프이다. 도 9의 그래프는 캐리어 증폭기(16) 및 피크 증폭기(18)가 90 GHz보다 큰 전이 주파수를 갖는 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링된 부하 변조 증폭기(10)의 시뮬레이션을 실행함으로써 생성된다. 캐리어 증폭기에 대한 제1 공급 전압은 10V로 설정되고, 피크 증폭기에 대한 제2 공급 전압은 18V로 설정되며, 캐리어 증폭기(16)의 제1 바이어스 전류는 피크 증폭기(18)의 제2 바이어스 전류보다 큰 레벨로 설정되고, 절연 종단 네트워크(30)는 0.1 Ω로 설정된다. 이러한 설정들은 10 dB 출력 전력 백 오프에서 최소 45 %의 OPBO 드레인 효율을 제공했다. 두꺼운 점선으로 표시된 전력 부가 효율은 90GHz 이상의 전이 주파수를 갖는 동일한 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링된 기존의 도허티 증폭기에 대한 얇은 점선으로 표시된 전력 부가 효율보다 10dB OPBO에서 적어도 6 %의 향상을 보여준다. 또한, 두꺼운 실선으로 표시된 드레인 효율은 90GHz 이상의 전이 주파수를 갖는 동일한 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링된 얇은 실선으로 표시된 종래의 도허티 증폭기의 드레인 효율보다 10dB OPBO에서 적어도 8 % 개선되었다.
도 10은 도 2의 부하 변조 증폭기(10)의 제2 실시 예에 대한 3-차 상호 변조(intermodulation) 왜곡(IM3), 3-차 인터셉트 포인트(intercept point)(IP3) 및 선형성 성능 지수(linearity figure of merit)(LFOM)를 출력 전력의 함수로 나타낸 그래프이다. LFOM은 IP3을 소멸된 전력(dissipated power)으로 나눈 것과 같다. 실선은 도 2의 부하 변조 증폭기(10)의 제1 실시 예에 대한 IM3, IP3 및 LFOM의 응답들을 나타내며, 점선은 90GHz 이상의 전이 주파수를 갖는 동일한 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링된 종래의 도허티 증폭기에 대한 IM3, IP3 및 LFOM에 대한 응답을 나타낸다. 부하 변조 증폭기(10)는 5 dBm 내지 23 dBm 사이의 넓은 출력 전력 범위에 걸쳐 10 dBc 이상의 IM3 성능을 달성한다는 것을 주목해야 한다. 특히 IM3의 개선은 10 dB OPBO에서 22 dBm에서 일반적인 도허티에 비해 훨씬 크다. 또한, 부하 변조 증폭기(10)는 10 dB OPBO에 걸쳐 25:1보다 큰 LFOM을 달성하며, 이는 종래의 도허티 증폭기보다 5 배 개선된다.
도 11은 종래의 도허티 증폭기 대 도 2의 부하 변조 증폭기(10)의 제2 실시 예에 대한 진폭 변조-진폭 변조(AM-AM) 왜곡에 대한 이득 델타(gain delta) 대 출력 전력의 그래프이고, 도 12는 종래의 도허티 증폭기 대 도 2의 부하 변조 증폭기(10)의 제2 실시 예에 대한 AM-위상 변조(AM-PM) 왜곡에 대한 위상 델타 대 출력 전력의 그래프이다. 도 11의 예에 도시된 바와 같이, 제1 실시 예는 39-41 GHz 주파수 범위에서 15 dBm 내지 25 dBm 사이의 출력 전력에 대해 0.5 % 이하의 진폭 이득의 변화를 갖는다. 적어도 일부 실시 예들에서, 부하 변조 증폭기(10)는 주어진 OPBO 범위에 대응하는 10 dB 전력 범위에 걸쳐 출력 전력에 대해 0.5 % 이하의 진폭 이득의 변화를 갖는다. 부하 변조 증폭기(10) 및 종래의 도허티 증폭기는 모두 90 GHz보다 큰 전이 주파수를 갖는 동일한 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링되었다. 부하 변조 증폭기(10)와 종래의 도허티 증폭기 시뮬레이션들은 모두 9.0dB에서 9.5 dB 사이의 피크-평균 전력비로 80 MHz 이상의 대역폭에서 802.11ac과 유사한 복잡한 무선 충실도(Wi-Fi) 신호를 처리하였다. 도 11 및 도 12는 AM-AM 및 AM-PM 왜곡 특성을 나타낸다. 더 두꺼운 실선은 부하 변조 증폭기(10)에 대한 39 GHz, 40 GHz 및 41 GHz 응답들을 나타내며, 얇은 실선은 종래의 도허티 증폭기에 대한 39 GHz, 40 GHz 및 41 GHz 응답들을 나타낸다. 도 11 및 도 12의 그래프들 모두는 부하 변조 증폭기(10)가 종래의 도허티 증폭기에 비해 상대적으로 현저한 개선을 갖는다는 것을 보여준다.
5G 밀리미터 파 시스템들의 경우, -26 dB 이하의 오차 벡터 크기(error vector magnitude, EVM)가 적절할 수 있으며, 이는 ~ 5 % EVM에 대응한다. 도 13은 종래의 도허티 증폭기와 비교하여 도 2의 부하 변조 증폭기(10)의 제2 실시 예에 대한 EVM 대 출력 전력의 그래프이다. 더 두꺼운 실선은 부하 변조 증폭기(10)에 대한 39 GHz, 40 GHz 및 41 GHz 응답들을 나타내며, 얇은 실선은 종래의 도허티 증폭기에 대한 39 GHz, 40 GHz 및 41 GHz 응답들을 나타낸다. 부하 변조 증폭기(10) 및 종래의 도허티 증폭기는 모두 EVM가 -26dB보다 낮고 10 dB OPBO에 대해 최대 22 dBm의 출력 전력의 선형 요건을 만족한다. 그러나, 부하 변조 증폭기(10)는 더 높은 OPBO 레벨에서 훨씬 낮은 왜곡을 제공하며, 이는 종래의 도허티 증폭기에 비해 본질적인 선형성 이점을 나타낸다. 예를 들어, 도 13에 도시된 바와 같이, 부하 변조 증폭기(10)는 10 dBm과 20 dBm 사이의 출력 전력 범위에 대해 2 % 이하의 EVM을 갖는다. 적어도 일부 실시 예들에서, 부하 변조 증폭기(10)는 3 dB와 16 dB 사이의 주어진 OPBO 범위에 대응하는 출력 전력에 대해 2 % 이하의 오차 벡터 크기를 갖는다. 밀리미터-파 통신 시스템이 미래에 진화함에 따라, 피크 대 평균 전력비가 높은 고차 변조는 향상된 데이터 처리 성능을 달성하기 위해 EVM 요구 사항을 몇 퍼센트 이하로 낮춰야 한다. 전반적으로, 부하 변조 증폭기(10) 및 종래의 도허티 증폭기는 90 GHz보다 큰 전이 주파수를 갖는 동일한 0.15 미크론 T- 게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링되었다.
밀리미터 파 통신 시스템들의 경우, 종래의 전력 증폭기들은 동적으로 변화하는 전압 정재파 비(voltage standing wave ratio, VSWR), 바람직하지 않은 무선 주파수 간섭, 및 패키징 기생 인덕턴스 및 커패시턴스의 변화에 민감하다. 그 결과, 부하 변조 증폭기(10)는 이러한 불리한 조건에 대응하도록 구성된다. 도 14는 도 2의 부하 변조 증폭기(10)의 제2 실시 예에 대한 2:1 VSWR 미스매치 대 출력 전력 하에 EVM에 대한 시뮬레이션 결과의 그래프이다. 그래프화된 곡선들은, 위상 안테나 어레이 스캐닝으로 인한 것일 수 있는 안테나 VSWR 미스매치 및/또는 50 Ω VSWR 미스매치보다 낮은 또는 50 Ω VSWR 미스매치보다 높은 것을 야기할 수 있는 무선 주파수 간섭으로 인한 실효 안테나 임피던스(effective antenna impedance)와 관련되다. 수직 점선은 EVM이 -26 dB인 최대 선형 전력 범위를 나타낸다. 2:1 VSWR 불일치에 대한 5 dBm에서 25 dBm의 선형 전력 범위는 종래의 도허티 증폭기에 대한 2:1 VSWR 미스매치 대 출력 전력 하의 EVM의 그래프인 도 15에서 설명된 것보다 상대적으로 크게 개선되었다. 적어도 일부 실시 예들에서, 부하 변조 증폭기(10)는 2:1 전압 정재파 비 미스매치에 대해 3 dB와 16 dB 사이의 주어진 OPBO 범위에 대응하는 출력 전력에 대한 최대 선형 오차 벡터 크기를 갖는다. 비교 목적으로, 종래의 도허티 증폭기는 도 2의 부하 변조 증폭기(10)의 제2 실시 예를 모델링하는데 사용된 90 GHz보다 큰 전이 주파수를 갖는 동일한 0.15 미크론 T-게이트 질화 갈륨 고 전자 이동도 트랜지스터 기술로 모델링되었다. 또한, 부하 변조 증폭기(10)의 제2 실시 예 및 종래의 도허티 증폭기 모두에 대해, 캐리어 증폭기(16)에 대한 제1 공급 전압은 10V로 설정되고, 피크 증폭기(18)에 대한 제2 공급 전압은 18V로 설정되고, 캐리어 증폭기(16)의 제1 바이어스 전류가 피크 증폭기(18)의 제2 바이어스 전류보다 큰 전류 레벨로 설정되고, 절연 종단 네트워크(30)는 0.1 Ω로 설정된다.
본 개시의 실시 예들은 기본 선형 효율 질화 갈륨 전력 증폭기 어플리케이션들에 적용될 수 있다. 이러한 어플리케이션들로는 5G 기지국, 5G 밀리미터 위상 어레이, Wi-Fi 802.11ax, CATV DOCSIS 3.1 Plus 및 고급 군용 및 국방 무선 통신이 있다.
당업자는 본 개시의 바람직한 실시 예에 대한 개선 및 수정을 인식할 것이다. 이러한 모든 개선 및 수정은 본원에 개시된 개념 및 다음의 청구 범위의 범주 내에서 고려된다.

Claims (21)

  1. 부하 변조 증폭기(load modulation amplifier)에 있어서,
    무선 주파수 신호의 입력 전력이 미리 결정된 전력 임계 값보다 낮을 때 상기 무선 주파수 신호를 증폭하기 위한 캐리어 증폭기(carrier amplifier);
    상기 무선 주파수 신호의 상기 입력 전력이 상기 미리 결정된 전력 임계 값보다 높을 때 상기 무선 주파수 신호를 증폭하기 위해 상기 캐리어 증폭기와 병렬로 결합된 피크 증폭기(peak amplifier) - 상기 캐리어 증폭기는 제1 공급 전압으로 바이어싱되고, 상기 피크 증폭기는 상기 제1 공급 전압보다 10% 내지 1000% 더 큰 제2 공급 전압으로 바이어싱됨 -; 및
    상기 캐리어 증폭기 및 상기 피크 증폭기 모두로부터의 전력을 결합하여 출력 부하 단자를 통해 출력하도록 구성된 출력 직교 커플러(output quadrature coupler)를 포함하고, 상기 피크 증폭기의 출력 임피던스는, 상기 무선 주파수 신호의 상기 입력 전력이 상기 미리 결정된 전력 임계값보다 높을 때 상기 피크 증폭기가 상기 무선 주파수 신호를 증폭함에 따라, 상기 출력 부하 단자에서 출력 전력이 증가함에 따라 단조 증가(monotonically increasing)하는, 부하 변조 증폭기.
  2. 청구항 1에 있어서, 상기 피크 증폭기의 출력 임피던스는 상기 출력 부하 단자에서 2.5 dBm와 35 dBm 사이에서 출력 전력이 증가함에 따라 30 Ω과 100 Ω 사이에서 단조 증가하는, 부하 변조 증폭기.
  3. 청구항 1에 있어서, 상기 피크 증폭기의 출력 임피던스는 상기 출력 부하 단자에서 2.5 dBm와 29 dBm 사이에서 출력 전력이 증가함에 따라 30 Ω과 50 Ω 사이에서 단조 증가하는, 부하 변조 증폭기.
  4. 청구항 1에 있어서, 상기 피크 증폭기의 출력 임피던스는 상기 출력 부하 단자에서 3 dB와 16 dB 사이의 출력 전력 백-오프(back-off) 범위에 걸쳐 출력 전력이 증가함에 따라 1.5 배와 4 배 사이에서 단조 증가하는, 부하 변조 증폭기.
  5. 청구항 1에 있어서, 상기 출력 직교 커플러는 랭 커플러(Lange coupler)인, 부하 변조 증폭기.
  6. 청구항 1에 있어서, 상기 피크 증폭기는 50 Ω보다 큰 임피던스를 갖는 절연 종단 네트워크(isolation termination network)에 결합되도록 구성되고, 상기 캐리어 증폭기는 상기 출력 직교 커플러의 0° 위상 시프트 포트들을 통해 상기 출력 부하 단자에 결합되는, 부하 변조 증폭기.
  7. 청구항 1에 있어서, 상기 피크 증폭기는 50 Ω 미만의 임피던스를 갖는 절연 종단 네트워크에 결합되도록 구성되고, 상기 캐리어 증폭기는 상기 출력 직교 커플러의 90° 위상 시프트 포트들을 통해 상기 출력 부하 단자에 결합되는, 부하 변조 증폭기.
  8. 청구항 1에 있어서, 상기 캐리어 증폭기는 상기 제1 공급 전압으로 바이어싱되고, 상기 피크 증폭기는 상기 제2 공급 전압으로 바이어싱되며, 상기 제2 공급 전압은 상기 제1 공급 전압보다 10 % 내지 50 % 더 큰, 부하 변조 증폭기.
  9. 청구항 1에 있어서, 상기 캐리어 증폭기는 상기 제1 공급 전압으로 바이어싱되고, 상기 피크 증폭기는 상기 제2 공급 전압으로 바이어싱되고, 상기 제2 공급 전압은 상기 제1 공급 전압보다 50 % 내지 100 % 더 큰, 부하 변조 증폭기.
  10. 청구항 1에 있어서, 상기 캐리어 증폭기는 상기 제1 공급 전압으로 바이어싱되고, 상기 피크 증폭기는 상기 제2 공급 전압으로 바이어싱되고, 상기 제2 공급 전압은 상기 제1 공급 전압보다 100 % 내지 1000 % 더 큰, 부하 변조 증폭기.
  11. 청구항 8에 있어서, 상기 피크 증폭기에 제공된 바이어스 전류는 상기 캐리어 증폭기에 제공되는 바이어스 전류보다 작은, 부하 변조 증폭기.
  12. 청구항 1에 있어서, 상기 캐리어 증폭기는 상기 제1 공급 전압으로 바이어싱되고, 상기 피크 증폭기는 상기 제1 공급 전압과 상이한 상기 제2 공급 전압으로 바이어싱되며, 상기 피크 증폭기에 제공된 바이어스 전류는 상기 캐리어 증폭기에 제공된 바이어스 전류보다 작은, 부하 변조 증폭기.
  13. 청구항 1에 있어서, 상기 피크 증폭기는 상기 출력 부하 단자에서 출력 전력이 증가함에 따라 증가하는 상기 피크 증폭기의 출력 임피던스를 제공하는 매칭 네트워크(matching network)를 포함하는, 부하 변조 증폭기.
  14. 청구항 13에 있어서, 상기 매칭 네트워크는 수동 전기 구성 요소들(passive electrical components)만을 포함하는, 부하 변조 증폭기.
  15. 청구항 1에 있어서, 상기 피크 증폭기는 질화 갈륨 증폭기인, 부하 변조 증폭기.
  16. 청구항 1에 있어서, 상기 부하 변조 증폭기는 15 GHz와 100 GHz 사이의 선형 전압 이득(linear voltage gain)을 제공하는, 부하 변조 증폭기.
  17. 청구항 1에 있어서, 상기 부하 변조 증폭기는 30 GHz와 50 GHz 사이의 선형 전압 이득을 제공하는, 부하 변조 증폭기.
  18. 청구항 1에 있어서, 주어진 출력 전력 백-오프 범위에 대응되는 10dB 전력 범위에 걸쳐 출력 전력에 대해 0.5 % 이하의 진폭 이득의 변화를 갖는, 부하 변조 증폭기.
  19. 청구항 1에 있어서, 주어진 출력 전력 백-오프 범위의 절반에 대응되는 5dB 전력 범위에 걸쳐 출력 전력에 대해 ± 1° 이하의 위상 변화를 갖는, 부하 변조 증폭기.
  20. 청구항 1에 있어서, 3 dB와 16 dB 사이의 주어진 출력 전력 백-오프 범위에 대응되는 출력 전력에 대해 2 % 이하의 오차 벡터 크기를 갖는, 부하 변조 증폭기.
  21. 청구항 1에 있어서, 2:1 전압 정재파 비 미스매치(voltage standing wave ratio mismatch) 대해 3 dB와 16 dB 사이의 주어진 출력 전력 백-오프 범위에 대응되는 출력 전력에 대한 최대 선형 오차 벡터 크기를 갖는, 부하 변조 증폭기.
KR1020180149302A 2018-01-31 2018-11-28 부하 변조 증폭기 KR102631762B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/884,605 2018-01-31
US15/884,605 US10389311B1 (en) 2018-01-31 2018-01-31 Load modulation amplifier

Publications (2)

Publication Number Publication Date
KR20190093113A KR20190093113A (ko) 2019-08-08
KR102631762B1 true KR102631762B1 (ko) 2024-01-30

Family

ID=64267486

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180149302A KR102631762B1 (ko) 2018-01-31 2018-11-28 부하 변조 증폭기

Country Status (5)

Country Link
US (1) US10389311B1 (ko)
EP (1) EP3522371A1 (ko)
JP (1) JP7264623B2 (ko)
KR (1) KR102631762B1 (ko)
CN (1) CN110098804A (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220120350A (ko) * 2021-02-23 2022-08-30 삼성전자주식회사 증폭기 모듈을 포함하는 통신 회로와 그것을 포함한 전자 장치
CN114513173B (zh) * 2022-01-14 2024-06-14 清华大学 一种射频功率放大器及其应用
WO2023153964A1 (en) * 2022-02-11 2023-08-17 Telefonaktiebolaget Lm Ericsson (Publ) A configurable doherty power amplifier arrangement
CN114598278A (zh) * 2022-03-31 2022-06-07 西安空间无线电技术研究所 一种双输入双输出功率放大器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140375389A1 (en) * 2013-06-25 2014-12-25 Rf Micro Devices, Inc. Multi-broadband doherty power amplifier
US20150145600A1 (en) * 2013-11-22 2015-05-28 Qualcomm Incorporated Circuits and methods for power amplification with extended high efficiency
US20180278214A1 (en) * 2014-07-23 2018-09-27 Skyworks Solutions, Inc. Doherty power amplifier for radio-frequency applications

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737922B2 (en) * 2002-01-28 2004-05-18 Cree Microwave, Inc. N-way RF power amplifier circuit with increased back-off capability and power added efficiency using unequal input power division
KR101122383B1 (ko) * 2005-08-01 2012-03-26 삼성전자주식회사 선형성 개선을 위한 멀티 모드용 전력 증폭기
JP2008035487A (ja) * 2006-06-19 2008-02-14 Renesas Technology Corp Rf電力増幅器
KR101146051B1 (ko) * 2007-04-20 2012-05-14 후지쯔 가부시끼가이샤 증폭 장치
KR101124425B1 (ko) * 2010-01-20 2012-03-22 포항공과대학교 산학협력단 분포 도허티 전력 증폭기
US8447245B2 (en) * 2010-01-22 2013-05-21 Freescale Semiconductor, Inc. Radio frequency transmitter having an amplifier with power supply modulation
US8611834B2 (en) * 2010-11-01 2013-12-17 Cree, Inc. Matching network for transmission circuitry
US9431969B2 (en) * 2012-12-11 2016-08-30 Rf Micro Devices, Inc. Doherty power amplifier with tunable impedance load
US9948243B2 (en) 2013-09-30 2018-04-17 Qorvo Us, Inc. Reconfigurable load modulation amplifier
US9484865B2 (en) 2013-09-30 2016-11-01 Qorvo Us, Inc. Reconfigurable load modulation amplifier
DE102013220160A1 (de) * 2013-10-05 2015-04-09 Rwth Aachen Sequentieller breitbandiger Doherty Leistungsverstärker mit einstellbarem Ausgangsleitungs-Back-Off
JP6467956B2 (ja) * 2015-02-02 2019-02-13 日本電気株式会社 負荷インピーダンス調整回路を備えたドハティ増幅回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140375389A1 (en) * 2013-06-25 2014-12-25 Rf Micro Devices, Inc. Multi-broadband doherty power amplifier
US20150145600A1 (en) * 2013-11-22 2015-05-28 Qualcomm Incorporated Circuits and methods for power amplification with extended high efficiency
US20180278214A1 (en) * 2014-07-23 2018-09-27 Skyworks Solutions, Inc. Doherty power amplifier for radio-frequency applications

Also Published As

Publication number Publication date
US20190238098A1 (en) 2019-08-01
KR20190093113A (ko) 2019-08-08
US10389311B1 (en) 2019-08-20
JP2019134404A (ja) 2019-08-08
CN110098804A (zh) 2019-08-06
EP3522371A1 (en) 2019-08-07
JP7264623B2 (ja) 2023-04-25

Similar Documents

Publication Publication Date Title
KR102631762B1 (ko) 부하 변조 증폭기
US8354882B2 (en) Doherty amplifier with input network optimized for MMIC
Cao et al. Continuous-mode hybrid asymmetrical load-modulated balanced amplifier with three-way modulation and multi-band reconfigurability
US11201591B2 (en) Asymmetric Doherty amplifier circuit with shunt reactances
CN110999073A (zh) 宽带、高效、非调制功率放大器架构
Saad et al. The continuum of load modulation ratio from Doherty to traveling-wave amplifiers
Watanabe et al. A miniature broadband Doherty power amplifier with a series-connected load
US9369095B2 (en) Unbalanced linear power amplifier
CN106664062B (zh) 集成3路Doherty放大器
CN112106294A (zh) 具有谐波控制电路的射频功率放大器及其制造方法
Jundi et al. An 85-W multi-octave push–pull GaN HEMT power amplifier for high-efficiency communication applications at microwave frequencies
Cao et al. Hybrid asymmetrical load modulated balanced amplifier with wide bandwidth and three-way-Doherty efficiency enhancement
Sakata et al. Adaptive input-power distribution in Doherty power amplifier using modified Wilkinson power divider
US11949390B2 (en) Load modulated balanced power amplifier integrated circuits including transformer-based hybrid splitter/combiner circuits
KR100394328B1 (ko) 반사형 저위상 변화 감쇠기
US9019015B2 (en) Wideband and reconfigurable Doherty based amplifier
Mochumbe et al. Design of a Load Modulated Balanced Amplifier with a Two-Stage Control Power Amplifier
Ramella et al. A Ka-band 33 dBm Stacked Power Amplifier Cell in 100 nm GaN-on-Si Technology
US20220060156A1 (en) Power amplifier
Yan et al. A 0.13 μm GaAs HEMT Reconfigurable Balance-to-Doherty Stacked Power Amplifier for 5G mm-wave Applications
US11616476B2 (en) Power amplifier circuit
Piacibello et al. Linearity-aware design of Doherty power amplifiers
Luong et al. An Independently Biased 3-stacked GaN HEMT Power Amplifier for Next-Generation Wireless Communication Systems.
Sear Techniques for Simultaneous Linearity and Efficiency Improvement in Compound RF Power Amplifiers
PAs et al. Supply Voltage Modulation on

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant