KR102622726B1 - 진공 게이지를 위한 브리지 전압 반전 회로 및 전압 반전 회로를 갖는 압력 게이지 센서 - Google Patents

진공 게이지를 위한 브리지 전압 반전 회로 및 전압 반전 회로를 갖는 압력 게이지 센서 Download PDF

Info

Publication number
KR102622726B1
KR102622726B1 KR1020217041030A KR20217041030A KR102622726B1 KR 102622726 B1 KR102622726 B1 KR 102622726B1 KR 1020217041030 A KR1020217041030 A KR 1020217041030A KR 20217041030 A KR20217041030 A KR 20217041030A KR 102622726 B1 KR102622726 B1 KR 102622726B1
Authority
KR
South Korea
Prior art keywords
pressure
bridge voltage
sensor
transformer
capacitor
Prior art date
Application number
KR1020217041030A
Other languages
English (en)
Other versions
KR20210157405A (ko
Inventor
호워드 에이치. 탕
스콧 마이클 해리스
Original Assignee
스미토모 크라이어제닉스 오브 아메리카 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드 filed Critical 스미토모 크라이어제닉스 오브 아메리카 인코포레이티드
Publication of KR20210157405A publication Critical patent/KR20210157405A/ko
Application granted granted Critical
Publication of KR102622726B1 publication Critical patent/KR102622726B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • G01L21/10Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured
    • G01L21/12Vacuum gauges by measuring variations in the heat conductivity of the medium, the pressure of which is to be measured measuring changes in electric resistance of measuring members, e.g. of filaments; Vacuum gauges of the Pirani type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • G01L1/144Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors with associated circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L21/00Vacuum gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

개시된 발명은 진공 게이지를 위한 브리지 전압 반전 회로, 및 브리지 전압 반전 회로를 포함하는 압력 게이지 센서를 제공한다. 압력 게이지를 위한 브리지 전압 반전 회로는 기준 커패시턴스, 센서 커패시턴스, 및 1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기를 포함한다. 기준 커패시터는 변압기의 2차 권선의 제1 측에 연결되고, 센서 커패시터는 변압기의 2차 권선의 제2 측에 연결된다. 센서 커패시터는 압력을 감지하고 그에 응답하고, 센서 커패시터의 커패시턴스는 압력이 진공일 때 최소이다. 진공에서의 센서 커패시터의 커패시턴스는 기준 커패시터의 커패시턴스 미만이다.

Description

진공 게이지를 위한 브리지 전압 반전 회로 및 전압 반전 회로를 갖는 압력 게이지 센서
관련 출원에 대한 상호참조
본 출원은, 2019년 5월 15일에 출원되고 발명의 명칭이 "BRIDGE VOLTAGE INVERSION CIRCUIT FOR VACUUM GAUGE AND METHODS OF OPERATING SAME"인 미국 가출원 일련번호 제62/848,326호의 우선권을 주장하며, 상기 가출원은 그 전체가 참조로 본원에 통합된다.
기술분야
본 발명은 일반적으로, 본 진공 게이지(예를 들어, WYDE GaugeTM) 유닛의 아날로그 보드들에서 발견될 수 있는 센서 아날로그 프론트 엔드 회로들에 관한 것으로, 더 구체적으로는 더 양호한 제조가능성을 달성하면서 더 적은 회로 BOM(bill of material) 및 더 적은 전력 소비를 갖는 WYDE 게이지 유닛의 아날로그 보드들에 대한 성능 향상에 관한 것이다. 기본 개념은 또한 다른 유형들의 게이지들로 확장될 수 있다.
현재의 진공 게이지(예를 들어, WYDE GaugeTM) 아날로그 프론트 엔드 전자 설계들에서, 도 1에 도시된 바와 같이, 압력 판독치는 변압기 회로의 2차 권선의 브리지 노드 상에 나타나는 신호 진폭의 직접적인 결과이다. 그러나, 전압 진폭과 인가된 압력 사이의 비례 특성으로 인해, 도 2에 도시된 바와 같이, 낮은 압력들에서 신호 증폭이 종종 필요하다. 진공 압력에서 또는 그에 근접한 압력에서, 신호 증폭은 종종 디지털화를 위해 아날로그-디지털 변환기("ADC")에 제공되기 전에 매우 높을 필요가 있다. 이러한 높은 레벨의 신호 증폭은 원치 않는 잡음 주입 및 증폭기 비선형성과 함께 기준파와 증폭된 신호파 자체 사이의 예측불가능한 위상 관계의 문제를 생성한다. 결과적으로, 너무 많은 신호 게인 없이 진공에서 최상의 신호 품질을 갖는 것이 바람직하다.
브리지 전압 상에 나타나는 신호 진폭은 변압기의 1차 측 신호 진폭 뿐만 아니라 압력 변화로 인한 기준 커패시턴스와 관련하여 센서 커패시턴스의 변화의 함수이다. 이러한 문제들에 대한 종래 기술의 솔루션들은 다음을 포함한다:
다수의 값비싼 게인/위상 조정 블록들:
다수의 값비싼 게인/위상 조정 집적 회로("IC")들은 1) 증폭으로 인한 위상 관계 불확실성을 제거하고 2) 기준 커패시터를 미세 조정하거나 또는 진공 압력에서 또는 그에 근접한 압력에서 진폭을 "제로화(zero)"하기 위해 사용된다. 이러한 IC 부품들은 신호 증폭 및 진공 압력 레벨에서 기준 커패시터들 및 센서 커패시터들을 매칭시킬 필요성의 직접적인 결과이기 때문에 필요하다.
각각의 증폭 디케이드(decade)들 사이의 불연속성을 수정하는 번거로운 펌웨어.
이산 단계들에서 한번에 유한 게인으로 증폭되는 가변 게인으로 인해, 종종 게인 스테이지들 각각 사이의 시간 선형성 곡선 섹션들은 스위치-오버 포인트 부정확성들로 인한 불연속성을 제공할 수 있다. 그러한 부작용들을 처리하기 위해 많은 펌웨어 코드가 작성되었다. 더 나쁜 것은, 디지털 신호 프로세서(DSP) 보드의 마이크로프로세서들이 특정 증폭 팩터에서의 신호 레벨을 인식하지 않으면, 다음 증폭 스테이지에서 신호 진폭이 포화될 위험이 있다.
낮은 신호 대 잡음비(SNR)로 인한 신호 자체와 함께 잡음 신호의 증폭.
진공 압력 레벨들에서, 유효 SNR은 매우 작으며, 종종, 증폭 팩터가 클 때, ADC는 도 3에 도시된 바와 같이 순수한 사인파를 더 이상 "보지" 않는다. 결과적으로, 신호 품질은 증폭 및 잡음의 결과로서 손상된다. 불행하게도, 이 문제는 1Torr 이하에서 동작하는 저압 게이지들에 대해 악화된다.
신호 평균화.
낮은 압력 레벨들에서의 불량한 SNR로 인해, 디지털 도메인에서의 신호 평균화의 수가 증가될 필요가 있다. 이는 압력 과도 응답을 늦추는 부정적인 영향을 미친다.
추가적인 회로 잡음 주입.
신호 경로들을 따라 도입될 수 있는 가변 게인 블록의 왜곡과 함께, ADC에 제공하기 전에 전원 및 접지와 같은 장소들로부터 잡음이 주입될 다른 기회들이 있다.
필요한 것은 현재의 WYDE 게이지 유닛의 아날로그 보드들에서 발견될 수 있는 기존의 센서 아날로그 프론트 엔드 회로에 대한 개선이다. 본 명세서의 실시예들은 더 적은 회로 BOM 및 그에 따라 더 적은 전력 소비로 성능 향상을 제공하면서 더 양호한 제조가능성을 달성한다. 실시예들은 특히 난해한 저압 SNR 요건들을 목표로 한다. 실시예들은 선행 기술들과 비교하여 동일하거나 더 양호한 성능을 유지하면서 회로 컴포넌트들의 제조가능성, 단순성 및 절약과 같은 영역들에서 종래 기술에 비해 많은 이점들을 제공한다. 또한, 실시예들은 1Torr(1Torr) 풀 스케일의 또는 그 미만의 저압 게이지들에 대해 매우 중요하다. 종래 기술과는 대조적으로, 실시예들은 진공에서 최상의 신호 품질을 제공한다.
브리지 전압 반전 회로의 실시예들은 종래 기술의 단점들을 극복하고 위에서 설명된 이점들을 제공한다. 이들 및 다른 이점들은, 예를 들어, 1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기, 변압기의 2차 권선의 제1 측에 연결된 기준 커패시터, 및 변압기의 2차 권선의 제2 측에 연결된 센서 커패시터를 포함하는 압력 게이지를 위한 브리지 전압 반전 회로에 의해 달성될 수 있다. 센서 커패시터는 압력을 감지하고 그에 응답한다. 센서 커패시터의 커패시턴스는 압력이 진공일 때 최소이다. 기준 커패시터 및 센서 커패시터는 진공에서의 센서 커패시터의 커패시턴스가 기준 커패시터의 커패시턴스 미만이도록 선택된다. 브리지 전압은 압력이 진공일 때 최대 진폭에 있고, 브리지 전압이 최소 진폭에 있는 폴드-오버-압력(fold-over-pressure)은 풀-스케일(full-scale) 압력 초과이다.
브리지 전압 반전 회로는, 변압기를 구동시키는 기준 신호를 출력하는 회로, 및 변압기 전에 신호 게인을 조정하기 위한 게인 설정 블록을 더 포함할 수 있다. 브리지 전압 반전 회로는, 기준 신호 및 브리지 전압 신호를 수신하고 멀티플렉싱하고 멀티플렉싱된 신호들을 아날로그-디지털 변환기에 출력하는 아날로그 멀티플렉서를 더 포함할 수 있다. 브리지 전압 반전 회로는, 브리지 전압을 수신하고 버퍼링하는 버퍼를 더 포함할 수 있다. 브리지 전압 반전 회로는, 기준 신호를 증폭시키는 전력 OPAMP 드라이버를 더 포함할 수 있다. 증폭된 기준 신호는 변압기의 1차 권선에 공급될 수 있다. 브리지 전압 반전 회로는, 브리지 전압 신호를 수신하고 증폭하는 변압기의 2차 권선에 연결된 증폭기를 더 포함할 수 있다. 센서 커패시터는 다이어프램 커패시터일 수 있다. 기준 커패시터의 커패시턴스는 풀 스케일에서 센서 커패시터의 커패시턴스보다 10퍼센트(10%) 더 클 수 있다.
이들 및 다른 이점들은, 예를 들어, 1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기, 변압기의 2차 권선의 제1 측에 연결된 제1 센서 커패시터, 및 변압기의 2차 권선의 제2 측에 연결된 제2 센서 커패시터를 포함하는 압력 게이지를 위한 브리지 전압 반전 회로에 의해 달성될 수 있다. 제1 및 제2 센서 커패시터들은 압력을 감지하고 그에 응답한다. 제2 센서 커패시터의 커패시턴스는 압력이 진공일 때 최소이다. 제1 센서 커패시터 및 제2 센서 커패시터는 진공에서의 제2 센서 커패시터의 커패시턴스가 진공에서의 제1 센서 커패시터의 커패시턴스 미만이도록 선택된다. 브리지 전압은 압력이 진공일 때 최대 진폭에 있고, 브리지 전압이 최소 진폭에 있는 폴드-오버-압력은 풀-스케일 압력 초과이다. 제1 센서 커패시터 및 제2 센서 커패시터는 다이어프램 커패시터들일 수 있다.
이들 및 다른 이점들은, 예를 들어, 1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기, 압력이 인가되는 일 단부 및 변압기의 2차 권선의 제1 측에 연결된 다른 단부를 갖는 제1 커패시터, 및 압력이 인가되는 일 단부 및 변압기의 2차 권선의 제2 측에 연결된 다른 단부를 갖는 제2 센서 커패시터를 포함하는 압력 게이지 센서에 의해 달성될 수 있다. 제1 및 제2 센서 커패시터들은 압력을 감지하고 그에 응답한다. 제2 센서 커패시터의 커패시턴스는 압력이 진공일 때 최소이다. 제1 센서 커패시터 및 제2 센서 커패시터는 진공에서의 제2 센서 커패시터의 커패시턴스가 진공에서의 제1 센서 커패시터의 커패시턴스 미만이도록 선택된다. 브리지 전압은 압력이 진공일 때 최대 진폭에 있고, 브리지 전압이 최소 진폭에 있는 폴드-오버-압력은 풀-스케일 압력 초과이다.
도면 도시들은 제한의 방식이 아닌 오직 예시의 방식으로 본 개념들에 따른 하나 이상의 구현들을 도시한다. 도면들에서, 유사한 참조 부호들은 동일하거나 유사한 엘리먼트들을 나타낸다.
도 1은 종래 기술의 WYDE Gauge™ 진공 게이지 아날로그 프론트 엔드 회로의 회로도이다.
도 2는 도 1의 회로에서 전압 진폭 대 인가된 압력 관계를 예시하는 차트이다.
도 3은 종래 기술의 진공 게이지로부터의 기준 신호 및 잡음 신호를 예시하는 도면이다.
도 4는 진공 게이지 프론트 엔드 회로에서 사용하기 위한 브리지 전압 반전 회로의 실시예의 회로도이다.
도 5는 도 4에 도시된 브리지 전압 반전 회로의 실시예로부터의 기준 신호 및 클린 신호를 예시하는 도면이다.
도 6은 도 4에 도시된 브리지 전압 반전 회로의 실시예의 전압 진폭 대 인가된 압력 관계를 예시하는 도면이다.
도 7은 다중-전극 센서들과 함께 사용하기 위한 브리지 전압 반전 회로의 실시예의 회로도이다.
도 8a 및 도 8b는 브리지 전압 반전 회로를 이용하는 예시적인 센서의 구조들을 도시한다.
이 섹션에서, 본 발명의 일부 실시예들은 본 발명의 바람직한 실시예들이 도시된 첨부 도면들을 참조하여 더 완전히 설명될 것이다. 그러나, 본 발명은 많은 상이한 형태들로 구현될 수 있으며, 본원에 설명된 실시예들로 제한되는 것으로 해석되어서는 안 된다. 오히려, 이러한 실시예들은 본 개시내용이 철저하고 완전하도록 그리고 당업자들에게 본 발명의 범위를 전달하도록 제공된다. 유사한 번호들은 전체에 걸쳐 유사한 요소들을 지칭하며, 대안적인 실시예들에서 유사한 엘리먼트들을 표시하기 위해 프라임 표기가 사용된다.
진공 압력 게이지/센서를 위한 브리지 전압 반전 회로의 실시예들이 본 명세서에서 설명된다. 브리지 전압 반전 회로의 실시예들은 진공에서 최상의 신호 품질을 제공한다. 위에서 언급된 바와 같이, 압력 판독치들은 브리지 전압의 신호 진폭에 비례하고; 기준 커패시터 전류 대 센서 커패시터 전류의 불일치가 압력 판독치를 제공한다. 기준 커패시터는 고정 커패시턴스를 갖는다. 압력이 변할 때, 센서 커패시터 브리지 전압은 압력의 변화에 비례하여 변한다. 진공 압력에서, 브리지 전압의 진폭은 잡음의 존재로 인해 손실되며, 기준 커패시터와 센서 커패시터 사이의 불일치에 의존하는 것은 어렵다. 그러나, 진공에서 최상의 신호를 갖는 것이 가장 바람직하다. 실시예들은, 가장 작은 것보다는 가장 큰 커패시턴스 차이(ΔC)가 진공 압력에서 존재하도록 신호를 반전시킴으로써 이러한 요구를 달성한다.
현재, 더 낮은 풀 스케일(FS) 압력 게이지들(예를 들어, ≤ 1Torr)을 향한 산업 전반의 추진이 존재한다. 이는 의심할 여지 없이, 더 높은 압력 게이지들(예를 들어, ≥ 10Torr)의 내부 작용들에 익숙한 센서 설계자들에게 새로운 레벨의 난제를 제시한다. 이러한 난제에 답하기 위해, 기본적인 근본적 감지 전기 아키텍처를 변경하지 않으면서, 브리지 전압 반전 회로의 실시예들은 반전된 진폭 브리지 전압(일명 "INA")을 갖는 센서 회로를 제공한다.
이제 도 4를 참조하면, 브리지 전압을 반전시키는 브리지 회로(408)를 포함하는 진공 압력 게이지 프론트 엔드(400)의 실시예가 도시된다. 도 1에 도시된 바와 같은 종래 기술의 회로들을 포함하는 진공 압력 게이지 프론트 엔드 회로들에서, 센서 전자 장치는 동축 케이블 1차 및 2차 권선에 기초한 변압기 회로 설계로 구성된다. 이러한 변압기 회로 설계는 소위 "브리지 회로"(408)를 형성한다. 이러한 맥락에서 "브리지"라는 용어는 변압기(410)의 양측 상에 인덕턴스-커패시턴스 공진 회로들이 존재함을 의미한다. 변압기(410)는 1차 권선(421) 및 2차 권선(422)을 포함한다. 브리지 전압은 2차 권선으로부터 출력된다. 브리지 회로(408)의 일 측에는 접지에 대한 기준 커패시터(412) 및 변압기(410)의 2차 권선으로부터의 인덕턴스의 절반이 있다. 브리지 회로(408)의 다른 측에는, 접지에 대한 센서 커패시터(414)(예를 들어, 압력이 증가함에 따라 커패시턴스가 증가하는 센서 커패시터) 및 변압기(410)의 2차 권선(422)으로부터의 인덕턴스의 다른 절반이 있다. 기준 커패시터(412)는 변압기(410)의 2차 권선(422)의 제1 측에 연결되고, 센서 커패시터(414)는 변압기(410)의 2차 권선(422)의 제2 측에 연결된다. 센서 커패시터(414)는 다이어프램 커패시터일 수 있지만, 커패시터에 적용된 압력에 기초하여 커패시턴스를 변경하는 임의의 커패시터일 수 있다. 기준 커패시터(412)는 일정한 커패시턴스를 갖는 고정 커패시터이다. 브리지 회로(408)의 각각의 측으로부터의 공진 회로들이 인덕턴스(L) 및 커패시턴스(C) 값들에서 동일하다면, 브리지 전압은 0이다. 커패시턴스 값들에 불일치가 있을 때마다, 커패시턴스 불일치 양에 비례하는 진폭을 갖는 사인파가 생성될 것이다.
즉, 압력과 진폭 사이의 변환은 압력, 센서 커패시턴스(Csensor), 커패시턴스 차이(ΔC), 및 브리지 전압의 순서를 통해 생성된다. 도 1에 도시된 바와 같은 종래 기술의 회로들에서, 기준 커패시터 및 센서 커패시터의 커패시턴스 값들은 브리지 전압(진폭)이 압력에 비례하도록 선택된다. 예를 들어, 기준 커패시터의 커패시턴스는 Cref일 수 있고, 진공에서의 센서 커패시터의 커패시턴스는 Csensor일 수 있다. 결과적으로, 압력이 증가함에 따라, 포지티브 ΔC = Cref - Csensor가 초래될 것이다. 진공(Cref ~ Csensor)에서, 커패시턴스 차이(ΔC)가 가장 크다. 여기서 "풀 스케일 압력"이라는 용어는 게이지의 정확도 규격이 여전히 보장되는 최대 압력을 지칭한다. 예를 들어, 오늘날 시판되는 많은 게이지들은 10 Torr 또는 100 Torr 범위들의 풀 스케일을 갖는다.
도 4를 계속 참조하면, 브리지 전압을 반전시키는 브리지 회로(408)를 갖는 진공 압력 게이지 프론트-엔드(400)의 실시예들에서, 기준 커패시터(412) 및 센서 커패시터(414)의 커패시턴스 값들은 Vamplitude가 압력에 반비례하도록 선택된다. 예를 들어, 기준 커패시터의 커패시턴스는 풀 스케일에서 센서 커패시터의 커패시턴스보다 10퍼센트(10%) 더 클 수 있다. 대안적으로, 기준 커패시터(412)의 커패시턴스(Cref)는 진공에서 센서 커패시터(414)의 커패시턴스(Csensor)보다 50퍼센트(50%) 더 클 수 있다. 예를 들어, 기준 커패시터(412)의 커패시턴스(Cref)는 약 300 pF일 수 있고, 진공에서의 센서 커패시터(414)의 커패시턴스(Csensor)는 약 200 pF일 수 있다. 센서에서의 압력이 증가함에 따라 센서 커패시터(414)의 커패시턴스가 증가한다. 따라서, 브리지 회로(408)를 갖는 진공 압력 게이지 프론트-엔드(400)의 실시예들에서, 커패시턴스 차이(ΔC)는 진공에서 가장 네거티브일 것이고, 커패시턴스 차이(ΔC)는 풀 스케일 압력에서 제로(0)에 접근할 것이다.
진공 압력 게이지 프론트 엔드(400)의 실시예들을 구동시키기 위해 사인파가 사용된다. 실시예들에서, 온-보드 DSP 엔진이 디지털 알고리즘들, 예를 들어 Vref와 Vsig 사이의 "공통" 잡음을 디지털 방식으로 필터링하기 위한 알고리즘을 수행하기 위해, 신호 스펙트럼 순도가 보장될 필요가 있다. 신호 생성기(402)에 의해 생성되는 사인파 신호는 신호 게인을 조정하는 데 사용될 수 있는 게인 설정 블록(404)을 통해 전달된다. 그 다음, 신호는 변압기(410)를 구동시키기 위해 전력 OpAmp 드라이버(406)를 통해 전달된다 전력 OPAMP 드라이버(406)는 신호를 증폭시키고, 증폭된 신호는 변압기(410)의 1차 권선(421)에 공급된다. 신호는 또한 Vref로서 진공 압력 게이지 프론트 엔드(400)의 출력에 전달된다.
도 4를 계속 참조하면, 브리지 회로(408)의 출력, 즉 브리지 전압은 증폭기(전력 OpAmp 드라이버)(416)에 의해 증폭되고 Vref를 갖는 아날로그-디지털 변환기(ADC)(420)를 통해 Vsig로서 온-보드 DSP 엔진(도시되지 않음)에 교번적으로 전달될 수 있다. 아날로그 멀티플렉서(418)는 기준 사인파 및 브리지 전압 신호를 수신하고, 기준 사인파 및 브리지 전압 신호를 멀티플렉싱하고, 멀티플렉싱된 신호들을 아날로그-디지털 변환기에 출력한다. 도시된 실시예들에서, 변압기(410)의 권선은 차폐 케이블(예를 들어, 동축 케이블)로 구성되며, 여기서 중앙 코어는 브리지 전압 신호 Vamplitude를 전달하고 차폐부는 중앙 코어 신호의 복제를 갖는 단일 게인 버퍼(417)에 의해 구동된다. 이는, 이러한 전류 누설 경로를 생성한 커패시턴스들을 통한 차폐부와 중앙 도체 사이의 누설 전류를 최소화하기 위해 수행된다. 추가로, 차폐부는 또한 외부 EMI 소스들이 권선 중앙 도체에서의 신호 무결성을 방해하는 것을 방지한다.
도 1에 도시된 바와 같은 브리지 회로를 갖는 종래 기술의 진공 압력 게이지/센서의 경우, 브리지 전압의 진폭 및 위상을 튜닝하기 위해 추가적인 게인/위상 조정 및 OPAMP 회로들이 요구된다. 진폭 및 위상을 튜닝하기 위한 필요성은, 브리지 전압 진폭이 가장 작은 진공에서, 적절한 아날로그-디지털(AD) 변환을 위해 추가적인 신호 게인이 요구된다는 사실로부터 발생한다. 불행하게도, 신호 게인이 상당히 증가될 때마다, Vref와 Vsig 사이의 위상 관계가 변경될 위험이 항상 존재한다. Vref와 Vsig 사이의 위상 관계가 예측불가능해짐에 따라, Vref와 Vsig 사이의 디지털 알고리즘은 적절하게 작용할 수 없다. 도 4에 도시된 브리지 전압 반전 회로의 본 실시예를 이용하여, 이러한 문제들은 가장 위험한 압력 레벨들(즉, 진공 또는 거의 진공)에서 회피되고, 도 1에 도시된 추가적인 게인/위상 조정 및 가변 게인 회로들은 생략될 수 있다.
이제 도 5를 참조하면, Vref(기준파) 및 Vsig(클린하고 큰 신호파)의 사인파들이 도시된다. 도 5에 도시된 클린하고 큰 신호파는 도 1에 도시된 종래 기술의 브리지 회로에 의해 생성되는 도 2에 도시된 잡음있는 작은 신호파와 상당히 유리하게 비교된다.
이제 도 6을 참조하면, 도 4에 도시된 브리지 전압 반전 회로의 실시예의 전압 진폭 대 인가된 압력 관계를 도시하는 전압-압력 그래프가 도시된다. 도 3의 전압-압력 그래프와 비교하여, 브리지 신호 전압 Vamplitude가 어떻게 진공에서 최대(Vmax)에 있고, 서서히 최소로 감소하는지를 본다(Cref가 거의 Csensor가 될 때까지 압력은 Csensor를 증가시키고, 이는 ΔC가 0에 접근함을 의미함). 도 6에서 Pmax로서 도시된 바와 같이, 센서 커패시터(414)가 단락되기 전에(커패시터 플레이트들이 접촉함) Vmax에 접근할 때까지, Csensor가 Cref보다 더 커짐에 따른 추가적인 압력 증가는 ΔC가 다시 증가되게 한다. 도 6에 의해 예시된 바와 같이, 브리지 전압은 Cref와 Csensor 사이의 커패시턴스 차이 ΔC의 절대값으로부터 생성된다. 결과적으로, Cref 및 Csensor의 경우, ΔC는 진공에서 Cref - Csensor가 될 것이고, Csensor가 P_fo(폴드-오버 압력)에서 Cref에 접근함에 따라 ~0으로 감소할 것이다. Csensor가 Cref 초과로 증가할 때, ΔC는 본 명세서에서 설명된 바와 같이 Csensor가 계속 증가함에 따라 다시 증가할 것이다.
본 명세서에서 설명되는 바와 같이, 브리지 전압 반전 회로의 실시예들은 진공 압력에서 또는 진공 압력 근처에서 더 높은 성능을 넘어서는 몇몇 추가적인 이점들을 가져온다:
어떤 증폭도 필요하지 않다.
INA 아날로그 센서 회로는 추가적인 증폭 스테이지들을 요구하지 않는다. 이는 브리지 상의 진폭 반전의 직접적인 결과이며, 즉, 압력이 증가할 때 전압은 더 낮다. 브리지 전압 반전 회로의 실시예들이 진공에서 더 높은 전압을 생성하기 때문에, 진공에서 SNR이 크게 향상된다.
게인 및 위상 조정이 필요 없음.
압력이 낮아지고 정확한 커패시턴스 매칭이 또한 필요하지 않을 때 브리지 전압 회로 신호가 증폭될 필요가 없기 때문에, 게인 및 위상 조정들이 여기서 더 이상 필요하지 않다.
전압 대 압력의 선형성 단조성(Linearity monotonicity)이 보장된다.
신호 경로를 따라 이산 게인 스테이지들이 없기 때문에, 전압-압력 곡선은 게이지의 전체 풀 스케일 범위에 걸쳐 하나의 연속적인 곡선일 수 있다. 이 특징은 전압-압력 곡선의 "스티칭(stitching)"을 디케이드 단위로 회피하며, 이는 펌웨어 설계를 크게 단순화한다.
SNR 향상.
낮은 압력들에서, 신호 대 잡음비는 도 5에 도시된 전압-압력 플롯으로부터 명백한 바와 같이 크게 향상된다. 압력이 지속적으로 증가함에 따라, 브리지 전압 진폭(Vamplitude)은 감소한다. 브리지 전압 진폭은 풀 스케일 마크 P_fs(풀 스케일 압력)를 지나서 계속 감소하여, 압력이 "폴드 오버" 포인트 P_fo에 도달할 때 결국 0으로 감소한다. 폴드 오버 포인트 P_fo를 지나면, Vamplitude가 Vmax에 도달할 때까지 다시 증가한다. 더 높은 압력들에서 감소된 신호 진폭은 더 높은 압력들에서 판독 에러 백분율을 저하시키지 않아야 한다.
신호 평균화.
낮은 압력 레벨들에서 Vamplitude가 Vmax에 있거나 그 근처에 있는 향상된 신호 대 잡음비(SNR)로 인해, 디지털 도메인에서 신호 평균화의 수를 불필요하게 증가시킬 필요가 없다.
기준 커패시터 선택들
보드 조립 프로세스 동안, 기준 커패시터(412)는 제로 진폭 압력이 풀 스케일을 초과하는 P_fo에서 센서 커패시터(414)에 매칭될 필요가 있다. P_fo가 P_fs와 관련되어 있고, P_fo가 P_fs보다 큰 한, 특정한 고정된 표준 크기의 커패시터들이 내장된 충분한 허용오차들로 픽킹될 수 있도록 충분히 유연할 수 있는 정확한 위치.
제조가능성
종래의 커패시턴스 크기들을 사용하는 용이함은 센서들의 제조가능성을 크게 향상시킨다. 진공 압력 레벨들에서 정밀한 커패시턴스 매칭을 위한 진폭 튜닝 회로가 필요하지 않다.
게인 설정 블록 및 단락 보호
브리지 전압 반전 회로(400)의 INA 구성에서, 게인 설정 블록(404)은 변압기(410) 1차 진폭들을 조정하는 데 사용된다. 이러한 게인 설정 블록(404)의 목적은 과압으로 인한 압력 센서 단락의 경우 브리지 전압 진폭의 추가 제어를 허용하는 것이다. 단락 보호를 위해 게인 설정 블록(404)을 사용하는 다른 이점은 과압 조건의 경우에 기준 커패시터(412)에 전달되는 동일한 양의 전력을 유지하는 것이다.
이제 도 7을 참조하면, 브리지 전압 반전 회로(700)의 실시예들은 다중-전극 센서들과 함께 사용될 수 있다. 도 7에 도시된 바와 같이, 브리지 전압 반전 회로(700)는 단일 센서 커패시터 및 기준 커패시터보다는 2개의 센서 커패시터들(712 및 714)과 함께 사용된다. 신호 생성기(702)에 의해 생성되는 사인파 신호는 신호 게인을 조정하는 데 사용될 수 있는 게인 설정 블록(704)을 통해 전달된다. 그 다음, 신호는 변압기(710)를 구동시키기 위해 전력 OpAmp 드라이버(706)를 통해 전달된다 전력 OPAMP 드라이버(706)는 신호를 증폭시키고, 증폭된 신호는 변압기(710)의 1차 권선(721)에 공급된다. 이러한 변압기(710) 회로 설계는 브리지 회로(708)를 형성한다. 변압기(710)는 1차 권선(721) 및 2차 권선(722)을 포함한다. 제1 센서 커패시터(712) 및 제2 센서 커패시터(714)는 다중-전극 센서의 일부이며, 둘 모두는 압력이 변경될 때 변할 수 있다. 제1 센서 커패시터(712) 및 제2 용량(714)은 다이어프램 커패시터들일 수 있지만, 커패시터들에 적용된 압력에 기초하여 커패시턴스를 변경하는 임의의 커패시터들일 수 있다. 제1 센서 커패시터(712)는 변압기(710)의 2차 권선(722)의 제1 측에 연결되고, 제2 센서 커패시터(714)는 변압기(710)의 2차 권선(722)의 제2 측에 연결된다. 브리지 전압 반전 회로(700)의 실시예들에서, 진공에서의 제1 커패시터(712)의 커패시턴스 Csen1은 진공에서의 제2 커패시터(714)의 커패시턴스 Csen2보다 더 크다. 조건 Csen1> Csen2가 항상 Pmax까지 참을 유지하기 때문에, 브리지 전압 반전 회로(700)가 사용될 수 있다. 진공 게이지 센서의 다중-전극은 외부 기준 커패시터들이 사용되지 않는 센서 구성이다. 모든 센서 관련 커패시턴스들은 센서 구성 자체에 통합된다. 브리지 회로(708)의 출력, 즉, 브리지 전압은 증폭기(전력 OpAmp 드라이버)(716)에 의해 증폭되고, 교번적으로, 변압기(710)로부터 출력된 브리지 전압을 수신 및 버퍼링하는 버퍼(717)에 전달될 수 있다. 버퍼(717)로부터의 출력 브리지 신호는 아날로그-디지털 변환기(ADC)(720)로 그리고 추가로 온-보드 DSP 엔진(도시되지 않음)으로 전달된다.
이제 도 8a 및 도 8b를 참조하면, 청구된 발명의 브리지 전압 반전 회로를 이용하는 예시적인 센서의 구조들이 도시된다. 도 8a는 예시적인 센서의 측면도를 도시하고, 도 8b는 센서의 정면도를 도시한다. 센서(800)는 내측 커패시터(801) 및 외측 커패시터(802)를 포함한다. 결과적으로, 도 4에 도시된 바와 같이, 반전된 진폭(INA) 접근법이 센서 커패시터/기준 커패시터 센서 구성에 적용될 수 있을 뿐만 아니라, 도 7에 도시된 바와 같이, 이 개념은 통합된 다수의 전극들을 갖는 센서들에 확장될 수 있다. 더 구체적으로, 도 8에 도시된 바와 같이, 동심원 구성을 갖는 내측 및 외측 전극의 경우(다른 기하학적 변형들이 가능함), 공통 접지 평면에 대한 내측 전극(811)(센서 커패시터(801))과 외측 전극(812)(센서 커패시터(802)) 사이의 커패시턴스는 종종 제조 프로세스 동안 완벽하게 매칭될 수 없다. INA의 의도적인 불일치 방식은 이러한 유형의 센서 전극 구성에 매우 적합하다. 도 8에 도시된 예시적인 센서에서, 내측 커패시터(801)는 도 7에 도시된 제1 커패시터(712)에 대응할 수 있고, 외측 커패시터(802)는 제2 커패시터(714)에 대응할 수 있다. 2개의 센서 측들 사이의 커패시턴스 차이는, 다이어프램의 장력, 다이어프램과 전극(들) 사이의 간격, 각각의 전극들의 크기들 및 형상들 등과 같은 많은 다른 팩터들에 기초한 설계 선택이다. 따라서, 일반적으로 말해서, 전극들 둘 모두에 대한 커패시턴스들 사이의 차이가 클수록, 진공 조건들 하에서 가질 가능성이 있는 신호 진폭이 더 커진다.
결론적으로, 압력과 역으로 관련된 신호 진폭을 생성하는 반전된 브리지 전압 진폭 방법은 WYDE Gauge™ 플랫폼의 일부로서 제시된다. 이 방법은 선행 기술들과 비교하여 동일하거나 더 양호한 성능을 유지하면서 회로 컴포넌트들의 제조가능성, 단순성 및 절약과 같은 영역들에서 종래 기술에 비해 많은 이점들을 제공한다. 또한, 이 방법은 1Torr 풀 스케일 또는 그 미만의 저압 게이지들에 대해 매우 귀중한 것으로 입증될 것이다.
본 명세서에서 사용되는 용어들 및 설명들은 단지 예시의 방식으로 제시되며, 제한으로서 의도되지 않는다. 당업자들은 본 발명의 사상 및 범위 내에서 많은 변형들이 가능하다는 것을 인식할 것이다.

Claims (18)

  1. 압력 게이지를 위한 브리지 전압 반전 회로로서,
    1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기;
    상기 변압기의 상기 2차 권선의 제1 측에 연결된 기준 커패시터로서, 상기 기준 커패시터는 고정된 일정한 커패시턴스를 갖는 것인, 기준 커패시터; 및
    상기 변압기의 상기 2차 권선의 제2 측에 연결된 센서 커패시터
    를 포함하고,
    상기 센서 커패시터는 압력을 감지하고 이 압력에 응답하고, 상기 센서 커패시터의 커패시턴스는 상기 압력이 진공일 때 최소이고, 상기 기준 커패시터의 일정한 커패시턴스는 풀-스케일 압력(full-scale pressure)에서 상기 센서 커패시터의 커패시턴스보다 더 크고, 상기 브리지 전압은 상기 압력이 진공일 때 최대 진폭에 있고, 상기 브리지 전압이 최소 진폭에 있는 폴드-오버-압력(fold-over-pressure)은 풀-스케일 압력 초과인 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  2. 제1항에 있어서,
    상기 변압기를 구동시키는 기준 신호를 출력하는 회로;
    상기 변압기 전에 신호 게인을 조정하기 위한 게인 설정 블록
    을 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  3. 제2항에 있어서,
    상기 기준 신호 및 브리지 전압 신호를 수신하고 멀티플렉싱(multiplexing)하며, 멀티플렉싱된 신호들을 아날로그-디지털 변환기에 출력하는 아날로그 멀티플렉서
    를 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  4. 제3항에 있어서,
    상기 브리지 전압을 수신하고 버퍼링하는 버퍼
    를 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  5. 제2항 내지 제4항 중 어느 한 항에 있어서,
    상기 기준 신호를 증폭시키는 전력 OPAMP 드라이버
    를 더 포함하고, 상기 증폭된 기준 신호는 상기 변압기의 상기 1차 권선에 공급되는 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    브리지 전압 신호를 수신하고 증폭하는, 상기 변압기의 상기 2차 권선에 연결된 증폭기
    를 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 센서 커패시터는 다이어프램 커패시터인 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  8. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 기준 커패시터의 커패시턴스는 상기 풀-스케일 압력에서 상기 센서 커패시터의 커패시턴스보다 10퍼센트(10%) 더 큰 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  9. 압력 게이지를 위한 브리지 전압 반전 회로로서,
    1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기;
    상기 변압기의 상기 2차 권선의 제1 측에 연결된 제1 센서 커패시터;
    상기 변압기의 상기 2차 권선의 제2 측에 연결된 제2 센서 커패시터
    를 포함하고, 상기 제1 센서 커패시터 및 상기 제2 센서 커패시터는 압력을 감지하고 이 압력에 응답하고, 상기 제2 센서 커패시터의 커패시턴스는 상기 압력이 진공일 때 최소이고, 상기 제1 센서 커패시터 및 상기 제2 센서 커패시터는 진공에서의 상기 제2 센서 커패시터의 커패시턴스가 진공에서의 상기 제1 센서 커패시터의 커패시턴스 미만이도록 선택되고, 상기 브리지 전압은 상기 압력이 진공일 때 최대 진폭에 있고, 상기 브리지 전압이 최소 진폭에 있는 폴드-오버-압력은 풀-스케일 압력 초과인 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  10. 제9항에 있어서,
    상기 변압기를 구동시키는 기준 신호를 출력하는 회로;
    상기 변압기 전에 신호 게인을 조정하기 위한 게인 설정 블록
    을 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  11. 제9항 또는 제10항에 있어서,
    상기 브리지 전압을 수신하고 버퍼링하는 버퍼
    를 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  12. 제10항에 있어서,
    상기 기준 신호를 증폭시키는 전력 OPAMP 드라이버
    를 더 포함하고, 상기 증폭된 기준 신호는 상기 변압기의 상기 1차 권선에 공급되는 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  13. 제9항 또는 제10항에 있어서,
    브리지 전압 신호를 수신하고 증폭하는, 상기 변압기의 상기 2차 권선에 연결된 증폭기
    를 더 포함하는, 압력 게이지를 위한 브리지 전압 반전 회로.
  14. 제9항 또는 제10항에 있어서,
    상기 제1 센서 커패시터 및 상기 제2 센서 커패시터는 다이어프램 커패시터인 것인, 압력 게이지를 위한 브리지 전압 반전 회로.
  15. 압력 게이지 센서로서,
    1차 권선 및 브리지 전압을 출력하는 2차 권선을 포함하는 변압기;
    압력이 인가되는 일 단부 및 상기 변압기의 상기 2차 권선의 제1 측에 연결된 다른 단부를 갖는 제1 센서 커패시터;
    상기 압력이 인가되는 일 단부 및 상기 변압기의 상기 2차 권선의 제2 측에 연결된 다른 단부를 갖는 제2 센서 커패시터
    를 포함하고, 상기 제1 센서 커패시터 및 상기 제2 센서 커패시터는 압력을 감지하고 이 압력에 응답하고, 상기 제2 센서 커패시터의 커패시턴스는 상기 압력이 진공일 때 최소이고, 상기 제1 센서 커패시터 및 상기 제2 센서 커패시터는 진공에서의 상기 제2 센서 커패시터의 커패시턴스가 진공에서의 상기 제1 센서 커패시터의 커패시턴스 미만이도록 선택되고, 상기 브리지 전압은 상기 압력이 진공일 때 최대 진폭에 있고, 상기 브리지 전압이 최소 진폭에 있는 폴드-오버-압력은 풀-스케일 압력 초과인 것인, 압력 게이지 센서.
  16. 제15항에 있어서,
    상기 제1 센서 커패시터 및 상기 제2 센서 커패시터는 다이어프램 커패시터인 것인, 압력 게이지 센서.
  17. 제15항 또는 제16항에 있어서,
    기준 신호를 증폭시키는 전력 OPAMP 드라이버
    를 더 포함하고, 상기 증폭된 기준 신호는 상기 변압기의 상기 1차 권선에 공급되는 것인, 압력 게이지 센서.
  18. 제15항 또는 제16항에 있어서,
    브리지 전압 신호를 수신하고 증폭하는, 상기 변압기의 상기 2차 권선에 연결된 증폭기
    를 더 포함하는, 압력 게이지 센서.
KR1020217041030A 2019-05-15 2020-04-23 진공 게이지를 위한 브리지 전압 반전 회로 및 전압 반전 회로를 갖는 압력 게이지 센서 KR102622726B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962848326P 2019-05-15 2019-05-15
US62/848,326 2019-05-15
PCT/US2020/029487 WO2020231613A1 (en) 2019-05-15 2020-04-23 Bridge voltage inversion circuit for vacuum gauge and pressure gauge sensor having the voltage inversion circuit

Publications (2)

Publication Number Publication Date
KR20210157405A KR20210157405A (ko) 2021-12-28
KR102622726B1 true KR102622726B1 (ko) 2024-01-08

Family

ID=73288814

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217041030A KR102622726B1 (ko) 2019-05-15 2020-04-23 진공 게이지를 위한 브리지 전압 반전 회로 및 전압 반전 회로를 갖는 압력 게이지 센서

Country Status (7)

Country Link
US (1) US11906380B2 (ko)
EP (1) EP3969865A4 (ko)
JP (1) JP7244674B2 (ko)
KR (1) KR102622726B1 (ko)
CN (1) CN113795739B (ko)
TW (1) TWI747279B (ko)
WO (1) WO2020231613A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113899494B (zh) * 2021-12-09 2022-03-18 北京晨晶电子有限公司 电容式薄膜真空计检测电路、真空计及真空度检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505145A (ja) * 2013-01-29 2016-02-18 フェラン テクノロジー インコーポレイテッドFerran Technology,Inc. キャパシタンスダイヤフラムゲージの自動汚染検出

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2558190A (en) * 1949-08-25 1951-06-26 Sanborn Company Electromanometer
US3271669A (en) * 1962-12-04 1966-09-06 Rosemount Eng Co Ltd Alternating current diode loop capacitance measurement circuits
GB1090815A (en) 1965-03-08 1967-11-15 Bradley Ltd G & E Improvements in circuits providing known output voltages or currents
US4322977A (en) * 1980-05-27 1982-04-06 The Bendix Corporation Pressure measuring system
US5049878A (en) * 1981-05-13 1991-09-17 Drexelbrook Engineering Company Two-wire compensated level measuring instrument
US4422125A (en) 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
US4823603A (en) 1988-05-03 1989-04-25 Vacuum General, Inc. Capacitance manometer having stress relief for fixed electrode
US5297424A (en) 1990-03-07 1994-03-29 Monroe Auto Equipment Company Telemetry system for tire pressure and temperature sensing
US5396803A (en) * 1993-07-07 1995-03-14 Tylan General, Inc. Dual balanced capacitance manometers for suppressing vibration effects
JPH1047993A (ja) 1996-08-02 1998-02-20 Fuji Koki:Kk 可変容量型センサシステム
US5942692A (en) * 1997-04-10 1999-08-24 Mks Instruments, Inc. Capacitive pressure sensing method and apparatus avoiding interelectrode capacitance by driving with in-phase excitation signals
US6734659B1 (en) * 2002-06-13 2004-05-11 Mykrolis Corporation Electronic interface for use with dual electrode capacitance diaphragm gauges
WO2008021178A2 (en) * 2006-08-09 2008-02-21 Mks Instruments, Inc. Constant power dissipation in capacitance pressure transducers
US7706995B2 (en) * 2007-04-16 2010-04-27 Mks Instr Inc Capacitance manometers and methods relating to auto-drift correction
CH707387B1 (de) * 2012-12-24 2017-01-13 Inficon Gmbh Messzellenanordnung und Verfahren zur Vakuumdruckmessung.
US8997575B2 (en) * 2013-02-13 2015-04-07 Reno Technologies, Inc. Method and apparatus for damping diaphragm vibration in capacitance diaphragm gauges
US9952063B2 (en) 2013-10-11 2018-04-24 Mecos Ag Contactless sensor for determining rotor displacements
US9897504B2 (en) 2015-04-20 2018-02-20 Infineon Technologies Ag System and method for a MEMS sensor
US9787195B1 (en) 2015-09-01 2017-10-10 Universal Lighting Technologies, Inc. Primary current sensing method for isolated LED driver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505145A (ja) * 2013-01-29 2016-02-18 フェラン テクノロジー インコーポレイテッドFerran Technology,Inc. キャパシタンスダイヤフラムゲージの自動汚染検出

Also Published As

Publication number Publication date
US20220196502A1 (en) 2022-06-23
US11906380B2 (en) 2024-02-20
WO2020231613A8 (en) 2021-10-28
TWI747279B (zh) 2021-11-21
TW202103427A (zh) 2021-01-16
WO2020231613A1 (en) 2020-11-19
JP2022532651A (ja) 2022-07-15
JP7244674B2 (ja) 2023-03-22
EP3969865A1 (en) 2022-03-23
CN113795739B (zh) 2024-01-26
CN113795739A (zh) 2021-12-14
EP3969865A4 (en) 2023-01-25
KR20210157405A (ko) 2021-12-28

Similar Documents

Publication Publication Date Title
US10070223B2 (en) Signal processing for MEMS capacitive transducers
US6724248B2 (en) DC offset self-calibration system for a digital switching amplifier
KR101477853B1 (ko) 차동 증폭 장치
US8487686B2 (en) Active guarding for reduction of resistive and capacitive signal loading with adjustable control of compensation level
US8525529B2 (en) Impedance detection circuit and adjustment method of impedance detection circuit
US9667233B2 (en) Compensation circuit for offset voltage in a measurement amplifier and/or for DC-signal component in a measurement signal
US7663516B1 (en) Scheme for non-linearity correction of residue amplifiers in a pipelined analog-to-digital converter (ADC)
US8854126B2 (en) Semiconductor device and offset voltage correcting method
KR102622726B1 (ko) 진공 게이지를 위한 브리지 전압 반전 회로 및 전압 반전 회로를 갖는 압력 게이지 센서
US9859865B2 (en) Impedance matching element for voltage and/or current sensing devices
JP5071086B2 (ja) パッシブプローブ装置
US8154347B2 (en) Audio processing circuit and preamplifier circuit
US11497411B2 (en) Circuit applied to bio-information acquisition system
JP2009260816A (ja) 振幅制御回路、ポーラ変調送信回路、及び、ポーラ変調方法
KR100904225B1 (ko) 수위 측정 장치
US9871495B2 (en) Thermal compensation for amplifiers
KR101109751B1 (ko) 전자 저울 및 컴퓨터 단말기 일체형 장치
EP4354728A1 (en) Preamplifier for capacitator microphone operating in the infrasonic frequency range
US20220255517A1 (en) Amplifying device having high input impedance
US20240027496A1 (en) Amplifier circuit and measurement apparatus
US7573414B2 (en) Maintaining a reference voltage constant against load variations
US8390488B2 (en) Non-linearity correction that is independent of input common mode, temperature variation, and process variation
US8248055B2 (en) Voltage reference with improved linearity addressing variable impedance characteristics at output node
RU109622U1 (ru) Антенно-согласующее устройство
CN114553211A (zh) 输入电路以及测定装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant