KR102631118B1 - Method for calculating nanoparticle amount and calculating apparatus performing the same - Google Patents

Method for calculating nanoparticle amount and calculating apparatus performing the same Download PDF

Info

Publication number
KR102631118B1
KR102631118B1 KR1020220060112A KR20220060112A KR102631118B1 KR 102631118 B1 KR102631118 B1 KR 102631118B1 KR 1020220060112 A KR1020220060112 A KR 1020220060112A KR 20220060112 A KR20220060112 A KR 20220060112A KR 102631118 B1 KR102631118 B1 KR 102631118B1
Authority
KR
South Korea
Prior art keywords
nanoparticle
learning data
volatile organic
amount
nanoparticles
Prior art date
Application number
KR1020220060112A
Other languages
Korean (ko)
Other versions
KR20230160532A (en
Inventor
서용곤
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020220060112A priority Critical patent/KR102631118B1/en
Publication of KR20230160532A publication Critical patent/KR20230160532A/en
Application granted granted Critical
Publication of KR102631118B1 publication Critical patent/KR102631118B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Medicinal Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Combustion & Propulsion (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Food Science & Technology (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Dispersion Chemistry (AREA)

Abstract

나노입자가 발생되는 공정 진행 중에 유해한 나노입자의 양을 저비용으로 보다 정확히 산출하여 사용자의 건강과 안전을 고려한 작업환경개선이 가능한 나노입자량 산출방법 및 산출장치가 제안된다. 본 발명에 따른 나노입자량 산출방법은 휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 단계; 및 학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 발생된 나노입자량을 추론하는 단계;를 포함한다.A nanoparticle quantity calculation method and calculation device that can improve the working environment considering the health and safety of users by more accurately calculating the amount of harmful nanoparticles at low cost during the process in which nanoparticles are generated are proposed. The nanoparticle amount calculation method according to the present invention collects learning data including total volatile organic compound learning data and nanoparticle weight learning data in the process in which volatile organic compounds and nanoparticles are generated, and infers the amount of generated nanoparticles. Learning a nanoparticle mass calculation model, which is an artificial intelligence model; and inputting total volatile organic compound data into the learned nanoparticle amount calculation model to infer the amount of generated nanoparticles.

Description

나노입자량 산출방법 및 산출장치{METHOD FOR CALCULATING NANOPARTICLE AMOUNT AND CALCULATING APPARATUS PERFORMING THE SAME}Nanoparticle mass calculation method and calculation device {METHOD FOR CALCULATING NANOPARTICLE AMOUNT AND CALCULATING APPARATUS PERFORMING THE SAME}

본 발명은 나노입자량 산출방법 및 산출장치에 관한 것으로, 상세하게는 나노입자가 발생되는 공정 진행 중에 유해한 나노입자의 양을 저비용으로 보다 정확히 산출하여 사용자의 건강과 안전을 고려한 작업환경개선이 가능한 나노입자량 산출방법 및 산출장치에 관한 것이다.The present invention relates to a method and device for calculating the amount of nanoparticles. Specifically, it is possible to more accurately calculate the amount of harmful nanoparticles at low cost during a process in which nanoparticles are generated, thereby improving the working environment in consideration of the health and safety of users. It relates to a method and device for calculating the amount of nanoparticles.

산업, 생활 또는 의학 등 매우 다양한 분야에서 활용되고 있는 3D 프린터의 기본적인 원리는 얇은 2D 레이어를 쌓아서 3D 물체를 만드는 것이다. 3D 프린터는 플라스틱, 광경화 수지 또는 금속을 이용하여 3D출력물을 형성할 수 있는데, 공정 중에는 다양한 성분의 입자들이 발생하여 사용자의 건강에 불리한 영향을 미칠 수 있다. The basic principle of 3D printers, which are used in a wide variety of fields such as industry, life, or medicine, is to create 3D objects by stacking thin 2D layers. 3D printers can form 3D prints using plastic, photocurable resin, or metal, and particles of various components are generated during the process, which can have an adverse effect on the user's health.

예를 들어, 3D 프린터 작업환경에 있어 FDM(Fused deposition modeling) 장비를 사용하는 경우, 열을 가해 프린팅하는 공정 특성상 휘발성유기화합물 및 미세 나노입자들이 발생할 수 있다. 이러한 휘발성유기화합물이나 미세한 나노입자는 작업자의 인체에 불리한 영향을 미치는데, 나노입자의 크기로 인하여 센싱이 어려운 문제점이 있다. For example, when using FDM (fused deposition modeling) equipment in a 3D printer working environment, volatile organic compounds and fine nanoparticles may be generated due to the nature of the heat printing process. These volatile organic compounds or fine nanoparticles have a detrimental effect on the human body of workers, and sensing is difficult due to the size of the nanoparticles.

휘발성 유기화합물의 경우 총휘발성유기화합물(TVOC: Total Volatile Organic Compounds) 센서가 상용화되어 발생량의 측정이 가능하나, 미세한 나노입자의 경우 나노입자량을 측정하기 위해서는 매우 고가의 분석장치로 분석이 가능하다는 문제가 있고, 미세나노입자 센서의 경우 아직 실험실 단계에 머물러 있을 뿐이고 상용화 되지 않아 해당 기술의 개발이 요청된다.In the case of volatile organic compounds, TVOC (Total Volatile Organic Compounds) sensors have been commercialized, making it possible to measure the amount generated. However, in the case of fine nanoparticles, it is possible to use a very expensive analysis device to measure the amount of nanoparticles. There is a problem, and in the case of fine nanoparticle sensors, they are still only in the laboratory stage and have not been commercialized, so the development of the technology is requested.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 나노입자가 발생되는 공정 진행 중에 유해한 나노입자의 양을 저비용으로 정확히 산출하여 사용자의 건강과 안전을 고려한 작업환경개선이 가능한 나노입자량 산출방법 및 산출장치를 제공함에 있다. The present invention was created to solve the above problems, and the purpose of the present invention is to accurately calculate the amount of harmful nanoparticles at low cost during the process in which nanoparticles are generated, thereby improving the working environment in consideration of the health and safety of users. The aim is to provide a method and device for calculating the amount of nanoparticles possible.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 나노입자량 산출방법은 휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 단계; 및 학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 발생된 나노입자량을 추론하는 단계;를 포함한다.In order to achieve the above object, the nanoparticle amount calculation method according to an embodiment of the present invention collects learning data including total volatile organic compound learning data and nanoparticle amount learning data in a process in which volatile organic compounds and nanoparticles are generated. Thus, learning a nanoparticle amount calculation model, which is an artificial intelligence model that infers the amount of generated nanoparticles; and inputting total volatile organic compound data into the learned nanoparticle amount calculation model to infer the amount of generated nanoparticles.

총휘발성유기화합물학습데이터는 총휘발성유기화합물 센서로부터 획득한 데이터일 수 있다.The total volatile organic compound learning data may be data obtained from a total volatile organic compound sensor.

나노입자량학습데이터는 나노입자 분석장치로부터 획득한 데이터일 수 있다.Nanoparticle mass learning data may be data obtained from a nanoparticle analysis device.

학습데이터는 개별 휘발성유기화합물학습데이터를 더 포함할 수 있다.The learning data may further include individual volatile organic compound learning data.

휘발성유기화합물은 벤젠, 톨루엔, 크실렌, 메틸 에틸 케톤, 아세톤, 이소프로필 알코올 및 글리콜 에테르 중 어느 하나일 수 있다.The volatile organic compound may be any one of benzene, toluene, xylene, methyl ethyl ketone, acetone, isopropyl alcohol, and glycol ether.

학습데이터는 온도에 관한 학습데이터인 온도학습데이터를 더 포함할 수 있다.The learning data may further include temperature learning data, which is learning data about temperature.

학습데이터는 습도에 관한 학습데이터인 습도학습데이터를 더 포함할 수 있다.The learning data may further include humidity learning data, which is learning data about humidity.

학습데이터는 미세입자량에 관한 학습데이터인 미세입자학습데이터를 더 포함할 수 있다.The learning data may further include fine particle learning data, which is learning data about the amount of fine particles.

휘발성유기합물 및 나노입자가 발생되는 공정은 FDM 방식 3D프린팅공정일 수 있다.The process in which volatile organic compounds and nanoparticles are generated may be an FDM-type 3D printing process.

본 발명의 다른 측면에 따르면, 휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 학습부; 및 학습된 나노입자량 산출 모델에 총휘발성유기화합물 데이터를 입력하여, 발생된 나노입자량을 추론하는 산출부;를 포함하는 나노입자량 산출장치가 제공된다.According to another aspect of the present invention, artificial intelligence collects learning data including total volatile organic compound learning data and nanoparticle weight learning data in a process in which volatile organic compounds and nanoparticles are generated, and infers the amount of nanoparticles generated. A learning unit that trains a model to calculate the amount of nanoparticles; and a calculation unit that inputs total volatile organic compound data into the learned nanoparticle weight calculation model and infers the generated nanoparticle amount. A nanoparticle weight calculation device including a is provided.

본 발명의 또다른 측면에 따르면, FDM 방식 3D프린팅공정에서, 공정조건에 따른 플라스틱 필라멘트로부터 발생한 휘발성유기화합물 및 나노입자량을 기초로 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 단계; 및 학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 3D프린팅공정에서 발생된 나노입자량을 추론하는 단계;를 포함하는 FDM 방식 3D프린팅공정에서의 나노입자량 산출방법이 제공된다.According to another aspect of the present invention, in the FDM method 3D printing process, learning including total volatile organic compound learning data and nanoparticle amount learning data based on the amount of volatile organic compounds and nanoparticles generated from the plastic filament according to process conditions. Collecting data and learning a nanoparticle amount calculation model, which is an artificial intelligence model that infers the amount of generated nanoparticles; And inputting the total volatile organic compound data into the learned nanoparticle amount calculation model to infer the amount of nanoparticles generated in the 3D printing process. A method for calculating the amount of nanoparticles in the FDM-type 3D printing process is provided. .

본 발명의 또다른 측면에 따르면, 플라스틱 필라멘트를 가열하여 적층하고 경화시켜 3D출력물을 제조하는 3D프린팅유닛; 및 가열된 플라스틱 필라멘트로부터 발생한 휘발성유기화합물 및 나노입자를 분석하여 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키고, 학습된 나노입자량 산출 모델에 총휘발성유기화합물 데이터를 입력하여, 발생된 나노입자량을 추론하는 나노입자량 산출유닛;을 포함하는 공정모니터링이 가능한 3D프린팅 시스템이 제공된다.According to another aspect of the present invention, a 3D printing unit that produces a 3D output by heating, stacking, and curing plastic filaments; and Nano, an artificial intelligence model that analyzes volatile organic compounds and nanoparticles generated from heated plastic filaments, collects learning data including total volatile organic compound learning data and nanoparticle weight learning data, and infers the amount of nanoparticles generated. A 3D printing system capable of process monitoring that includes a nanoparticle mass calculation unit that learns a particle mass calculation model, inputs total volatile organic compound data into the learned nanoparticle mass calculation model, and infers the generated nanoparticle mass. provided.

본 발명에 따르면, 휘발성유기화합물 및 나노입자 등과 같이 인체에 불리한 영향을 미치는 입자가 발생하는 공정 수행시 인공지능 알고리즘을 이용하여 나노입자량 산출 모델을 학습시켜, 저비용으로 다양한 작업환경에서 공정 중에 발생하는 나노입자량의 추론이 가능하므로 보다 안전한 작업환경에서 공정을 수행할 수 있는 효과가 있다. According to the present invention, when performing a process that generates particles that have an adverse effect on the human body, such as volatile organic compounds and nanoparticles, an artificial intelligence algorithm is used to learn a model to calculate the amount of nanoparticles generated during the process in various work environments at low cost. Since it is possible to infer the amount of nanoparticles, it is possible to carry out the process in a safer working environment.

도 1은 본 발명의 일실시예에 따른 나노입자량 산출장치의 블럭도이다.
도 2는 본 발명의 다른 실시예에 따른 나노입자량 산출방법의 설명에 제공되는 흐름도이다.
도 3은 본 발명의 또다른 실시예에 따른 FDM 방식 3D프린팅공정에서 나노입자량 산출방법이 수행되는 모식도이고, 도 4는 본 발명의 또다른 실시예에 따른 FDM 방식 3D프린팅공정에서 나노입자량 산출방법이 수행되는 모식도이다.
Figure 1 is a block diagram of a nanoparticle weight calculation device according to an embodiment of the present invention.
Figure 2 is a flowchart provided to explain a method for calculating the amount of nanoparticles according to another embodiment of the present invention.
Figure 3 is a schematic diagram of how the nanoparticle amount calculation method is performed in the FDM method 3D printing process according to another embodiment of the present invention, and Figure 4 is a nanoparticle amount calculation method in the FDM method 3D printing process according to another embodiment of the present invention. This is a schematic diagram of how the calculation method is performed.

이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. In the attached drawings, there may be components shown with a specific pattern or with a predetermined thickness, but this is for convenience of explanation or distinction, so even if they have a specific pattern and a predetermined thickness, the present invention does not describe the features of the components shown. It is not limited to just that.

도 1은 본 발명의 일실시예에 따른 나노입자량 산출장치의 블럭도이다. 본 실시예에 따른 나노입자량 산출장치(100)는 휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 학습부(120); 및 학습된 나노입자량 산출 모델에 총휘발성유기화합물 데이터를 입력하여, 발생된 나노입자량을 추론하는 산출부(140);를 포함한다. Figure 1 is a block diagram of a nanoparticle weight calculation device according to an embodiment of the present invention. The nanoparticle weight calculation device 100 according to this embodiment collects learning data including total volatile organic compound learning data and nanoparticle weight learning data in the process in which volatile organic compounds and nanoparticles are generated, and generates nanoparticles. A learning unit 120 that trains a nanoparticle mass calculation model, which is an artificial intelligence model for inferring the quantity; and a calculation unit 140 that inputs total volatile organic compound data into the learned nanoparticle amount calculation model and infers the generated nanoparticle amount.

학습부(120)는 휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시킨다. 학습DB(110)는 나노입자량 산출 모델을 학습시키기 위한 데이터를 저장하는 데이터베이스로서, 예를 들어 총휘발성유기화합물학습데이터나 나노입자량학습데이터를 저장한다. The learning unit 120 is an artificial intelligence model that collects learning data including total volatile organic compound learning data and nanoparticle amount learning data in the process in which volatile organic compounds and nanoparticles are generated, and infers the amount of generated nanoparticles. Train the nanoparticle mass calculation model. The learning DB 110 is a database that stores data for learning a nanoparticle weight calculation model, and stores, for example, total volatile organic compound learning data or nanoparticle weight learning data.

휘발성유기화합물 및 나노입자가 발생되는 공정에서 휘발성유기화합물은 총휘발성유기화합물을 센싱하는 TVOC(Total Volatile Organic Compounds)센서를 이용하여 측정이 가능하고 나노입자의 양은 센서가 아닌 분석장치를 통해 정량적으로 분석할 수 있다. 총휘발성유기화합물학습데이터는 총휘발성유기화합물 센서로부터 획득하고, 나노입자의 양은 나노입자 분석장치를 통해 분석되어 나노입자량 산출 모델을 학습시키는 나노입자량학습데이터로 획득된다. In processes where volatile organic compounds and nanoparticles are generated, volatile organic compounds can be measured using a TVOC (Total Volatile Organic Compounds) sensor that senses total volatile organic compounds, and the amount of nanoparticles can be measured quantitatively through an analysis device rather than a sensor. It can be analyzed. Total volatile organic compound learning data is obtained from a total volatile organic compound sensor, and the amount of nanoparticles is analyzed through a nanoparticle analysis device to obtain nanoparticle mass learning data that learns a nanoparticle mass calculation model.

산출부(140)에는 학습부(120)에서 학습된 나노입자량 산출 모델에 측정하고자 하는 휘발성유기화합물 및 나노입자가 발생되는 공정의 TVOC센서부(130)에서 감지된 총휘발성유기화합물데이터가 입력된다. 산출부(140)는 나노입자량 산출 모델을 이용하여 총휘발성유기화합물데이터로부터 휘발성유기화합물 및 나노입자가 발생되는 공정에서 발생된 나노입자량을 추론한다. In the calculation unit 140, the volatile organic compounds to be measured and the total volatile organic compounds data detected by the TVOC sensor unit 130 of the process in which nanoparticles are generated are input to the nanoparticle amount calculation model learned in the learning unit 120. do. The calculation unit 140 infers the amount of nanoparticles generated in the process in which volatile organic compounds and nanoparticles are generated from the total volatile organic compound data using a nanoparticle amount calculation model.

도 2는 본 발명의 다른 실시예에 따른 나노입자량 산출방법의 설명에 제공되는 흐름도이다. 본 실시예에 따른 나노입자량 산출장치를 이용한 나노입자량 산출방법은 다음과 같다. Figure 2 is a flowchart provided to explain a method for calculating the amount of nanoparticles according to another embodiment of the present invention. The nanoparticle weight calculation method using the nanoparticle weight calculation device according to this embodiment is as follows.

먼저, 휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집한다(S210). 수집된 학습데이터로, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시킨다(S220). 나노입자량 산출 모델은 인공지능 알고리즘이 적용되고, 특히 회귀알고리즘이 적용되어 학습될 수 있다. First, learning data including total volatile organic compound learning data and nanoparticle weight learning data are collected in a process in which volatile organic compounds and nanoparticles are generated (S210). With the collected learning data, a nanoparticle amount calculation model, which is an artificial intelligence model that infers the amount of generated nanoparticles, is trained (S220). The nanoparticle mass calculation model can be learned by applying an artificial intelligence algorithm, especially a regression algorithm.

나노입자량 산출 모델의 학습이 완료되면, 학습된 나노입자량 산출 모델에, 수행 중인 휘발성유기화합물 및 나노입자가 발생되는 공정에서 획득한 총휘발성유기화합물데이터를 입력하여(S230), 공정에서 발생된 나노입자량을 추론하여 나노입자량을 획득한다(S240). Once the learning of the nanoparticle mass calculation model is completed, the total volatile organic compounds data obtained from the process in which volatile organic compounds and nanoparticles are generated are input into the learned nanoparticle mass calculation model (S230), and the total volatile organic compounds data obtained in the process are generated. Obtain the nanoparticle amount by inferring the nanoparticle amount (S240).

도 3은 본 발명의 또다른 실시예에 따른 FDM 방식 3D프린팅공정에서 나노입자량 산출방법이 수행되는 모식도이고, 도 4는 본 발명의 또다른 실시예에 따른 FDM 방식 3D프린팅공정에서 나노입자량 산출방법이 수행되는 모식도이다. Figure 3 is a schematic diagram of how the nanoparticle amount calculation method is performed in the FDM method 3D printing process according to another embodiment of the present invention, and Figure 4 is a nanoparticle amount calculation method in the FDM method 3D printing process according to another embodiment of the present invention. This is a schematic diagram of how the calculation method is performed.

본 발명에 따른 나노입자량 산출방법은 휘발성유기화합물 및 나노입자가 발생하는 모든 장비에 적용할 수 있는 방식이다. 특히, FDM 방식 3D프린팅공정에서는 휘발성유기합물 및 나노입자가 발생된다. 도 3을 참조하면, FDM(Fused deposition modeling)방식의 3D프린팅공정에서는 가는 실 같은 필라멘트 형태의 열가소성 플라스틱을 노즐 안에서 녹여 얇은 필름 형태로 출력하여 한층씩 적층하면서 3D출력물(320)을 획득한다. 노즐은 고열로 플라스틱 필라멘트(310)를 녹이고, 뽑아져 나온 필라멘트는 상온에서 경화가 된다. 고온으로 가열해서 플라스틱 필라멘트(310)를 녹이기 때문에 이러한 공정에 의해서 휘발성유기화합물 및 나노입자가 발생하게 된다. The method for calculating the amount of nanoparticles according to the present invention is applicable to all equipment that generates volatile organic compounds and nanoparticles. In particular, volatile organic compounds and nanoparticles are generated in the FDM method 3D printing process. Referring to FIG. 3, in the 3D printing process of the FDM (fused deposition modeling) method, thermoplastic plastic in the form of a thin filament is melted in a nozzle, printed in the form of a thin film, and 3D output 320 is obtained by stacking one layer at a time. The nozzle melts the plastic filament 310 with high heat, and the extracted filament is hardened at room temperature. Since the plastic filament 310 is melted by heating to a high temperature, volatile organic compounds and nanoparticles are generated through this process.

FDM방식의 3D프린팅공정 중 발생하는 나노입자는 휘발성유기화합물 발생양과 상관 관계가 있다. 휘발성유기화합물양이 많으면 많을수록 발생하는 나노입자의 양도 증가하게 된다. Nanoparticles generated during the FDM 3D printing process are correlated with the amount of volatile organic compounds generated. As the amount of volatile organic compounds increases, the amount of nanoparticles generated also increases.

FDM방식의 3D프린팅공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 이용하여 나노입자량 산출 모델을 학습시키는 방법은 다음과 같다. 나노입자를 측정하기 위해서 측정이 필요한 플라스틱 필라멘트를 우선 선정한다. 이 플라스틱 필라멘트에 대해서 다양한 노즐 온도 조건에 대해 증착공정을 수행하고 이때 각각의 증착 공정 조건에 대해 총휘발성유기화합물센서를 이용하여 측정데이터를 수집하고 각각의 공정조건에서 공기를 채집하여 분석장비를 통해 나노입자의 양을 측정한다. 증착공정조건과 총휘발성유기화합물센서로부터 획득한 데이터를 독립변수로 하고 분석장비를 이용하여 측정된 나노입자의 양을 종속변수로 한 후 인공지능의 지도학습의 알고리즘 중 하나인 회귀알고리즘을 사용하여 학습시킬 수 있다. The method of learning a nanoparticle weight calculation model using total volatile organic compound learning data and nanoparticle weight learning data in the FDM-type 3D printing process is as follows. To measure nanoparticles, the plastic filament that needs to be measured is first selected. A deposition process is performed on this plastic filament under various nozzle temperature conditions. At this time, measurement data is collected using a total volatile organic compound sensor for each deposition process condition, and air is collected at each process condition and analyzed through analysis equipment. Measure the amount of nanoparticles. The deposition process conditions and the data obtained from the total volatile organic compound sensor are used as independent variables, and the amount of nanoparticles measured using analysis equipment is used as the dependent variable. Then, a regression algorithm, one of the supervised learning algorithms of artificial intelligence, is used. It can be learned.

이후, FDM 공정에서 TVOC센서(330)을 통해 실시간으로 측정된 총휘발성유기화합물센서데이터를 나노입자량 산출 모델에 적용하여, 공정내에서의 나노입자양이 추론된다. Afterwards, the total volatile organic compound sensor data measured in real time through the TVOC sensor 330 in the FDM process is applied to the nanoparticle amount calculation model, and the amount of nanoparticles in the process is inferred.

학습데이터는 총휘발성유기화합물학습데이터 및 나노입자량학습데이터 이외에 개별 휘발성유기화합물학습데이터를 더 포함할 수 있다. 개별 휘발성유기화합물학습데이터는 총휘발성유기화합물이 아닌 각각의 휘발성유기화합물마다의 학습데이터를 의미한다. 휘발성유기화합물은 벤젠(Benzene), 톨루엔(Toluene), 크실렌(Xylene), 메틸 에틸 케톤(Methyl ethyl ketone), 아세톤(Acetone), 이소프로필 알코올(Isopropyl alcohol) 및 글리콜 에테르(Glycol ethers) 중 어느 하나일 수 있는데, 학습DB(110)는 총휘발성유기화합물학습데이터 이외에, 각각의 휘발성유기화합물학습데이터를 저장할 수 있다. The learning data may further include individual volatile organic compound learning data in addition to the total volatile organic compound learning data and nanoparticle weight learning data. Individual volatile organic compound learning data refers to learning data for each volatile organic compound, not total volatile organic compounds. Volatile organic compounds are one of Benzene, Toluene, Xylene, Methyl ethyl ketone, Acetone, Isopropyl alcohol, and Glycol ethers. The learning DB 110 may store individual volatile organic compound learning data in addition to the total volatile organic compound learning data.

추론되는 나노입자량의 정확도를 높이기 위해서 나노입자량 산출 모델의 독립변수로 총휘발성유기화합물학습데이터와 함께 공정에서 발생할 수 있는 휘발성유기화합물 중 가장 주요한 휘발성유기화합물에 관한 개별 휘발성유기화합물학습데이터를 추가할 수 있다. 개별 휘발성유기화합물학습데이터는 특정유해센서(350)로부터 획득할 수 있다(도 4). In order to increase the accuracy of the inferred nanoparticle amount, individual volatile organic compound learning data regarding the most major volatile organic compounds that may be generated in the process are used along with the total volatile organic compound learning data as an independent variable in the nanoparticle mass calculation model. You can add Individual volatile organic compound learning data can be obtained from the specific hazardous sensor 350 (FIG. 4).

예를 들어, FDM방식의 3D프린팅공정에서 플라스틱 필라멘트로부터 휘발성유기화합물 중 톨루엔이 많이 발생하면 톨루엔센서를 이용한 톨루엔학습데이터를, 포름알데히드가 많이 발생하면 포름알데히드센서를 이용한 포름알데히드학습데이터를 추가할 수 있다. For example, in the FDM-type 3D printing process, if a lot of toluene is generated among the volatile organic compounds from the plastic filament, toluene learning data using a toluene sensor can be added, and if a lot of formaldehyde is generated, formaldehyde learning data using a formaldehyde sensor can be added. You can.

총휘발성유기화합물센서의 경우 온도 및 습도에 따라 측정양이 변하는 경우가 발생한다. 이러한 온도 및 습도에 대한 영향을 반영하기 위해 총휘발성유기화합물센서에 온도센서, 습도센서 또는 온습도 센서(340)를 추가하여 나노입자측정에 적용할 수 있다. 이에 따라 학습DB(110)는 미세입자량에 관한 학습데이터인 온도학습데이터를 더 저장할 수 있고, 습도에 관한 학습데이터인 습도학습데이터를 더 저장할 수 있다.In the case of a total volatile organic compound sensor, the measurement amount may change depending on temperature and humidity. To reflect the influence of temperature and humidity, a temperature sensor, a humidity sensor, or a temperature and humidity sensor 340 can be added to the total volatile organic compound sensor and applied to nanoparticle measurement. Accordingly, the learning DB 110 can further store temperature learning data, which is learning data about the amount of fine particles, and can further store humidity learning data, which is learning data about humidity.

또한, 학습DB(110)는 미세입자량에 관한 학습데이터인 미세입자학습데이터를 더 포함할 수 있다. 현재 나노입자량을 측정하기 위한 센서는 상용화되어있지 않으나, 미크론 단위의 미세입자량을 측정하는 센서는 상용화되어 있다. 따라서, 미세입자센서(360)를 이용하여 미세입자량에 관한 학습데이터인 미세입자학습데이터를 획득하여 나노입자량 산출 모델 학습에 이용하면, 입자크기가 비교적 큰 입자의 나노입자량에 대한 영향을 제거하여 보다 정확한 나노입자량 추론이 가능하다. Additionally, the learning DB 110 may further include fine particle learning data, which is learning data regarding the amount of fine particles. Currently, sensors for measuring the amount of nanoparticles are not commercially available, but sensors that measure the amount of micron particles are commercially available. Therefore, if fine particle learning data, which is learning data about the fine particle amount, is acquired using the fine particle sensor 360 and used to learn a nanoparticle weight calculation model, the influence of relatively large particle size on the nanoparticle amount can be determined. By removing it, more accurate inference of nanoparticle amount is possible.

인공지능 알고리즘을 적용한 나노입자량 산출 모델에 있어서, 독립변수의 개수를 증가시키면 알고리즘의 정확도를 향상시킬 수 있다. FDM공정에서 TVOC센서, 특정유해가스센서, 온습도센서 및 미세입자센서를 동시에 적용하여 공정모니터링 하고 이러한 모니터링 데이터를 이용하여 인공지능 알고리즘에 적용시키면 정확도가 높은 나노입자산출장치를 구현할수 있다.In a nanoparticle mass calculation model using an artificial intelligence algorithm, the accuracy of the algorithm can be improved by increasing the number of independent variables. In the FDM process, a TVOC sensor, specific hazardous gas sensor, temperature and humidity sensor, and fine particle sensor are simultaneously applied to monitor the process, and this monitoring data is used to apply an artificial intelligence algorithm to implement a highly accurate nanoparticle calculation device.

본 발명의 또다른 측면에 따르면, FDM 방식 3D프린팅공정에서, 공정조건에 따른 플라스틱 필라멘트로부터 발생한 휘발성유기화합물 및 나노입자량을 기초로 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 단계; 및 학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 3D프린팅공정에서 발생된 나노입자량을 추론하는 단계;를 포함하는 FDM 방식 3D프린팅공정에서의 나노입자량 산출방법이 제공된다.According to another aspect of the present invention, in the FDM method 3D printing process, learning including total volatile organic compound learning data and nanoparticle amount learning data based on the amount of volatile organic compounds and nanoparticles generated from the plastic filament according to process conditions. Collecting data and learning a nanoparticle amount calculation model, which is an artificial intelligence model that infers the amount of generated nanoparticles; And inputting the total volatile organic compound data into the learned nanoparticle amount calculation model to infer the amount of nanoparticles generated in the 3D printing process. A method for calculating the amount of nanoparticles in the FDM-type 3D printing process is provided. .

본 발명의 또다른 측면에 따르면, 플라스틱 필라멘트를 가열하여 적층하고 경화시켜 3D출력물을 제조하는 3D프린팅유닛; 및 가열된 플라스틱 필라멘트로부터 발생한 휘발성유기화합물 및 나노입자를 분석하여 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키고, 학습된 나노입자량 산출 모델에 총휘발성유기화합물 데이터를 입력하여, 발생된 나노입자량을 추론하는 나노입자량 산출유닛;을 포함하는 공정모니터링이 가능한 3D프린팅 시스템이 제공된다.According to another aspect of the present invention, a 3D printing unit that produces a 3D output by heating, stacking, and curing plastic filaments; and Nano, an artificial intelligence model that analyzes volatile organic compounds and nanoparticles generated from heated plastic filaments, collects learning data including total volatile organic compound learning data and nanoparticle weight learning data, and infers the amount of nanoparticles generated. A 3D printing system capable of process monitoring that includes a nanoparticle mass calculation unit that learns a particle mass calculation model, inputs total volatile organic compound data into the learned nanoparticle mass calculation model, and infers the generated nanoparticle mass. provided.

한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.Meanwhile, of course, the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program that performs the functions of the device and method according to this embodiment. Additionally, the technical ideas according to various embodiments of the present invention may be implemented in the form of computer-readable code recorded on a computer-readable recording medium. A computer-readable recording medium can be any data storage device that can be read by a computer and store data. For example, of course, computer-readable recording media can be ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical disk, hard disk drive, etc. Additionally, computer-readable codes or programs stored on a computer-readable recording medium may be transmitted through a network connected between computers.

또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific embodiments described above, and the technical field to which the invention pertains without departing from the gist of the present invention as claimed in the claims. Of course, various modifications can be made by those of ordinary skill in the art, and these modifications should not be understood individually from the technical idea or perspective of the present invention.

100: 나노입자량 산출장치
110: 학습DB
120: 학습부
130: TVOC센서부
140: 산출부
310: 플라스틱 필라멘트
320: 3D출력물
330: TVOC센서
340: 온습도센서
350: 특정유해센서
360: 미세입자센서
100: Nanoparticle mass calculation device
110: Learning DB
120: Learning Department
130: TVOC sensor unit
140: Calculation unit
310: plastic filament
320: 3D output
330: TVOC sensor
340: Temperature and humidity sensor
350: Specific harmful sensor
360: Fine particle sensor

Claims (12)

휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 단계; 및
학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 발생된 나노입자량을 추론하는 단계;를 포함하는 나노입자량 산출방법.
Nanoparticle amount calculation model, an artificial intelligence model that infers the amount of generated nanoparticles by collecting learning data including total volatile organic compound learning data and nanoparticle amount learning data in the process in which volatile organic compounds and nanoparticles are generated, learning step; and
A nanoparticle mass calculation method including the step of inputting total volatile organic compound data into the learned nanoparticle mass calculation model and inferring the generated nanoparticle mass.
청구항 1에 있어서,
총휘발성유기화합물학습데이터는 총휘발성유기화합물 센서로부터 획득한 데이터인 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
A nanoparticle mass calculation method characterized in that the total volatile organic compound learning data is data obtained from a total volatile organic compound sensor.
청구항 1에 있어서,
나노입자량학습데이터는 나노입자 분석장치로부터 획득한 데이터인 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
Nanoparticle weight calculation method characterized in that the nanoparticle weight learning data is data obtained from a nanoparticle analysis device.
청구항 1에 있어서,
학습데이터는 개별 휘발성유기화합물학습데이터를 더 포함하는 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
A nanoparticle mass calculation method characterized in that the learning data further includes individual volatile organic compound learning data.
청구항 4에 있어서,
휘발성유기화합물은 벤젠, 톨루엔, 크실렌, 메틸 에틸 케톤, 아세톤, 이소프로필 알코올 및 글리콜 에테르 중 어느 하나인 것을 특징으로 하는 나노입자량 산출방법.
In claim 4,
A method for calculating nanoparticle weight, wherein the volatile organic compound is any one of benzene, toluene, xylene, methyl ethyl ketone, acetone, isopropyl alcohol, and glycol ether.
청구항 1에 있어서,
학습데이터는 온도에 관한 학습데이터인 온도학습데이터를 더 포함하는 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
A nanoparticle mass calculation method characterized in that the learning data further includes temperature learning data, which is learning data related to temperature.
청구항 1에 있어서,
학습데이터는 습도에 관한 학습데이터인 습도학습데이터를 더 포함하는 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
A nanoparticle mass calculation method characterized in that the learning data further includes humidity learning data, which is learning data related to humidity.
청구항 1에 있어서,
학습데이터는 미세입자량에 관한 학습데이터인 미세입자학습데이터를 더 포함하는 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
A method for calculating the amount of nanoparticles, characterized in that the learning data further includes fine particle learning data, which is learning data about the amount of fine particles.
청구항 1에 있어서,
휘발성유기화합물 및 나노입자가 발생되는 공정은 FDM 방식 3D프린팅공정인 것을 특징으로 하는 나노입자량 산출방법.
In claim 1,
A method for calculating the amount of nanoparticles, characterized in that the process in which volatile organic compounds and nanoparticles are generated is an FDM-type 3D printing process.
휘발성유기화합물 및 나노입자가 발생되는 공정에서 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 학습부; 및
학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 발생된 나노입자량을 추론하는 산출부;를 포함하는 나노입자량 산출장치.
Nanoparticle amount calculation model, an artificial intelligence model that infers the amount of generated nanoparticles by collecting learning data including total volatile organic compound learning data and nanoparticle amount learning data in the process in which volatile organic compounds and nanoparticles are generated, A learning department that teaches; and
A nanoparticle mass calculation device including a calculation unit that inputs total volatile organic compound data into the learned nanoparticle mass calculation model and infers the generated nanoparticle mass.
FDM 방식 3D프린팅공정에서, 공정조건에 따른 플라스틱 필라멘트로부터 발생한 휘발성유기화합물 및 나노입자량을 기초로 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키는 단계; 및
학습된 나노입자량 산출 모델에 총휘발성유기화합물데이터를 입력하여, 3D프린팅공정에서 발생된 나노입자량을 추론하는 단계;를 포함하는 FDM 방식 3D프린팅공정에서의 나노입자량 산출방법.
In the FDM method 3D printing process, learning data including total volatile organic compound learning data and nanoparticle amount learning data are collected based on the amount of volatile organic compounds and nanoparticles generated from the plastic filament according to process conditions, and the nanoparticles generated Learning a nanoparticle mass calculation model, which is an artificial intelligence model that infers the quantity; and
A method for calculating the amount of nanoparticles in an FDM-type 3D printing process, including the step of inferring the amount of nanoparticles generated in the 3D printing process by inputting total volatile organic compound data into the learned nanoparticle amount calculation model.
플라스틱 필라멘트를 가열하여 적층하고 경화시켜 3D출력물을 제조하는 3D프린팅유닛; 및
가열된 플라스틱 필라멘트로부터 발생한 휘발성유기화합물 및 나노입자를 분석하여 총휘발성유기화합물학습데이터 및 나노입자량학습데이터를 포함하는 학습데이터를 수집하여, 발생된 나노입자량을 추론하는 인공지능 모델인 나노입자량 산출 모델을 학습시키고, 학습된 나노입자량 산출 모델에 총휘발성유기화합물 데이터를 입력하여, 발생된 나노입자량을 추론하는 나노입자량 산출유닛;을 포함하는 공정모니터링이 가능한 3D프린팅 시스템.
A 3D printing unit that produces 3D prints by heating, stacking, and curing plastic filaments; and
Nanoparticle, an artificial intelligence model that analyzes volatile organic compounds and nanoparticles generated from heated plastic filaments and collects learning data including total volatile organic compound learning data and nanoparticle weight learning data to infer the amount of nanoparticles generated. A 3D printing system capable of process monitoring that includes a nanoparticle mass calculation unit that learns a quantity calculation model, inputs total volatile organic compound data into the learned nanoparticle weight calculation model, and infers the generated nanoparticle quantity.
KR1020220060112A 2022-05-17 2022-05-17 Method for calculating nanoparticle amount and calculating apparatus performing the same KR102631118B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220060112A KR102631118B1 (en) 2022-05-17 2022-05-17 Method for calculating nanoparticle amount and calculating apparatus performing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220060112A KR102631118B1 (en) 2022-05-17 2022-05-17 Method for calculating nanoparticle amount and calculating apparatus performing the same

Publications (2)

Publication Number Publication Date
KR20230160532A KR20230160532A (en) 2023-11-24
KR102631118B1 true KR102631118B1 (en) 2024-01-30

Family

ID=88972377

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220060112A KR102631118B1 (en) 2022-05-17 2022-05-17 Method for calculating nanoparticle amount and calculating apparatus performing the same

Country Status (1)

Country Link
KR (1) KR102631118B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102027821B1 (en) 2019-04-10 2019-10-02 주식회사 아이티로 Method, apparatus and computer-readable recording medium for providing place recommendation service based on harmful fine particle analysis result and cleanning service through analyze harmful fine particle
KR102100061B1 (en) 2018-11-30 2020-04-10 김정기 Assembly type multi 3d printing equipment comprising exchangeable filter
US20200378940A1 (en) 2017-02-24 2020-12-03 Particles Plus, Inc. Networked air quality monitoring system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098741A (en) * 2017-02-27 2018-09-05 최병영 Interior circulation type 3d-printer chamber having composite filter
KR102084096B1 (en) * 2018-05-10 2020-05-22 민창기 3D printer after treatment machine
KR20220066192A (en) * 2018-06-29 2022-05-23 할로 스마트 솔루션즈, 인크. Sensor device and system
KR102130370B1 (en) * 2018-11-23 2020-07-06 주식회사 큐비콘 3D printer booth structure equipped with harmful substance measurement and abatement function
KR102157180B1 (en) * 2018-12-17 2020-09-18 주식회사 이노서플 Dust particle measuring system and measuring method thereof
RU2725011C1 (en) * 2019-12-24 2020-06-29 Самсунг Электроникс Ко., Лтд. Sensor device for recognition of mixtures of volatile compounds and method of its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200378940A1 (en) 2017-02-24 2020-12-03 Particles Plus, Inc. Networked air quality monitoring system
KR102100061B1 (en) 2018-11-30 2020-04-10 김정기 Assembly type multi 3d printing equipment comprising exchangeable filter
KR102027821B1 (en) 2019-04-10 2019-10-02 주식회사 아이티로 Method, apparatus and computer-readable recording medium for providing place recommendation service based on harmful fine particle analysis result and cleanning service through analyze harmful fine particle

Also Published As

Publication number Publication date
KR20230160532A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
Tlegenov et al. A dynamic model for current-based nozzle condition monitoring in fused deposition modelling
Abdulshahed et al. Thermal error modelling of a gantry-type 5-axis machine tool using a grey neural network model
JP7500240B2 (en) Optimizing the manufacturing of composite parts
CN105034366B (en) A kind of detection method of 3D printer and its printing reduction degree
CN103984287A (en) Numerically-controlled machine tool thermal error compensation grey neural network modeling method
KR102631118B1 (en) Method for calculating nanoparticle amount and calculating apparatus performing the same
CN116934303A (en) Temperature and humidity resistant polyurethane adhesive performance detection system for new energy automobile battery packaging
Gülçür et al. A study of micromanufacturing process fingerprints in micro-injection moulding for machine learning and Industry 4.0 applications
Oehlmann et al. Modeling fused filament fabrication using artificial neural networks
Ruppel et al. Simulation of the SynTouch BioTac sensor
del Río et al. 3D-printed resistive carbon-fiber-reinforced sensors for monitoring the resin frontal flow during composite manufacturing
Anagnostakis et al. Automated coordinate measuring machine inspection planning knowledge capture and formalization
US20220342386A1 (en) Process control device in manufacturing
WO2017064489A1 (en) A method of designing a plybook for a composite component
Mishra et al. Comparative study of vibration signatures of FDM 3D printers
Roman et al. Moisture transport through housing materials enclosing critical automotive electronics
CN105300868A (en) Detection method for air permeability of perforated tipping paper used in tobacco industry
CN110705689B (en) Continuous learning method and device capable of distinguishing features
Binder et al. Linking thermal images with 3D models for FFF printing
CN108446474A (en) A kind of structural system method for analyzing stability under the conditions of uncertain information
Li et al. Stochastic simulation based approach for statistical analysis and characterization of composites manufacturing processes
Yan et al. A hybrid mechanism-based and data-driven approach to forecast energy consumption of fused deposition modelling
Fan et al. Multi-sensor data fusion for improved measurement accuracy in injection molding
Druiff et al. A smart interface for machine learning based data-driven automated fibre placement
Cramer et al. Uncertainty Quantification Based on Bayesian Neural Networks for Predictive Quality

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant