KR102199929B1 - Shotcrete composition using cement composition for increased durability - Google Patents
Shotcrete composition using cement composition for increased durability Download PDFInfo
- Publication number
- KR102199929B1 KR102199929B1 KR1020190145542A KR20190145542A KR102199929B1 KR 102199929 B1 KR102199929 B1 KR 102199929B1 KR 1020190145542 A KR1020190145542 A KR 1020190145542A KR 20190145542 A KR20190145542 A KR 20190145542A KR 102199929 B1 KR102199929 B1 KR 102199929B1
- Authority
- KR
- South Korea
- Prior art keywords
- opc
- cement
- reaction
- amount
- composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/14—Waste materials; Refuse from metallurgical processes
- C04B18/141—Slags
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/26—Carbonates
- C04B14/28—Carbonates of calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2201/00—Mortars, concrete or artificial stone characterised by specific physical values
- C04B2201/50—Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
본 발명은 관입저항, 압축강도 및 내구성을 전반적으로 향상시킬 수 있는 시멘트 조성물 및 이를 이용한 숏크리트 조성물에 관한 것이다.The present invention relates to a cement composition capable of improving overall penetration resistance, compressive strength and durability, and a shotcrete composition using the same.
숏크리트(shotcrete, sprayed concrete)는 컴프레셔 혹은 펌프를 이용하여 노즐 위치까지 호스 속으로 운반한 콘크리트를 압축공기에 의해 시공면에 뿜어서 만든 콘크리트이다.Shotcrete (sprayed concrete) is concrete made by spraying the concrete conveyed into the hose to the nozzle position by using a compressor or pump on the construction surface with compressed air.
숏크리트의 성능은 토출배합(mix proportion at the outlet of a nozzle)을 통해 설정할 수 있으며, 터널 및 지하공간, 법면보호, 보수·보강 등 적용대상 구조물의 목적 및 용도에 적합하도록 소요의 뿜어붙이기 성능(리바운드량)과 숏크리트의 초기 및 장기강도, 내구성능을 설정하여야 한다. The performance of shotcrete can be set through a mix proportion at the outlet of a nozzle, and the required spraying performance to suit the purpose and use of the structure to be applied, such as tunnel and underground space, slope protection, repair and reinforcement, etc. Rebound), and the initial and long-term strength and durability of shotcrete must be set.
종래의 숏크리트는 KS L 5201에 적합한 보통포틀랜드 시멘트를 기반으로, 소요 성능 충족을 위한 급결제(accelerator), 공기연행제, 감수제 등의 혼화제를 적용하였으며, 상기 급결제 등의 성분과 양을 조정하여 숏크리트의 물성을 제어하거나, 급결성 향상을 위해 시멘트의 분말도를 높이면서 SO3의 함량을 증가시키고, 리바운드량 저감을 위해 강섬유를 혼입하는 등의 기술이 있었다. Conventional shotcrete is based on ordinary Portland cement suitable for KS L 5201, and admixtures such as accelerators, air entrainers, and water reducing agents are applied to meet the required performance, and the ingredients and amounts of the quick-setting agents are adjusted. There have been techniques such as controlling the physical properties of shotcrete or increasing the powderiness of cement to improve the rapid setting, increasing the content of SO 3 , and mixing steel fibers to reduce the amount of rebound.
다만, 시멘트의 성분에 따른 수화물 및 공극분포와 이에 따른 숏크리트의 성능 변화에 관한 종합적인 연구와 이를 통해 숏크리트의 성능을 전반적으로 향상시킬 수 있는 시멘트를 도출하려는 시도는 부족하였다.However, a comprehensive study on the distribution of hydrates and pores according to the cement composition and the performance change of shotcrete accordingly, and attempts to derive a cement that can improve the overall performance of shotcrete through this, were insufficient.
시멘트의 성분에 따른 수화물 및 공극분포와 이에 따른 숏크리트의 성능 변화에 관한 종합적인 연구·실험 및 분석을 통해 내구성을 전반적으로 향상시킬 수 있는 시멘트 및 숏크리트 조성물을 제공함에 그 목적이 있다. Its purpose is to provide a cement and shotcrete composition that can improve overall durability through a comprehensive study, experiment, and analysis on the distribution of hydrates and pores according to the components of cement and the resulting change in the performance of shotcrete.
전술한 과제 해결을 위해 본 발명은 분말도 3,200~3,500㎠/g이고 SO3의 함량이 2.2~2.8wt%인 보통포틀랜드 시멘트 100wt%에서, 15~25wt%를 고로슬래그 미분말로 치환하고, 5~10wt%를 분말도 6,000~9,000㎠/g인 석회석 미분말로 치환한 것을 특징으로 하는 내구성 증진을 위한 시멘트 조성물을 제공한다.In order to solve the above-described problems, the present invention replaces 15 to 25 wt% with blast furnace slag fine powder in 100 wt% of ordinary Portland cement having a powder degree of 3,200 to 3,500
삭제delete
삭제delete
또한, 본 발명은 상기 시멘트 조성물에 물-시멘트비 38~53이 되도록 물을 혼합하고, Al2O3 28~34wt% 및 CaO 40~48wt%가 함유된 급결제가 상기 시멘트 조성물 대비 4~7wt% 첨가된 것을 특징으로 하는 숏크리트 조성물을 함께 제공한다.In addition, in the present invention, water is mixed with the cement composition to have a water-cement ratio of 38 to 53, and a rapid setting agent containing 28 to 34 wt% of Al 2 O 3 and 40 to 48 wt% of CaO is 4 to 7 wt% compared to the cement composition. It provides a shotcrete composition, characterized in that added together.
또한, 본 발명은 재령 1일까지의 반응 초기에 하기 [화학식 1]의 반응과 함께 [화학식 4]의 반응이 진행되어, 미수화 알루미네이트 상이 감소됨으로써, 재령 1일 이후 재령 7일까지의 반응 중기에 하기 [화학식 2]의 반응이 억제되는 것을 특징으로 하는 숏크리트 조성물을 함께 제공한다.In addition, in the present invention, the reaction of [Chemical Formula 4] proceeds with the reaction of [Chemical Formula 1] at the beginning of the reaction until 1 day of age, and the unhydrated aluminate phase decreases, so that the reaction from 1 day to 7 days of age It provides a shotcrete composition, characterized in that the reaction of the following [Formula 2] is suppressed in the middle period.
[화학식 1][Formula 1]
C3A or C12A7 + C$H2 + H → C6A$3H32 C 3 A or C 12 A 7 + C$H 2 + H → C 6 A$ 3 H 32
C : CaO, A : Al2O3, H : H2O, $ : SO3 C: CaO, A: Al 2 O 3 , H: H 2 O, $: SO 3
[화학식 2][Formula 2]
C3A or C12A7 + C6A$3H32 → C4A$H12 (monosulphate)C 3 A or C 12 A 7 + C 6 A$ 3 H 32 → C 4 A$H 12 (monosulphate)
[화학식 4][Formula 4]
C3A or C12A7 + C·C + H → C4ACH11 (monocarbonate)C 3 A or C 12 A 7 + C· C + H → C 4 ACH 11 (monocarbonate)
C : CO2 C : CO 2
전술한 본 발명에 따르면 시멘트 개선에 따라 관입저항, 재령별 압축강도 및 내구성이 전반적으로 우수한 숏크리트를 얻을 수 있다.According to the present invention described above, it is possible to obtain shotcrete having excellent penetration resistance, compressive strength for each age, and durability overall according to the improvement of cement.
[도 1]은 OPC, SP, LSF 혼합량과 관입저항 및 압축강도간 상관관계를 나타낸 산점도 행렬 그래프이다.
[도 2]는 Minitab 프로그램의 혼합물설계법을 이용한 혼합재 첨가율 최적화 결과를 나타낸 그래프이다.
[도 3]은 OPC 분말도 및 SO3 함량과 관입저항 및 압축강도간 상관관계를 나타낸 산점도 행렬 그래프이다.
[도 4]는 Minitab 프로그램의 반응표면설계법을 이용한 OPC 분말도 및 SO3 함량 최적화 결과를 나타낸 그래프이다.
[도 5]는 혼합재 치환율에 따른 재령별 XRD 패턴 변화를 나타낸 것이다.
[도 6]은 혼합재 치환율에 따른 재령별 결정형 수화물(AFt, AFm, CH)량 변화를 나타낸 그래프이다.
[도 7]은 OPC 분말도 차이에 따른 재령별 XRD 패턴 변화를 나타낸 것이다.
[도 8]은 OPC SO3 함량에 따른 재령별 XRD 패턴 변화를 나타낸 것이다.
[도 9]는 OPC 분말도 및 SO3 함량에 따른 재령별 결정형 수화물(AFt, AFm, CH)량 변화를 나타낸 그래프이다.
[도 10]은 혼합재 치환율에 따른 재령 28일 페이스트의 공극분포 분석결과를 나타낸 그래프이다.
[도 11]은 OPC 분말도 및 SO3 함량에 따른 재령 28일 페이스트의 공극분포 분석결과를 나타낸 그래프이다.
[도 12]는 초기 수화물량과 관입저항, 1일 압축강도간의 상관관계를 나타낸 산점도 행렬 그래프이다.
[도 13]은 재령 7일, 28일의 수화물량과 재령 28일 압축강도간의 상관관계를 나타낸 산점도 행렬 그래프이다.
[도 14]는 시험체별 염화물 침투저항성 시험 결과를 비교 촬영한 사진이다.
[도 15]는 시험체별 염소이온확산계수를 나타낸 그래프이다.
[도 16]은 시험체별 탄산화 침투저항성 시험 결과를 비교 촬영한 사진이다.
[도 17]은 시험체별 탄산화 깊이(8주차)를 나타낸 그래프이다.
[도 18]은 시험체별 동결융해 시험결과를 비교 촬영한 사진이다.
[도 19]는 시험체별 상대동탄성계수를 나타낸 그래프이다.
[도 20]은 시험체별 백화현상 발생 결과를 비교 촬영한 사진이다.
[도 21]은 본 발명에 적용되는 급결제의 제조 공정을 도시한 것이다.[Fig. 1] is a scatter plot matrix graph showing the correlation between the amount of OPC, SP, and LSF mixed, penetration resistance, and compressive strength.
[Fig. 2] is a graph showing the result of optimizing the mixing material addition rate using the mixture design method of the Minitab program.
[Fig. 3] is a scatter plot matrix graph showing the correlation between OPC powderiness and SO 3 content, penetration resistance, and compressive strength.
[Fig. 4] is a graph showing the results of optimization of OPC powder and SO 3 content using the response surface design method of the Minitab program.
[Fig. 5] shows the XRD pattern change for each age according to the mixing material replacement rate.
[Figure 6] is a graph showing the change in the amount of crystalline hydrates (AFt, AFm, CH) by age according to the mixing material substitution rate.
[Fig. 7] shows the XRD pattern change according to age according to the difference in OPC powder.
[Fig. 8] shows the change in the XRD pattern of each age according to the OPC SO 3 content.
[Fig. 9] is a graph showing the change in the amount of crystalline hydrates (AFt, AFm, CH) according to age according to OPC powder and SO 3 content.
[Fig. 10] is a graph showing the results of analyzing the pore distribution of the paste at 28 days of age according to the mixing material substitution rate.
[Fig. 11] is a graph showing the results of analysis of pore distribution of a paste at 28 days of age according to OPC powder and SO 3 content.
[Fig. 12] is a scatter plot matrix graph showing the correlation between the initial hydrate amount, penetration resistance, and daily compressive strength.
[Fig. 13] is a scatter plot matrix graph showing the correlation between the amount of luggage at the age of 7 and 28 and the compressive strength at the age of 28.
[Fig. 14] is a photograph taken by comparing the test results of chloride penetration resistance by test body.
[Fig. 15] is a graph showing the chlorine ion diffusion coefficient for each test body.
[Fig. 16] is a photograph taken for comparison of the carbonation penetration resistance test results for each test body.
[Fig. 17] is a graph showing the carbonation depth for each test body (week 8).
[Fig. 18] is a picture taken for comparison of freeze-thaw test results for each test body.
[Fig. 19] is a graph showing the relative dynamic modulus of elasticity for each test body.
[Fig. 20] is a photograph taken by comparing the result of whitening phenomenon by test body.
[Fig. 21] shows the manufacturing process of the rapid setting agent applied to the present invention.
본 발명은 분말도 3,200~3,500㎠/g이고 SO3의 함량이 2.2~2.8wt%인 보통포틀랜드 시멘트 100wt%에서, 15~25wt%를 고로슬래그 미분말로 치환하고, 5~10wt%를 분말도 6,000~9,000㎠/g인 석회석 미분말로 치환한 것을 특징으로 하는 내구성 증진을 위한 시멘트 조성물을 제공한다.In the present invention, in 100wt% of ordinary Portland cement with a powdery degree of 3,200~3,500㎠/g and a content of SO 3 of 2.2~2.8wt%, 15~25wt% is substituted with blast furnace slag fine powder, and 5~10wt% is powdery 6,000 It provides a cement composition for improving durability, characterized in that it is replaced with a fine limestone powder of ~9,000㎠/g.
삭제delete
삭제delete
위와 같은 본 발명 시멘트 조성물은 시멘트 소성공정에서 발생되는 대기오염물질(CO2, NOx, SOx 등)이 보통포틀랜드 시멘트에 대비하여, 20% 이내로 감소된다.In the cement composition of the present invention as described above, air pollutants (CO 2 , NOx, SOx, etc.) generated in the cement sintering process are reduced to within 20% compared to ordinary Portland cement.
또한, 본 발명은 상기 시멘트 조성물에 물-시멘트비 38~53이 되도록 물을 혼합하고, Al2O3 28~34wt% 및 CaO 40~48wt%가 함유된 급결제가 상기 시멘트 조성물 대비 4~7wt% 첨가된 것을 특징으로 하는 숏크리트 조성물 함께 제공한다.In addition, in the present invention, water is mixed with the cement composition to have a water-cement ratio of 38 to 53, and a rapid setting agent containing 28 to 34 wt% of Al 2 O 3 and 40 to 48 wt% of CaO is 4 to 7 wt% compared to the cement composition. It is provided with a shotcrete composition, characterized in that added.
또한, 본 발명은 재령 1일까지의 반응 초기에 하기 [화학식 1]의 반응과 함께 [화학식 4]의 반응이 진행되어, 미수화 알루미네이트 상이 감소됨으로써, 재령 1일 이후 재령 7일까지의 반응 중기에 하기 [화학식 2]의 반응이 억제되는 것을 특징으로 하는 숏크리트 조성물을 함께 제공한다.In addition, in the present invention, the reaction of [Chemical Formula 4] proceeds with the reaction of [Chemical Formula 1] at the beginning of the reaction until 1 day of age, and the unhydrated aluminate phase decreases, so that the reaction from 1 day to 7 days of age It provides a shotcrete composition, characterized in that the reaction of the following [Formula 2] is suppressed in the middle period.
[화학식 1][Formula 1]
C3A or C12A7 + C$H2 + H → C6A$3H32 C 3 A or C 12 A 7 + C$H 2 + H → C 6 A$ 3 H 32
C : CaO, A : Al2O3, H : H2O, $ : SO3 C: CaO, A: Al 2 O 3 , H: H 2 O, $: SO 3
[화학식 2][Formula 2]
C3A or C12A7 + C6A$3H32 → C4A$H12 (monosulphate)C 3 A or C 12 A 7 + C 6 A$ 3 H 32 → C 4 A$H 12 (monosulphate)
[화학식 4][Formula 4]
C3A or C12A7 + C·C + H → C4ACH11 (monocarbonate)C 3 A or C 12 A 7 + C· C + H → C 4 ACH 11 (monocarbonate)
C : CO2 C : CO 2
위와 같은 본 발명은 숏크리트의 결합재로 적용하기 위한 시멘트의 성분별 모르타르 성능 비교, 페이스트 수화반응 분석 결과 및 내구성 시험 결과를 토대로 도출된 것이다. 이하에서는 실험 및 분석 과정을 통해 본 발명의 도출과정과 내용을 상세히 설명하기로 한다. The present invention as described above is derived based on the mortar performance comparison by component of cement for application as a binder of shotcrete, paste hydration reaction analysis results, and durability test results. Hereinafter, the derivation process and contents of the present invention will be described in detail through an experiment and analysis process.
Ⅰ. 숏크리트의 응결 및 압축강도 시험Ⅰ. Test of condensation and compressive strength of shotcrete
1. 시험재료 및 방법1. Test materials and methods
(1) 시험재료(1) Test material
결합재로 성능 시험을 위해서는, 혼합재 첨가에 따른 영향을 평가하기 위해 혼합재가 첨가되지 않은 1종보통포틀랜드시멘트(ordinary Portland cement, 이하 'OPC') 및 OPC에 고로슬래그 미분말(slag powder, 이하 'SP')과 석회석 미분말(limestone powder, 이하 'LSP')를 일정 비율 치환 혼합한 것을 비교 검토하였다. 또한, OPC의 분말도 및 SO3 함량에 따른 영향을 평가하기 위해, OPC를 분말도에 따라 3수준(3,200cm2/g, 3,500cm2/g, 3,900cm2/g), SO3 함량에 따라 3수준(1.6wt%, 2.2wt%, 2.8wt%)의 시료를 제조하였다. 아래 [표 1]은 시험에 사용한 시료의 내용 및 시료명을 정리한 것이다.For the performance test as a binder, in order to evaluate the effect of the addition of the mixed material, ordinary Portland cement (ordinary Portland cement, hereinafter referred to as'OPC') and blast furnace slag powder (hereinafter referred to as'SP') to which the mixed material was not added. ) And limestone powder (hereinafter referred to as'LSP') were mixed in a certain ratio. In addition, in order to evaluate the effect of OPC's fineness and SO 3 content, OPC was applied to 3 levels (3,200cm 2 /g, 3,500cm 2 /g, 3,900cm 2 /g) and SO 3 content according to the fineness. As a result, samples of 3 levels (1.6 wt%, 2.2 wt%, 2.8 wt%) were prepared. [Table 1] below summarizes the contents and names of samples used in the test.
SP20
SP10
LSP10
LSP5
SP20LSP5
OPC
SP20
SP10
LSP10
LSP5
SP20LSP5
OPC:SP = 80:20
OPC:SP = 80:10
OPC:LSP = 90:10
OPC:SP = 95:5
OPC:SP:LSP = 75:20:5
OPC 100wt%
OPC:SP = 80:20
OPC:SP = 80:10
OPC:LSP = 90:10
OPC:SP = 95:5
OPC:SP:LSP = 75:20:5
B3200S2.2
B3200S2.8
B3500S1.6
B3500S2.2
B3500S2.8
B3900S1.6
B3900S2.2
B3900S2.8B3200S1.6
B3200S2.2
B3200S2.8
B3500S1.6
B3500S2.2
B3500S2.8
B3900S1.6
B3900S2.2
B3900S2.8
Blaine 3,200, SO3 2.2wt%
Blaine 3,200, SO3 2.8wt%
Blaine 3,500, SO3 1.6wt%
Blaine 3,500, SO3 2.2wt%
Blaine 3,500, SO3 2.8wt%
Blaine 3,900, SO3 1.6wt%
Blaine 3,900, SO3 2.2wt%
Blaine 3,900, SO3 2.8wt%Blaine 3,200, SO 3 1.6wt%
Blaine 3,200, SO 3 2.2wt%
Blaine 3,200, SO 3 2.8wt%
Blaine 3,500, SO 3 1.6wt%
Blaine 3,500, SO 3 2.2wt%
Blaine 3,500, SO 3 2.8wt%
Blaine 3,900, SO 3 1.6wt%
Blaine 3,900, SO 3 2.2wt%
Blaine 3,900, SO 3 2.8wt%
아래 [표 2]는 시험에 사용된 결합재의 화학성분을 분석한 것이다.[Table 2] below is an analysis of the chemical composition of the binder used in the test.
(cm2/g)Fineness
(cm 2 /g)
(2) 시험방법(2) Test method
아래 [표 3]은 시험항목 및 방법을 정리한 것이다. [표 3]에 기재된 바와 같이 배합된 결합재를 W/B 50% 페이스트로 제조(숏크리트 조성물의 적정 W/B 범위는 38~53%)한 후 급결제(이하 'SC')를 결합재 대비 5% 첨가함으로써 재령별 수화반응물과 시멘트 페이스트의 공극을 분석하였다.[Table 3] below summarizes the test items and methods. As described in [Table 3], the blended binder is prepared as a W/
성능 평가I. Mixed material (SP, LSP) by replacement rate
Performance evaluation
(2) 몰탈 압축강도 (KS F 2782 숏크리트용 급결제)
(3) 시멘트 수화물 분석
- 배합된 결합재를 W/B 50% 페이스트로 제조한 후 급결제를 5% 첨가하여 수화반응 시작. 급결제 첨가시점을 기준으로 1h, 8h, 1d, 7d, 28d간 기중양생함. 일정재령 경과시 각 시료를 분쇄하고, 아세톤에 침지하여 24시간 유지후 건조 및 재분쇄하여 수화반응을 정지하고, XRD, TG-DTA를 이용해 수화반응물을 정성/정량 분석함.
- XRD 측정조건 : 40kV, 250mA, 5~65°, 2.4°/min
- TG-DTA 측정조건 : Air gas, 20℃/min, 40~1,100℃
(4) 시멘트 페이스트 공극분포 분석
- 배합된 결합재를 W/B 50% 페이스트로 제조한 후 급결제를 5% 첨가하여 수화반응 시작. 급결제 첨가시점을 기준으로 28d간 기중양생후 MIP(Mercury intrusion porosimetry)를 이용해 공극크기분포 분석(1) Condensation (penetration resistance, KS F 2782 rapid setting agent for shotcrete)
(2) Mortar compressive strength (KS F 2782 quick setting agent for shotcrete)
(3) cement hydrate analysis
-After preparing the blended binder into a 50% W/B paste, 5% of the rapid setting agent was added to start the hydration reaction. Air curing for 1h, 8h, 1d, 7d, 28d from the time of addition of the rapid setting agent. After a certain age, each sample is pulverized, immersed in acetone, maintained for 24 hours, dried and re-ground to stop the hydration reaction, and qualitative/quantitative analysis of the hydration reaction product using XRD and TG-DTA.
-XRD measurement conditions: 40kV, 250mA, 5∼65°, 2.4°/min
-TG-DTA measurement conditions: Air gas, 20℃/min, 40~1,100℃
(4) Cement paste pore distribution analysis
-After preparing the blended binder into a 50% W/B paste, 5% of the rapid setting agent was added to start the hydration reaction. Analysis of pore size distribution using MIP (Mercury intrusion porosimetry) after air curing for 28d from the point of addition of the rapid setting agent
성능 평가II. By OPC properties (powder, SO 3 content)
Performance evaluation
상기 급결제(SC)는 [도 21]에 도시된 바와 같이, 생석회와 보크사이트를 용융하는 전기로에서 생성되는 비정질칼슘알루미네이트(12CaO.7Al2O3)를 수냉시킨 후 분쇄하고 첨가물을 혼합하여 제조한다.
결과적으로 상기 급결제에는 Al2O3 28~34wt% 및 CaO 40~48wt%가 함유되며, 본 발명이 제공하는 시멘트 조성물 대비 4~7wt% 첨가되어 수화반응상의 특징이 발현된다. 상기 급결제에 Al2O3가 28wt% 미만일 경우 본 발명 시멘트 조성물의 응결특성이 저하되며, 35wt% 이상일 경우 응결은 빠르나 압축강도의 증진은 방해하게 된다. 상기 급결제에 CaO가 40wt%이하인 경우에는 본 발명 시멘트 조성물의 압축강도 증진율이 낮아지고 48wt% 이상에서는 응결특성이 저하되는 현상이 나타난다. 수화반응상의 특징에 관한 상세한 사항은 후술한다.As shown in [Fig. 21], the rapid setting agent (SC) is water-cooled, pulverized, and mixed with additives to produce amorphous calcium aluminate (12CaO.7Al 2 O 3 ) generated in an electric furnace for melting quicklime and bauxite. To manufacture.
As a result, the rapid setting agent contains 28 to 34 wt% of Al 2 O 3 and 40 to 48 wt% of CaO, and 4 to 7 wt% of the cement composition provided by the present invention is added to express the characteristics of the hydration reaction. If Al 2 O 3 is less than 28wt% in the rapid setting agent, the setting characteristics of the cement composition of the present invention are deteriorated, and if it is more than 35wt%, the setting is rapid, but the increase in compressive strength is hindered. When CaO is 40wt% or less in the quick-setting agent, the compressive strength enhancement rate of the cement composition of the present invention is lowered, and when it is 48wt% or more, the setting properties are deteriorated. Details on the characteristics of the hydration reaction will be described later.
삭제delete
삭제delete
2. 시험결과2. Test result
(1) 관입저항 및 압축강도(1) Penetration resistance and compressive strength
1) 혼합재 첨가율별 압축강도1) Compressive strength by mixing material addition rate
아래 [표 5]는 OPC, SP 및 LSP의 혼합비율별(중량비) 관입저항 및 압축강도 시험결과를 정리한 것이며, [도 1]은 이를 산점도 행렬로 나타낸 것이다. 아래 [표 5]에서는 SP 치환율이 10~20wt%이고, LSP 치환율이 3~7wt%일 때 OPC 사용시에 비해 관입저항(1분, 3분, 7분) 및 재령별 압축강도(1일, 7일, 28일)가 모두 항상되었다. [Table 5] below summarizes the test results of penetration resistance and compressive strength by mixing ratio (weight ratio) of OPC, SP and LSP, and [Fig. 1] shows this as a scatter plot matrix. In [Table 5] below, when the SP replacement rate is 10~20wt% and the LSP replacement rate is 3~7wt%, penetration resistance (1min, 3min, 7min) and compressive strength by age (1 day, 7 min) compared to when using OPC Days, 28th) were all always.
2) OPC 분말도 및 SO2) OPC fineness and SO 33 함량별 압축강도 Compressive strength by content
[도 2]는 위의 시험결과를 기반으로, Minitab® 프로그램의 혼합물설계법을 이용해 1,5분 관입저항 및 1,28일 압축강도를 극대화하는 배합을 산정한 것으로, 결합재 중 SP 15~25wt%, LSP 5~10wt% 범위 내에서 혼합될 때 OPC를 100wt%를 사용한 경우보다 관입저항 및 압축강도 성능을 크게 향상시키는 것으로 분석되었다.[Fig. 2] is based on the above test results, using the mixture design method of the Minitab ® program to calculate the formulation that maximizes penetration resistance for 1,5 minutes and compressive strength for 1,28 days, and 15~25wt% of SP among binders When mixed within the range of 5 to 10 wt% LSP, it was analyzed that the penetration resistance and compressive strength performance were significantly improved compared to the case of using 100 wt% of OPC.
아래 [표 6]은 OPC의 분말도 및 SO3 함량별 관입저항 및 압축강도 시험결과를 나타내며, [도 3]은 이를 산점도 행렬로 나타낸 것이다. SO3 함량이 동일한 조건에서는 분말도 3,500㎡/g 내외 수준에서 관입저항 및 압축강도가 가장 뛰어나고, 3,900㎡/g 수준에서는 향상효과가 없거나 소폭 감소하는 것으로 분석되었으며, OPC의 SO3 함량이 증가할수록 관입저항 및 압축강도가 향상되었다.[Table 6] below shows the test results of penetration resistance and compressive strength by OPC powder and SO 3 content, and [Fig. 3] shows this as a scatter plot matrix. When the SO 3 content is the same, the penetration resistance and compressive strength are the best at the level of around 3,500㎡/g of the powder, and at the level of 3,900㎡/g, it has been analyzed that there is no improvement effect or decreases slightly. As the SO 3 content of OPC increases Penetration resistance and compressive strength were improved.
(㎡/g)Fineness
(㎡/g)
콘크리트 표준시방서(KCS 14 20 51 숏크리트)에 따르면, 숏크리트의 초기강도(재령 1일) 표준값은 5.0~10.0MPa이고, 장기 설계기준압축강도(재령 28일)는 21MPa 이상(단, 영구 지보재 개념으로 숏크리트를 타설할 경우에는 35MPa 이상)이다. OPC는 분말도 3200~3500㎡/g 및 SO3 함량 2.2~2.8wt% 조건에서 영구 지보재용 숏크리트의 설계기준강도를 충족시킬 수 있게 된다.According to the concrete standard specification (
[도 4]는 시험결과를 Minitab® 프로그램의 반응표면설계법을 이용하여 1,5분 관입저항 및 1,28일 압축강도를 극대화하는 OPC 품질을 산정한 것으로, 분말도를 3,200㎡/g에서 3,500㎡/g로 높일 때까지 압축강도 및 관입저항이 모두 향상되는 경향이 나타났으며, 3,900㎡/g 수준에서는 5분 관입저항은 동등한 수준이나, 1,28일 압축강도가 크게 저하하는 것으로 분석되었다. 또한 SO3 함량 증가는 관입저항 및 압축강도를 모두 향상시키는 것으로 분석되었다.[Fig. 4] shows the results of the test using the Minitab ® program's response surface design method to calculate OPC quality that maximizes penetration resistance for 1,5 minutes and compressive strength for 1,28 days, and the powderiness is 3,500 m2/g. Both compressive strength and penetration resistance tended to improve until it was increased to ㎡/g. At 3,900㎡/g, the 5-minute penetration resistance was equivalent, but it was analyzed that the compressive strength on 1,28 days decreased significantly. . In addition, it was analyzed that the increase in SO 3 content improves both penetration resistance and compressive strength.
(2) 수화물 분석(2) Carb analysis
1) 혼합재 첨가율별 수화물 분석1) Hydrate analysis by mixing material addition
[도 5]는 XRD를 이용해 혼합재 치환율에 따른 재령별 XRD 패턴을 비교한 것이다. 결정 형태 수화물로써 에트린자이트(Ettringite, 6CaO.Al2O3.3SO4.32H2O, 이하 'AFt'), 모노카보네이트(monocarbonate, 4CaO.Al2O3.CO2.11H2O, 이하 'AFm'), 포틀랜다이트(portlandite, Ca(OH)2, 이하 'CH')는 모든 시료, 모든 재령에서 비교적 명확하게 확인할 수 있었으며, 이 외에도 헤미카보네이트(hemicarbonate, 4CaO.Al2O3.0.5CO2.10H2O)의 피크가 약하게 확인되나, 일반적인 OPC 수화물에서 흔하게 관찰되는 모노설페이트(monosulphate, 4CaO.Al2O3.SO3.12H2O)의 피크는 관찰되지 않았다. CA계 시멘트의 수화로 인해 생성된다고 알려진 기브자이트(gibbsite, AH3), 스트래틀린자이트(stratlingite, 2CaO.Al2O3.SiO2.8H2O) 등 광물의 peak도 관찰되지 않았다.[Fig. 5] is a comparison of the XRD patterns for each age according to the mixing material substitution rate using XRD. As a crystalline hydrate, ethringite (6CaO.Al 2 O 3 .3SO 4 .32H 2 O, hereinafter'AFt'), monocarbonate (4CaO.Al 2 O 3 .CO 2 .11H 2 O, hereinafter referred to as'AFt') Hereinafter'AFm') and portlandite (Ca(OH) 2 , hereinafter'CH') were relatively clearly identified in all samples and all ages. In addition, hemicarbonate (4CaO.Al 2 O) The peak of 3 .0.5CO 2 .10H 2 O) was weakly confirmed, but the peak of monosulfate (4CaO.Al 2 O 3 .SO 3 .12H 2 O) commonly observed in general OPC hydrates was not observed. Mineral peaks such as gibbsite (AH 3 ) and stratlingite (stratlingite, 2CaO.Al 2 O 3 .SiO 2 .8H 2 O), which are known to be generated due to the hydration of CA-based cement, were not observed. .
아래 [표 7]은 TG/DTA를 이용해 혼합재 치환율에 따른 재령별 수화물(AFt, AFm, CH)의 생성량을 정량분석한 결과를 정리한 것이다. 아래 [표 6]의 수화물 생성량은 모두 중량비(wt%)로 나타냈으며, H는 시간, D는 일을 의미하는 것이다.[Table 7] below summarizes the results of quantitative analysis of the amount of hydrates (AFt, AFm, CH) produced by age according to the mixture replacement rate using TG/DTA. The amount of hydrate produced in [Table 6] below is all expressed as a weight ratio (wt%), where H means time and D means work.
(Ettringite)AFt
(Ettringite)
(mono-
carbonate,
hemi-
carbonate,
mono-
sulphate)AFm
(mono-
carbonate,
hemi-
carbonate,
mono-
sulphate)
(portlandite)CH
(portlandite)
[도 6]은 혼합재 첨가율에 따른 재령별 AFt, AFm, CH량 변화를 정리한 것으로, SP가 혼합된 경우 OPC와 비교해 재령 1시간에서는 CH 생성량이 적은 특징이 나타났으며, 재령 1일, 7일, 28일에는 OPC보다 AFt 및 AFm 생성량이 적은 것으로 분석되었다. 또한 CH 생성량은 모든 재령에서 OPC보다 낮게 나타났다. 이러한 현상은 SP 첨가에 따른 OPC 희석효과 및 SP의 잠재수경성 반응에 따라 CH를 소비하여 C-S-H가 생성되기 때문에 나타나는 것으로 판단된다.[Fig. 6] is a summary of the changes in the amount of AFt, AFm, and CH by age according to the mixing material addition rate. When SP is mixed, the CH generation amount was less at 1 hour of age compared to OPC, and
한편, LSP가 혼합된 경우에는 재령 1시간에 CH 생성량이 적은 것은 SP의 경우와 동일했지만, AFm 생성량은 오히려 증가하였으며, 또한 SP의 경우와 달리 재령 1일 및 7일에서 OPC보다 많은 AFt가 생성된 것으로 분석되었다. 한편, 잠재수경성을 가진 SP와 달리 LSP는 OPC 희석효과에 의한 CH 감소 외에는 CH 생성량에 영항을 미치지 않는 것으로 알려져 혼합재 종류에 따라 CH 생성량에 차이가 있을 것으로 예상되었으나, 본 시험에서는 혼합재 종류에 따른 CH 생성량에 큰 차이를 관찰할 수 없었다.On the other hand, when LSP was mixed, the less CH generation at 1 hour of age was the same as that of SP, but the amount of AFm produced was rather increased, and unlike the case of SP, more AFt than OPC was generated at 1 and 7 days of age. Was analyzed. On the other hand, unlike SP with latent hydraulic properties, LSP is known to have no effect on the amount of CH generation except for the reduction of CH due to the OPC dilution effect, and it is expected that there will be a difference in the amount of CH generation depending on the type of mixed material. No significant difference was observed in the amount of production.
LSP 첨가에 따라 AFt 생성량에 차이가 발생한 것은 LSP의 첨가에 따라 보다 안정적인 모노카보네이트 형태의 AFm이 생성되고, 이에 따라 모노설페이트 형태의 AFm이 감소되어 AFt 생성량에도 영향을 미친 것으로 추정된다. LSP는 아래 식과 같이 OPC 및 급결제인 SC에 함유되어 있던 알루미네이트(aluminate) 상과 반응해 카보알루미네이트(carboaluminate(monocarbonate, hemicarbonate))를 생성해 에트린자이트를 안정화시키며, 이 과정에서 모노설페이트가 소진되는 것으로 이해된다. The difference in the amount of AFt produced by the addition of LSP was estimated that the more stable monocarbonate-type AFm was produced by the addition of LSP, and accordingly, the monosulfate-type AFm was reduced, thereby affecting the amount of AFt produced. As shown in the following equation, LSP reacts with the aluminate phase contained in OPC and SC, which is a rapid setting agent, to produce carboaluminate (monocarbonate, hemicarbonate) to stabilize ethrinzite. It is understood that the sulfate is exhausted.
즉, 반응초기(재령 1일까지)에는 아래 [화학식 1]과 같이 반응이 진행되나, SO3에 비해 C3A가 과잉 상태가 되는 재령 1~7일에는 [화학식 2]의 반응을 거쳐, 반응 후기에는 다시 SO3 과잉 환경이 생성됨으로써 [화학식 3]의 반응이 일어난다. 여기에 LSP가 첨가되는 경우 반응초기에 에트린자이트 생성반응과 더불어 [화학식 4]와 같이 반응한다(C : CaO, A : Al2O3, H : H2O, $ : SO3, C : CO2). That is, the reaction proceeds as shown in [Chemical Formula 1] at the beginning of the reaction (until the first day of age), but on
[화학식 1][Formula 1]
C3A or C12A7 + C$H2 + H → C6A$3H32 (ettringite, AFt)C 3 A or C 12 A 7 + C$H 2 + H → C 6 A$ 3 H 32 (ettringite, AFt)
[화학식 2][Formula 2]
C3A or C12A7 + C6A$3H32 → C4A$H12 (monosulphate, AFm)C 3 A or C 12 A 7 + C 6 A$ 3 H 32 → C 4 A$H 12 (monosulphate, AFm)
[화학식 3][Formula 3]
C4A$H12 + C$H2 → C6A$3H32 (ettringite)C 4 A$H 12 + C$H 2 → C 6 A$ 3 H 32 (ettringite)
[화학식 4][Formula 4]
C3A or C12A7 + C·C + H → C4ACH11 (monocarbonate, AFm)C 3 A or C 12 A 7 + C· C + H → C 4 ACH 11 (monocarbonate, AFm)
[화학식 4]에 따라 C3A와 C12A7 등 미수화 알루미네이트 상이 감소한다. 이에 따라 반응 중기인 1~7일에 AFt가 AFm으로 재분해되는 [화학식 2]의 반응이 억제되는 것으로 추정된다. 또한 일반적인 OPC 수화에서는 [화학식 2]의 반응이 일어나는 반응 중기에 모노설페이트가 흔하게 관찰됨에도 본 시험에서는 모노설페이트의 생성을 명확히 확인할 수 없었는데, 이는 급결제로 사용된 SC의 칼슘알루미네이트(calcium aluminate) 성분이 [화학식 1]과 같이 OPC의 C$H2와 반응해 AFt를 생성하려는 성향이 강해지고, 이와 동시에 결합재로부터 공급된 C·C와 반응하는 [화학식 4]의 반응이 일어남에 따라 나타난 결과로 추정된다.According to [Formula 4], the unhydrated aluminate phase such as C 3 A and C 12 A 7 decreases. Accordingly, it is estimated that the reaction of [Chemical Formula 2] in which AFt is re-decomposed into AFm in the middle of the reaction, 1-7 days, is suppressed. In addition, in general OPC hydration, although monosulfate was commonly observed in the middle of the reaction during the reaction of [Formula 2], the formation of monosulfate could not be clearly confirmed in this test. This is calcium aluminate of SC used as a rapid setting agent. As the component reacts with C$H 2 of OPC as in [Chemical Formula 1], the tendency to generate AFt increases, and at the same time, the reaction of [Formula 4], which reacts with C· C supplied from the binder, occurs. Is estimated to be.
2) OPC 분말도 및 SO2) OPC fineness and SO 33 함량별 수화물 분석 Hydrate analysis by content
[도 7] 및 [도 8]은 XRD를 이용해 OPC 분말도 및 SO3 함량에 따른 재령별 XRD 패턴을 비교한 것이다. 혼합재별 수화물 분석결과와 마찬가지로 주요 수화물로써 AFt, AFm, CH 등이 생성된 것을 확인할 수 있다. [표 8]은 TG/DTA를 이용해 AFt, AFm, CH의 생성량을 정량분석한 것이다. 아래 [표 8]의 수화물 생성량은 모두 중량비(wt%)로 나타냈으며, H는 시간, D는 일을 의미하는 것이다.[Fig. 7] and [Fig. 8] compare XRD patterns according to age according to OPC powderiness and SO 3 content using XRD. As with the result of hydrate analysis for each mixed material, it can be confirmed that AFt, AFm, and CH were generated as major hydrates. [Table 8] is a quantitative analysis of the amount of AFt, AFm, and CH produced using TG/DTA. The amount of hydrate produced in [Table 8] below is all expressed as a weight ratio (wt%), where H means time and D means work.
(Ettringite)AFt
(Ettringite)
(mono-
carbonate,
hemi-
carbonate,
mono-
sulphate)AFm
(mono-
carbonate,
hemi-
carbonate,
mono-
sulphate)
(portlandite)CH
(portlandite)
[도 9]는 OPC 분말도 및 SO3 함량 차이에 따른 재령별 AFt, AFm, CH량 변화를 정리한 것이다. 먼저 분말도에 따른 수화물 변화를 살펴보면, 분말도가 높을수록 재령 1,8시간 및 1일에 생성된 CH량이 많고, 또한 1H에 생성된 AFt량도 많음을 확인할 수 있다. 재령이 경과함에 따라 CH량은 분말도에 따른 차이를 나타내지 않았으나, AFt 및 AFm량은 1일 이후에도 분말도 높은 것의 AFt량이 더 많고, AFm량은 더 적은 특징이 나타났다. 이러한 현상은 분말도가 증가함에 따라 OPC 중 C3A 결정 크기가 감소하고, 이에 따라 반응 초기에 보다 많은 AFt가 보다 작고 안정적으로 생성되면서 상기 [화학식 2]와 같은 모노설페이트로의 반응이 억제되었기 때문에 나타나는 것으로 판단된다.[Fig. 9] is a summary of changes in the amount of AFt, AFm, and CH by age according to the difference in OPC powder and SO 3 content. First, looking at the hydrate change according to the fineness, it can be seen that the higher the fineness, the greater the amount of CH generated in 1, 8 hours and 1 day, and the greater the amount of AFt generated in 1H. As age elapsed, the CH amount did not show a difference according to the powderiness, but AFt and AFm amounts showed more AFt amount and less AFm amount of the powdery one after 1 day. This phenomenon is because the size of the C 3 A crystal in OPC decreases as the powderiness increases, and accordingly, the reaction to the monosulfate as shown in [Chemical Formula 2] is suppressed as more AFt is produced smaller and stably at the beginning of the reaction. It is judged to appear because of.
또한 SO3 함량 변화는 CH 생성량에는 영향을 미치지 않지만, SO3 함량이 높을수록 모든 재령에서 AFt 생성량이 증가하고, AFm 생성량이 감소하는 것으로 관찰되었다. 이러한 현상은 보다 많은 SO3가 공급됨에 따라 상기 [화학식 1]에 따른 AFt 생성반응이 보다 활발하게 일어날 수 있기 때문으로 판단된다. 특히 SO3 함량이 극히 낮은 B3500S1.6 시료에서도 타시료와 마찬가지로 모노설페이트의 생성을 확인할 수 없었다. 이런 결과로부터 OPC에 SC가 첨가되면, SC의 칼슘알루미네이트 성분으로 인해 AFt가 우선적으로 생성되고, C$H2와 반응하지 못한 칼슘알루미네이트 성분은 모노설페이트가 아닌 모노카보네이트를 생성하는 것으로 추정된다.In addition, the change in SO 3 content did not affect the amount of CH production, but it was observed that as the SO 3 content increased, the amount of AFt produced increased and the amount of AFm produced decreased. This phenomenon is considered to be because the AFt generation reaction according to [Chemical Formula 1] may occur more actively as more SO 3 is supplied. In particular, the production of monosulfate could not be confirmed even in the B3500S1.6 sample having an extremely low SO 3 content as in other samples. From these results, it is estimated that when SC is added to OPC, AFt is produced preferentially due to the calcium aluminate component of SC, and the calcium aluminate component that does not react with C$H 2 is estimated to produce monocarbonate rather than monosulfate. .
(3) 공극분포 분석(3) Analysis of pore distribution
1) 혼합재 첨가율별 공극분포 분석1) Analysis of pore distribution by mixing material addition rate
[도 10]은 혼합재 종류 및 첨가율에 따른 재령 28일 시멘트 페이스트의 공극분포를 분석한 결과 그래프이고, [표 9]는 이를 바탕으로 Mindness의 정의(S.Mindness J.F.Young, D.Darwin, Concrete, 2002)에 따라 공극의 크기별로 구분해 모세관 공극(capillary pores)에 해당하는 공극의 양과 겔 공극(gel pores)에 해당하는 공극의 양을 정리한 것이다. SP 첨가량이 증가할수록 모세관 공극과 겔 공극이 모두 감소하는 특징을 보이는데, 이는 SP의 잠재수경성 반응에 의해 보다 치밀한 구조의 C-S-H가 생성되면서 겔 공극이 감소하고, 동시에 SP의 입자크기가 OPC보다 작아 미분말 충전효과(fine filling effect)에 의해 모세관 공극 또한 감소함에 따른 것으로 판단된다. 반면, LSP가 5wt% 치환 혼합된 시료는 OPC와 비교해 공극 구조의 변화를 확인하기 어려웠으며, 다만 LSP가 10wt% 치환 혼합된 시료에서는 겔 공그고가 모세관 공극이 약 10vol% 감소하였다. SP와 LSP가 함께 사용된 SP20LSP5 시료는 OPC에 비해 모세관 공극이 확연히 감소하였다.[Fig. 10] is a graph showing the result of analyzing the pore distribution of cement paste at 28 days of age according to the type and addition rate of the mixed material, and [Table 9] is the definition of Mindness based on this (S.Mindness JFYoung, D.Darwin, Concrete , 2002). ), and the amount of pores corresponding to capillary pores and the amount of pores corresponding to gel pores are summarized. As the amount of SP added increases, both capillary pores and gel pores decrease.This is due to the latent hydroponic reaction of SP, resulting in a more dense structure of CSH, reducing the gel pores, and at the same time, the particle size of SP is smaller than OPC. It is believed that the capillary void is also reduced due to the fine filling effect. On the other hand, the sample in which 5wt% of LSP was substituted and mixed was difficult to confirm the change in the pore structure compared to that of OPC. However, in the sample in which 10wt% of LSP was substituted and mixed, the gel pore height and capillary pores decreased by about 10 vol%. The SP20LSP5 sample, which was used together with SP and LSP, significantly reduced capillary voids compared to OPC.
2) OPC 분말도 및 SO2) OPC fineness and SO 33 함량별 공극분포 분석 Analysis of pore distribution by content
[도 11]은 OPC 분말도 및 SO3 함량에 따른 재령 28일 시멘트 페이스트의 공극분포를 분석한 것이고, [표 10]은 공극의 양을 정리한 것이다. SO3 함량 1.6wt% 시료에 비해 2.2wt%, 2.8wt% 시료는 모세관 공극량이 크게 감소하였으나 겔 공극의 양에는 큰 차이가 없었으며, 2.2wt%와 2.8wt% 시료간에는 거의 차이가 나타나지 않았다. 또한 분말도 차이에 따라서는 공극량에 유의미한 차이를 관찰할 수 없었다.[Fig. 11] is an analysis of the pore distribution of the cement paste at 28 days of age according to OPC powder and SO 3 content, and [Table 10] summarizes the amount of pores. Compared to the 1.6wt% SO 3 sample, the capillary voids of the 2.2wt% and 2.8wt% samples significantly decreased, but there was no significant difference in the amount of gel voids, and there was little difference between the 2.2wt% and 2.8wt% samples. In addition, depending on the difference in powder, no significant difference could be observed in the amount of voids.
4. 시험 및 분석 결과 정리4. Organize test and analysis results
[도 12]는 전술한 분석결과를 바탕으로 수화 초기인 1,8시간, 1일 재령의 수화물량과 관입저항, 1일 압축강도간의 상관관계를 나타낸 것이다(AFt/AFm/CH-1H,8H,1D : 각 재령(1,8,24시간)에서의 AFt/AFm/CH 생성량, 1분,5분 : 각 재령에서의 관입저항, 1일 : 재령 1일 압축강도). 관입저항은 수화 초기 수화물과 관련이 있을 것으로 예상되는데, 1시간 재령의 AFt 양이 너무 많거나 적지 않은 1.5wt% 수준에서 최대치를 나타내었으며, 또한 1시간 재령의 AFm 양은 일정수준(약 1.9wt%)까지는 거의 영향을 미치지 않지만, 그 이상에서는 관입저항을 크게 저하시킨다. 또한 AFt와 AFm은 1일 압축강도간에는 1일 재령에서의 AFt 생성량이 증가할수록, 또한 8시간 이내 AFm이 감소할수록 1일 압축강도가 높게 나타났다.[Fig. 12] shows the correlation between the amount of hydrates, penetration resistance, and compressive strength per day of 1,8 hours and 1 day old age based on the above analysis results (AFt/AFm/CH-1H,8H ,1D: AFt/AFm/CH production at each age (1,8,24 hours), 1 minute, 5 minutes: penetration resistance at each age, 1 day: compression strength of 1 day age). Penetration resistance is expected to be related to the initial hydrate of hydration, and the maximum amount of AFt at 1 hour of age was not too much or too little at 1.5 wt%, and the amount of AFm at 1 hour of age was at a certain level (about 1.9 wt%). It has little effect up to ), but it greatly reduces penetration resistance beyond that. In addition, for AFt and AFm, the compressive strength per day was higher as the amount of AFt produced at the age of 1 day increased and the AFm decreased within 8 hours between the compressive strengths per day.
이러한 분석결과를 종합하면 SP나 LSP를 적정수준 첨가한 경우 OPC만 사용한 경우보다 AFt 생성량이 적정수준으로 제어되는 화학적 변화가 관입저항 및 1일강도가 증가로 이어지는 것으로 판단된다. 특히 LSP의 경우 첨가량이 증가하면 AFt 생성량은 크게 감소, AFm 생성량은 크게 증가하면서 관입저항 향상 효과가 더 이상 나타나지 않는 것으로 판단된다. 또한 SO3 함량이 증가할수록 AFm 생성량이 크게 감소하며, 이는 SO3 함량이 높을수록 관입저항 및 재령 1일 압축강도가 증가하는 현상의 원인으로 추정된다.Taking these analysis results together, it is judged that when SP or LSP is added at an appropriate level, the chemical change in which the amount of AFt generation is controlled to an appropriate level leads to an increase in penetration resistance and daily strength than when only OPC is used. In particular, in the case of LSP, when the amount of addition increases, the amount of AFt generation decreases significantly, and the amount of AFm generation increases significantly, and it is judged that the effect of improving penetration resistance no longer appears. In addition, as the SO 3 content increases, the amount of AFm generated significantly decreases, which is believed to be the cause of the phenomenon that the penetration resistance and compressive strength per day increase as the SO 3 content increases.
[도 13]은 재령 7,28일의 수화물량과 재령 28일의 공극량, 재령 28일 압축강도간의 상관관계를 나타낸 것이다. 재령 28일 압축강도와 가장 높은 상관관계를 갖는 공극은 0.01~0.05㎛ 크기의 모세관 공극(CP-M)과 0.01㎛ 이하의 겔 공극(GP)으로, 이들 공극의 양(부피)가 적을수록 재령 28일 압축강도가 낮게 나타났으며, CP-M과 GP가 재령 28일 압축강도에 미치는 영향 정도는 서로 유사한 수준으로 추정된다. 또한 CP-M은 AFt량이 적을수록, CH량이 많을수록 증가하는 경향을 나타내며, 반대로 GP는 AFt량이 많을수록, CH량이 적을수록 증가하는 경향을 나타내었다. 이러한 결과로부터 SP가 첨가된 경우에는 SP의 잠재수경성 반응, 미분말 충전효과에 의해 모세관공극 및 겔 공극이 감소함에 따라 28일 압축강도가 향상된 것으로 추정된다.[Fig. 13] shows the correlation between the amount of hydrate at the age of 7,28 days, the amount of voids at the age of 28, and the compressive strength at the age of 28. The pores that have the highest correlation with compressive strength at 28 days of age are capillary pores (CP-M) with a size of 0.01 to 0.05 μm and gel pores (GP) of less than 0.01 μm, and the smaller the amount (volume) of these pores, the older the The 28-day compressive strength was low, and the degree of influence of CP-M and GP on the 28-day compressive strength was estimated to be similar to each other. In addition, CP-M showed a tendency to increase as the amount of AFt decreased and the amount of CH increased, whereas the GP of GP showed a tendency to increase as the amount of AFt increased and the amount of CH decreased. From these results, it is estimated that when SP is added, the compressive strength on 28 days is improved as capillary pores and gel pores decrease due to the latent hydraulic reaction of SP and the fine powder filling effect.
Ⅱ. 숏크리트의 내구성 시험Ⅱ. Shotcrete durability test
이하에서는 OPC 100wt%, OPC 80wt%와 SP 20wt%로 이루어진 시멘트(이하 '비교예 1') 및 OPC 75wt%, SP 20wt% 및 LSP 5wt%로 이루어진 본 발명 시멘트(이하 '실시예 1')의 내구성 시험(염화물 침투저항성, 탄산화 침투저항성, 동결융해, 백화현상) 결과를 설명한다. Hereinafter, the cement of the present invention consisting of OPC 100wt%, OPC 80wt% and SP 20wt% (hereinafter'Comparative Example 1') and OPC 75wt%, SP 20wt% and LSP 5wt% (hereinafter'Example 1') The results of the durability test (chloride penetration resistance, carbonation penetration resistance, freezing and thawing, whitening) are described.
1. 염화물 침투저항성1. Chloride penetration resistance
[도 14]는 시험체별 염화물 침투저항성 시험 결과를 비교 촬영한 사진이고, [도 15]는 시험체별 염소이온확산계수를 나타낸 그래프이다. [도 14]에 나타난 바와 같이 시험체별 염화물 침투깊이가 OPC 14.3㎜, 비교예 1에서 7.9㎜임에 반해 실시예 1에서는 4.2㎜로 저감된다. 또한 [도 15]에 나타난 바와 같이 실시예 1의 염소이온확산계수는 OPC의 약 20%이며 비교예 1에 비해서도 50% 미만으로 떨어져 LSP 사용에 의해 염화물 침투저항성이 크게 향상됨을 확인할 수 있다. [Fig. 14] is a photograph taken by comparing the results of the chloride penetration resistance test for each test object, and [Fig. 15] is a graph showing the chloride ion diffusion coefficient for each test object. As shown in [Fig. 14], the chloride penetration depth for each test specimen is OPC 14.3 mm, which is 7.9 mm in Comparative Example 1, but is reduced to 4.2 mm in Example 1. In addition, as shown in Fig. 15, the chloride ion diffusion coefficient of Example 1 is about 20% of the OPC, and is less than 50% compared to Comparative Example 1, so that the chloride penetration resistance is greatly improved by the use of LSP.
2. 탄산화 침투저항성2. Carbonation penetration resistance
[도 16]은 시험체별 촉진 탄산화 시험 결과를 비교 촬영한 사진이고, [도 17]은 시험체별 탄산화 깊이(8주차)를 타나낸 그래프이다. CO2 침투에 따라 시험체의 단면이 보라색을 나타내지 않게 하는데, 열화 촉진 중성화 시험 8주차 기준 탄산화 깊이가 OPC에서 4.8㎜, 비교예 1에서 2.3㎜임에 반해 실시예 1에서는 1.8㎜로 나타난다. 이에 따라 탄산화 침투저항성은 SP 치환 적용에 의해 대폭 향상되고, LSP 치환 적용에 의해서 더욱 향상됨을 확인할 수 있다.[Fig. 16] is a photograph taken for comparison of the results of the accelerated carbonation test for each specimen, and [Fig. 17] is a graph showing the carbonation depth for each specimen (week 8). The cross section of the test specimen does not appear purple due to the penetration of CO 2. The carbonation depth based on the 8th week of the deterioration acceleration neutralization test was 4.8 mm in OPC and 2.3 mm in Comparative Example 1, whereas it was 1.8 mm in Example 1. Accordingly, it can be seen that carbonation penetration resistance is significantly improved by the application of SP substitution and further improved by the application of LSP substitution.
3. 동결융해3. Freeze and thaw
[도 18]은 시험체별 동결융해 시험결과를 비교 촬영한 사진이고, [도 19]는 시험체별 상대동탄성계수를 나타낸 그래프이다. OPC의 경우는 동결융해가 반복될 수록 상대동탄성계수가 급감하였으나, 비교예 1과 실시예 1은 동결융해 시험을 300cycle 반복할 때까지 상대동탄성계수가 크게 변화하지 않았다. 비교예 1이 실시예 1 보다 동결융해 저항성 면에서는 오히려 다소 우수한 면이 있으나 기술적으로 유의미한 차이는 아닌 것으로 판단된다.[Fig. 18] is a photograph taken for comparison of freeze-thaw test results for each test body, and [Fig. 19] is a graph showing the relative dynamic modulus of each test body. In the case of OPC, the relative dynamic modulus decreased sharply as freezing and thawing was repeated, but in Comparative Examples 1 and 1, the relative dynamic modulus did not change significantly until the freezing and thawing tests were repeated 300 cycles. Comparative Example 1 is rather superior to Example 1 in terms of resistance to freezing and thawing, but it is judged that there is no technically significant difference.
4. 백화현상4. Whitening phenomenon
[도 20]은 시험체별 백화현상 발생 결과를 비교 촬영한 사진이다. 실시예 1은 OPC 사용량 저감에 따라 백화현상도 저감되는 것으로 판단된다.[Fig. 20] is a photograph taken by comparing the result of whitening phenomenon by test body. In Example 1, it is determined that the whitening phenomenon is also reduced as the amount of OPC used is reduced.
본 발명은 상기에서 언급한 바와 같이 시험결과 및 바람직한 실시예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. 따라서 본 발명의 청구범위는 이전 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.The present invention has been described in connection with the test results and preferred embodiments as mentioned above, but various modifications and variations are possible within the scope without departing from the gist of the present invention, and can be used in various fields. Accordingly, the claims of the present invention include modifications and variations that fall within the true scope of the previous invention.
해당없음Not applicable
Claims (6)
물-시멘트비 38~53이 되도록 물을 혼합하고,
Al2O3 28~34wt% 및 CaO 40~48wt%가 함유된 급결제가 상기 시멘트 조성물 대비 4~7wt% 첨가하여,
재령 1일까지의 반응 초기에 하기 [화학식 1]의 반응과 함께 [화학식 4]의 반응이 진행되어, 미수화 알루미네이트 상이 감소됨으로써, 재령 1일 이후 재령 7일까지의 반응 중기에 하기 [화학식 2]의 반응이 억제되는 것을 특징으로 하는 숏크리트 조성물.
[화학식 1]
C3A or C12A7 + C$H2 + H → C6A$3H32
C : CaO, A : Al2O3, H : H2O, $ : SO3
[화학식 2]
C3A or C12A7 + C6A$3H32 → C4A$H12 (monosulphate, AFm)
[화학식 4]
C3A or C12A7 + C·C + H → C4ACH11 (monocarbonate, AFm)
C : CO2 In 100wt% of ordinary Portland cement with a powder of 3,200~3,500㎠/g and a content of 2.2~2.8wt% of SO 3 , 15~25wt% is replaced with blast furnace slag fine powder, and 5~10wt% of powder is 6,000~9,000㎠ In a cement composition for improving durability, characterized in that it is substituted with fine limestone powder of /g,
Mix water so that the water-cement ratio is 38~53,
Al 2 O 3 28 to 34 wt% and CaO 40 to 48 wt% of the quick-setting agent containing 4 to 7 wt% of the cement composition was added,
The reaction of [Chemical Formula 4] proceeds with the reaction of [Chemical Formula 1] at the beginning of the reaction until 1 day of age, and the unhydrated aluminate phase decreases, so that the following [Chemical Formula 1] Shotcrete composition, characterized in that the reaction of 2] is suppressed.
[Formula 1]
C 3 A or C 12 A 7 + C$H 2 + H → C 6 A$ 3 H 32
C: CaO, A: Al 2 O 3 , H: H 2 O, $: SO 3
[Formula 2]
C 3 A or C 12 A 7 + C 6 A$ 3 H 32 → C 4 A$H 12 (monosulphate, AFm)
[Formula 4]
C 3 A or C 12 A 7 + C· C + H → C 4 ACH 11 (monocarbonate, AFm)
C : CO 2
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190145542A KR102199929B1 (en) | 2019-11-14 | 2019-11-14 | Shotcrete composition using cement composition for increased durability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190145542A KR102199929B1 (en) | 2019-11-14 | 2019-11-14 | Shotcrete composition using cement composition for increased durability |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102199929B1 true KR102199929B1 (en) | 2021-01-07 |
Family
ID=74126812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190145542A KR102199929B1 (en) | 2019-11-14 | 2019-11-14 | Shotcrete composition using cement composition for increased durability |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102199929B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102382696B1 (en) | 2021-07-22 | 2022-04-11 | 주식회사 에이지 | Pre-mixed composition for dry-method shotcrete having high-strength and high function and construction method using the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020020132A (en) * | 2000-09-08 | 2002-03-14 | 이 건 영 | Cement Mineral Based Set Accelerator for Shotcrete |
JP2002265241A (en) * | 2001-03-08 | 2002-09-18 | Taiheiyo Cement Corp | High durability cement composition |
KR100704869B1 (en) | 2005-09-27 | 2007-04-09 | 삼성물산 주식회사 | Highly efficient shot-crete composition mixed Metakaolin and Silica Fume |
KR101252962B1 (en) | 2011-01-10 | 2013-04-15 | 성신양회 주식회사 | Shotcrete composition comprising cement having high fineness and quick setting time |
KR101323773B1 (en) | 2011-08-01 | 2013-10-29 | 재단법인 포항산업과학연구원 | Composition for shotcrete and method for manufacturing the same |
KR101455374B1 (en) * | 2013-07-08 | 2014-11-03 | (주)대우건설 | Shotcrete binder combination for reducing rebound and dust generation |
JP2016064940A (en) * | 2014-09-24 | 2016-04-28 | 株式会社トクヤマ | Manufacturing method of cement clinker |
KR101654568B1 (en) | 2015-11-16 | 2016-09-23 | 성신양회 주식회사 | Early strength type shotcrete composite |
-
2019
- 2019-11-14 KR KR1020190145542A patent/KR102199929B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020020132A (en) * | 2000-09-08 | 2002-03-14 | 이 건 영 | Cement Mineral Based Set Accelerator for Shotcrete |
JP2002265241A (en) * | 2001-03-08 | 2002-09-18 | Taiheiyo Cement Corp | High durability cement composition |
KR100704869B1 (en) | 2005-09-27 | 2007-04-09 | 삼성물산 주식회사 | Highly efficient shot-crete composition mixed Metakaolin and Silica Fume |
KR101252962B1 (en) | 2011-01-10 | 2013-04-15 | 성신양회 주식회사 | Shotcrete composition comprising cement having high fineness and quick setting time |
KR101323773B1 (en) | 2011-08-01 | 2013-10-29 | 재단법인 포항산업과학연구원 | Composition for shotcrete and method for manufacturing the same |
KR101455374B1 (en) * | 2013-07-08 | 2014-11-03 | (주)대우건설 | Shotcrete binder combination for reducing rebound and dust generation |
JP2016064940A (en) * | 2014-09-24 | 2016-04-28 | 株式会社トクヤマ | Manufacturing method of cement clinker |
KR101654568B1 (en) | 2015-11-16 | 2016-09-23 | 성신양회 주식회사 | Early strength type shotcrete composite |
Non-Patent Citations (1)
Title |
---|
1. KCS 14 20 51 : 2018 숏크리트 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102382696B1 (en) | 2021-07-22 | 2022-04-11 | 주식회사 에이지 | Pre-mixed composition for dry-method shotcrete having high-strength and high function and construction method using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8518176B2 (en) | Suppression of antagonistic hydration reactions in blended cements | |
Boddy et al. | The effect of product form of silica fume on its ability to control alkali–silica reaction | |
KR101121724B1 (en) | A composition of cement zero concrete using the mixed blast slag, powder type sodium silicate and desulfurization gypsum as binder and method for it | |
TWI624445B (en) | Cement composition | |
KR101311720B1 (en) | Contraction reduced cement composite and mortar composite using the cement composite | |
EP3875444B1 (en) | Cement admixture, expansion material, and cement composition | |
Jin et al. | Influence of curing temperature on the mechanical properties and microstructure of limestone powder mass concrete | |
JP7037879B2 (en) | Early-strength admixture for secondary products and early-strength concrete for secondary products | |
Kaur et al. | Reviewing some properties of concrete containing mineral admixtures | |
Prateek et al. | Preparing high strength cementitious materials with high proportion of steel slag through reverse filling approach | |
KR102199929B1 (en) | Shotcrete composition using cement composition for increased durability | |
El-Alfi et al. | Effect of limestone fillers and silica fume pozzolana on the characteristics of sulfate resistant cement pastes | |
Darweesh et al. | Setting, hardening and mechanical properties of some cement/agrowaste composites-Part I | |
CN117999249B (en) | Cement composition and method for producing same | |
WO2019044484A1 (en) | Mortar or concrete composition and method for manufacturing same | |
KR101345203B1 (en) | Low alkali non-cement concrete composition with tannin and block unit comprising the same | |
JP2003137618A (en) | Blast furnace slag fine powder containing inorganic admixture, blast furnace cement, and method of producing them | |
EP4122900A1 (en) | Cement admixture, expansion material, and cement composition | |
JP6819740B1 (en) | concrete | |
EP4119517A1 (en) | Cement admixture and cement composition | |
KR101111635B1 (en) | Low alkali concrete composition with tannin and block unit comprising the same | |
KR102709083B1 (en) | Early strength concrete composition | |
KR102576608B1 (en) | Hydraulic Compounds Containing Calcium Sulfo-aluminates And Methods For Maintaining The Fluidity Of Pastes, Mortar And Concrete Manufactured Therefrom | |
KR102135458B1 (en) | High volume fly ash binder for compressive strength improvement | |
KR102412570B1 (en) | Acid-resistant injection mortar composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |