KR102603775B1 - Geo-polymer Mortar for Concrete Surface Repair And Concrete Section Recovery And Method for Concrete Surface Repair And Concrete Section Recovery Using the Same - Google Patents
Geo-polymer Mortar for Concrete Surface Repair And Concrete Section Recovery And Method for Concrete Surface Repair And Concrete Section Recovery Using the Same Download PDFInfo
- Publication number
- KR102603775B1 KR102603775B1 KR1020220169720A KR20220169720A KR102603775B1 KR 102603775 B1 KR102603775 B1 KR 102603775B1 KR 1020220169720 A KR1020220169720 A KR 1020220169720A KR 20220169720 A KR20220169720 A KR 20220169720A KR 102603775 B1 KR102603775 B1 KR 102603775B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- powder
- hydrotalcite
- surface repair
- Prior art date
Links
- 239000004570 mortar (masonry) Substances 0.000 title claims abstract description 42
- 230000008439 repair process Effects 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229920000642 polymer Polymers 0.000 title description 2
- 238000011084 recovery Methods 0.000 title 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 58
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000000843 powder Substances 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 34
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims abstract description 33
- 229920000876 geopolymer Polymers 0.000 claims abstract description 33
- 229910001701 hydrotalcite Inorganic materials 0.000 claims abstract description 33
- 229960001545 hydrotalcite Drugs 0.000 claims abstract description 33
- 239000011230 binding agent Substances 0.000 claims abstract description 28
- 239000004568 cement Substances 0.000 claims abstract description 22
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 20
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 claims abstract description 16
- 150000003839 salts Chemical class 0.000 claims abstract description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims abstract description 14
- 239000012190 activator Substances 0.000 claims abstract description 14
- 239000000945 filler Substances 0.000 claims abstract description 12
- 239000002893 slag Substances 0.000 claims abstract description 12
- 239000010881 fly ash Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims abstract description 5
- 235000019353 potassium silicate Nutrition 0.000 claims abstract description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000835 fiber Substances 0.000 claims description 17
- 230000003014 reinforcing effect Effects 0.000 claims description 15
- 241001474374 Blennius Species 0.000 claims description 14
- -1 aluminum ions Chemical class 0.000 claims description 12
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 9
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 8
- 229910006501 ZrSiO Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 7
- 230000003449 preventive effect Effects 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 11
- 230000035515 penetration Effects 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 abstract description 5
- 230000001737 promoting effect Effects 0.000 abstract description 3
- 238000010348 incorporation Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000005260 corrosion Methods 0.000 description 21
- 230000007797 corrosion Effects 0.000 description 19
- 238000002156 mixing Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 239000003513 alkali Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 239000002585 base Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000012783 reinforcing fiber Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000003313 weakening effect Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 229910003023 Mg-Al Inorganic materials 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 206010053219 non-alcoholic steatohepatitis Diseases 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/046—Zircon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/26—Carbonates
- C04B14/28—Carbonates of calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/18—Waste materials; Refuse organic
- C04B18/24—Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1055—Coating or impregnating with inorganic materials
- C04B20/107—Acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
- C04B22/066—Magnesia; Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/10—Acids or salts thereof containing carbon in the anion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
- C04B7/153—Mixtures thereof with other inorganic cementitious materials or other activators
- C04B7/17—Mixtures thereof with other inorganic cementitious materials or other activators with calcium oxide containing activators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/24—Cements from oil shales, residues or waste other than slag
- C04B7/243—Mixtures thereof with activators or composition-correcting additives, e.g. mixtures of fly ash and alkali activators
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/32—Aluminous cements
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 별도의 하이드로탈사이트를 첨가하지 않고 산화마그네슘과 산화알루미늄의 혼입을 통해 시멘트 매트릭스 내에서 하이드로탈사이트의 생성이 촉진되도록 함으로써 경제성을 향상시키고, 다량의 산화마그네슘과 산화알루미늄을 혼입하더라도 압축강도 및 염소이온침투 저항성이 감소하지 않는 하이드로탈사이트 생성 촉진을 이용한 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물 및, 이를 이용한 콘크리트 표면보수 및 단면복구 방법에 관한 것으로, 본 발명에 따른 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물은, 칼슘알루미네이트 시멘트(Calcium aluminate cement), 플라이애시, 및 슬래그 미분말을 포함하는 결합재; 및, 상기 결합재 100 중량부에 대해 산화마그네슘(MgO) 분말 10~20 중량부, 산화알루미늄(Al2O3) 분말 5~10중량부, 수산화나트륨과 물유리 및 물로 이루어진 3성분계 알칼리 활성화제 40~60 중량부, 응결지연제 0.3~1.0 중량부, 및 충전재 10~20중량부를 포함하여, 상기 산화마그네슘(MgO) 분말과 산화알루미늄(Al2O3) 분말의 반응에 의해 하이드로탈사이트가 생성되는 것을 특징으로 한다. The present invention improves economic efficiency by promoting the creation of hydrotalcite in the cement matrix through the incorporation of magnesium oxide and aluminum oxide without adding separate hydrotalcite, and compresses even if a large amount of magnesium oxide and aluminum oxide are mixed. It relates to a geopolymer mortar composition for salt-resistant concrete surface repair and cross-section restoration using the promotion of hydrotalcite formation without reduction in strength and chlorine ion penetration resistance, and a method for concrete surface repair and cross-section restoration using the same, salt-resistant salt according to the present invention. The geopolymer mortar composition for surface repair and cross-sectional restoration of decomposed concrete includes a binder including calcium aluminate cement, fly ash, and slag fine powder; And, based on 100 parts by weight of the binder, 10 to 20 parts by weight of magnesium oxide (MgO) powder, 5 to 10 parts by weight of aluminum oxide (Al 2 O 3 ) powder, 40 to 40 parts by weight of a three-component alkaline activator consisting of sodium hydroxide, water glass and water. Hydrotalcite is produced by the reaction of the magnesium oxide (MgO) powder and the aluminum oxide (Al 2 O 3 ) powder, including 60 parts by weight, 0.3 to 1.0 parts by weight of a setting retardant, and 10 to 20 parts by weight of a filler. It is characterized by
Description
본 발명은 콘크리트 표면보수 및 단면보강에 사용하는 지오폴리머 모르타르 조성물에 관한 것으로, 더욱 상세하게는 산업부산물인 플라이애시(fly ash)와 슬래그(slag)를 결합재로 사용하고, 산화알루미늄(Al2O3), 산화마그네슘(MgO)을 혼입하여 콘크리트 매트릭스 내부에서 Mg-Al 결합구조를 가지는 하이드로탈사이트(Hydrotalcite)의 생성을 촉진함으로써 높은 내염해성을 갖는 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물 및, 이를 이용한 콘크리트 표면보수 및 단면복구 방법에 관한 것이다. The present invention relates to a geopolymer mortar composition used for concrete surface repair and cross-sectional reinforcement. More specifically, it uses fly ash and slag, which are industrial by-products, as a binder, and aluminum oxide (Al 2 O). 3 ), Geopolymer mortar for surface repair and cross-section restoration of salt-resistant concrete with high salt resistance by promoting the creation of hydrotalcite with a Mg-Al bonding structure inside the concrete matrix by mixing magnesium oxide (MgO). It relates to a composition and a method for concrete surface repair and cross-section restoration using the same.
일반적으로 콘크리트 구조물은 콘크리트가 높은 내구성을 구비하고 있어 반영구적으로 사용할 수 있는 것으로 인정되어 왔으나, 최근에는 많은 연구결과와 기존 구조물의 조사 결과로부터 콘크리트 구조물도 경년열화현상은 피할 수 없으며, 특히 경과년 수 십년을 넘기지 못하고 본래의 기능을 상실하게 되는 사례가 종종 보여지고 있다.In general, it has been recognized that concrete structures can be used semi-permanently due to their high durability, but recently, as a result of many researches and surveys of existing structures, concrete structures also cannot avoid the aging phenomenon, especially as the age deteriorates. There are often cases where it loses its original function before it lasts more than ten years.
상기와 같이 콘크리트의 수명을 단축하는 열화현상은 다양하게 나타나고 있으나 특히 염분을 제거하지 않은 바닷모래을 사용하여 콘크리트를 제조하였거나 겨울철에 사용하는 융빙제 또는 제설재 등 외부에서 침입하는 염화물에 의한 철근부식 영향으로 콘크리트 구조물의 피해사례가 심각한 것으로 조사되고 있다.As mentioned above, there are various deterioration phenomena that shorten the lifespan of concrete, but in particular, the effect of corrosion of reinforcing bars due to chloride intruding from outside, such as when concrete was manufactured using sea sand from which salt has not been removed, or when used in winter, such as melting agents or snow removal materials. As a result, damage to concrete structures is being investigated as being serious.
종래에는 염소이온에 의해 열화현상이 발생된 구조물을 보수하고자 할 경우, 아크릴계 또는 에폭시계 표면피복재에 의한 방식공법과, 아질산계 부식억제제에 의한 철근부식공법 및, 부식억제제와 실리케이트계 함침제에 의한 철근부식억제공법이 주로 사용되었다. 그러나 상기 아크릴계 또는 에폭시계 표면피복재에 의한 방식공법은 콘크리트 또는 모르타르표면에 피복재를 도포하여 도막을 형성함으로써 외부로부터 침투하는 염소이온과 이산화탄소 등을 근원적으로 차단하는 효과는 있으나 모체와의 물리화학적 이질성으로 인하여 시간경과에 따른 박리, 탈락 등의 성능저하를 피할 수 없고 그 이후에 염소이온 등의 침입시 부식속도가 빨라지는 문제점이 있었다.Conventionally, when trying to repair a structure that has suffered deterioration due to chlorine ions, an anti-corrosion method using acrylic or epoxy-based surface covering materials, a rebar corrosion method using a nitrite-based corrosion inhibitor, and a corrosion inhibitor and silicate-based impregnation agent were used. The rebar corrosion inhibition method was mainly used. However, the anti-corrosion method using the acrylic or epoxy-based surface coating material is effective in fundamentally blocking chlorine ions and carbon dioxide penetrating from the outside by forming a coating film by applying the coating material to the surface of concrete or mortar, but due to physical and chemical heterogeneity with the matrix. As a result, performance deterioration such as peeling and falling off over time cannot be avoided, and there is a problem in that the corrosion rate increases when chlorine ions or the like invade afterwards.
또한, 상기 아질산계 부식억제제에 의한 철근부식공법은 철근부식억제에 관한 효과는 명확하나 철근부식억제 효과를 얻기 위한 첨가량이 과다하고 급결 유발 등 모르타르 초기특성에 영향을 미칠우려가 크며, 아질산계 부식억제제는 모르타르에 첨가 또는 철근에 직접 도포하나 염소이온을 직접적으로 고정시키지 못하고 철근의 부동태피막 형성에만 관여하므로, 부식억제에 한계가 있었다.In addition, the reinforcing bar corrosion method using the nitrous acid-based corrosion inhibitor has a clear effect on reinforcing bar corrosion inhibition, but the amount added to obtain the reinforcing bar corrosion-inhibiting effect is excessive, and there is a high risk of affecting the initial characteristics of the mortar, such as causing rapid setting, and nitrous acid-based corrosion. Inhibitors are added to mortar or applied directly to reinforcing bars, but they do not directly fix chlorine ions and are only involved in forming a passive film on the reinforcing bars, so there is a limit to corrosion inhibition.
상기 부식억제제와 실리케이트계 함침제에 의한 철근부식억제공법은 기존 부식억제제 철근부식억제 기술에 철근주변의 알칼리도를 높여서 부식속도를 그 만큼 늦추어 줌으로써 더욱 효과적인 철근부식억제 효과를 얻을 수 있으나, 실리케이트계 무기질 침투제를 콘크리트 표면에 도포할 경우 콘크리트내의 모세관을 따라 침투하는 것이 현실적으로 어렵고, 표면만 침투제를 도포하여 전체적인 콘크리트내의 알카리도의 상승여부가 실질적으로 매우 불명확하며, 무기질 침투제의 경우 모체표면의 수분분포에 따라 시공성이 좌우되므로 시공상 문제점을 구비하고 있었다.The reinforcing bar corrosion inhibition method using the corrosion inhibitor and silicate-based impregnation agent increases the alkalinity around the reinforcing bar in addition to the existing corrosion inhibitor reinforcing bar corrosion inhibition technology, thereby slowing down the corrosion rate to that extent, thereby obtaining a more effective reinforcing bar corrosion inhibition effect. However, the use of silicate-based minerals When applying a penetrant to the surface of concrete, it is realistically difficult to penetrate along the capillaries in the concrete, and since the penetrant is applied only to the surface, it is very unclear whether the alkalinity in the overall concrete increases. In the case of inorganic penetrants, it depends on the moisture distribution on the surface of the matrix. Because constructability was affected, there were problems with construction.
이러한 문제를 해결하기 위한 것으로, 대한민국 등록특허 제10-0515948호에는 콘크리트 구조물에 대한 이물질을 제거하는 바탕 처리 후, 바탕 처리된 콘크리트 구조물에 시멘트 20∼40wt%, 알루미나 시멘트 1∼5wt%, 고분말 충전재 5∼20wt%, 분말폴리머 1∼5wt%, 감수제 005∼02 wt%, 보강섬유 001∼01 wt%, 아질산계 하이드로탈사이트 또는 아질산계 하이드로칼루마이트 1∼2wt% 및 규사로 이루어진 단면복구용 모르타르를 혼합수와 혼합하여 연속적으로 뿜칠시공 또는 손미장하여 단면 복구를 함으로써 염해물질을 차단 및 지연할 수 있는 다단계의 장벽을 형성하는 방법이 개시되어 있다.To solve this problem, Republic of Korea Patent No. 10-0515948 states that after base treatment to remove foreign substances in the concrete structure, 20 to 40 wt% of cement, 1 to 5 wt% of alumina cement, and high powder are added to the base treated concrete structure. For cross-sectional restoration consisting of 5 to 20 wt% of filler, 1 to 5 wt% of powdered polymer, 005 to 02 wt% of water reducing agent, 001 to 01 wt% of reinforcing fiber, 1 to 2 wt% of nitrite-based hydrotalcite or nitrite-based hydrocalumite, and silica sand. A method of forming a multi-stage barrier capable of blocking and delaying salt pollutants is disclosed by mixing mortar with mixing water and restoring the cross section through continuous spraying or hand plastering.
그러나, 상기한 등록특허의 단면복구용 모르타르 조성물을 이용한 보수공법을 비롯하여 하이드로탈사이트를 포함하는 종래의 표면보수 및 단면복구용 시멘트 조성물은 미리 제조된 아질산계 하이드로탈사이트를 시멘트에 혼합하여 단면복구용 모르타르 조성물을 제조하기 때문에 경제성이 현저하게 저하되고, 아질산계 하이드로탈사이트의 혼입량이 증가할수록 압축강도 및 염소이온침투 저항성이 감소하는 문제가 있다. However, the conventional cement composition for surface repair and cross-section restoration containing hydrotalcite, including the repair method using the mortar composition for cross-section restoration of the registered patent described above, involves restoring the cross-section by mixing pre-prepared nitrite-based hydrotalcite into cement. Because the mortar composition is manufactured, the economic efficiency is significantly reduced, and as the amount of nitrite-based hydrotalcite increases, the compressive strength and chlorine ion penetration resistance decrease.
본 발명은 상기한 문제를 해결하기 위한 것으로, 본 발명의 목적은 별도의 하이드로탈사이트를 첨가하지 않고 산화마그네슘과 산화알루미늄의 혼입을 통해 시멘트 매트릭스 내에서 하이드로탈사이트의 생성이 촉진되도록 함으로써 경제성을 향상시키고, 다량의 산화마그네슘과 산화알루미늄을 혼입하더라도 압축강도 및 염소이온침투 저항성이 감소하지 않는 하이드로탈사이트 생성 촉진을 이용한 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물 및, 이를 이용한 콘크리트 표면보수 및 단면복구 방법을 제공하는 것이다. The present invention is intended to solve the above-described problem, and the purpose of the present invention is to improve economic efficiency by promoting the production of hydrotalcite in the cement matrix through the incorporation of magnesium oxide and aluminum oxide without adding separate hydrotalcite. A geopolymer mortar composition for salt-resistant concrete surface repair and cross-section restoration using the promotion of hydrotalcite production, which improves the compressive strength and chlorine ion penetration resistance even when large amounts of magnesium oxide and aluminum oxide are mixed, and the concrete surface using the same It provides repair and cross-sectional restoration methods.
상기한 목적을 달성하기 위한 본 발명에 따른 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물은, 칼슘알루미네이트 시멘트(Calcium aluminate cement), 플라이애시, 및 슬래그 미분말을 포함하는 결합재; 및, 상기 결합재 100 중량부에 대해 산화마그네슘(MgO) 분말 10~20 중량부, 산화알루미늄(Al2O3) 분말 5~10중량부, 수산화나트륨과 물유리 및 물로 이루어진 3성분계 알칼리 활성화제 40~60 중량부, 응결지연제 0.3~1.0 중량부, 및 충전재 10~20중량부를 포함하여, 상기 산화마그네슘(MgO) 분말과 산화알루미늄(Al2O3) 분말의 반응에 의해 하이드로탈사이트가 생성되는 것을 특징으로 한다. The geopolymer mortar composition for salt-resistant concrete surface repair and cross-section restoration according to the present invention for achieving the above object includes a binder containing calcium aluminate cement, fly ash, and slag fine powder; And, based on 100 parts by weight of the binder, 10 to 20 parts by weight of magnesium oxide (MgO) powder, 5 to 10 parts by weight of aluminum oxide (Al 2 O 3 ) powder, 40 to 40 parts by weight of a three-component alkaline activator consisting of sodium hydroxide, water glass and water. Hydrotalcite is produced by the reaction of the magnesium oxide (MgO) powder and the aluminum oxide (Al 2 O 3 ) powder, including 60 parts by weight, 0.3 to 1.0 parts by weight of a setting retardant, and 10 to 20 parts by weight of a filler. It is characterized by
상기 산화마그네슘(MgO) 분말은 결합재에 혼합되기 전에 700~1000℃의 온도에서 소성하여 전처리된 것이 바람직하다.The magnesium oxide (MgO) powder is preferably pretreated by firing at a temperature of 700 to 1000°C before being mixed with the binder.
또한 상기 충전재는 규산지르코늄(ZrSiO4) 분말과 굴패각 분말을 중량비로 70:30 ~ 60:40으로 혼합한 것이 바람직하다. In addition, the filler is preferably a mixture of zirconium silicate (ZrSiO 4 ) powder and oyster shell powder in a weight ratio of 70:30 to 60:40.
본 발명의 지오폴리머 모르타르 조성물은, 알루미늄 이온을 포함하는 금속염 수용액에 섬유를 침지한 해조류 섬유를 상기 결합재 100 중량부에 대해 10~15 중량부를 더 첨가하고, 탄산나트륨을 결합재 100 중량부에 대해 1~2 중량부를 더 첨가하여, 상기 해조류 섬유의 표면에 하이드로탈사이트를 생성하여 피복할 수 있다. In the geopolymer mortar composition of the present invention, 10 to 15 parts by weight of seaweed fibers obtained by immersing the fibers in an aqueous metal salt solution containing aluminum ions are added in an amount of 10 to 15 parts by weight based on 100 parts by weight of the binder, and 1 to 15 parts by weight of sodium carbonate is added to 100 parts by weight of the binder. By adding an additional 2 parts by weight, hydrotalcite can be created and coated on the surface of the seaweed fiber.
상술한 것과 같은 본 발명에 따른 지오폴리머 모르타르 조성물을 이용하여 콘크리트 구조물의 표면보수 및 단면복구를 하는 방법은,The method of surface repair and cross-section restoration of a concrete structure using the geopolymer mortar composition according to the present invention as described above is,
치핑 및 고압수 세척을 통해 바탕면을 정리하는 단계;Cleaning the substrate through chipping and high-pressure water washing;
바탕면이 정리된 상태에서 철근 녹제거 및 철근방청제를 도포하는 단계;Steps of removing rebar rust and applying a rebar rust preventive agent while the background surface is prepared;
철근방청제가 도포된 면에 프라이머를 도포하는 단계; 및Applying a primer to the surface on which the reinforcing bar rust preventive agent is applied; and
프라이머가 도포된 면에 상기한 지오폴리머 모르타르 조성물을 도포하는 단계; Applying the above-described geopolymer mortar composition to the surface on which the primer is applied;
를 포함할 수 있다. may include.
본 발명의 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물은, 결합재 및 알칼리 활성화제와 함께 혼합되는 산화마그네슘(MgO)과 산화알루미늄(Al2O3)의 반응에 의해 지오폴리머 모르타르 내에서 Mg-Al 결합구조를 가지는 하이드로탈사이트(Hydrotalcite) 생성이 촉진될 수 있으며, 모르타르 내에서 생성된 하이드로탈사이트의 이온교환 효과로 염화물 침투를 효과적으로 억제할 수 있는 효과를 제공한다.The geopolymer mortar composition for concrete surface repair and cross-section restoration of the present invention produces Mg- in the geopolymer mortar by the reaction of magnesium oxide (MgO) and aluminum oxide (Al 2 O 3 ) mixed with a binder and an alkali activator. The production of hydrotalcite, which has an Al bonded structure, can be promoted, and the ion exchange effect of hydrotalcite produced in the mortar provides the effect of effectively suppressing chloride penetration.
또한 사전에 하이드로탈사이트를 제조하는 과정이 필요 없으므로 이에 필요한 시간 및 가격 측면에서 경제적인 이점도 있다. In addition, since there is no need to prepare hydrotalcite in advance, there is an economic advantage in terms of time and price.
그리고 산화마그네슘(MgO) 분말을 결합재 전체 중량의 10~20%로 혼합함으로써 칼슘알루미네이트 시멘트(CAC)의 안정성 하이드레이트로의 유해한 상전이를 억제하고, 준안정성 하이드레이트와 반응하여 하이드로탈사이트를 생성하여 내부 수축에 의한 다공성 미세구조 및 강도의 약화를 방지할 수 있는 이점이 있다. Additionally, by mixing magnesium oxide (MgO) powder at 10-20% of the total weight of the binder, harmful phase transition of calcium aluminate cement (CAC) to stable hydrate is suppressed, and hydrotalcite is generated by reacting with metastable hydrate to form internal There is an advantage in preventing weakening of porous microstructure and strength due to shrinkage.
규산지르코늄(ZrSiO4) 분말과 굴패각 분말로 이루어진 충전재를 소정의 배합비로 함께 혼합하여, 상온 환경에서 지오폴리머 모르타르가 높은 압축강도를 가질 수 있으며, 콘크리트의 균열 보수나 단면 복구의 주입 공법과 충전 공법에 적용 시 가사시간을 늘리고, 주입성 및 충전성을 향상시킬 수 있는 효과도 얻을 수 있다.By mixing fillers made of zirconium silicate (ZrSiO 4 ) powder and oyster shell powder together at a predetermined mixing ratio, geopolymer mortar can have high compressive strength in a room temperature environment, and can be used as an injection and filling method for crack repair or cross-section restoration of concrete. When applied to , the effect of increasing pot life and improving injectability and filling properties can be obtained.
도 1은 본 발명에 따른 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물의 실시예 및 비교예에 대한 XRD 결과를 나타낸 그래프이다.
도 2는 본 발명에 따른 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물의 실시예 및 비교예에 대한 TD/DTG 결과를 나타낸 그래프이다.Figure 1 is a graph showing XRD results for examples and comparative examples of geopolymer mortar compositions for salt-resistant concrete surface repair and cross-section restoration according to the present invention.
Figure 2 is a graph showing TD/DTG results for examples and comparative examples of geopolymer mortar compositions for salt-resistant concrete surface repair and cross-section restoration according to the present invention.
본 발명에 따른 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물은, 칼슘알루미네이트 시멘트(Calcium aluminate cement), 플라이애시, 및 슬래그 미분말을 포함하는 결합재에 하이드로탈사이트를 생성하는 산화마그네슘(MgO) 분말과 산화알루미늄(Al2O3) 분말을 혼합하고, 여기에 알칼리 활성화제와 응결지연제, 규산지르코늄(ZrSiO4) 분말과 굴패각 분말을 포함하는 충전재를 혼합한 조성으로 이루어져, 상기 산화마그네슘(MgO) 분말과 산화알루미늄(Al2O3) 분말의 반응에 의해 시멘트 모르라트 내에서 하이드로탈사이트의 생성이 촉진될 수 있도록 한 것이다. The geopolymer mortar composition for salt-resistant concrete surface repair and cross-section restoration according to the present invention contains magnesium oxide (MgO) that generates hydrotalcite in a binder containing calcium aluminate cement, fly ash, and slag fine powder. ) powder and aluminum oxide (Al 2 O 3 ) powder are mixed, and fillers including an alkali activator, a setting retardant, zirconium silicate (ZrSiO 4 ) powder, and oyster shell powder are mixed to form the magnesium oxide. This is to promote the production of hydrotalcite in cement morlat by the reaction of (MgO) powder and aluminum oxide (Al 2 O 3 ) powder.
바람직하기로, 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물은, 칼슘알루미네이트 시멘트(Calcium aluminate cement), 플라이애시, 및 슬래그 미분말을 포함하는 결합재 100 중량부에 대해, 산화마그네슘(MgO) 분말은 10~20 중량부, 산화알루미늄(Al2O3) 분말은 5~10중량부, 수산화나트륨과 물유리 및 물로 이루어진 3성분계 알칼리 활성화제는 40~60 중량부, 응결지연제는 0.3~1.0 중량부, 충전재는 10~20중량부를 혼합한 조성으로 이루어질 수 있다. Preferably, the geopolymer mortar composition for concrete surface repair and cross-section restoration includes magnesium oxide (MgO) powder relative to 100 parts by weight of the binder containing calcium aluminate cement, fly ash, and slag fine powder. 10 to 20 parts by weight, 5 to 10 parts by weight of aluminum oxide (Al 2 O 3 ) powder, 40 to 60 parts by weight of a three-component alkaline activator composed of sodium hydroxide, water glass and water, and 0.3 to 1.0 parts by weight of a setting retardant. , the filler may be composed of a mixture of 10 to 20 parts by weight.
플라이애시와 슬래그는 알칼리 활성화제와 반응하여 역학적/물리적 특성이 우수한 지오폴리머 모르타르 조성물을 생성한다. 지오폴리머는 아래와 같은 수화반응을 통해서 N-A-S-H 를 생성하는데, 이 N-A-S-H 는 C-S-H gel 보다 내구성 측면에서 우수하다.Fly ash and slag react with an alkali activator to produce a geopolymer mortar composition with excellent mechanical/physical properties. Geopolymer generates N-A-S-H through the following hydration reaction, and this N-A-S-H is superior to C-S-H gel in terms of durability.
SiO2, Al2O3 + alkali metal ion → 축합반응 → Alumino-silicate gel(N-A-S-H)SiO 2 , Al 2 O 3 + alkali metal ion → condensation reaction → Alumino-silicate gel (NASH)
플라이애시와 슬래그를 활용한 알칼리활성 지오폴리머는 초기 반응속도가 매우 빠르며, 이는 수축 및 균열의 원인이 됨과 동시에 강도 저하를 야기할 수 있기 때문에 플라이애시 및 슬래그와 함께 칼슘알루미네이트 시멘트(CAC)를 소정의 중량비로 혼합하여 결합재로서 사용한다. 칼슘알루미네이트 시멘트(CAC)와 플라이애시 및 슬래그 미분말의 배합비는 중량비로 30 : 30 : 40 또는 20 : 30 : 50 인 것이 바람직하다. 슬래그 미분말은 블레인 값 5000 이상인 것을 사용하는 것이 바람직하다. Alkaline-activated geopolymer using fly ash and slag has a very fast initial reaction rate, which can cause shrinkage and cracking as well as lower strength, so calcium aluminate cement (CAC) is used together with fly ash and slag. It is mixed in a predetermined weight ratio and used as a binder. The mixing ratio of calcium aluminate cement (CAC) and fly ash and slag fine powder is preferably 30:30:40 or 20:30:50 by weight. It is desirable to use slag fine powder with a Blaine value of 5000 or more.
칼슘알루미네이트 시멘트(CAC)는 보통포틀랜드 시멘트(OPC)에 비하여 압축 및 부착강도가 더 우수할 뿐만 아니라 염소이온 침투저항성도 더 우수한 이점이 있다. 하지만 칼슘알루미네이트 시멘트(CAC)가 높은 온도와 습도에 노출되면 준안정성(metastable) 육각 알루미네이트 하이드레이트가 안정성(stable) 입방(cubic) 칼슘 알루미네이트 하이드레이트로 유해하게 전환된다. 안정성 입방 하이드레이트는 준안전성 육각 하이드레이트에 비해 밀도가 높기 때문에 내부 수축이 일어나게 되며, 이러한 내부 수축은 다공성 미세구조 및 강도의 약화를 일으킬 수 있다. 이러한 유해한 전환으로 인하여 칼슘알루미네이트 시멘트(CAC)는 염화물 공격과 탄산화와 같은 다른 내구성 문제에 취약해질 수 있다. Calcium aluminate cement (CAC) has the advantage of not only superior compressive and adhesion strength compared to ordinary Portland cement (OPC), but also superior chlorine ion penetration resistance. However, when calcium aluminate cement (CAC) is exposed to high temperatures and humidity, there is a detrimental conversion of metastable hexagonal aluminate hydrate to stable cubic calcium aluminate hydrate. Stable cubic hydrate has a higher density than metastable hexagonal hydrate, so internal shrinkage occurs, and this internal shrinkage can cause porous microstructure and weakening of strength. These harmful conversions can make calcium aluminate cement (CAC) susceptible to chloride attack and other durability problems such as carbonation.
이러한 칼슘알루미네이트 시멘트(CAC)의 유해한 상전환은 산화마그네슘(MgO) 분말에 의해 억제될 수 있다. 산화마그네슘(MgO) 분말은 칼슘알루미네이트 시멘트(CAC)의 안정성 하이드레이트로의 상전이를 억제하고, 준안정성 하이드레이트와 반응하여 하이드로탈사이트를 생성한다. 칼슘알루미네이트 시멘트(CAC)의 유해한 상전이를 억제하고 하이드로탈사이트를 생성하기 위한 산화마그네슘(MgO) 분말의 배합비는 결합재 100 중량부에 대해 10~20 중량부로 혼합되는 것이 바람직한 것으로 확인되었다.This harmful phase transformation of calcium aluminate cement (CAC) can be suppressed by magnesium oxide (MgO) powder. Magnesium oxide (MgO) powder inhibits the phase transition of calcium aluminate cement (CAC) into stable hydrate and reacts with metastable hydrate to produce hydrotalcite. It was confirmed that the mixing ratio of magnesium oxide (MgO) powder to suppress harmful phase transition of calcium aluminate cement (CAC) and generate hydrotalcite is preferably 10 to 20 parts by weight per 100 parts by weight of binder.
산화마그네슘(MgO)과 산화알루미늄(Al2O3)의 혼입으로 시멘트 모르타르 내부에서 생성된 Mg-Al 결합 구조의 하이드로탈사이트는 이온교환 효과로 인해 모르타르 내부에서 염소이온 확산을 저감시키고, 이로써 콘크리트 구조물의 철근 부식을 방지하여 안전성을 높이는 효과를 제공한다. Hydrotalcite with a Mg-Al bond structure created inside the cement mortar by mixing magnesium oxide (MgO) and aluminum oxide (Al 2 O 3 ) reduces the diffusion of chlorine ions inside the mortar due to the ion exchange effect, thereby reducing the concrete It provides the effect of increasing safety by preventing corrosion of steel bars in structures.
산화마그네슘(MgO) 분말의 반응성을 더욱 높이기 위하여, 산화마그네슘(MgO) 분말은 상기 결합재에 혼합하기 전에 700~1000℃의 온도에서 소성하여 전처리하는 것이 바람직하다. 700~1000℃의 온도에서 소성한 산화마그네슘(MgO) 분말은 1000℃를 넘는 고온에 소성한 산화마그네슘(MgO) 분말보다 반응성이 더욱 커서 하이드로탈사이트 생성 반응을 더욱 활발하게 일으키며, 수축 저감의 효과가 있는 것으로 확인되었다. In order to further increase the reactivity of the magnesium oxide (MgO) powder, it is preferable to pre-treat the magnesium oxide (MgO) powder by firing it at a temperature of 700 to 1000°C before mixing it with the binder. Magnesium oxide (MgO) powder calcined at a temperature of 700~1000℃ is more reactive than magnesium oxide (MgO) powder calcined at a high temperature exceeding 1000℃, so it causes the hydrotalcite formation reaction more actively and has the effect of reducing shrinkage. It was confirmed that there is.
산화알루미늄(Al2O3) 분말은 순도 95% 이상의 분말로 된 것이 적합하다.Aluminum oxide (Al 2 O 3 ) powder with a purity of 95% or more is suitable.
알칼리 활성화제는 결합재에 혼합되어 지오폴리머 모르타르를 생성하게 되는데, 알칼리 활성화제는 수산화나트륨과 물유리 및 물로 이루어진 3성분계 알칼리 활성화제를 사용할 수 있으며, 결합재 100 중량부에 대해 40~60 중량부로 혼합될 수 있다. The alkaline activator is mixed with the binder to create geopolymer mortar. The alkaline activator can be a three-component alkaline activator consisting of sodium hydroxide, water glass, and water, and can be mixed in an amount of 40 to 60 parts by weight for 100 parts by weight of the binder. You can.
응결지연제는 일반적으로 사용되는 주석산, 구연산, 글루콘산나트륨 등을 사용할 수 있으며, 결합재 100 중량부에 대해 0.3~1.0 중량부로 사용될 수 있다. 산화마그네슘의 함량이 증가할수록 수화반응이 빨라지므로 응결지연제를 첨가하여 응결 속도를 조정한다. As a setting retardant, commonly used tartaric acid, citric acid, sodium gluconate, etc. can be used, and can be used in an amount of 0.3 to 1.0 parts by weight per 100 parts by weight of the binder. As the content of magnesium oxide increases, the hydration reaction becomes faster, so the setting speed is adjusted by adding a setting retardant.
충전재는 규산지르코늄(ZrSiO4) 분말과 굴패각 분말을 중량비로 70:30 ~ 60:40으로 혼합한 것을 사용할 수 있다. The filler may be a mixture of zirconium silicate (ZrSiO 4 ) powder and oyster shell powder in a weight ratio of 70:30 to 60:40.
규산지르코늄(ZrSiO4)은 열팽창계수가 적으며 소결체에서 탄성률, 굴절장력은 규산염 세라믹 중에서 가장 우수하다. Zirconium silicate (ZrSiO 4 ) has a low thermal expansion coefficient, and the elastic modulus and refractive tension in the sintered body are the best among silicate ceramics.
굴패각은 외투막에서 분비되는 결정체와 유기매질 물질을 주성분으로 이루어지며 전형적으로 매우 얇고 단층의 각피층(periostracum), 석회질로 구성된 각주층(prismatic layer) 그리고 층단 모양의 진주층(nacreous layer)으로 이루어지며, 결정상은 주로 방해석 (calcite) 상이며 유기질과 무기질의 비가 3∼5% : 95∼97%로서 대부분 무기질의 탄산칼슘인 것으로 알려져 있다. Oyster shell shell consists mainly of crystals and organic media substances secreted from the mantle, and is typically composed of a very thin, single-layer periostracum, a prismatic layer composed of calcareous material, and a tiered nacreous layer. It is known to be mainly in the form of calcite, with a ratio of organic and inorganic materials of 3 to 5%: 95 to 97%, and that it is mostly inorganic calcium carbonate.
이와 같이 규산지르코늄(ZrSiO4) 분말과 굴패각 분말로 이루어진 충전재는 결합재 및 알칼리 활성화제와 함께 혼합되면서 상온 환경에서 지오폴리머 모르타르가 높은 압축강도를 갖도록 하며, 콘크리트의 균열 보수나 단면 복구의 주입 공법과 충전 공법에 적용 시 가사시간을 늘리고, 주입성 및 충전성을 향상시키는 작용을 한다. In this way, the filler consisting of zirconium silicate (ZrSiO 4 ) powder and oyster shell powder is mixed with a binder and an alkali activator to ensure that the geopolymer mortar has high compressive strength in a room temperature environment, and is used as an injection method for crack repair or cross-section restoration of concrete. When applied to the filling method, it increases the pot life and improves injectability and fillability.
또한 지오폴리머 모르타르 조성물은 보강재로서 보강섬유를 사용할 수 있는데, 보강섬유로는 해조류 섬유를 사용할 수 있다. 해조류 섬유는 프락토오스와 셀룰로오스를 주성분으로 하여 이루어져 있고, 열에 의해 잘 용융되지 않으며, 그 두께는 1~10㎛, 길이는 수십~수천㎛ 정도이다. Additionally, geopolymer mortar compositions can use reinforcing fibers as reinforcing materials, and seaweed fibers can be used as reinforcing fibers. Seaweed fiber is composed of fructose and cellulose as main ingredients, does not melt easily with heat, and has a thickness of 1 to 10 ㎛ and a length of tens to thousands of ㎛.
이러한 해조류 섬유는 그대로 사용할 수도 있지만, 해조류 섬유가 프락토오스와 셀룰로오스를 주성분하고 있기 때문에 해조류 섬유를 알루미늄 이온을 포함하는 금속염 수용액에 섬유를 침지하여 해조류 섬유의 표면에 알루미늄 이온층을 피복함으로써 해조류 섬유 표면의 알루미늄 이온층이 모르타르 조성물 내의 산화마그네슘과 알칼리 활성화제와 반응하여 해조류 섬유의 표면에서도 하이드로탈사이트 생성을 촉진하여 하이드로탈사이트가 피복되거나 부착된 해조류 섬유 보강재를 얻을 수 있다. 이 때 해조류 섬유와 함께 탄산나트륨을 함께 지오폴리머 모르타르 조성물에 첨가하여 해조류 섬유의 표면에서 알루미늄 이온이 산화마그네슘과 더욱 활발하게 반응하여 하이드로탈사이트가 원활하게 생성되게 하는 것이 바람직하다. These seaweed fibers can be used as is, but since seaweed fibers mainly consist of fructose and cellulose, the seaweed fibers are immersed in an aqueous metal salt solution containing aluminum ions and an aluminum ion layer is coated on the surface of the seaweed fibers. The aluminum ion layer reacts with magnesium oxide and an alkali activator in the mortar composition to promote hydrotalcite production on the surface of the algae fibers, making it possible to obtain seaweed fiber reinforcement coated or attached with hydrotalcite. At this time, it is desirable to add sodium carbonate along with the seaweed fibers to the geopolymer mortar composition so that aluminum ions react more actively with magnesium oxide on the surface of the seaweed fibers to smoothly generate hydrotalcite.
상기 알루미늄 이온층이 피복된 해조류 섬유는 상기 결합재 100 중량부에 대해 10~15 중량부가 첨가되고, 탄산나트륨은 결합재 100 중량부에 대해 1~2 중량부가 첨가될 수 있다. The seaweed fiber coated with the aluminum ion layer may be added in an amount of 10 to 15 parts by weight based on 100 parts by weight of the binder, and 1 to 2 parts by weight of sodium carbonate may be added per 100 parts by weight of the binder.
상술한 것과 같은 지오폴리머 모르타르 조성물을 이용하여 콘크리트 구조물의 표면보수 및 단면복구를 하는 방법은 다음과 같이 진행될 수 있다. The method of surface repair and cross-sectional restoration of a concrete structure using the geopolymer mortar composition described above can proceed as follows.
먼저 치핑 및 고압수 세척을 통해 바탕면을 정리한다. 그리고 바탕면이 정리된 상태에서 철근 녹제거 및 철근방청제를 도포한 다음, 철근방청제가 도포된 면에 프라이머를 도포한다. First, the surface is cleaned through chipping and high-pressure water washing. Then, with the base surface cleaned, remove the rust from the reinforcing bars and apply a rust preventive to the reinforcing bars, and then apply a primer to the surface where the rust preventive to the reinforcing bars has been applied.
이어서 프라이머가 도포된 면에 상기한 지오폴리머 모르타르 조성물을 도포한다. Next, the geopolymer mortar composition described above is applied to the surface on which the primer is applied.
이러한 본 발명의 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물은, 결합재 및 알칼리 활성화제와 함께 혼합되는 산화마그네슘(MgO)과 산화알루미늄(Al2O3)의 반응에 의해 지오폴리머 모르타르 내에서 Mg-Al 결합구조를 가지는 하이드로탈사이트(Hydrotalcite) 생성이 촉진될 수 있으며, 모르타르 내에서 생성된 하이드로탈사이트의 이온교환 효과로 염화물 침투를 효과적으로 억제할 수 있다.The geopolymer mortar composition for concrete surface repair and cross-section restoration of the present invention produces Mg in the geopolymer mortar by the reaction of magnesium oxide (MgO) and aluminum oxide (Al 2 O 3 ) mixed with a binder and an alkali activator. -The production of hydrotalcite, which has an Al bonded structure, can be promoted, and chloride penetration can be effectively suppressed through the ion exchange effect of hydrotalcite produced in the mortar.
특히 산화마그네슘(MgO) 분말이 결합재 전체 중량의 10~20%로 혼합되어 칼슘알루미네이트 시멘트(CAC)의 안정성 하이드레이트로의 유해한 상전이를 억제하고, 준안정성 하이드레이트와 반응하여 하이드로탈사이트를 생성하여 내부 수축에 의한 다공성 미세구조 및 강도의 약화를 방지할 수 있는 이점이 있다. In particular, magnesium oxide (MgO) powder is mixed at 10-20% of the total weight of the binder to suppress harmful phase transition to stable hydrate of calcium aluminate cement (CAC) and reacts with metastable hydrate to generate hydrotalcite There is an advantage in preventing weakening of porous microstructure and strength due to shrinkage.
실시예Example
(g)CAC
(g)
분말(g)slag
Powder (g)
Set retardant (g)
표 1에 기재한 것과 같은 배합량(g)으로 지오폴리머 모르타르 조성물을 혼합한 후, 지오폴리머 모르타르 조성물을 몰드에 타설하고 상온에서 양생하여 시편을 제작하였다. 표 1에서 사용한 산화마그네슘은 700℃에서 소성하여 전처리한 것을 사용하였다. After mixing the geopolymer mortar composition in the mixing amount (g) as shown in Table 1, the geopolymer mortar composition was poured into a mold and cured at room temperature to prepare a specimen. The magnesium oxide used in Table 1 was pretreated by firing at 700°C.
도 1 및 도 2는 각각 상기 실시예 1,2 및 비교예 1에 대한 XRD 및 TD/DTG 결과를 나타낸 것으로, 산화마그네슘 및 산화알루미늄을 함께 혼입한 실시예 1 및 2의 경우 하이드로탈사이트의 생성량이 대폭 증가한 것을 확인할 수 있다.Figures 1 and 2 show the XRD and TD/DTG results for Examples 1 and 2 and Comparative Example 1, respectively. The amount of hydrotalcite produced in Examples 1 and 2 in which magnesium oxide and aluminum oxide were mixed together. You can see that this has increased significantly.
또한 아래의 표 2에 나타낸 것과 같이 압축강도 및 염소이온 침투성 시험결과, 실시예 1 및 2는 비교예 1보다 압축강도는 증가하고, 염소이온 침투저항성은 현저히 향상된 것을 확인할 수 있다. In addition, as shown in Table 2 below, the compressive strength and chlorine ion permeability test results showed that Examples 1 and 2 had increased compressive strength and significantly improved chlorine ion penetration resistance compared to Comparative Example 1.
이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.In the above, the present invention has been described in detail with reference to examples, but those skilled in the art will be able to make various substitutions, additions, and modifications without departing from the technical spirit described above. It is natural, and such modified embodiments should also be understood as falling within the scope of protection of the present invention as defined by the patent claims attached below.
Claims (5)
상기 결합재 100 중량부에 대해 산화마그네슘(MgO) 분말 10~20 중량부, 산화알루미늄(Al2O3) 분말 5~10중량부, 수산화나트륨과 물유리 및 물로 이루어진 3성분계 알칼리 활성화제 40~60 중량부, 응결지연제 0.3~1.0 중량부, 및 충전재 10~20중량부를 포함하여, 상기 산화마그네슘(MgO) 분말과 산화알루미늄(Al2O3) 분말의 반응에 의해 하이드로탈사이트가 생성되며,
상기 산화마그네슘(MgO) 분말은 결합재에 혼합되기 전에 700~1000℃의 온도에서 소성하여 전처리된 것인 내염해성 콘크리트 표면보수 및 단면복구용 지오폴리머 모르타르 조성물.A binder containing calcium aluminate cement, fly ash, and slag fine powder; and,
Based on 100 parts by weight of the binder, 10 to 20 parts by weight of magnesium oxide (MgO) powder, 5 to 10 parts by weight of aluminum oxide (Al 2 O 3 ) powder, and 40 to 60 parts by weight of a three-component alkaline activator consisting of sodium hydroxide, water glass, and water. hydrotalcite is produced by the reaction of the magnesium oxide (MgO) powder and the aluminum oxide (Al 2 O 3 ) powder, including 0.3 to 1.0 parts by weight of a setting retardant, and 10 to 20 parts by weight of a filler,
A geopolymer mortar composition for salt-resistant concrete surface repair and cross-section restoration, wherein the magnesium oxide (MgO) powder is pretreated by firing at a temperature of 700 to 1000°C before being mixed with the binder.
바탕면이 정리된 상태에서 철근 녹제거 및 철근방청제를 도포하는 단계;
철근방청제가 도포된 면에 프라이머를 도포하는 단계; 및
프라이머가 도포된 면에 제1항에 따른 지오폴리머 모르타르 조성물을 도포하는 단계;
를 포함하는 내염해성 콘크리트 표면보수 및 단면복구 방법.
Cleaning the substrate through chipping and high-pressure water washing;
Steps of removing rebar rust and applying a rebar rust preventive agent while the background surface is prepared;
Applying a primer to the surface on which the reinforcing bar rust preventive agent is applied; and
Applying the geopolymer mortar composition according to claim 1 on the surface to which the primer has been applied;
Salt-resistant concrete surface repair and cross-section restoration method including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220169720A KR102603775B1 (en) | 2022-12-07 | 2022-12-07 | Geo-polymer Mortar for Concrete Surface Repair And Concrete Section Recovery And Method for Concrete Surface Repair And Concrete Section Recovery Using the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220169720A KR102603775B1 (en) | 2022-12-07 | 2022-12-07 | Geo-polymer Mortar for Concrete Surface Repair And Concrete Section Recovery And Method for Concrete Surface Repair And Concrete Section Recovery Using the Same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102603775B1 true KR102603775B1 (en) | 2023-11-21 |
Family
ID=88981821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220169720A KR102603775B1 (en) | 2022-12-07 | 2022-12-07 | Geo-polymer Mortar for Concrete Surface Repair And Concrete Section Recovery And Method for Concrete Surface Repair And Concrete Section Recovery Using the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102603775B1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326638A (en) * | 2002-05-14 | 2003-11-19 | Nippan Kenkyujo Co Ltd | Heat insulating decorative material and manufacturing method therefor |
KR100515948B1 (en) | 2005-02-15 | 2005-09-16 | 한일시멘트 (주) | The composition of repair mortar containing nitrite based hydrotalcite(or hydrocalumite) and corrosion inhibitive repair method of reinforced concrete structure using repair mortar described above |
JP2017222541A (en) * | 2016-06-16 | 2017-12-21 | 大成建設株式会社 | Hydraulic composition |
JP2018087139A (en) * | 2018-02-26 | 2018-06-07 | 太平洋マテリアル株式会社 | Geopolymer composition |
KR20200091532A (en) * | 2019-01-22 | 2020-07-31 | 한국해양대학교 산학협력단 | concrete composition for ocean having salt-resistance |
CN113716588A (en) * | 2021-08-17 | 2021-11-30 | 湖南恒光化工有限公司 | Low-cost preparation method of magnesium-aluminum hydrotalcite |
-
2022
- 2022-12-07 KR KR1020220169720A patent/KR102603775B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003326638A (en) * | 2002-05-14 | 2003-11-19 | Nippan Kenkyujo Co Ltd | Heat insulating decorative material and manufacturing method therefor |
KR100515948B1 (en) | 2005-02-15 | 2005-09-16 | 한일시멘트 (주) | The composition of repair mortar containing nitrite based hydrotalcite(or hydrocalumite) and corrosion inhibitive repair method of reinforced concrete structure using repair mortar described above |
JP2017222541A (en) * | 2016-06-16 | 2017-12-21 | 大成建設株式会社 | Hydraulic composition |
JP2018087139A (en) * | 2018-02-26 | 2018-06-07 | 太平洋マテリアル株式会社 | Geopolymer composition |
KR20200091532A (en) * | 2019-01-22 | 2020-07-31 | 한국해양대학교 산학협력단 | concrete composition for ocean having salt-resistance |
CN113716588A (en) * | 2021-08-17 | 2021-11-30 | 湖南恒光化工有限公司 | Low-cost preparation method of magnesium-aluminum hydrotalcite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101693570B1 (en) | Cement Concrete Composite for Road and Bridge Surface | |
CN101891432B (en) | Permeable crystalline waterproof coating | |
KR101712378B1 (en) | Repairing or reinforcing method of concrete structure using alkali recovering rust prevention and inorganic polymer mortar composition | |
KR101893060B1 (en) | Mortar composition for repairing and reinforcing concrete structure, and method of repairing and reinforcing concrete structure using the same | |
KR102087707B1 (en) | Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment | |
KR101205546B1 (en) | High-strength fibrous inorganic polymer mortar and method repair or supplementary concrete | |
KR101941179B1 (en) | Composition for repairing and reinforcing concrete structure comprising high strength mortar, and method of repairing and reinforcing concrete structures using the same | |
KR101964367B1 (en) | Composition for repairing and reinforcing concrete structure and method for repairing and reinforcing concrete structure therewith | |
KR101460498B1 (en) | Compositions of self water absorbing type retentive and repair method for concrete structures using the same | |
JP7243982B2 (en) | Concrete repair agent | |
KR100643524B1 (en) | Mortar mixed for covering on deteriorated concrete and method for covering on deteriorated concrete | |
KR101675490B1 (en) | Ion Binding Agent for Cement Mixture, Ion Binding Typed Polymer Cement Mortar Using the Agent, and Repairing Method Using the Mortar | |
KR102072787B1 (en) | Mortar composition for repairing concrete section using ceramic aggregate, and concrete section repair method using the same | |
KR102251021B1 (en) | Crack-reducing Polymer Mortar Composition for Repair Section | |
KR101864293B1 (en) | Organic-Inorganic Composite Composition For Reinforcing Concrete Structures Having Excellent Strength and Durability, Method For Manufacturing Reinforcing Fiber Mesh Using The Same, And Method For Repairing And Reinforcing Concrete Structures Using The Mesh and The Mortar | |
KR101166792B1 (en) | Restroative mortar compositions for cross section restorations and repairing method of reinforced concrete using that | |
KR102363726B1 (en) | Concrete mortar for repairing cross-section of concrete structure having sulfate resistance and antibacterial function and the method of repairing cross-section of concrete structure using the same | |
KR100879882B1 (en) | Restoring concrete structures by using strengthening agency, eco-friendly repair mortar and epoxy paint | |
Yeganeh et al. | Enhancement routes of corrosion resistance in the steel reinforced concrete by using nanomaterials | |
KR101565119B1 (en) | Cement Mortar Composite with Water Resistance for Road and Bridge Surface | |
KR101492878B1 (en) | Self-curing concrete additive composition and preparation method of concrete with improved durability | |
KR101738575B1 (en) | Echo mortar and construction method for repair concrete structures damaged by acid, sulphate and chloride | |
KR102121560B1 (en) | Calcium sulfur aluminate high early strength material, and composition for low weight repair mortar comprising thereof | |
KR101647018B1 (en) | Concrete repair method using the solution of chloride ion | |
KR102603775B1 (en) | Geo-polymer Mortar for Concrete Surface Repair And Concrete Section Recovery And Method for Concrete Surface Repair And Concrete Section Recovery Using the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |