CN103984287A - Numerically-controlled machine tool thermal error compensation grey neural network modeling method - Google Patents

Numerically-controlled machine tool thermal error compensation grey neural network modeling method Download PDF

Info

Publication number
CN103984287A
CN103984287A CN201410091291.XA CN201410091291A CN103984287A CN 103984287 A CN103984287 A CN 103984287A CN 201410091291 A CN201410091291 A CN 201410091291A CN 103984287 A CN103984287 A CN 103984287A
Authority
CN
China
Prior art keywords
temperature
neural network
axis
machine tool
residual sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410091291.XA
Other languages
Chinese (zh)
Inventor
张建红
张云峰
尹青
黄庭梅
明佳
李春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QIHANG DIGITAL CONTROL MACHINE-TOOLS Co Ltd JIANGSU
Original Assignee
QIHANG DIGITAL CONTROL MACHINE-TOOLS Co Ltd JIANGSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QIHANG DIGITAL CONTROL MACHINE-TOOLS Co Ltd JIANGSU filed Critical QIHANG DIGITAL CONTROL MACHINE-TOOLS Co Ltd JIANGSU
Priority to CN201410091291.XA priority Critical patent/CN103984287A/en
Publication of CN103984287A publication Critical patent/CN103984287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

The invention relates to a numerically-controlled machine tool thermal error compensation grey neural network modeling method. The method mainly comprises the following steps: a. sensors are arranged; b. temperature variables are screened; c. a grey system is established and a thermal error predicted value is obtained; d. a residual sequence is solved; and e. a BP neural network model of the residual sequence is established. According to the invention, the grey system theory and the BP neural network are combined together for machine tool thermal error modeling, so the model prediction accuracy and generalization ability can be improved; accurate fitting prediction can be performed on small sample data, and advantages of simple calculation and fast response can be realized; and by using the neural network method, the system has advantages of high self-learning ability and adaptivity, the complex change of machine tool thermal error can be learned by an operator himself, the change in the machine tool machining process can be reflected, and the advantage of good reliability can be realized.

Description

A kind of numerical control machine heat error compensation grey neural network modeling method
Technical field
The present invention relates to a kind of grey neural network of applying is the method that numerical control machining tool heat error carries out mathematical modeling.Belong to precision machine tool technology or Precision Machining field
Background technology
In Modern High-Speed stock-removing machine, along with the raising of lathe rotating speed and piece surface crudy, cutting depth and feed are generally all smaller, and cutting force is also little, thus process system stress deformation on the impact of machining precision compared with thermal deformation in less important status.Along with improving constantly of manufacturing process technology level, hot error has become the main error source that affects high-speed machine tool machining precision.In the industry such as machine-building, instrument and meter, the thermal deformation being caused by temperature is the key factor that affects machine, instrument and equipment precision, and the error that thermal deformation causes can account for 1/3 of total error conventionally.In Precision Machining, the error that thermal deformation causes proportion in total machining error can reach 40%~70%.For improving the operating accuracy of machinery and equipment, conventionally can adopt two kinds of approach of temperature control and accuracy compensation to reduce the impact of temperature on precision.
With empirical modeling method set up machine tool error model be main be method, regard a black box as by machine tool system, conventionally input quantity is the variation in lathe temperature field and the variable of other correlative, output quantity is the deflection of some critical piece in machine tool system comprehensive deformation result or system, and hypothetical model structure, determine the parameters in model by the method for System Discrimination.
Because thermal deformation of machine tool is subject to the impact of a lot of Variable Factors, machine tool thermal error is a complicated problem.And the method for analyzing and modeling of machine tool thermal error prediction based on grey neural network, combine the two advantage of gray system theory and neural network, the ability that existing very strong intelligent learning and eliminating are disturbed, there are again very strong processing grey data, the ability of poor information, there is very high precision and Generalization Capability, be therefore well suited for the modeling analysis for machine tool thermal error.
Summary of the invention
Content of the present invention is to provide the new method of a kind of numerical control machining tool heat error based on grey neural network modeling.
For realizing this purpose, the technical solution used in the present invention comprises the following steps:
Step 1: placement sensor
First utilize infrared thermography to do thermograph to operation lathe after a while, the temperature cromogram showing according to thermal imaging system, temperature shows that high region is the heating region of lathe, the temperature peak of the good each heating region of mark.Shut down after cooling and place the sensor that measures ambient temperature changes on lathe side, and carry out collecting temperature delta data at all m gauge point mounting temperature sensors.X-axis, Z-direction at machine tool chief axis are respectively installed a laser displacement sensor, gather the data of thermal deformation of machine tool.In system operational process, read temperature T every phase same amount of time iwith thermal deformation displacement X i, the time dependent numerical value of Zi;
Step 2: screening temperature variable
According to the temperature variation sequence T having measured i(T i1t i2t i3t ikt i(k+1)t is), i=1,2 ... m+1 filters out n and the high temperature variable of thermal deformation correlativity from m+1 temperature variable by grey correlation analysis;
Step 3: set up gray system and obtain hot error prediction value
Due to set up separately X to or the hot error model fitting precision of Z-direction higher, so with X to or the thermal deformation shift value of Z-direction and n temperature variable sample value that previous step filters out set up independent X to or G(1, the N of Z-direction) Grey System Model.By X ior Z iwith the high temperature ordered series of numbers of the n a screening degree of association composition gray system G(1, N) original data series.With the data instance of Z-direction, obtain gray system G(1, N here) original data series
Z ( 0 ) ( 1 ) Z ( 0 ) ( 2 ) . . . Z ( 0 ) ( s ) T i ( 0 ) ( 1 ) T i ( 0 ) ( 2 ) . . . T i ( 0 ) ( s ) . . . . . . . . . . . . T n ( 0 ) ( 1 ) T n ( 0 ) ( 2 ) . . . T n ( 0 ) ( s ) , i = 1,2 , . . . , n - 1 ; - - - ( 1 )
Above-mentioned ordered series of numbers is made respectively to one-accumulate and generate, obtain new 1-AGO ordered series of numbers
Z ( 1 ) ( 1 ) Z ( 1 ) ( 2 ) . . . Z ( 1 ) ( s ) T i ( 1 ) ( 1 ) T i ( 1 ) ( 2 ) . . . T i ( 1 ) ( s ) . . . . . . . . . . . . T n ( 1 ) ( 1 ) T n ( 1 ) ( 2 ) . . . T n ( 1 ) ( s ) , i = 1,2 , . . . , n - 1 ; - - - ( 2 )
Set up the differential equation
d Z ( 1 ) / dt + a Z ( 1 ) = b 1 T 1 ( 1 ) + b 2 T 2 ( 1 ) + . . . + b n T n ( 1 ) ; - - - ( 3 )
Coefficient a, b 1, b 2... b nsolve by least square method.
Solve the differential equation (3) and obtain the hot error prediction value of Z-direction
Z ^ ( 0 ) ( t + 1 ) = Z ^ ( 1 ) ( t + 1 ) - Z ^ ( 1 ) ( t ) = [ Z ( 0 ) ( 1 ) - Σ i = 2 n b i - 1 a T i ( 1 ) ( t + 1 ) ] e - at + Σ i = 2 n b i - 1 a T i ( 1 ) ( t + 1 ) - [ Z ( 0 ) ( 1 ) - Σ i = 2 n b i - 1 a T i ( 1 ) ( t ) ] e - a ( t - 1 ) + Σ i = 2 n b i - 1 a T i ( 1 ) ( t ) , t = 1,2 , . . . , s - 1 ; - - - ( 4 )
Next as long as can obtain the thermal deformation displacement prediction value of lathe by Computing above formula , ,
Step 4: calculate residual values sequence
,, with true measurement Z (0)(1), Z (0)(2) ..., Z (0)(k) subtracting each other is successively residual sequence e (0)(1), e (0)(2) ..., e (0)(k)
e ( 0 ) ( t ) = Z ^ ( 0 ) ( t ) - Z ( 0 ) ( t ) t = 1,2 , . . . , k ; - - - ( 5 )
Step 5: the BP neural network model of setting up residual sequence
Set up 3 layers of BP neural network, k temperature value above of the n that step 2 an is screened temperature variable is as the input sample of neural metwork training, residual sequence e (0)(1), e (0)(2) ..., e (0)(k), as output sample, learning training BP neural network is to determine its all parameter values.After having trained, just obtain desired BP neural network model.As long as the temperature value of this temperature variable is input in the middle of neural network, just can obtain residual sequence predicted value the machine tool thermal error predicted value of artificial neural networks built-up pattern can be passed through
Z ^ ( i ) = Z ^ ( 0 ) ( i ) + e ^ ( 0 ) ( i ) - - - ( 5 )
Calculate.
As long as repeating once above step, the heat error compensation sequential value of X-direction just can obtain.
The invention has the beneficial effects as follows:
Adopt grey neural network to build that the method for error compensation model is more simple than traditional matching modeling, efficiency is high, and gray system theory and BP neural network group are combined for machine tool thermal error modeling, has improved precision of prediction and the generalization ability of model.
Even if in sample size hour, grey neural network modeling method has higher precision equally, can carry out the prediction of matching accurately to small sample data, calculate simply, be swift in response.
Use neural net method to make system have very high self-learning capability and adaptivity, the variation of the hot error complexity of energy self study lathe, can reflect the variation of machine tooling process, has good reliability.
Brief description of the drawings
Fig. 1 is workflow diagram of the present invention.
Fig. 2 is BP neural network structure figure.
Fig. 3 has provided the hot error and the hot error contrast effect figure of actual measurement that adopt Grey Neural Network Model prediction.
Fig. 4 is last 6 hot error amounts and the hot error comparison diagram of actual measurement that adopts Grey Neural Network Model and the prediction of other method.
Embodiment
Below in conjunction with accompanying drawing and implementation process, the present invention will be further described.
Hot error modeling method of the present invention realizes according to following steps, and Fig. 1 is step sketch.
First analyze the correlative factor that lathe produces hot error, first utilize infrared thermography to do thermograph to operation lathe after a while, judge the heat generating spot of lathe, the temperature peak of the good each heating region of mark.Shut down after cooling and place the sensor that measures ambient temperature changes on lathe side, and carry out collecting temperature delta data at all gauge point mounting temperature sensors.X-axis, Z-direction at machine tool chief axis are respectively installed a laser displacement sensor, gather the data of thermal deformation of machine tool.Gather a secondary data every phase same amount of time, the data that obtain will be used for modeling.
First modeling process carries out temperature variable screening.Select those and the large temperature variable of the thermal deformation degree of association by the method for grey correlation analysis, these temperature variables are for Grey Systems Modelling.
With matrix P and Z axis or X-axis thermal deformation sequential value composition GM(1, the N of the n selecting temperature variable composition) original data series of Grey System Model
Z ( 0 ) ( 1 ) Z ( 0 ) ( 2 ) . . . Z ( 0 ) ( s ) T i ( 0 ) ( 1 ) T i ( 0 ) ( 2 ) . . . T i ( 0 ) ( s ) . . . . . . . . . . . . T n ( 0 ) ( 1 ) T n ( 0 ) ( 2 ) . . . T n ( 0 ) ( s ) , i = 1,2 , . . . , n - 1 ;
Then above-mentioned ordered series of numbers is made respectively to one-accumulate and generate, obtain new 1-AGO ordered series of numbers
Z ( 1 ) ( 1 ) Z ( 1 ) ( 2 ) . . . Z ( 1 ) ( s ) T i ( 1 ) ( 1 ) T i ( 1 ) ( 2 ) . . . T i ( 1 ) ( s ) . . . . . . . . . . . . T n ( 1 ) ( 1 ) T n ( 1 ) ( 2 ) . . . T n ( 1 ) ( s ) , i = 1,2 , . . . , n - 1 ;
Set up the differential equation
d Z ( 1 ) / dt + a Z ( 1 ) = b 1 T 1 ( 1 ) + b 2 T 2 ( 1 ) + . . . + b n T n ( 1 ) .
Coefficient a, b 1, b 2... b nsolve and obtain by least square method.
Solve the differential equation (3) and obtain the hot error prediction value of Z-direction
Z ^ ( 0 ) ( t + 1 ) = Z ^ ( 1 ) ( t + 1 ) - Z ^ ( 1 ) ( t ) = [ Z ( 0 ) ( 1 ) - Σ i = 2 n b i - 1 a T i ( 1 ) ( t + 1 ) ] e - at + Σ i = 2 n b i - 1 a T i ( 1 ) ( t + 1 ) - [ Z ( 0 ) ( 1 ) - Σ i = 2 n b i - 1 a T i ( 1 ) ( t ) ] e - a ( t - 1 ) + Σ i = 2 n b i - 1 a T i ( 1 ) ( t ) , t = 1,2 , . . . , s - 1 ; - - - ( 4 )
Next obtain the thermal deformation displacement prediction value of lathe by Computing , , , with true measurement Z (0)(1), Z (0)(2) ..., Z (0)(k) subtracting each other is successively residual sequence e (0)(1), e (0)(2) ..., e (0)(k);
Set up 3 layers of BP neural network, the input sample using k temperature value above of matrix P as neural metwork training, residual sequence e (0)(1), e (0)(2) ..., e (0)(k), as output sample, learning training BP neural network is to determine its all parameter values.After having trained, just obtain desired BP neural network model.As long as the temperature value of this temperature variable is input in the middle of neural network, just can obtain residual sequence predicted value (i).The machine tool thermal error predicted value of artificial neural networks built-up pattern can be passed through
Z ^ ( i ) = Z ^ ( 0 ) ( i ) + e ^ ( 0 ) ( i )
Calculate.
As long as repeating once above step, the heat error compensation sequential value of X-direction just can obtain.
Embodiments of the invention are below described.
Embodiment:
First a CK-6140 numerically-controlled machine is done to the hot error modeling analysis of Z-direction.
According to step 1 with Flir E50 thermal infrared imager to 1000r/min fast idle the numerically-controlled machine of 1 hour do thermal imaging; the heat generating spot of judgement the good lathe of mark; shut down cooling after; at 14 good position mounting temperature sensors of all marks, a temperature sensor measurement variation of ambient temperature is put on lathe side.A standard plug is installed on machine tool chief axis, the change in displacement with high precision laser displacement sensor difference measure-axis at X and Z axis.Every the data of temperature sensor of collection in 6 minutes and displacement sensor, gather altogether 61 groups of data, matrix A temperature data, matrix B is Z axis thermal deformation data.
A=[16.4 16.88 17.07 16.69 17.02 16.59 16.88 16.69 17.17 16.4 16.45 16.64 18.52 16.76 16.59
16.59 18.27 18.08 17.5 18.51 17.21 17.69 17.41 18.27 16.26 16.45 16.78 21.11 17.24 17.02
17.26 19.37 19.13 18.7 19.61 17.45 18.46 18.17 18.6 16.3 16.59 16.98 23.63 17.56 17.31
17.41 20.33 19.37 18.99 20.28 17.93 19.18 18.99 18.22 16.45 16.64 17.21 25.63 17.92 17.84
17.55 21.1 20.09 19.61 21.05 18.17 19.52 19.37 18.37 16.54 16.78 17.31 27.22 18.45 18.13
17.6 21.62 20.67 20.09 21.62 18.46 19.99 19.85 18.8 16.59 16.74 17.55 28.34 18.52 18.32
18.03 21.62 20.86 20.38 22.01 18.7 20.52 20.28 19.18 16.74 16.88 17.6 29.38 18.56 18.71
18.22 22.15 21.29 20.71 22.53 18.99 20.91 20.71 19.37 16.78 16.88 17.5 30.62 18.84 19.09
18.46 22.68 21.82 21.14 23.21 19.28 21.24 21 19.66 16.93 17.02 17.65 31.58 19.12 19.29
18.65 22.82 22.1 21.43 23.49 19.28 21.62 21.29 19.99 17.17 17.12 17.79 32.14 19.28 19.24
18.7 23.11 22.39 21.82 23.49 19.37 21.82 21.53 20.23 17.36 17.41 18.13 32.73 19.64 19.09
19.08 23.4 22.68 22.2 23.73 19.56 22.01 21.77 20.52 17.17 17.41 18.56 33.29 19.76 19.38
19.18 23.78 23.01 22.34 24.02 19.76 22.3 22.1 20.76 17.36 17.31 18.56 33.97 19.91 19.57
19.47 24.12 23.45 22.63 24.36 20.47 22.39 22.34 20.86 17.36 17.5 18.13 34.33 19.97 19.77
19.47 24.21 23.4 22.73 24.6 20.23 22.73 22.73 21.19 17.55 17.55 18.22 34.81 20.19 19.82
19.8 24.5 23.69 22.92 24.93 20.38 22.92 22.92 21.48 17.6 17.55 18.27 35.25 20.23 20.01
19.9 24.74 23.88 23.21 24.88 20.43 23.11 22.92 21.58 17.69 17.84 18.37 35.57 20.39 20.06
19.9 24.93 24.02 23.59 25.07 20.57 23.49 23.45 21.91 17.79 17.79 18.37 35.73 20.51 20.2
20.33 25.22 24.12 23.59 25.36 20.57 23.78 23.78 22.06 17.84 17.79 18.37 35.93 20.59 20.3
20.43 25.46 24.55 23.83 25.51 20.76 24.07 23.25 22.25 17.84 17.84 18.46 36.49 20.63 20.39
20.43 25.46 24.5 24.02 25.6 21.1 24.16 23.4 22.44 18.27 17.93 18.46 36.29 20.91 20.73
20.52 25.7 24.6 24.26 25.84 21.34 24.31 23.54 22.73 18.46 18.03 18.32 36.29 21.07 21.02
20.86 25.65 24.84 24.45 25.94 21.1 24.55 23.68 22.77 18.08 18.08 18.51 36.29 20.83 20.92
21.24 25.75 24.84 24.55 25.99 21.34 24.45 23.88 23.11 18.27 18.27 18.89 36.49 21.07 21.11
21.34 25.84 24.93 24.55 26.18 21.34 24.6 23.92 23.35 18.6 18.37 18.84 36.61 21.47 21.11
21.34 26.13 25.07 24.79 26.32 21.14 24.79 24.12 23.01 18.51 18.32 18.8 36.73 21.35 21.26
21.29 26.37 25.17 25.03 26.46 21.53 24.79 24.12 23.11 18.51 18.46 18.9 36.81 21.47 21.3
21.38 26.46 25.22 25.03 26.66 21.58 24.98 24.26 23.21 18.51 18.37 18.8 36.97 21.31 21.45
21.38 26.46 25.41 25.22 26.61 21.53 25.12 24.21 23.25 18.6 18.41 18.94 37.21 21.35 21.45
21.34 26.66 25.46 25.31 26.85 21.62 25.07 24.36 23.45 18.89 18.41 18.8 37.13 21.63 21.55
21.72 26.66 25.6 25.36 26.9 21.86 25.12 24.5 23.4 18.89 18.8 18.41 36.97 21.67 21.64
21.72 26.75 25.6 25.41 27.14 21.86 25.27 24.55 23.49 18.84 18.89 18.41 37.09 21.83 21.69
21.86 26.85 25.79 25.51 27.42 22.1 25.22 24.6 23.64 18.94 18.84 18.37 37.09 22.07 21.84
21.91 27.09 25.65 25.7 27.04 22.39 25.31 24.64 23.83 19.04 18.89 18.51 37.01 22.19 21.93
21.96 27.28 25.65 26.18 27.66 22.15 25.41 24.88 23.78 19.04 19.04 18.51 37.09 22.27 22.08
22.68 27.09 25.55 26.42 27.23 22.3 25.36 24.84 23.88 19.04 19.04 18.46 37.09 21.95 22.32
22.53 27.28 25.65 26.03 27.38 22.39 25.27 24.79 23.88 18.84 18.89 18.84 37.09 22.07 22.32
22.15 27.23 25.75 26.13 27.33 22.2 25.36 24.79 23.92 18.99 27.38 18.65 37.01 22.03 22.03
22.15 27.23 25.65 26.03 27.38 22.3 25.46 24.93 24.4 18.99 19.28 18.65 37.13 22.23 22.17
22.2 22.2 25.75 26.13 27.33 22.3 25.65 24.88 24.12 18.89 19.37 18.75 37.09 22.27 22.22
22.1 27.42 25.79 26.27 27.38 22.25 25.55 24.93 24.16 18.94 19.32 18.89 37.25 22.31 22.22
22.34 27.57 25.79 26.27 27.47 22.34 25.51 25.6 24.31 19.08 19.37 18.99 37.13 22.47 22.32
22.44 27.42 25.84 26.46 27.52 22.34 25.55 25.46 24.31 19.13 19.42 18.99 37.25 22.57 22.32
22.44 27.47 25.75 26.46 27.66 22.34 25.51 25.03 24.21 19.13 19.56 19.37 37.13 22.47 22.37
22.34 27.23 25.36 26.18 27.57 22.3 25.65 25.86 24.4 19.18 19.61 18.89 36.97 22.47 24.19
22.3 26.32 27.23 25.7 26.42 22.2 25.27 26.32 24.36 19.08 19.66 18.89 36.09 21.83 24.1
22.34 25.7 25.17 25.46 25.65 22.15 24.88 25.22 24.12 19.47 19.76 19.04 35.37 21.75 23.81
22.15 25.31 22.3 24.45 25.41 22.01 24.79 24.55 23.73 19.18 19.8 18.8 34.61 21.59 23.52
22.15 24.74 24.79 24.21 24.88 22.1 24.45 24.69 23.35 19.61 19.9 18.99 33.77 21.55 23.33
22.58 24.21 24.6 23.88 24.36 22.34 23.92 24.5 23.4 19.13 20.04 18.8 33.21 21.39 23.23
21.96 23.73 24.36 23.49 23.83 21.86 24.26 24.02 23.45 19.37 19.99 18.84 32.26 21.43 23.42
21.86 23.49 24.26 23.11 23.68 21.96 24.4 23.54 22.77 18.94 19.99 19.04 32.14 21.35 22.7
21.82 23.3 23.45 23.21 23.59 21.72 23.83 23.54 22.39 18.94 19.85 18.99 31.42 21.27 22.41
21.72 23.16 23.35 23.06 23.35 21.72 23.54 23.35 22.49 18.94 19.85 18.94 30.9 21.39 22.37
21.62 23.06 23.45 22.97 23.06 21.43 23.3 23.21 22.3 18.94 19.85 18.7 30.34 21.55 22.27
21.53 22.82 23.21 22.87 23.25 21.43 23.11 22.87 22.15 18.94 19.9 18.84 30.18 21.19 22.13
21.48 22.68 23.16 22.73 22.92 21.38 22.97 22.92 22.15 18.89 19.8 18.75 29.38 21.07 22.03
21.24 22.68 23.01 22.68 22.87 21.19 22.77 22.77 21.91 18.84 19.9 18.99 28.86 21.19 21.74
21.58 22.49 22.87 22.58 22.68 21.53 22.82 22.68 21.82 18.94 19.9 18.65 28.34 21.27 21.74
21.1 22.39 22.68 22.39 22.73 21 22.53 22.63 21.77 19.08 19.8 18.65 27.82 21.03 21.74
21.05 22.24 22.53 22.1 22.58 20.81 22.25 22.3 21.62 19.13 19.8 18.65 27.62 20.87 21.6];
B=[0 0. 14 0. 79 2.42 3.87 5.25 6.54 8.02 9.14 10.25 11.08 11.68 12.71 13.60 14.32 14.81 15.26 15.77 15.98 16.01
16.24 16.27 16.45 16.73 17.15 17.51 17.80 18.11 18.03 17.93 18.21 17.90 17.56 17.80 17.56 17.23 16.92 16.58
16.71 16.63 16.63 16.55 16.42 16.76 16.63 16.76 17.28 17.54 17.56 17.51 17.46 17.17 16.92 16.79 16.53 15.93
15.62 15.52 15.07 14.79 14.79] T
To X ithe correlation coefficient of ordering at k is
ξ 0 i ( k ) = m + θM Δ i ( k ) + θM , θ ∈ ( 0,1 ) , k = 1,2 , . . . , 61 ; i = 1,2 , . . . , 15
The degree of association between two sequences is calculated with the mean value of the degree of association coefficient in two each moment of sequence,
ξ 0 i = 1 n Σ k = 1 n ξ 0 i ( k ) i = 1,2 , . . . , m
The relevance degree that calculates 15 temperature sequences and Z axis thermal deformation is as follows:
ξ z,1=0.7014 ξ z,2=0.5881 ξ z,3=0.6065 ξ z,4=0.6125 ξ z,5=0.5831 ξ z,6=0.6947 ξ z,7=0.6142 ξ z,8=0.6228
ξ z,9=0.6520 ξ z,10=0.8065 ξ z,11=0.7960 ξ z,12=0.8032 ξ z,13=0.4269 ξ z,14=0.6994 ξ z,15=0.6891
Visible, T 2, T 5, T 13very little with the degree of correlation of Z axis thermal deformation, thus removed and 12 remaining temperature ordered series of numbers are formed to matrix P, as the data of grey neural network modeling.
P=[16.4 17.07 16.69 16.59 16.88 16.69 17.17 16.4 16.45 16.64 16.76 16.59
16.59 17.5 18.51 17.69 17.41 18.27 16.26 16.45 16.78 17.24 17.02
17.26 19.13 18.7 17.45 18.46 18.17 18.6 16.3 16.59 16.98 17.56 17.31
17.41 19.37 18.99 17.93 19.18 18.99 18.22 16.45 16.64 17.21 17.92 17.84
17.5520.09 19.61 18.17 19.52 19.37 18.37 16.54 16.78 17.31 18.45 18.13
17.6 20.67 20.09 18.46 19.99 19.85 18.8 16.59 16.74 17.55 18.52 18.32
18.03 20.86 20.3818.7 20.52 20.28 19.18 16.74 16.88 17.6 18.56 18.71
18.22 21.29 20.71 18.99 20.91 20.71 19.37 16.78 16.88 17.5 18.84 19.09
18.46 21.82 21.14 19.28 21.24 21 19.66 16.93 17.02 17.65 19.12 19.29
18.65 22.1 21.4319.28 21.62 21.29 19.99 17.17 17.12 17.79 19.28 19.24
18.7 22.39 21.82 19.37 21.82 21.53 20.23 17.36 17.41 18.13 19.64 19.09
19.08 22.68 22.2 19.56 22.01 21.77 20.52 17.17 17.41 18.56 19.76 19.38
19.18 23.01 22.34 19.76 22.3 22.1 20.76 17.36 17.31 18.56 19.91 19.57
19.47 23.45 22.63 20.47 22.39 22.34 20.86 17.36 17.5 18.13 19.97 19.77
19.47 23.4 22.73 20.23 22.73 22.73 21.19 17.55 17.55 18.22 20.19 19.82
19.8 23.69 22.92 20.38 22.92 22.92 21.48 17.6 17.55 18.27 20.23 20.01
19.9 23.88 23.21 20.43 23.11 22.92 21.58 17.69 17.84 18.37 20.39 20.06
19.9 24.02 23.59 20.57 23.49 23.45 21.91 17.79 17.79 18.37 20.51 20.2
20.33 24.12 23.59 20.57 23.78 23.78 22.06 17.84 17.79 18.37 20.59 20.3
20.43 24.55 23.83 20.76 24.07 23.25 22.25 17.84 17.84 18.46 20.63 20.39
20.43 24.5 24.02 21.1 24.16 23.4 22.44 18.27 17.93 18.46 20.91 20.73
20.52 24.6 24.26 21.34 24.31 23.54 22.73 18.46 18.03 18.32 21.07 21.02
20.86 24.84 24.45 21.1 24.55 23.68 22.77 18.08 18.08 18.51 20.83 20.92
21.24 24.84 24.55 21.34 24.45 23.88 23.11 18.27 18.27 18.89 21.07 21.11
21.34 24.93 24.55 21.34 24.6 23.92 23.35 18.6 18.37 18.84 21.47 21.11
21.34 25.07 24.79 21.14 24.79 24.12 23.01 18.51 18.32 18.8 21.35 21.26
21.29 25.17 25.03 21.53 24.79 24.12 23.11 18.51 18.46 18.9 21.47 21.3
21.38 25.22 25.03 21.58 24.98 24.26 23.21 18.51 18.37 18.8 21.31 21.45
21.38 25.41 25.22 21.53 25.12 24.21 23.25 18.6 18.41 18.94 21.35 21.45
21.34 25.46 25.31 21.62 25.07 24.36 23.45 18.89 18.41 18.8 21.63 21.55
21.72 25.6 25.36 21.86 25.12 24.5 23.4 18.89 18.8 18.41 21.67 21.64
21.72 25.6 25.41 21.86 25.27 24.55 23.49 18.84 18.89 18.41 21.83 21.69
21.86 25.79 25.51 22.1 25.22 24.6 23.64 18.94 18.84 18.37 22.07 21.84
21.91 25.65 25.7 2.39 25.31 24.64 23.83 19.04 18.89 18.51 22.19 21.93
21.96 25.65 26.18 22.15 25.41 24.88 23.78 19.04 19.04 18.51 22.27 22.08
22.68 25.55 26.42 22.3 25.36 24.84 23.88 19.04 19.04 18.46 21.95 22.32
22.53 25.65 26.03 22.39 25.27 24.79 23.88 18.84 18.89 18.84 22.07 22.32
22.15 25.75 26.13 22.2 25.36 24.79 23.92 18.99 27.38 18.65 22.03 22.03
22.15 25.65 26.03 22.3 25.46 24.93 24.4 18.99 19.28 18.65 22.23 22.17
22.2 25.75 26.13 22.3 25.65 24.88 24.12 18.89 19.37 18.75 22.27 22.22
22.1 25.79 26.27 22.25 25.55 24.93 24.16 18.94 19.32 18.89 22.31 22.22
22.34 25.79 26.27 22.34 25.51 25.6 24.31 19.08 19.37 18.99 22.47 22.32
22.44 25.84 26.46 22.34 25.55 25.46 24.31 19.13 19.42 18.99 22.57 22.32
22.44 25.75 26.46 22.34 25.51 25.03 24.21 19.13 19.56 19.37 22.47 22.37
22.34 25.36 26.18 22.3 25.65 25.86 24.4 19.18 19.61 18.89 22.47 24.19
22.3 27.23 25.7 22.2 25.27 26.32 24.36 19.08 19.66 18.89 21.83 24.1
22.34 25.17 25.46 22.15 24.88 25.22 24.12 19.47 19.76 19.04 21.75 23.81
22.15 22.3 24.45 22.01 24.79 24.55 23.73 19.18 19.8 18.8 21.59 23.52
22.15 24.79 24.21 22.1 24.45 24.69 23.35 19.61 19.9 18.99 21.55 23.33
22.58 24.6 23.88 22.34 23.92 24.5 23.4 19.13 20.04 18.8 21.39 23.23
21.96 24.36 23.49 21.86 24.26 24.02 23.45 19.37 19.99 18.84 21.43 23.42
21.86 24.26 23.11 21.96 24.4 23.54 22.77 18.94 19.99 19.04 21.35 22.7
21.82 23.45 23.21 21.72 23.83 23.54 22.39 18.94 19.85 18.99 21.27 22.41
21.72 23.35 23.06 21.72 23.54 23.35 22.49 18.94 19.85 18.94 21.39 22.37
21.62 23.45 22.97 21.43 23.3 23.21 22.3 18.94 19.85 18.7 21.55 22.27
21.53 23.21 22.87 21.43 23.11 22.87 22.15 18.94 19.9 18.84 21.19 22.13
21.48 23.16 22.73 21.38 22.97 22.92 22.15 18.89 19.8 18.75 21.07 22.03
21.24 23.01 22.68 21.19 22.77 22.77 21.91 18.84 19.9 18.99 21.19 21.74
21.58 22.87 22.58 21.53 22.82 22.68 21.82 18.94 19.9 18.65 21.27 21.74
21.1 22.68 22.39 21 22.53 22.63 21.77 19.08 19.8 18.65 21.03 21.74
21.05 22.53 22.1 20.81 22.25 22.3 21.62 19.13 19.8 18.65 20.87 21.6];
12 and the high variable of the Z axis thermal deformation degree of association from 15 temperature variables, are filtered out by Grey Incidence Analysis according to step 2, these 12 temperature variable composition matrix P; Utilize matrix P and Z axis thermal deformation data to set up on computers GM(1,13 according to step 3) grey forecasting model, and predict machine tool thermal error; According to step 4,6 data (15.9315.6215.5215.0714.7914.79) below that displacement sensor is obtained are predicted as validation test data, above 55 thermal deformation measured datas and Grey Model to front 55 data subtract each other successively, obtain 55 hot error residual sequences; According to the step 5 input sample of matrix P as BP neural network, the residual sequence that step 4 obtains is as output sample, neural network is carried out to learning training, re-enter temperature matrix and predict 61 residual sequence values, it is the lathe Z axis heat error compensation sequence of grey neural network prediction that the hot error amount of the sequential value of neural network prediction and grey system forecasting is added up successively, and the heat error compensation value of X-axis is as long as use above same step to obtain.Fig. 3 has provided the hot error and the hot error comparison diagram of actual measurement that adopt Grey Neural Network Model prediction, and Fig. 4 is last 6 hot error amounts and the hot error comparison diagram of actual measurement that adopts Grey Neural Network Model and the prediction of other method.Table 1 has been listed the thermal compensation value prediction comparing result at check post place.
Table 1

Claims (1)

1. a numerical control machine heat error compensation grey neural network modeling method, is characterized in that, carries out as follows:
Step 1: placement sensor
First utilize infrared thermography to do thermograph to operation lathe after a while, the temperature cromogram showing according to thermal imaging system, temperature shows that high region is the heating region of lathe, the temperature peak of the good each heating region of mark; Shut down after cooling and place the sensor that measures ambient temperature changes on lathe side, and carry out collecting temperature delta data at all m gauge point mounting temperature sensors, so one has m+1 temperature sensor; X-axis, Z-direction at machine tool chief axis are respectively installed a laser displacement sensor, gather the data of thermal deformation of machine tool; In system operational process, read the real time temperature { T of all temperature sensors every phase same amount of time iand thermal deformation displacement { X s, { Z stime dependent numerical value;
Step 2: screening temperature variable
According to the temperature variation sequence T having measured i(T i1t i2t i3t ikt i(k+1)t is), i=1,2 ... m+1 filters out the temperature variable that n is individual and thermal deformation correlativity is high and forms new matrix P from m+1 temperature variable by grey correlation analysis, establish P and be
P={T i(1)T i(2)…T i(s)}i=1,2,…,n;
Step 3: set up gray system and obtain hot error prediction value
By X sor Z srespectively with matrix P composition gray system G(1, N) original data series;
By Z swith the original data series of matrix P composition gray system be
Q = Z ( 0 ) ( 1 ) Z ( 0 ) ( 2 ) . . . Z ( 0 ) ( s ) T i ( 0 ) ( 1 ) T i ( 0 ) ( 2 ) . . . T i ( 0 ) ( s ) . . . . . . . . . . . . T n ( 0 ) ( 1 ) T n ( 0 ) ( 2 ) . . . T n ( 0 ) ( s ) , i = 1,2 , . . . , n - 1 ; - - - ( 1 )
Above-mentioned ordered series of numbers is made respectively to one-accumulate and generate, obtain new 1-AGO ordered series of numbers
Q ' = Z ( 1 ) ( 1 ) Z ( 1 ) ( 2 ) . . . Z ( 1 ) ( s ) T i ( 1 ) ( 1 ) T i ( 1 ) ( 2 ) . . . T i ( 1 ) ( s ) . . . . . . . . . . . . T n ( 1 ) ( 1 ) T n ( 1 ) ( 2 ) . . . T n ( 1 ) ( s ) , i = 1,2 , . . . , n - 1 ; - - - ( 2 )
Set up the differential equation
d Z ( 1 ) / dt + a Z ( 1 ) = b 1 T 1 ( 1 ) + b 2 T 2 ( 1 ) + . . . + b n T n ( 1 ) ; - - - ( 3 )
Coefficient a, b 1, b 2... b nsolve by least square method;
Solve the differential equation (3) and obtain the hot error prediction value of Z-direction
Z ^ ( 0 ) ( t + 1 ) = Z ^ ( 1 ) ( t + 1 ) - Z ^ ( 1 ) ( t ) = [ Z ( 0 ) ( 1 ) - Σ i = 2 n b i - 1 a T i ( 1 ) ( t + 1 ) ] e - at + Σ i = 2 n b i - 1 a T i ( 1 ) ( t + 1 ) - [ Z ( 0 ) ( 1 ) - Σ i = 2 n b i - 1 a T i ( 1 ) ( t ) ] e - a ( t - 1 ) + Σ i = 2 n b i - 1 a T i ( 1 ) ( t ) , t = 1,2 , . . . , s - 1 ; - - - ( 4 )
Next obtain the thermal deformation predicted value of lathe Z axis by Computing ... ,
And by X swith another gray system original data series of matrix P composition be
W = X ( 0 ) ( 1 ) X ( 0 ) ( 2 ) . . . X ( 0 ) ( s ) T i ( 0 ) ( 1 ) T i ( 0 ) ( 2 ) . . . T i ( 0 ) ( s ) . . . . . . . . . . . . T n ( 0 ) ( 1 ) T n ( 0 ) ( 2 ) . . . T n ( 0 ) ( s ) , i = 1,2 , . . . , n - 1 ; - - - ( 5 )
Above-mentioned ordered series of numbers is done respectively, after one-accumulate generation, to obtain new 1-AGO ordered series of numbers
W ' = X ( 1 ) ( 1 ) X ( 1 ) ( 2 ) . . . X ( 1 ) ( s ) T i ( 1 ) ( 1 ) T i ( 1 ) ( 2 ) . . . T i ( 1 ) ( s ) . . . . . . . . . . . . T n ( 1 ) ( 1 ) T n ( 1 ) ( 2 ) . . . T n ( 1 ) ( s ) , i = 1,2 , . . . , n - 1 ; - - - ( 6 )
Set up the differential equation
d X ( 1 ) / dt + a X ( 1 ) = b 1 T 1 ( 1 ) + b 2 T 2 ( 1 ) + . . . + b n T n ( 1 ) ; - - - ( 7 )
Coefficient c, d1, d2 ... dn solves by least square method;
Solve the differential equation (7) and obtain X thermotropism error prediction value
X ^ ( 0 ) ( t + 1 ) = X ^ ( 1 ) ( t + 1 ) - X ^ ( 1 ) ( t ) = [ X ( 0 ) ( 1 ) - Σ i = 2 n d i - 1 c T i ( 1 ) ( t + 1 ) ] e - ct + Σ i = 2 n d i - 1 c T i ( 1 ) ( t + 1 ) - [ Z ( 0 ) ( 1 ) - Σ i = 2 n d i - 1 c T i ( 1 ) ( t ) ] e - c ( t - 1 ) + Σ i = 2 n d i - 1 c T i ( 1 ) ( t ) , t = 1,2 , . . . , s - 1 ; - - - ( 8 )
Next can obtain the thermal deformation predicted value of lathe X-axis by Computing , ,
Step 4: solve residual sequence
Will , and true measurement { Z (0)(1), Z (0)(2) ..., Z (0)(k) } subtract each other successively and obtain Z axis residual sequence e (0)(1), e (0)(2) ..., e (0)(k), i.e. Z axis residual sequence
e ( 0 ) ( t ) = Z ^ ( 0 ) ( t ) - Z ( 0 ) ( t ) t = 1,2 , . . . , k ; - - - ( 9 )
Will , and true measurement { X (0)(1), X (0)(2) ..., X (0)(k) } subtract each other successively and obtain X-axis residual sequence f (0)(1), f (0)(2) ..., f (0)(k), i.e. X-axis residual sequence
f ( 0 ) ( t ) = X ^ ( 0 ) ( t ) - X ( 0 ) ( t ) t = 1,2 , . . . , k ; - - - ( 10 )
Step 5: the BP neural network model of setting up residual sequence
In MATLAB, set up 3 layers of BP neural network, set transport function, network training function, maximum frequency of training and convergence error; Input sample using k temperature value above of matrix P as neural metwork training, Z axis residual sequence e (0)(1), e (0)(2) ..., e (0)or X-axis residual sequence f (k) (0)(1), f (0)(2) ..., f (0)(k), as output sample, learning training BP neural network is to determine its all parameter values; After having trained, just obtain desired BP neural network model; As long as the temperature value of this temperature variable is input in the middle of neural network, just can obtain residual sequence predicted value or the hot error prediction value of lathe Z axis of artificial neural networks built-up pattern can be passed through
Z ^ ( t ) = Z ^ ( 0 ) ( t ) + e ^ ( 0 ) ( t ) - - - ( 11 )
Calculate;
The predicted value of the hot error of lathe X-axis of artificial neural networks built-up pattern can be passed through
X ^ ( t ) = X ^ ( 0 ) ( t ) + f ^ ( 0 ) ( t ) - - - ( 12 )
Calculate.
CN201410091291.XA 2014-03-12 2014-03-12 Numerically-controlled machine tool thermal error compensation grey neural network modeling method Pending CN103984287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410091291.XA CN103984287A (en) 2014-03-12 2014-03-12 Numerically-controlled machine tool thermal error compensation grey neural network modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410091291.XA CN103984287A (en) 2014-03-12 2014-03-12 Numerically-controlled machine tool thermal error compensation grey neural network modeling method

Publications (1)

Publication Number Publication Date
CN103984287A true CN103984287A (en) 2014-08-13

Family

ID=51276305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410091291.XA Pending CN103984287A (en) 2014-03-12 2014-03-12 Numerically-controlled machine tool thermal error compensation grey neural network modeling method

Country Status (1)

Country Link
CN (1) CN103984287A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216334A (en) * 2014-09-16 2014-12-17 北京工业大学 Selection optimization method of temperature measurement point combination for positioning errors of numerically-controlled machine tool under thermal effect
CN104537256A (en) * 2015-01-11 2015-04-22 北京工业大学 Numerical control low-speed wire cutting machine tool thermal error modeling method based on RBF neural network M-RAN algorithm
CN104597842A (en) * 2015-02-02 2015-05-06 武汉理工大学 BP neutral network heavy machine tool thermal error modeling method optimized through genetic algorithm
CN104950808A (en) * 2015-07-20 2015-09-30 攀枝花学院 Machine tool thermal error compensation method based on augmented naive Bayes network
CN105631122A (en) * 2015-12-25 2016-06-01 鼎奇(天津)主轴科技有限公司 Thermal-deformation simulation analysis and modeling method of machine tool large piece
CN105807714A (en) * 2014-12-31 2016-07-27 佛山市诺威科技有限公司 False tooth machine tool thermal error online temperature compensation method
CN106557069A (en) * 2015-09-29 2017-04-05 发那科株式会社 Rote learning apparatus and method and the lathe with the rote learning device
CN109240204A (en) * 2018-09-30 2019-01-18 山东大学 A kind of numerical control machining tool heat error modeling method based on two-step method
JP2019013993A (en) * 2017-07-04 2019-01-31 ファナック株式会社 Thermal displacement correction device
TWI649648B (en) * 2017-12-05 2019-02-01 財團法人工業技術研究院 Processing machine thermal compensation control system and method thereof
CN109308051A (en) * 2017-07-26 2019-02-05 发那科株式会社 Numerical control device
CN109388099A (en) * 2017-08-04 2019-02-26 西门子股份公司 Processing using the error compensation of model supports to workpiece
CN109726926A (en) * 2019-01-02 2019-05-07 重庆大学 Machine tool equipment resource supply and demand matching process based on Grey Relation Algorithm under a kind of constraint of multivariate quality
CN110045682A (en) * 2019-04-17 2019-07-23 清华大学 The offline compensation method of five-axis robot cutter distortion error based on least square method
CN110262393A (en) * 2019-07-03 2019-09-20 西安交通大学 Gray theory segmented with lag data processing weights thermal error modeling method
CN110763147A (en) * 2019-10-31 2020-02-07 中交三航局第三工程有限公司 Cofferdam deformation monitoring method based on three-dimensional laser scanning technology
CN111275328A (en) * 2020-01-19 2020-06-12 哈尔滨工业大学(威海) RNGRU (radio network unit) position marker part matching method based on comprehensive grey correlation sequence
CN112475904A (en) * 2020-11-12 2021-03-12 安徽江机重型数控机床股份有限公司 Numerical control milling and boring machine machining precision prediction method based on thermal analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224935A (en) * 2001-01-31 2002-08-13 Toyoda Mach Works Ltd Sizing device for machine tool and recording medium readable with computer, which is recorded with control program for the device is recorded
CN101797704A (en) * 2009-12-31 2010-08-11 重庆大学 Method for thermal deformation error compensation of digital control gear hobbing machine
CN102452020A (en) * 2010-10-22 2012-05-16 西安交通大学 Quantitative analyzing method for temperature fields and thermal deformations of cutter of numerical control machine tool
CN102495588A (en) * 2011-11-24 2012-06-13 合肥工业大学 High-order multi-stage auto-regressive distributed lag modeling method of thermal error compensation of numerical control machine
CN103268082A (en) * 2013-05-16 2013-08-28 北京工业大学 Thermal error modeling method based on gray linear regression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224935A (en) * 2001-01-31 2002-08-13 Toyoda Mach Works Ltd Sizing device for machine tool and recording medium readable with computer, which is recorded with control program for the device is recorded
CN101797704A (en) * 2009-12-31 2010-08-11 重庆大学 Method for thermal deformation error compensation of digital control gear hobbing machine
CN102452020A (en) * 2010-10-22 2012-05-16 西安交通大学 Quantitative analyzing method for temperature fields and thermal deformations of cutter of numerical control machine tool
CN102495588A (en) * 2011-11-24 2012-06-13 合肥工业大学 High-order multi-stage auto-regressive distributed lag modeling method of thermal error compensation of numerical control machine
CN103268082A (en) * 2013-05-16 2013-08-28 北京工业大学 Thermal error modeling method based on gray linear regression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张毅 等: "基于灰色神经网络的机床热误差建模", 《上海交通大学学报》, vol. 45, no. 11, 30 November 2011 (2011-11-30), pages 1581 - 1586 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216334A (en) * 2014-09-16 2014-12-17 北京工业大学 Selection optimization method of temperature measurement point combination for positioning errors of numerically-controlled machine tool under thermal effect
CN104216334B (en) * 2014-09-16 2017-02-22 北京工业大学 Selection optimization method of temperature measurement point combination for positioning errors of numerically-controlled machine tool under thermal effect
CN105807714A (en) * 2014-12-31 2016-07-27 佛山市诺威科技有限公司 False tooth machine tool thermal error online temperature compensation method
CN105807714B (en) * 2014-12-31 2018-05-01 佛山市诺威科技有限公司 A kind of online temperature-compensation method of artificial tooth machining tool Thermal Error
CN104537256A (en) * 2015-01-11 2015-04-22 北京工业大学 Numerical control low-speed wire cutting machine tool thermal error modeling method based on RBF neural network M-RAN algorithm
CN104597842A (en) * 2015-02-02 2015-05-06 武汉理工大学 BP neutral network heavy machine tool thermal error modeling method optimized through genetic algorithm
CN104950808A (en) * 2015-07-20 2015-09-30 攀枝花学院 Machine tool thermal error compensation method based on augmented naive Bayes network
CN104950808B (en) * 2015-07-20 2017-05-10 攀枝花学院 Machine tool thermal error compensation method based on augmented naive Bayes network
US10082771B2 (en) 2015-09-29 2018-09-25 Fanuc Corporation Machine learning method and machine learning apparatus learning operating command to electric motor and machine tool including machine learning apparatus
CN106557069A (en) * 2015-09-29 2017-04-05 发那科株式会社 Rote learning apparatus and method and the lathe with the rote learning device
CN106557069B (en) * 2015-09-29 2018-03-13 发那科株式会社 Rote learning apparatus and method and the lathe with the rote learning device
CN105631122A (en) * 2015-12-25 2016-06-01 鼎奇(天津)主轴科技有限公司 Thermal-deformation simulation analysis and modeling method of machine tool large piece
JP2019013993A (en) * 2017-07-04 2019-01-31 ファナック株式会社 Thermal displacement correction device
US10852710B2 (en) 2017-07-04 2020-12-01 Fanuc Corporation Thermal displacement compensation apparatus
CN109308051B (en) * 2017-07-26 2020-10-16 发那科株式会社 Numerical controller
CN109308051A (en) * 2017-07-26 2019-02-05 发那科株式会社 Numerical control device
CN109388099B (en) * 2017-08-04 2021-08-17 西门子股份公司 Machining of workpieces with model-supported error compensation
CN109388099A (en) * 2017-08-04 2019-02-26 西门子股份公司 Processing using the error compensation of model supports to workpiece
TWI649648B (en) * 2017-12-05 2019-02-01 財團法人工業技術研究院 Processing machine thermal compensation control system and method thereof
US10481575B2 (en) 2017-12-05 2019-11-19 Industrial Technology Research Institute Thermal compensation method and thermal compensation control system for machine tools
CN109240204A (en) * 2018-09-30 2019-01-18 山东大学 A kind of numerical control machining tool heat error modeling method based on two-step method
CN109726926A (en) * 2019-01-02 2019-05-07 重庆大学 Machine tool equipment resource supply and demand matching process based on Grey Relation Algorithm under a kind of constraint of multivariate quality
CN110045682B (en) * 2019-04-17 2020-08-18 清华大学 Five-axis machining cutter deformation error off-line compensation method based on least square method
CN110045682A (en) * 2019-04-17 2019-07-23 清华大学 The offline compensation method of five-axis robot cutter distortion error based on least square method
CN110262393A (en) * 2019-07-03 2019-09-20 西安交通大学 Gray theory segmented with lag data processing weights thermal error modeling method
CN110262393B (en) * 2019-07-03 2020-08-18 西安交通大学 Gray theory sectional weighted thermal error modeling method with lag data processing
CN110763147A (en) * 2019-10-31 2020-02-07 中交三航局第三工程有限公司 Cofferdam deformation monitoring method based on three-dimensional laser scanning technology
CN111275328A (en) * 2020-01-19 2020-06-12 哈尔滨工业大学(威海) RNGRU (radio network unit) position marker part matching method based on comprehensive grey correlation sequence
CN111275328B (en) * 2020-01-19 2022-02-22 哈尔滨工业大学(威海) RNGRU (radio network unit) position marker part matching method based on comprehensive grey correlation sequence
CN112475904A (en) * 2020-11-12 2021-03-12 安徽江机重型数控机床股份有限公司 Numerical control milling and boring machine machining precision prediction method based on thermal analysis
CN112475904B (en) * 2020-11-12 2021-09-28 安徽江机重型数控机床股份有限公司 Numerical control milling and boring machine machining precision prediction method based on thermal analysis

Similar Documents

Publication Publication Date Title
CN103984287A (en) Numerically-controlled machine tool thermal error compensation grey neural network modeling method
CN105759719B (en) A kind of numerical control machining tool heat error prediction technique and system splitting model based on unbiased esti-mator
Zhang et al. Machine tool thermal error modeling and prediction by grey neural network
CN103823991B (en) Heavy-duty tool thermal error prediction method taking environmental temperature into account
CN104390657B (en) A kind of Generator Unit Operating Parameters measurement sensor fault diagnosis method and system
CN104216334B (en) Selection optimization method of temperature measurement point combination for positioning errors of numerically-controlled machine tool under thermal effect
CN103268082B (en) Thermal error modeling method based on gray linear regression
Kovač et al. A review of machining monitoring systems
CN108803486A (en) Numerical control machining tool heat error prediction based on deep learning network in parallel and compensation method
CN103926874A (en) Selection optimization method of numerically-controlled machine tool thermal error compensation modeling temperature measuring point combination
CN105300923A (en) Correction method of measuring point free temperature compensation model during process of online application of near infrared spectrum analyzer
CN104298171B (en) Mesoscale part machining error prediction and control method
KR102181966B1 (en) Soft survey method and system for hydraulic cylinder comprehensive test station
CN110007645A (en) A kind of feed system hybrid modeling method based on dynamics and deep neural network
CN109623493A (en) A method of determining the real-time thermal deformation posture of main shaft
CN107066775A (en) A kind of Forecasting Methodology of cutter turning temperature rise average
CN102193045A (en) Method for checking consistency of analog quantity signal channels
CN101825869A (en) Method for identifying superheater model parameters based on data drive
CN103279030B (en) Dynamic soft measuring modeling method and device based on Bayesian frame
CN101893430A (en) Processing method of abnormal measured values based on CNC gear measuring center
CN104090526B (en) Machine tool thermal error modeling method and test system based on golden section and cumulative regression
CN109948746A (en) A kind of sensor-based steel billet information tracing method
Chaves et al. Inspection model and correlation functions to assist in the correction of qualitative defects of injected parts
CN115841446A (en) Rapid detection system and method for fault risk of solar heat collection field
CN114556247A (en) Method and apparatus for determining product quality

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140813