KR102597189B1 - Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same - Google Patents

Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same Download PDF

Info

Publication number
KR102597189B1
KR102597189B1 KR1020210080355A KR20210080355A KR102597189B1 KR 102597189 B1 KR102597189 B1 KR 102597189B1 KR 1020210080355 A KR1020210080355 A KR 1020210080355A KR 20210080355 A KR20210080355 A KR 20210080355A KR 102597189 B1 KR102597189 B1 KR 102597189B1
Authority
KR
South Korea
Prior art keywords
weight
blast furnace
furnace slag
slag cement
functional additive
Prior art date
Application number
KR1020210080355A
Other languages
Korean (ko)
Other versions
KR20220169802A (en
Inventor
정석만
박동철
양완희
이창규
이강홍
박기홍
이지환
윤준철
Original Assignee
주식회사 위드엠텍
두산건설 주식회사
주식회사 화륭산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위드엠텍, 두산건설 주식회사, 주식회사 화륭산업 filed Critical 주식회사 위드엠텍
Priority to KR1020210080355A priority Critical patent/KR102597189B1/en
Publication of KR20220169802A publication Critical patent/KR20220169802A/en
Application granted granted Critical
Publication of KR102597189B1 publication Critical patent/KR102597189B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/061Ashes from fluidised bed furnaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0006Waste inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/085Acids or salts thereof containing nitrogen in the anion, e.g. nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/56Opacifiers
    • C04B2103/58Shrinkage reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 고로슬래그 시멘트 콘크리트에 혼입될 때 저온 환경에서 조기강도 발현을 가능케 하면서도 초기 유동성을 유지할 수 있으며, 블리딩을 제어하여 초기 건조수축을 저감할 수 있고 중·장기강도 발현도 가능한 새로운 기능성 첨가제 조성물과 그 기능성 첨가제 조성물을 이용한 기능성 첨가제의 바람직한 제조방법, 그리고 그 기능성 첨가제를 바람직하게 이용한 고로슬래그 시멘트 콘크리트에 관한 것이다.
본 발명에 따른 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 조성물은, 티오시안나트륨(NaSCN) 10~20중량%; 인산칼륨(KH2PO4) 5~15중량%; 황산나트륨(Na2SO4) 15~30중량%; 질산나트륨(NaNO3) 5~15중량%; 유기계 수축저감제 25~35중량%; 초임계 유동층 보일러 플라이애시 10~40중량%;로 조성되는 것을 특징으로 하는 한다. 여기서 유기계 수축저감제는 플레이크(flake) 형태의 펜틸글리콜(Fentyl Glycol)을 바람직하게 적용할 수 있다.
The present invention is a new functional additive composition that, when mixed into blast furnace slag cement concrete, enables early strength development in a low-temperature environment while maintaining initial fluidity, reduces initial drying shrinkage by controlling bleeding, and can also develop mid- to long-term strength. It relates to a preferable manufacturing method of a functional additive using the functional additive composition, and blast furnace slag cement concrete using the functional additive preferably.
The organic-inorganic composite functional additive composition for blast furnace slag cement according to the present invention contains 10 to 20% by weight of sodium thiocyanate (NaSCN); Potassium phosphate (KH 2 PO 4 ) 5-15% by weight; 15 to 30% by weight of sodium sulfate (Na 2 SO 4 ); Sodium nitrate (NaNO 3 ) 5-15% by weight; 25 to 35% by weight of organic shrinkage reducing agent; The supercritical fluidized bed boiler is characterized in that it is composed of 10 to 40% by weight of fly ash. Here, the organic shrinkage reducing agent may preferably be pentyl glycol in flake form.

Description

고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 및 이를 이용한 고로슬래그 시멘트 콘크리트{Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same}Organic/inorganic composite functional additive for blast furnace slag cement and blast furnace slag cement concrete using the same {Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same}

본 발명은 시멘트를 고로슬래그로 일부 대체한 고로슬래그 시멘트의 물성 개선을 위한 고로슬래그 시멘트용 기능성 첨가제와 이를 바람직하게 이용한 고로슬래그 시멘트 콘크리트에 관한 것으로, 더욱 상세하게는 고로슬래그 시멘트 콘크리트에 혼입될 때 저온 환경에서 조기강도 발현을 가능케 하면서도 초기 유동성을 유지할 수 있으며, 블리딩을 제어하여 초기 건조수축을 저감할 수 있고 중·장기강도 발현도 가능한 새로운 기능성 첨가제 조성물과 그 기능성 첨가제 조성물을 이용한 기능성 첨가제의 바람직한 제조방법, 그리고 그 기능성 첨가제를 바람직하게 이용한 고로슬래그 시멘트 콘크리트에 관한 것이다. The present invention relates to a functional additive for blast furnace slag cement for improving the physical properties of blast furnace slag cement in which cement is partially replaced with blast furnace slag, and to blast furnace slag cement concrete using the same preferably, and more specifically, when mixed into blast furnace slag cement concrete. A new functional additive composition that allows development of early strength in a low temperature environment while maintaining initial fluidity, reduces initial drying shrinkage by controlling bleeding, and can also develop mid- to long-term strength, and the preferred functional additive using the functional additive composition. It relates to a manufacturing method and blast furnace slag cement concrete using functional additives preferably.

시멘트 산업은 전력산업에 이어 두 번째로 많은 탄소를 배출하는 산업이다. 이에 따라 이산화탄소 배출이 많은 시멘트의 사용을 억제하고자 하는 연구들이 많이 진행되고 있으며, 고로슬래그 시멘트도 그 중 하나이다. 고로슬래그 시멘트는 시멘트를 고로슬래그로 일부 대체하여 시멘트의 사용을 줄인 방법이 된다.The cement industry is the second most carbon-emitting industry after the electric power industry. Accordingly, many studies are being conducted to suppress the use of cement with high carbon dioxide emissions, and blast furnace slag cement is one of them. Blast furnace slag cement is a method of reducing the use of cement by partially replacing cement with blast furnace slag.

고로슬래그 시멘트는 반응시간이 일반 시멘트에 비하여 느리기 때문에 고로슬래그 시멘트 콘크리트는 초기강도 발현이 늦고, 더불어 자기수축, 소성수축 및 초기 건조수축 증대 등의 내구성 저하 문제가 있다. 일반적으로 고로슬래그 시멘트는 콘크리트 강도를 개선하고자 알칼리 활성화제를 함께 사용하나, 표준온도 미만의 저온 환경에서는 그 효과가 미미하다. 저온 환경에서 요구 강도 확보를 위해서는 알칼리 활성화제의 첨가량이 증가할 수밖에 없는데, 이 경우 초기 유동성을 빠르게 손실하고 급결하는 경향과 더불어 콘크리트의 관리기준인 염화물 함량을 벗어나 내구성의 문제가 발생할 수 있다. 또한, 고로슬래그 시멘트 콘크리트는 블리딩으로 인한 소성수축 및 초기 건조수축 증대 등의 문제가 있다. 따라서 저온 환경에서 조기강도 발현을 가능케 하면서도 초기 유동성을 유지할 수 있으며, 블리딩을 제어하여 초기 건조수축을 저감할 수 있고 중·장기강도 발현도 가능한 새로운 기능성 첨가제가 필요한 실정이다. Because the reaction time of blast furnace slag cement is slower than that of general cement, blast furnace slag cement concrete develops initial strength late, and also has durability problems such as self-shrinkage, plastic shrinkage, and increased initial drying shrinkage. Generally, blast furnace slag cement is used with an alkali activator to improve concrete strength, but the effect is minimal in low temperature environments below the standard temperature. In order to secure the required strength in a low-temperature environment, the amount of alkali activator must be increased. In this case, the initial fluidity is quickly lost and the concrete tends to set rapidly, and durability problems may occur outside the chloride content, which is the management standard for concrete. In addition, blast furnace slag cement concrete has problems such as increased plastic shrinkage and initial drying shrinkage due to bleeding. Therefore, there is a need for a new functional additive that can develop early strength in a low-temperature environment while maintaining initial fluidity, reduce initial drying shrinkage by controlling bleeding, and develop mid- to long-term strength.

한편 최근 건설 현장은 기후변화에 따라 간절기와 동절기 기간이 길어지면서 습식 공정의 기간이 길어지고 예정 공기보다 늦어지는 어려움이 있다. 또한 콘크리트 공사는 펌프 압송 기계화 시공이 일반적인데, 이 경우 펌프 압송의 편의를 위해 과도한 물 배합이 이루어져 시공 후 균열 발생 및 구조체 강도 저하 문제가 빈번하다. 보통 콘크리트의 건조수축을 저감 시키기 위한 방안으로 팽창재가 소개되지만, 팽창재는 수화반응을 통하여 부피 팽창을 일으키는 것으로 보통 매우 고가이어서 경제적인 제품 제조에 활용하는데 제약이 된다. 또한, 다량의 팽창재를 사용하면 우천 등에 의한 수분의 반복, 지속적인 공급에 의하여 과량 팽창하여 구조물을 파괴할 우려가 있기 때문에 시공현장에서의 사용의 한계가 있다.Meanwhile, in recent construction sites, as the inter-season and winter periods have become longer due to climate change, the wet process period has become longer and there are difficulties in delaying the scheduled construction period. In addition, mechanized pump delivery is common for concrete construction, and in this case, excessive water mixing is made for the convenience of pump delivery, which frequently causes cracks and reduced structural strength after construction. Expanding materials are usually introduced as a way to reduce drying shrinkage of concrete, but expanding materials cause volume expansion through a hydration reaction and are usually very expensive, which limits their use in manufacturing economical products. In addition, if a large amount of expansion material is used, there is a risk of excessive expansion and destruction of the structure due to repeated or continuous supply of moisture due to rain, etc., so there is a limit to its use at construction sites.

KRKR 10-1244825 10-1244825 B1B1 KRKR 10-2013-0087663 10-2013-0087663 AA

본 발명은 저온 환경에서도 유리하게 적용할 수 있는 새로운 고로슬래그 시멘트 콘크리트를 제안하고자 개발된 것으로서, 고로슬래그 시멘트 콘크리트에 혼입될 때 저온 환경에서 조기강도 발현을 가능케 하면서도 초기 유동성을 유지할 수 있으며, 블리딩을 제어하여 초기 건조수축을 저감할 수 있고 중·장기강도 발현도 가능한 새로운 기능성 첨가제 조성물과, 그 기능성 첨가제 조성물을 이용한 기능성 첨가제의 바람직한 제조방법, 그리고 그 기능성 첨가제를 바람직하게 이용한 고로슬래그 시멘트 콘크리트를 제공하는데 기술적 과제가 있다. The present invention was developed to propose a new blast furnace slag cement concrete that can be advantageously applied even in low-temperature environments. When incorporated into blast furnace slag cement concrete, it enables early strength development in low-temperature environments while maintaining initial fluidity and preventing bleeding. Provides a new functional additive composition that can control initial drying shrinkage and develop mid- to long-term strength, a preferred manufacturing method of the functional additive using the functional additive composition, and blast furnace slag cement concrete that preferably uses the functional additive. There are technical challenges in doing so.

상기한 기술적 과제를 해결하기 위해, 본 발명은 티오시안나트륨(NaSCN) 10~20중량%; 인산칼륨(KH2PO4) 5~15중량%; 황산나트륨(Na2SO4) 15~30중량%; 질산나트륨(NaNO3) 5~15중량%; 유기계 수축저감제 25~35중량%; 초임계 유동층 보일러 플라이애시 10~40중량%;로 조성되되, 초임계 유동층 보일러 플라이애시가 초임계 유동층 보일러에서 산소를 주입하면서 석탄 연료를 초임계조건으로 연소하는 공정을 통해 배출되는 애시로서 5∼20중량%의 SO3와 20∼30중량%의 CaO를 함유하면서 분말도가 6,000~9,000cm2/g인 것을 특징으로 하는 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 조성물을 제공한다. 여기서 유기계 수축저감제는 플레이크(flake) 형태의 펜틸글리콜(Fentyl Glycol)을 바람직하게 적용할 수 있다.In order to solve the above-described technical problem, the present invention includes 10 to 20% by weight of sodium thiocyanate (NaSCN); Potassium phosphate (KH 2 PO 4 ) 5-15% by weight; 15 to 30% by weight of sodium sulfate (Na 2 SO 4 ); Sodium nitrate (NaNO 3 ) 5-15% by weight; 25 to 35% by weight of organic shrinkage reducing agent; It is composed of 10 to 40% by weight of supercritical fluidized bed boiler fly ash; the supercritical fluidized bed boiler fly ash is ash discharged through the process of burning coal fuel under supercritical conditions while injecting oxygen in the supercritical fluidized bed boiler, and is 5 to 40% by weight. An organic-inorganic composite functional additive composition for blast furnace slag cement is provided, which contains 20% by weight of SO 3 and 20 to 30% by weight of CaO and has a fineness of 6,000 to 9,000 cm2/g. Here, the organic shrinkage reducing agent may preferably be pentyl glycol in flake form.

또한 본 발명은 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제를 제조하는 바람직한 방법으로, 초임계 유동층 보일러 플라이애시의 일부, 인산칼륨, 티오시안나트륨을 순서대로 분쇄믹서에 투입하면서 분쇄혼합하는 것으로 제1혼합물을 준비하는 한편, 초임계 유동층 보일러 플라이애시의 나머지, 황산나트륨과 질산나트륨, 유기계 수축저감제를 순서대로 믹서에 투입하면서 혼합하는 것으로 제2혼합물을 준비한 다음, 제1혼합물과 제2혼합물을 혼합믹서에 투입하여 혼합하는 것을 특징으로 하는 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제의 제조방법을 제공할 수 있다. 여기서 제2혼합물도 분쇄믹서에서 분쇄혼합하여 준비할 수 있다.In addition, the present invention is a preferred method for producing an organic-inorganic composite functional additive for blast furnace slag cement, which involves grinding and mixing a portion of the supercritical fluidized bed boiler fly ash, potassium phosphate, and sodium thiocyanate in that order into a grinding mixer. While preparing the mixture, prepare the second mixture by sequentially adding the remainder of the supercritical fluidized bed boiler fly ash, sodium sulfate, sodium nitrate, and an organic shrinkage reducing agent into the mixer and mixing them, and then mixing the first mixture and the second mixture. It is possible to provide a method for manufacturing an organic-inorganic composite functional additive for blast furnace slag cement, characterized in that it is added to a mixer and mixed. Here, the second mixture can also be prepared by grinding and mixing in a grinding mixer.

나아가, 본 발명은 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제를 이용한 콘크리트 배합에서, 시멘트 40~60중량%와 고로슬래그 미분말 40~60중량%로 조성된 결합재 100중량부에, 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 0.25~2.00중량부 혼입하여 배합하는 것을 특징으로 하는 고로슬래그 시멘트 콘크리트를 제공한다.Furthermore, the present invention, in concrete mixing using an organic-inorganic composite functional additive for blast furnace slag cement, contains oil for blast furnace slag cement in 100 parts by weight of a binder composed of 40 to 60% by weight of cement and 40 to 60% by weight of blast furnace slag fine powder. ·Provides blast furnace slag cement concrete, which is characterized by mixing 0.25 to 2.00 parts by weight of an inorganic composite functional additive.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 본 발명의 기능성 첨가제는 고로슬래그 시멘트 콘크르트 배합에 혼입되면 저온 환경에서의 조기강도 발현과 초기 유동성 유지에 기여하고, 블리딩 제어를 통해 초기 건조수축 저감과 중·장기강도 발현 증진에도 기여한다.First, the functional additive of the present invention, when incorporated into the blast furnace slag cement concrete mix, contributes to developing early strength and maintaining initial fluidity in a low-temperature environment, and also contributes to reducing initial drying shrinkage and improving mid- to long-term strength development through bleeding control. .

둘째 본 발명의 고로슬래그 시멘트 콘크리트는 시멘트를 대체하여 고로슬래그 미분말을 사용하기 때문에 시멘트 사용 저감에 따른 이산화탄소 발생량 억제에 기여하고, 고로슬래브 미분말에 의해 우수한 염소이온침투저항성을 발휘한다. Second, since the blast furnace slag cement concrete of the present invention uses blast furnace slag fine powder instead of cement, it contributes to suppressing carbon dioxide emissions by reducing the use of cement, and exhibits excellent chlorine ion penetration resistance due to the blast furnace slab fine powder.

본 발명은 시멘트를 고로슬래그로 일부 대체한 고로슬래그 시멘트의 물성 개선을 위한 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제와 이를 바람하게 이용한 고로슬래그 시멘트 콘크리트에 관한 것이다. The present invention relates to an organic-inorganic composite functional additive for blast furnace slag cement to improve the physical properties of blast furnace slag cement, in which cement is partially replaced with blast furnace slag, and to blast furnace slag cement concrete using the same.

1. 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제1. Organic/inorganic composite functional additive for blast furnace slag cement

본 발명에 따른 고로슬래그 시멘트용 기능성 첨가제는 유·무기 복합 기능성 첨가제로, 일반적으로 사용되는 알칼리 활성화제와 경화 촉진제의 단점을 상호 보완하는 첨가제가 된다. 즉, 고로슬래그 시멘트 콘크리트 배합에 혼입될 때, 초기 유동성 유지와 함께 초기강도 및 중·장기강도 증진이 가능하고, 더불어 고로슬래그 시멘트의 고질적인 단점인 소성·건조수축 균열을 억제할 수 있다. .구체적으로 본 발명에 따른 유·무기 복합 기능성 첨가제는, 티오시안나트륨(NaSCN) 10~20중량%; 인산칼륨(KH2PO4) 5~15중량%; 황산나트륨(Na2SO4) 15~30중량%; 질산나트륨(NaNO3) 5~15중량%; 유기계 수축저감제 25~35중량%; 초임계 유동층 보일러 플라이애시 10~40중량%;로 조성된다.The functional additive for blast furnace slag cement according to the present invention is an organic-inorganic composite functional additive that complements the shortcomings of commonly used alkali activators and hardening accelerators. In other words, when mixed into a blast furnace slag cement concrete mix, it is possible to maintain initial fluidity while improving initial strength and mid- to long-term strength, and also suppress cracking due to firing and drying shrinkage, which is a chronic disadvantage of blast furnace slag cement. . Specifically, the organic-inorganic composite functional additive according to the present invention contains 10 to 20% by weight of sodium thiocyanate (NaSCN); Potassium phosphate (KH 2 PO 4 ) 5-15% by weight; 15 to 30% by weight of sodium sulfate (Na 2 SO 4 ); Sodium nitrate (NaNO 3 ) 5-15% by weight; 25 to 35% by weight of organic shrinkage reducing agent; Supercritical fluidized bed boiler is composed of 10 to 40% by weight of fly ash.

기능성 첨가제에서 티오시안나트륨(NaSCN)은 시멘트 중의 Ca2+ 이온을 빠르게 용출시켜 시멘트 중 초기강도에 중요한 역할을 하는 성분인 3CaO·SiO2의 수화를 촉진하며, 결국 시멘트의 경화 반응을 촉진하게 된다. 티오시안나트륨은 10~20중량% 사용하는데, 10중량% 미만이면 시멘트 경화 촉진 효과가 미미하고 20중량% 초과하면 경제성이 상실한다. In functional additives, sodium thiocyanate (NaSCN) rapidly leaches Ca 2+ ions from cement, promoting the hydration of 3CaO·SiO 2 , a component that plays an important role in the initial strength of cement, and ultimately promoting the hardening reaction of cement. . Sodium thiocyanate is used in an amount of 10 to 20% by weight. If it is less than 10% by weight, the effect of promoting cement hardening is minimal, and if it exceeds 20% by weight, economic feasibility is lost.

인산칼륨(KH2PO4)은 고로슬래그 미분말을 자극하여 강도 증진에 도움을 준다. 인산칼륨은 고로슬래그 미분말의 MgO, CaO, 혼합수(H2O)와 결합하여 각각 Mg·K·PO4·6H2O(MgO + KH2PO4 + 5H2O → Mg·K·PO4·6H2O) 수화물과, Ca·K·PO4·6H2O(CaO + KH2PO4 + 5H2O → Ca·K·PO4·6H2O)CaO + KH2PO4 + 5H2O → Ca·K·PO4·6H2O) 수화물을 생성하며, 이렇게 생성된 수화물이 콘크리트 결합재의 고로슬래그 미분말을 자극하여 재령 3일 이후 시점의 강도 증진에 도움을 주는 것이다. 인산칼륨은 5~15중량% 사용하며, 5중량% 미만이면 강도증진 효과가 미미하고 15중량% 초과하면 경제성이 상실할 뿐만 아니라 오히려 강도 저하가 우려된다.Potassium phosphate (KH 2 PO 4 ) helps improve strength by stimulating the fine powder of blast furnace slag. Potassium phosphate combines with MgO and CaO of blast furnace slag fine powder and mixed water (H 2 O) to form Mg·K·PO 4 6H 2 O (MgO + KH 2 PO4 + 5H 2 O → Mg·K·PO4·6H) 2 O) hydrate, Ca·K·PO 4 ·6H 2 O(CaO + KH 2 PO4 + 5H 2 O → Ca·K·PO4·6H 2 O)CaO + KH 2 PO4 + 5H 2 O → Ca·K ·PO4·6H 2 O) Hydrates are generated, and the hydrates thus generated stimulate the fine powder of blast furnace slag in the concrete binder, helping to increase strength after 3 days of aging. Potassium phosphate is used in an amount of 5 to 15% by weight. If it is less than 5% by weight, the effect of improving strength is minimal, and if it exceeds 15% by weight, not only does it lose economic feasibility, but there are concerns about a decrease in strength.

황산나트륨(Na2SO4)과 질산나트륨(NaNO3)은 Na+ 이온이 pH를 증가시켜 시멘트 수화반응을 촉진하는 역할을 하고 동시에 콘크리트 조성물이 골고루 혼합될 수 있게 하는 충진재 역할을 한다. 또한 황산나트륨은 SO42- 이온이 에트린자이트를 생성하여 강도 증진에도 기여하고, 3CaO·Al2O3의 급격한 반응을 적절히 완화시켜 콘크리트의 초기 유동성을 유지할 수 있게 한다. 황산나트륨은 15~30중량%를 사용하며, 15중량% 미만이면 강도 증진 효과가 미미하고 30중량% 초과하면 경제성이 상실한다. 한편 질산나트륨(NaNO3)은 SNO3 - 이온이 혼합수의 응결 온도를 낮추어 저온에서의 사용성 확보에 기여 한다. 질산나트륨은 5~15중량% 사용하는데, 5중량% 미만이면 수화반응 촉진효과가 미미하고 15중량% 초과하면 유동성 저하, 경제성 상실이 우려된다.Sodium sulfate (Na 2 SO 4 ) and sodium nitrate (NaNO 3 ) serve to promote cement hydration reaction by increasing the pH of Na+ ions and at the same time serve as fillers to ensure even mixing of the concrete composition. In addition, sodium sulfate contributes to strength improvement by generating ettringite from SO4 2- ions and maintains the initial fluidity of concrete by appropriately alleviating the rapid reaction of 3CaO·Al2O3. Sodium sulfate is used in an amount of 15 to 30% by weight. If it is less than 15% by weight, the effect of improving strength is minimal, and if it exceeds 30% by weight, economic feasibility is lost. Meanwhile, sodium nitrate (NaNO 3 ) contributes to ensuring usability at low temperatures by lowering the condensation temperature of the mixed water due to SNO 3 - ions. Sodium nitrate is used in an amount of 5 to 15% by weight. If it is less than 5% by weight, the effect of promoting the hydration reaction is minimal, and if it exceeds 15% by weight, there are concerns about reduced fluidity and loss of economic feasibility.

유기계 수축저감제는 콘크리트 모세관 응축수의 용해하여 표면장력을 완하시킴으로써 콘크리트 건조수축 저감에 기여하는 재료가 되며, 결국 유기계 수축저감제에 의해 콘크리트 균열 발생 및 나아가 콘크리트 구조물의 탄산화를 억제할 수 있게 된다. 유기계 수축저감제로는 플레이트(Flake) 타입의 네오펜틸글리콜(Neopentyl glycol)을 바람직하게 사용할 수 있다. 유기계 수축저감제는 25~35중량% 사용하며, 25중량% 미만이면 수축저감 효과가 미미하고 35중량% 초과하면 초기·장기 강도 부진, 경제성 상실이 우려된다.The organic shrinkage reducing agent becomes a material that contributes to reducing drying shrinkage of concrete by dissolving the concrete capillary condensate and reducing the surface tension. Ultimately, the organic shrinkage reducing agent can suppress the occurrence of concrete cracks and further carbonation of the concrete structure. As an organic shrinkage reducing agent, plate-type neopentyl glycol can be preferably used. Organic shrinkage reducing agent is used at 25 to 35% by weight. If it is less than 25% by weight, the shrinkage reduction effect is minimal, and if it exceeds 35% by weight, there are concerns about poor initial and long-term strength and loss of economic feasibility.

초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러에서 산소를 주입하면서 석탄 연료를 초임계조건으로 연소하는 공정을 통해 배출되는 애시로서, 5∼20중량%의 SO3와 20∼30중량%의 CaO을 함유하면서 분말도가 6,000~9,000cm2/g인 애시이다. 일반적인 플라이애시는 석탁 화력발전소에서 연료(석탄)와 공기를 주입하여 연소(1200~1500도)하는 공정에서 배출되는 애시이고, 순환 유동층 보일러 플라이애시는 순환 유동층 보일러에서 공기와 석회를 동시에 주입하여 지속적으로 열을 순환시키면서 석탄을 완전 연소(760~950도)하는 공정을 통해 배출되는 애시이고, 초임계 유동층 보일러 플라이애시는 초임계 유동층 보일러(물이 증기로 변환되는 임계조건(2255kg/cm2 증기압, 374도 증기온도)으로 가하여 발전하는 보일러)에서 공기 대신 산소를 주입하여 초임계 상태에서 연료(석탄)을 연소하는 공정에서 배출되는 애시이다. 이들 플라이애시들은 석탄을 연료로 하는 발전설비에서 배출되는 애시라는 점에서 공통점이 있으나 발전설비의 구체적인 처리방식이 달라 플라이애시의 화학성분과 물리적 특성에서 차이가 있다. Supercritical fluidized bed boiler fly ash is ash discharged from a supercritical fluidized bed boiler through the process of burning coal fuel under supercritical conditions while injecting oxygen, and contains 5 to 20% by weight of SO 3 and 20 to 30% by weight of CaO. It is an ash with a fineness of 6,000 to 9,000 cm2/g. General fly ash is ash discharged from a coal-fired power plant in the process of combustion (1200 to 1500 degrees) by injecting fuel (coal) and air, and circulating fluidized bed boiler fly ash is a continuous combustion process in which air and lime are simultaneously injected from a circulating fluidized bed boiler. It is ash discharged through the process of complete combustion of coal (760 to 950 degrees) while circulating heat through the supercritical fluidized bed boiler fly ash. It is ash emitted from the process of burning fuel (coal) in a supercritical state by injecting oxygen instead of air in a boiler (which generates power by applying steam temperature of 374 degrees). These fly ash have something in common in that they are ash discharged from coal-fired power generation facilities, but the specific processing methods of the power generation facilities are different, so there are differences in the chemical composition and physical properties of the fly ash.

초임계 유동층 보일러 플라이애시는 다량의 CaO와 SO3의 성분으로 포졸란 반응에 의해 시멘트의 C3A와 반응하여 에트린자이트를 생성하여 강도성능 향상에 기여한다. 또한 높은 분말도와 고르지 못한 입형의 다공성으로 흡수율이 높기 때문에, 고로슬래그 시멘트 콘크리트의 단점인 블리딩을 적절히 제어함으로써 소성수축에 기여한다. 나아가 초임계 유동층 보일러 플라이애시는 다른 재료들이 골고루 혼합될 수 있도록 충진재 역할을 하는데, 특히 조해성으로 흡습성이 높아지면서 적절한 분산력을 상실하기 쉬운 티오시안나트륨과 인산칼륨, 유기계 수축저감제가 균일하게 분산될 수 있도록 충진재 역할을 하는 것이다. 초임계 유동층 보일러 플라이애시는 10~40중량% 사용하며, 10중량% 미만이면 분산효과, 블리딩 제어효과, 강도 증진효과가 미미하고, 40중량% 초과하면 콘크리트 팽창, 유동성 저하, 강도 저하가 우려된다. Supercritical fluidized bed boiler fly ash contains a large amount of CaO and SO3 and reacts with C3A of cement through a pozzolanic reaction to produce ettringite, contributing to improved strength performance. In addition, because it has a high water absorption rate due to its high fineness and uneven particle shape, it contributes to plastic shrinkage by appropriately controlling bleeding, which is a disadvantage of blast furnace slag cement concrete. Furthermore, supercritical fluidized bed boiler fly ash acts as a filler so that other materials can be mixed evenly. In particular, sodium thiocyanate, potassium phosphate, and organic shrinkage reducing agents, which tend to lose their proper dispersion power as their deliquescent properties increase in hygroscopicity, can be uniformly dispersed. It acts as a filler. Supercritical fluidized bed boiler fly ash is used in an amount of 10 to 40% by weight. If it is less than 10% by weight, the dispersion effect, bleeding control effect, and strength improvement effect are minimal, and if it exceeds 40% by weight, there are concerns about concrete expansion, decreased fluidity, and decreased strength. .

위와 같은 조성으로 준비된 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 조성물은 일부 재료들의 조해성으로 동시에 혼합할 경우 균일한 분산이 어려울 수 있으므로, 본 발명에서는 바람직한 제조방법을 제안한다. 먼저 초임계 유동층 보일러 플라이애시의 일부(준비량의 50% 내외), 인산칼륨, 티오시안나트륨을 순서대로 분쇄믹서에 투입하면서 분쇄혼합하는 것으로 제1혼합물을 준비한다. 조해성이 높은 물질을 마지막에 투입함으로써 적절한 분산 및 분쇄 혼합될 수 있도록 한 것인데, 높은 조해성의 물질이 분쇄믹서에 먼저 투입된다면 믹서내부에 달라붙어 단단하게 다져지게 되면서 로스가 발생하고 그로 인해 배합비의 변동을 줄 수 있다. 다공질의 초임계 유동층 보일러 플라이애시가 높은 흡수율로 인해 골고루 혼합될 수 있도록 충진재 역할을 하기 때문에 적절한 분산이 가능해진다. 특히 제1혼합물은 분쇄믹서에서 분쇄혼합하며, 이는 분쇄를 통한 미분화로 콘크리트 배합 시에 H2O(배합수)에 더욱 빠르게 용해되게 하여 반응성을 끌어올리기 위함이다.Since the organic-inorganic composite functional additive composition for blast furnace slag cement prepared with the above composition may be difficult to uniformly disperse when mixed simultaneously due to the deliquescent nature of some materials, the present invention proposes a preferred manufacturing method. First, prepare the first mixture by grinding and mixing a portion of the supercritical fluidized bed boiler fly ash (about 50% of the preparation amount), potassium phosphate, and sodium thiocyanate in that order into a grinding mixer. Highly deliquescent substances are added last to ensure proper dispersion and grinding mixing. However, if highly deliquescent substances are added to the grinding mixer first, they stick to the inside of the mixer and compact, causing loss and resulting in changes in mixing ratio. can be given. Proper dispersion is possible because porous supercritical fluidized bed boiler fly ash acts as a filler to ensure even mixing due to its high absorption rate. In particular, the first mixture is ground and mixed in a grinding mixer, and this is to increase reactivity by allowing it to dissolve more quickly in H2O (mixing water) when mixing concrete through pulverization through grinding.

제1혼합물 준비와 함께, 초임계 유동층 보일러 플라이애시의 나머지, 황산나트륨과 질산나트륨, 유기계 수축저감제를 순서대로 믹서에 투입하면서 혼합하는 것으로 제2혼합물을 준비한다. 제2혼합물도 제1혼합물과 마찬가지로, 조해성이 높은 유기계 수축저감제를 마지막에 투입하여 적절히 분산 및 혼합 분쇄가 될 수 있게 한다. 제2혼합물은 조해성이 높은 유기계 수축저감제가 용해성이 좋기 때문에 제1혼합물과 달리 일반 혼합믹서에서 혼합하는 것으로 충분하나, 적절한 분산의 목적으로 분쇄믹서에서 분쇄혼합할 수도 있다.In addition to preparing the first mixture, the second mixture is prepared by sequentially adding the remainder of the supercritical fluidized bed boiler fly ash, sodium sulfate, sodium nitrate, and an organic shrinkage reducing agent into the mixer and mixing them. In the second mixture, like the first mixture, an organic shrinkage reducing agent with high deliquescent properties is added at the end to enable proper dispersion, mixing and grinding. Unlike the first mixture, it is sufficient to mix the second mixture in a general mixing mixer because the highly deliquescent organic shrinkage reducing agent has good solubility, but it can also be ground and mixed in a grinding mixer for the purpose of proper dispersion.

제1,2혼합물의 준비가 다 된 후에는, 제제1,2혼합물을 혼합믹서에 투입하여 혼합하기만 하면 된다. 이로써 본 발명에 따른 고로슬래그 시멘트용 기능성 첨가제가 제조되며, 이렇게 제조된 고로슬래그 시멘트용 기능성 첨가제는 모든 구성재료가 프리믹스된 상태로 현장에서는 일반 혼화제의 사용방법과 마찬가지로 간편하게 적용하면 된다. After preparing the first and second mixtures, simply add the first and second mixtures to the mixing mixer and mix. As a result, the functional additive for blast furnace slag cement according to the present invention is manufactured. The functional additive for blast furnace slag cement manufactured in this way has all the constituent materials premixed and can be easily applied in the field in the same way as a general admixture.

2. 고로슬래그 시멘트 콘크리트2. Blast furnace slag cement concrete

본 발명에 따른 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제는 고로슬래그 시멘트 콘크리트 배합에 유리하게 적용할 수 있다. 고로슬래그 시멘트 콘크리트 배합에서 결합재는 보통포틀랜드 시멘트 40~60중량%와 고로슬래그 미분말(분말도 3,500~5,500cm2/g) 40~60중량%로 조성하면 적절하다. 여기서 시멘트의 함량은 초기강도 및 중·장기강도를 고려한 범위가 되고, 고로슬래그 미분말의 함량은 염소이온 침투 저항 효과와 함께 초기,장기강도를 고려한 범위가 된다. 특히 고로슬래그 미분말은 높은 분말도로 고로슬래그 내부에 SiO2 성분이 시멘트 수화물과 포졸란 반응하여 C-S-H(Calcium silicate hydrate) 수화물을 생성하여 강도 증진, 염소이온 침투 저항성 확보에 효과적이므로, 경제성과 강도를 고려하여 사용 범위를 결정한다. 위와 같은 조성의 결합재 100중량부에 대하여, 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제는 0.25~2.00중량부 혼입하는 것이 기능성, 경제성에서 적당하다.The organic-inorganic composite functional additive for blast furnace slag cement according to the present invention can be advantageously applied to mixing blast furnace slag cement concrete. In mixing blast furnace slag cement concrete, it is appropriate to use 40 to 60% by weight of ordinary Portland cement and 40 to 60% by weight of blast furnace slag fine powder (powder size 3,500 to 5,500 cm 2 /g) as the binder. Here, the cement content is in a range that considers the initial strength and mid- to long-term strength, and the content of blast furnace slag powder is in a range that takes into account the initial and long-term strength along with the chlorine ion penetration resistance effect. In particular, blast furnace slag fine powder has a high fineness, and the SiO2 component inside the blast furnace slag undergoes a pozzolanic reaction with cement hydrate to produce CSH (Calcium silicate hydrate) hydrate, which is effective in improving strength and securing resistance to chloride ion penetration, so it is used considering economics and strength. Determine the scope. For 100 parts by weight of the binder of the above composition, it is appropriate for functionality and economic efficiency to mix 0.25 to 2.00 parts by weight of the organic-inorganic composite functional additive for blast furnace slag cement.

이하에서는 제조예 및 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 제조예 및 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be examined in detail based on manufacturing examples and test examples. However, the following manufacturing examples and test examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[제조예] 고로슬래그 시멘트용 기능성 첨가제 제조 [ Manufacture example] Manufacture of functional additives for blast furnace slag cement

1. 고로슬래그 시멘트용 첨가제 조성물1. Additive composition for blast furnace slag cement

고로슬래그 시멘트용 첨가제 조성물을 준비였다. 비교예1~3은 무기계 재료만으로 준비하였는데, 비교예1은 티오시안나트륨 20중량부를 단독으로 준비하고, 비교예2는 티오시안나트륨 20중량부, 인산칼슘 10중량부의 조성으로 준비하고, 비교예3은 티오시안나트륨 20중량부, 인산칼륨 10중량부, 황산나트륨 20중량부, 질산나트륨 10중량부의 조성으로 준비하였다. 실시예1,2는 무기계 재료에 유기계 재료를 더 추가하여 준비하였는데, 둘다 티오시안나트륨 20중량부, 인산칼륨 10중량부, 황산나트륨 20중량부, 질산나트륨 10중량부, 유기계 수축저감제 20중량부, 초임계 유동층 보일러 플라이애시 20중량부의 조성으로 준비하였다. An additive composition for blast furnace slag cement was prepared. Comparative Examples 1 to 3 were prepared using only inorganic materials. Comparative Example 1 was prepared solely with 20 parts by weight of sodium thiocyanate, and Comparative Example 2 was prepared with a composition of 20 parts by weight of sodium thiocyanate and 10 parts by weight of calcium phosphate, and Comparative Example 3 was prepared with a composition of 20 parts by weight of sodium thiocyanate, 10 parts by weight of potassium phosphate, 20 parts by weight of sodium sulfate, and 10 parts by weight of sodium nitrate. Examples 1 and 2 were prepared by adding organic materials to the inorganic materials, and both contained 20 parts by weight of sodium thiocyanate, 10 parts by weight of potassium phosphate, 20 parts by weight of sodium sulfate, 10 parts by weight of sodium nitrate, and 20 parts by weight of an organic shrinkage reducing agent. , a supercritical fluidized bed boiler was prepared with a composition of 20 parts by weight of fly ash.

2. 고로슬래그 시멘트용 첨가제 제조2. Manufacturing additives for blast furnace slag cement

쥰비한 조성물로 고로슬래그 시멘트용 첨가제를 제조하였다. 비교예1~3과 실시예1은 모든 조성재료를 단순 혼합하는 방법으로 제조한 반면, 실시예2은 본 발명에서 바람직하게 제안한 제조방법에 따라 제1,2혼합물로 각각 따로 준비한 후 혼합하는 방법으로 제조하였다. 특히 실시예2에서 제1혼합물은 분쇄믹서에 초임계 유동층 보일러 플라이애시 10중량부를 먼저 투입하고 이어 인산칼륨 10중량부를 투입한 다음 마지막으로 티오시안나트륨 20중량부를 투입하면서 분쇄혼합하여 준비하고, 제2혼합물은 혼합믹서에 초임계 유동층 보일러 플라이애시 10중량부를 먼저 투입하고 이어 황산나트륨 20중량부와 질산나트륨 10중량부를 투입한 다음 마지막으로 유기계 수축저감제를 투입하면서 혼합하여 준비하였으며, 이렇게 준비한 제1,2혼합물을 혼합믹서에서 혼합하는 방법으로 제조하였다.An additive for blast furnace slag cement was manufactured using a Junbihan composition. Comparative Examples 1 to 3 and Example 1 were prepared by simply mixing all the composition materials, while Example 2 was prepared separately as the first and second mixtures and then mixed according to the manufacturing method preferably proposed in the present invention. It was manufactured with . In particular, in Example 2, the first mixture was prepared by grinding and mixing by first adding 10 parts by weight of supercritical fluidized bed boiler fly ash to the grinding mixer, then adding 10 parts by weight of potassium phosphate, and finally adding 20 parts by weight of sodium thiocyanate. 2Mixture was prepared by first adding 10 parts by weight of supercritical fluidized bed boiler fly ash to the mixing mixer, followed by adding 20 parts by weight of sodium sulfate and 10 parts by weight of sodium nitrate, and finally adding an organic shrinkage reducing agent and mixing. ,2The mixture was prepared by mixing in a mixing mixer.

[시험예] 고로슬래그 시멘트 콘크리트 특성[Test example] Blast furnace slag cement concrete properties

1. 고로슬래그 시멘트 콘크리트 배합1. Blast furnace slag cement concrete mixing

[제조예]에 따라 제조한 기능성 첨가제를 이용하여 고로슬래그 시멘트 콘크리트를 아래 [표 1]과 같이 배합하였다. 보는 바와 같이 대조예1,2,3는 결합재의 종류를 달리한 배합으로, 제조예의 기능성 첨가제를 혼입하지 아니한 배합이다. 비교예1~4와 실시예1은 [제조예]의 기능성 첨가제를 혼입한 배합이다.Blast furnace slag cement concrete was mixed using the functional additives prepared according to [Manufacturing Example] as shown in [Table 1] below. As can be seen, Control Examples 1, 2, and 3 are blends using different types of binders and do not contain the functional additives of the manufacturing example. Comparative Examples 1 to 4 and Example 1 are formulations containing the functional additives of [Preparation Example].

콘크리트 배합(25-24-150)Concrete mix (25-24-150) 구분division W/BW/B S/aS/a WW 결합재
(kg/m3)
binder
(kg/m3)
골재
(kg/m3)
aggregate
(kg/m3)
PC계
고성능
혼화제
PC world
high performance
admixture
기능성
첨가제
(B×%)
Functional
additive
(B×%)
OPCOPC SPSP 합계Sum 잔골재fine aggregate 굵은골재coarse aggregate 대조예1Control example 1 48.048.0 49.049.0 168168 350350 -- 350350 883883 920920 2.802.80 -- 대조예2Control example 2 210210 140140 350350 878878 915915 -- 대조예3Control example 3 175175 175175 350350 876876 915915 -- 비교예1Comparative Example 1 175175 175175 350350 876876 915915 0.150.15 비교예2Comparative example 2 175175 175175 350350 876876 915915 0.200.20 비교예3Comparative Example 3 175175 175175 350350 876876 915915 0.350.35 실시예1Example 1 175175 175175 350350 876876 915915 0.500.50 실시예2Example 2 175175 175175 350350 876876 915915 0.500.50

2. 콘크리트 특성2. Concrete properties

[표 1]과 같이 배합한 콘크리트에 대하여, 압축강도(KS F 2405 콘크리트의 압축강도 시험방법), 길이변화(Data Rogger(TDS-530)법), 염소이온침투저항성( KS F 2711 전기전도도에 의한 콘크리트의 염소이온 침투저항성 시험방법), 블리딩(KS F 2414 콘크리트의 블리딩 시험방법) 시험을 실시하였다. 특히 압축강도는 시험체 제작 후 10.5~12.9 ℃ 범위의 항온항습기에서 24hr 경과 후 1일 조기강도를 측정하고, 이후에는 표준조건 양생(20℃±1℃)을 실시하여 측정하였다. 시험결과는 아래 [표 2]와 같이 나타냈다.For concrete mixed as shown in [Table 1], compressive strength (KS F 2405 Concrete Compressive Strength Test Method), length change (Data Rogger (TDS-530) method), and chlorine ion penetration resistance (KS F 2711 electrical conductivity) Test method for chlorine ion penetration resistance of concrete) and bleeding (KS F 2414 Bleeding Test Method for Concrete) tests were conducted. In particular, the compressive strength was measured by measuring the early strength 1 day after 24 hours in a constant temperature and humidity chamber at a temperature and humidity range of 10.5~12.9 ℃ after manufacturing the test specimen, and then curing under standard conditions (20℃±1℃). The test results are shown in [Table 2] below.

콘크리트 특성concrete properties 구분division 대조예1Control example 1 대조예2Control example 2 대조예3Control example 3 비교예1Comparative Example 1 비교예2Comparative example 2 비교예3Comparative Example 3 실시예1Example 1 실시예2Example 2 압축강도1)
(MPa)
Compressive strength 1)
(MPa)
1일1 day 3.13.1 2.42.4 1.91.9 2.72.7 3.03.0 3.33.3 3.03.0 3.33.3
3일3 days 21.121.1 10.810.8 8.08.0 10.710.7 11.011.0 11.711.7 11.911.9 12.412.4 7일7 days 33.233.2 26.226.2 23.723.7 27.927.9 28.228.2 29.929.9 34.834.8 35.635.6 28일28th 40.540.5 43.743.7 41.941.9 40.740.7 41.941.9 44.544.5 45.345.3 45.545.5 블리딩율 (%)Bleeding rate (%) 16.416.4 13.913.9 11.411.4 9.29.2 9.49.4 9.79.7 7.07.0 6.96.9 Slump(mm)Slump(mm) 180180 200200 220220 205205 215215 215215 220220 220220 Air(%)Air(%) 5.05.0 5.35.3 5.55.5 4.94.9 5.25.2 5.05.0 5.55.5 5.45.4 길이변화(×10-6)Length change (×10 -6 ) 28일28th -621-621 -714-714 -779-779 -697-697 -701-701 -656-656 -464-464 -451-451 염소이온 침투저항성(Coulombs)Chloride ion penetration resistance (Coulombs) 4,424.54,424.5 1,315.11,315.1 800.4800.4 857.2857.2 816.1816.1 900.2900.2 989.4989.4 997.2997.2

위의 [표 2]와 같이, 결합재를 시멘트 100%로 구성한 대조예1에 비해 시멘트의 40~50%를 고로슬래그 미분말로 치환 조성한 대조예2,3은 조기강도와 중기강도가 크게 낮아지고 길이변화도 저감하는 것으로 확인되나, 염소이온침투저항성과 유동성(슬럼프) 및 블리딩율은 향상되는 것으로 확인된다. 이와 같은 결과에 따라 시멘트와 고로슬래그 미분말의 2성분으로 조성한 결합재는 조기, 중기강도 발현과 길이변화 저감에 효과적인 기능성 첨가제가 필요하다고 할 수 있다.As shown in [Table 2] above, compared to Control Example 1 in which the binder was composed of 100% cement, Control Examples 2 and 3, in which 40-50% of the cement was replaced with fine blast furnace slag powder, had significantly lower early and mid-term strengths and shorter length. It is confirmed that the change is reduced, but the chlorine ion penetration resistance, fluidity (slump), and bleeding rate are confirmed to be improved. According to these results, it can be said that binders composed of two components of cement and blast furnace slag powder require functional additives that are effective in developing early and mid-term strength and reducing length change.

비교예1은 대조예3의 결합재에 기능성 첨가제로 티오시안나트륨과 초임계 유동층 보일러 플라이애시를 더 혼입한 예인데, 보는 바와 같이 대조예3보다 초기 재령의 압축강도와 길이변화는 다소 향상된 것으로 확인되나, 7일 이후 28일 압축강도에서는 오히려 저감하는 것으로 확인된다. 비교예2는 비교예1에서 다소 부족하였던 조기와 중·장기 압축강도 성능을 향상시키기 위하여 기능성 첨가제로 비교예1의 기능성 첨가제 외에 인산칼륨을 더 추가 혼입한 예인데, 비교예1보다 전반적으로 압축강도 성능이 소폭 상승하고 장기강도 측면에서 대조예3과 동등한 수준을 나타내는 것으로 확인된다. 비교예3은 부족한 장기강도를 더욱 보완하고자 비교예2의 기능성 첨가제 외에 고로슬래그 미분말의 자극을 위한 알칼리 활성화제를 더 추가 혼입한 예로, 보는 바와 같이 저온 환경의 조기강도가 비교예 1수준과 동등 또는 그 이상으로 확인되고, 장기강도 또한 44.5MP로 측정되어 대조예1~3은 물론 비교예 1,2보다도 우수하게 확인된다. 다만 비교예1,2,3는 전체적으로 시멘트만을 사용한 대조예1보다 길이변화가 증가된 결과를 나타냈다. Comparative Example 1 is an example in which sodium thiocyanate and supercritical fluidized bed boiler fly ash were added as functional additives to the binder of Control Example 3. As can be seen, the compressive strength and length change at an early age were confirmed to be somewhat improved compared to Control Example 3. However, it was confirmed that the compressive strength decreased after 7 days and 28 days. Comparative Example 2 is an example in which potassium phosphate was added as a functional additive in addition to the functional additive of Comparative Example 1 to improve the early, mid-, and long-term compressive strength performance, which was somewhat insufficient in Comparative Example 1. It is more compressive than Comparative Example 1. It was confirmed that the strength performance increased slightly and was at the same level as Control Example 3 in terms of long-term strength. Comparative Example 3 is an example in which an alkali activator for stimulation of blast furnace slag fine powder was added in addition to the functional additive of Comparative Example 2 to further compensate for the insufficient long-term strength. As can be seen, the early strength in a low-temperature environment is equivalent to the level of Comparative Example 1. It was confirmed to be or higher, and the long-term strength was also measured at 44.5MP, confirming that it was superior to Control Examples 1 and 3 as well as Comparative Examples 1 and 2. However, Comparative Examples 1, 2, and 3 showed an overall increase in length change compared to Control Example 1, which used only cement.

실시예1은 길이변화의 감소를 위해 비교예3의 기능성 첨가제 외에 유기계 수축저감제를 더 추가 혼입한 예인데, 보는 바와 같이 비교예3에 비해 조기, 중·장기 강도와, 블리딩율 감소, 길이변화 감소에서 우수한 효과가 확인된다. 염소이온침투저항성는 비교예3보다 소폭 상승하는 경향이었지만 1,000C 미만의 수준으로 매우 낮음의 침투성등급으로 확인된다. 실시예2는 실시예1의 기능성 첨가제를 본 발명에 따른 제조방법오로 제조하여 혼입한 예로서, 실시예1보다 증진된 특성(조기강도, 길이변화 등)가 확인된다. 실시예2는 실시예1보다 미세한 증진 효과를 나타냈지만, 시험조건보다 규모가 상당히 커지는 실제 현장에서는 실시예2에 따를 경우에 더욱 증진된 효과를 나타낸 것으로 예상된다.Example 1 is an example in which an organic shrinkage reducing agent was added in addition to the functional additive of Comparative Example 3 to reduce length change. As can be seen, compared to Comparative Example 3, early, mid- and long-term strength, bleeding rate reduction, and length were improved. Excellent effects are confirmed in reducing changes. The chlorine ion penetration resistance tended to increase slightly compared to Comparative Example 3, but was confirmed to be a very low permeability grade at a level of less than 1,000 C. Example 2 is an example in which the functional additive of Example 1 was manufactured and mixed using the manufacturing method according to the present invention, and improved properties (early strength, change in length, etc.) compared to Example 1 were confirmed. Although Example 2 showed a more subtle improvement effect than Example 1, it is expected that Example 2 would show a further improvement effect in actual sites where the scale is significantly larger than the test conditions.

위와 같은 결과에 따라, 본 발명의 기능성 첨가제(실시예1,2)는 고로슬래그 시멘트 콘크리트 배합에 적용되면, 저온 환경에서의 조기강도와 중·장기강도 확보, 블리딩율 저감으로 인한 소성수축 억제, 길이변화 저감으로 인한 균열 저감에 기여할 것으로 기대된다. 더불어 고로슬래그 베이스의 결합재로 인해 염소이온침투저항성 또한 우수할 것이다.According to the above results, when the functional additive of the present invention (Examples 1 and 2) is applied to the blast furnace slag cement concrete mix, it secures early strength and mid- and long-term strength in a low-temperature environment, suppresses plastic shrinkage by reducing the bleeding rate, It is expected to contribute to reducing cracks by reducing length change. In addition, the chlorine ion penetration resistance will also be excellent due to the blast furnace slag-based binder.

Claims (5)

티오시안나트륨(NaSCN) 10~20중량%; 인산칼륨(KH2PO4) 5~15중량%; 황산나트륨(Na2SO4) 15~30중량%; 질산나트륨(NaNO3) 5~15중량%; 유기계 수축저감제 25~35중량%; 초임계 유동층 보일러 플라이애시 10~40중량%;로 조성되되,
상기 초임계 유동층 보일러 플라이애시는, 초임계 유동층 보일러에서 산소를 주입하면서 석탄 연료를 초임계조건으로 연소하는 공정을 통해 배출되는 애시로서 5∼20중량%의 SO3와 20∼30중량%의 CaO를 함유하면서 분말도가 6,000~9,000cm2/g인 것이며,
상기 유기계 수축저감제는, 플레이크(flake) 형태의 펜틸글리콜(Fentyl Glycol)인 것을 특징으로 하는 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 조성물.
Sodium thiocyanate (NaSCN) 10-20% by weight; Potassium phosphate (KH 2 PO 4 ) 5-15% by weight; 15 to 30% by weight of sodium sulfate (Na 2 SO 4 ); Sodium nitrate (NaNO 3 ) 5-15% by weight; 25 to 35% by weight of organic shrinkage reducing agent; Supercritical fluidized bed boiler is composed of 10 to 40% by weight of fly ash;
The supercritical fluidized bed boiler fly ash is ash discharged through a process of burning coal fuel under supercritical conditions while injecting oxygen in a supercritical fluidized bed boiler, and contains 5 to 20% by weight of SO 3 and 20 to 30% by weight of CaO. It contains and has a fineness of 6,000 to 9,000 cm2/g,
The organic-inorganic composite functional additive composition for blast furnace slag cement, characterized in that the organic shrinkage reducing agent is pentyl glycol in the form of flakes.
삭제delete 제1항에 따른 조성물로 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제를 제조하는 방법으로,
초임계 유동층 보일러 플라이애시의 일부, 인산칼륨, 티오시안나트륨을 순서대로 분쇄믹서에 투입하면서 분쇄혼합하는 것으로 제1혼합물을 준비하는 한편, 초임계 유동층 보일러 플라이애시의 나머지, 황산나트륨과 질산나트륨, 유기계 수축저감제를 순서대로 믹서에 투입하면서 혼합하는 것으로 제2혼합물을 준비한 다음, 제1혼합물과 제2혼합물을 혼합믹서에 투입하여 혼합하는 것을 특징으로 하는 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제의 제조방법.
A method of producing an organic-inorganic composite functional additive for blast furnace slag cement with the composition according to paragraph 1,
The first mixture is prepared by grinding and mixing a portion of the supercritical fluidized bed boiler fly ash, potassium phosphate, and sodium thiocyanate in that order into a grinding mixer, while the remainder of the supercritical fluidized bed boiler fly ash, sodium sulfate, sodium nitrate, and organic The second mixture is prepared by mixing the shrinkage reducing agent in the mixer in order, and then the first mixture and the second mixture are mixed by adding them to the mixing mixer. Manufacturing method.
제3항에서,
상기 제2혼합물은 분쇄믹서에서 분쇄혼합하여 준비하면서 이루어지는 것을 특징으로 하는 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제의 제조방법.
In paragraph 3,
A method for producing an organic-inorganic composite functional additive for blast furnace slag cement, characterized in that the second mixture is prepared by grinding and mixing in a grinding mixer.
제3항에 따라 제조된 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제를 이용한 콘크리트 배합에서
시멘트 40~60중량%와 고로슬래그 미분말 40~60중량%로 조성된 결합재 100중량부에, 고로슬래그 시멘트용 유·무기 복합 기능성 첨가제 0.25~2.00중량부 혼입하여 배합하는 것을 특징으로 하는 고로슬래그 시멘트 콘크리트.
In concrete mixing using the organic/inorganic complex functional additive for blast furnace slag cement manufactured in accordance with paragraph 3,
Blast furnace slag cement, characterized in that 0.25 to 2.00 parts by weight of an organic-inorganic complex functional additive for blast furnace slag cement is mixed with 100 parts by weight of a binder composed of 40 to 60% by weight of cement and 40 to 60% by weight of blast furnace slag fine powder. concrete.
KR1020210080355A 2021-06-21 2021-06-21 Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same KR102597189B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210080355A KR102597189B1 (en) 2021-06-21 2021-06-21 Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210080355A KR102597189B1 (en) 2021-06-21 2021-06-21 Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same

Publications (2)

Publication Number Publication Date
KR20220169802A KR20220169802A (en) 2022-12-28
KR102597189B1 true KR102597189B1 (en) 2023-11-02

Family

ID=84538310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210080355A KR102597189B1 (en) 2021-06-21 2021-06-21 Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same

Country Status (1)

Country Link
KR (1) KR102597189B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102551892B1 (en) * 2022-11-30 2023-07-06 주식회사 위드엠텍 Additive for Strength Development of Type Ⅰ Slag Cement and Slag Cement Concrete Using the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946184B1 (en) * 2009-08-31 2010-03-08 양지콘크리트(주) Composite functional water permeability plat process and method of manufacturing the same
KR102011335B1 (en) * 2018-10-04 2019-08-16 주식회사 대우건설 Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar
KR102024579B1 (en) * 2019-05-23 2019-09-24 주식회사 위드엠텍 Eco-friendly and High Early Strength Solidifying Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318955B1 (en) 2012-01-30 2013-10-16 주식회사 포스코건설 High Durable Concrete Containing High Volume Slag
KR101244825B1 (en) 2012-09-13 2013-03-18 신성종합건축사사무소(주) High volume blast furnace slag concrete composition using waste ash and recycled aggregate
KR101396859B1 (en) * 2012-11-08 2014-05-30 주식회사 케미콘 Admixture composition for cement revealing early strength, and Cement comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946184B1 (en) * 2009-08-31 2010-03-08 양지콘크리트(주) Composite functional water permeability plat process and method of manufacturing the same
KR102011335B1 (en) * 2018-10-04 2019-08-16 주식회사 대우건설 Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar
KR102024579B1 (en) * 2019-05-23 2019-09-24 주식회사 위드엠텍 Eco-friendly and High Early Strength Solidifying Composition Using Supercritical Fluidized Bed Combustion Boiler Flyash

Also Published As

Publication number Publication date
KR20220169802A (en) 2022-12-28

Similar Documents

Publication Publication Date Title
KR101121724B1 (en) A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it
KR101543307B1 (en) Method of manufacture and Environment-Friendly Quarry Landfill filler of occurred in the circulating fluidized bed boiler using gas desulfurization gypsum
KR102310854B1 (en) Concrete manufactured with a salt-resistance enhancing composition capable of self-repairing concrete cracks, and a method for manufacturing concrete structures with improved salt-resistance
KR101201924B1 (en) High Functional Binder Composition for Carbon Dioxide Reduction Displaying Properties of Early Strength
KR102597189B1 (en) Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same
KR101042817B1 (en) Compound for concrete ionization & environmental-law carbon concrete composition containing the same
KR102662384B1 (en) Flowable concrete composition with excellent workability and resistance to material separation
KR101834539B1 (en) A composition of low-shrinkage low-carbon green cement comprising carbon-mineralized fly ash and early strength expansive admixture and concrete applied thereby
KR20130113190A (en) Ecofriendly cement binder composite
KR101821647B1 (en) Green cement composite and making method thereof
KR101380326B1 (en) Solidified agent composition
KR101973967B1 (en) An inorganic binder composition capable of improving initial strength and preventing initial frost resistance
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
KR102513686B1 (en) Additive for Durable Slag Cement Concrete, and Durable Slag Cement Concrete Contained the Same
KR102513692B1 (en) Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive
KR102229835B1 (en) A mixture of liquid and powder components that stimulate the latent hydraulicity of blast furnace slag cement, and blast furnace slag cement containing the same
KR102551892B1 (en) Additive for Strength Development of Type Ⅰ Slag Cement and Slag Cement Concrete Using the Same
KR20190129449A (en) Hybrid Hydration Heat Reducer and Concrete Composition Using the Same
CN108774016A (en) Double source swelling agent and preparation method thereof for concrete
KR101183535B1 (en) Drying shrinkage-reducing type inorganic composite having high pozzolanic reactivity and nano filler effect
KR102199929B1 (en) Shotcrete composition using cement composition for increased durability
KR102146455B1 (en) Blast furnace slag-based compositon and hardened product thereof
KR101409784B1 (en) Admixture for concrete comprising high calcium ash and Fly-ash
KR102119471B1 (en) Inorganic binder composition capable of promoting heat generation and resistance to cold
KR20120066145A (en) Concrete composition containing large amounts of admixture

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant