KR102596526B1 - Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate - Google Patents

Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate Download PDF

Info

Publication number
KR102596526B1
KR102596526B1 KR1020230026930A KR20230026930A KR102596526B1 KR 102596526 B1 KR102596526 B1 KR 102596526B1 KR 1020230026930 A KR1020230026930 A KR 1020230026930A KR 20230026930 A KR20230026930 A KR 20230026930A KR 102596526 B1 KR102596526 B1 KR 102596526B1
Authority
KR
South Korea
Prior art keywords
lithium
lithium difluorophosphate
salt crystals
difluorophosphate salt
carbonate
Prior art date
Application number
KR1020230026930A
Other languages
Korean (ko)
Inventor
이성권
이순호
이희진
Original Assignee
이피캠텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이피캠텍 주식회사 filed Critical 이피캠텍 주식회사
Priority to KR1020230026930A priority Critical patent/KR102596526B1/en
Application granted granted Critical
Publication of KR102596526B1 publication Critical patent/KR102596526B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본 발명의 디플루오로인산리튬염 결정체를 제조하는 방법에 관한 것으로서, 좀 더 구체적으로 설명하면, 헥사플루오로인산리튬을 출발물질로 하여 특정 화합물과 반응시켜 디플루오로인산리튬염 결정체를 제조함으로서, 높은 순도의 디플루오로인산리튬염 결정체를 우수한 수율로 제조할 수 있는 경제성 높은 디플루오로인산리튬염 결정체를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing lithium difluorophosphate salt crystals. More specifically, lithium hexafluorophosphate is used as a starting material and reacted with a specific compound to produce lithium difluorophosphate salt crystals. , It relates to a method of producing highly economical lithium difluorophosphate salt crystals that can produce high purity lithium difluorophosphate salt crystals in excellent yield.

Description

디플루오로인산리튬염 결정체의 제조방법 및 이의 방법으로 제조한 디플루오로인산리튬염 결정체{Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate}Method for manufacturing lithium difluorophosphate salt crystals and lithium difluorophosphate salt crystals produced by the method {Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate}

본 발명은 디플루오로인산리튬염 결정체를 효율적으로 고순도로 제조하는 방법 및 이를 방법으로 제조한 디플루오로인산리튬염 결정체에 관한 것이다. The present invention relates to a method for efficiently producing lithium difluorophosphate salt crystals with high purity and to lithium difluorophosphate salt crystals prepared by this method.

최근 몇 년 동안 리튬 이온 배터리의 기초 연구 및 응용 개발은 새로운 에너지 분야의 주요 관심 기술 중 하나가 되었으며 세계의 모든 선진국은 차세대 신흥 산업의 돌파구로 개발 및 연구하고 있다. In recent years, the basic research and application development of lithium-ion batteries has become one of the major technologies of interest in the new energy field, and all developed countries in the world are developing and researching it as a breakthrough for the next generation of emerging industries.

양극 재료, 음극 재료, 전해질 재료 및 분리막 재료는 리튬 이온 배터리의 4가지 주요 재료이며, 일반적인 전해질 재료는 주로 LiPF6, LiBF4, LiClO4, LiAsF6, LiCF3SO3, LiN, (CF3SO2)2 등이며, 이러한 전해질을 용해시켜 카보네이트계 유기 용매에 비수성 전해액을 배합하는데, LiPF6는 현재 가장 널리 사용되는 전해질이다.Anode materials, cathode materials, electrolyte materials and separator materials are the four main materials of lithium-ion batteries, and common electrolyte materials are mainly LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN, (CF 3 SO 2 ) 2 , etc., this electrolyte is dissolved and a non-aqueous electrolyte solution is mixed in a carbonate-based organic solvent, and LiPF 6 is currently the most widely used electrolyte.

비수 전해액을 사용한 리튬 이온 전지는 비수 전해액의 조성에 따라 전극 표면의 반응성이 변화하기 때문에 전지 특성 면에서 현저하게 다르다. 구체적으로, 전해액의 분해 및 부반응은 리튬 이온 전지의 내구성 (예를 들어, 사이클링 및 고온 저장성 등)에 영향을 미치며, 전해액에 다양한 첨가제를 첨가하여 활성 양극 또는 음극 표면에서 전해액의 분해를 억제하려는 시도가 있었다.Lithium-ion batteries using non-aqueous electrolyte solutions differ significantly in terms of battery characteristics because the reactivity of the electrode surface changes depending on the composition of the non-aqueous electrolyte solution. Specifically, the decomposition and side reactions of the electrolyte affect the durability of lithium-ion batteries (e.g., cycling and high temperature storage, etc.), and attempts are made to suppress the decomposition of the electrolyte on the active anode or cathode surface by adding various additives to the electrolyte. There was.

최근 전해액에 디플루오로인산리튬을 첨가하면 리튬이온 이차전지의 저온 특성, 사이클 특성, 보존 특성 등 전지 성능을 향상시킬 수 있음이 연구되었고, 실제, 디플루오루인산리튬을 적용한 리튬이온 이차전지가 제조, 판매되고 있다. 예를 들어, 리튬 모노플루오로포스페이트 및 디플루오로인산리튬염(LiPO2F2)을 첨가제로 이루어진 군으로부터 선택되는 적어도 하나의 비수 전해액을 사용하는 기술이 공개된 바 있는데, 이 기술에서, 상기 첨가제와 리튬 반응은 양극과 음극 사이의 계면에 도막을 형성하여 양극 활성물과 음극 활성물과의 접촉에 의해 전해액이 분해되는 것을 억제하며, 따라서, 셀프 방전이 억제되어 충전 후의 메모리 특성이 향상되는 효과가 있다고 개시되어 있다. 또한, 일본 등록특허 제3439085호에는 전해액에 디플루오로인산리튬을 첨가하여 전해 계면에 형성한 막 효과에 의해 고온 사이클 특성을 개선하는 것이 개시되어 있다.Recently, research has shown that adding lithium difluorophosphate to the electrolyte can improve battery performance, including low-temperature characteristics, cycle characteristics, and storage characteristics of lithium-ion secondary batteries. In fact, lithium-ion secondary batteries using lithium difluorophosphate Manufactured and sold. For example, a technology has been disclosed using at least one non-aqueous electrolyte solution selected from the group consisting of lithium monofluorophosphate and lithium difluorophosphate (LiPO 2 F 2 ) as an additive, in which the The reaction between the additive and lithium forms a coating film at the interface between the anode and the cathode, suppressing decomposition of the electrolyte upon contact with the anode active material and the cathode active material, thus suppressing self-discharge and improving memory characteristics after charging. It is disclosed to be effective. Additionally, Japanese Patent No. 3439085 discloses improving high-temperature cycle characteristics by adding lithium difluorophosphate to an electrolyte solution and forming a film at the electrolyte interface.

이와 같이, 전해액에 디플루오루인산리튬염을 첨가한 리튬이온 이차전지의 개발, 생산이 증대되어 있으며, 이에 따라 디플루오로인산리튬 수요가 증대하고 있는 실정이고, 디플루오루인산리튬염을 효율적으로 제조하는 다양한 방법이 시도되고 있다.In this way, the development and production of lithium-ion secondary batteries with the addition of lithium difluorophosphate salt to the electrolyte are increasing, and the demand for lithium difluorophosphate is increasing accordingly, and lithium difluorophosphate salt is used efficiently. Various manufacturing methods are being attempted.

일본 공개특허번호 제2002-501034호(공개일 2002.01.15.)Japanese Patent Publication No. 2002-501034 (publication date 2002.01.15.) 일본 등록특허번호 제3439085호 (공고일 2003.08.25.)Japanese registered patent number 3439085 (announcement date 2003.08.25.)

Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O(Journal of Fluorine Chemistry 126 (2005)27-31)Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O(Journal of Fluorine Chemistry 126 (2005)27-31)

본 발명이 해결하려는 과제는 디플루오로인산리튬염 결정체를 효율적이면서도 높은 수율 및 높은 순도로 제조하는 새로운 방법 제시하고, 이렇게 제조된 디플루오로인산리튬염 결정체를 리튬이온 이차전지의 비수계 전해질로 제공하고자 한다.The problem that the present invention aims to solve is to present a new method for producing lithium difluorophosphate salt crystals efficiently, with high yield and high purity, and to use the lithium difluorophosphate salt crystals thus prepared as a non-aqueous electrolyte for lithium ion secondary batteries. We would like to provide

상기 과제를 해결하기 위한 본 발명의 디플루오로인산리튬염 결정체의 제조방법은 유기용매 하에서, 헥사플루오로인산리튬(LiPF6), 메타붕산리튬 및 크라운 에테르 화합물을 반응시켜서 디플루오로인산리튬(LiPO2F2)염 결정체를 합성하는 공정을 수행한다.The method for producing lithium difluorophosphate salt crystals of the present invention to solve the above problem is to react lithium hexafluorophosphate (LiPF 6 ), lithium metaborate, and crown ether compound in an organic solvent to produce lithium difluorophosphate ( LiPO 2 F 2 ) A process for synthesizing salt crystals is performed.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법은 상기 합성된 디플루오로인산리튬염 결정체를 정제 및 재결정 공정을 더 수행할 수도 있다.As a preferred embodiment of the present invention, the production method of the present invention may further perform purification and recrystallization processes on the synthesized lithium difluorophosphate salt crystals.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 디플루오로인산리튬염 결정체를 합성하는 공정은, 헥사플루오로인산리튬(LiPF6), 메타붕산리튬 및 크라운 에테르 화합물을 유기용매에 투입 및 교반하여 혼합액을 제조하는 1-1단계; 상기 혼합액을 반응기에 투입한 후, 반응기 내부를 불활성 분위기로 전환시킨 다음, 반응을 수행하는 1-2단계; 및 반응 완료 후, 여과, 세척 및 건조를 수행하여 디플루오로인산리튬염 결정체를 수득하는 1-3단계;를 포함하는 공정을 수행할 수 있다.As a preferred embodiment of the present invention, in the production method of the present invention, the process of synthesizing the lithium difluorophosphate salt crystal includes lithium hexafluorophosphate (LiPF 6 ), lithium metaborate, and an organic crown ether compound. Step 1-1 of preparing a mixed solution by adding a solvent and stirring; Steps 1-2 of introducing the mixed solution into the reactor, converting the inside of the reactor to an inert atmosphere, and then performing the reaction; And after completion of the reaction, steps 1-3 of obtaining lithium difluorophosphate salt crystals by performing filtration, washing, and drying.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 크라운 에테르 화합물은 치환된 또는 비치환 크라운 에테르 화합물이며, 1,4,7,10-테트라옥사사이클로도데케인(1,4,7,10-Tetraoxacyclododecane), 1,4,7,10,13-펜타옥사사이클로펜타데케인(1,4,7,10,13-pentaoxacyclopentadecane), 1,4,7,10,13,16-헥사옥사사이클로옥타데케인(1,4,7,10,13,16-hexaoxacyclooctadecane) 및 4,13-다이아자-18-크라운-6-에테르(diaza-18-crown-6-ether) 중에서 선택된 1종 이상을 포함할 수 있다. As a preferred embodiment of the present invention, in the production method of the present invention, the crown ether compound is a substituted or unsubstituted crown ether compound, and is 1,4,7,10-tetraoxacyclododecane (1,4, 7,10-Tetraoxacyclododecane), 1,4,7,10,13-pentaoxacyclopentadecane (1,4,7,10,13-pentaoxacyclopentadecane), 1,4,7,10,13,16-hexa One type selected from oxacyclooctadecane (1,4,7,10,13,16-hexaoxacyclooctadecane) and 4,13-diaza-18-crown-6-ether (diaza-18-crown-6-ether) It may include more.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 유기용매는 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 비닐 카보네이트 및 메틸프로피오네이트 중에서 선택된 1종 이상을 포함하는 카보네이트계 용매를 사용할 수 있다.As a preferred embodiment of the present invention, in the production method of the present invention, the organic solvent is a carbonate-based solvent containing at least one selected from dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, vinyl carbonate, and methyl propionate. can be used.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 유기용매는 상기 카보네이트계 용매 및 아세톤의 혼합용매를 사용할 수도 있다.As a preferred embodiment of the present invention, in the production method of the present invention, the organic solvent may be a mixed solvent of the carbonate-based solvent and acetone.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 1-1단계의 헥사플루오로인산리튬, 메타붕산리튬 및 크라운 에테르 화합물의 유기용매에 대한 투입량은 헥사플루오로인산리튬, 메타붕산리튬 및 크라운 에테르 화합물을 1 : 0.5 ~ 1.0 : 0.3 ~ 0.8 몰비로 투입할 수 있다.As a preferred embodiment of the present invention, in the production method of the present invention, the amount of lithium hexafluorophosphate, lithium metaborate, and crown ether compound added to the organic solvent in step 1-1 is lithium hexafluorophosphate, lithium metaborate, and crown ether compound. Lithium and crown ether compounds can be added at a molar ratio of 1:0.5 to 1.0:0.3 to 0.8.

본 발명의 바람직한 일실시예로서, 1-1단계의 상기 혼합액은 반응촉매를 더 포함할 수도 있다.As a preferred embodiment of the present invention, the mixed solution in step 1-1 may further include a reaction catalyst.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 정제 및 재결정화 공정은, 디플루오로인산리튬염 결정체 및 에스테르계 용매 중에서 선택된 1종 이상의 용매를 투입 및 교반하여 정제공정을 수행하는 2-1단계; 여과를 수행하여 여과액을 수득하는 2-2단계; 및 여과액을 열처리 및 냉각시켜서 재결정화된 디플루오로인산리튬염을 수득하는 2-3단계;를 포함하는 공정을 수행할 수 있다.As a preferred embodiment of the present invention, in the production method of the present invention, the purification and recrystallization process is performed by adding and stirring one or more solvents selected from lithium difluorophosphate salt crystals and ester solvents. Perform step 2-1; Step 2-2 of performing filtration to obtain a filtrate; And steps 2-3 of heat treating and cooling the filtrate to obtain recrystallized lithium difluorophosphate salt.

본 발명의 바람직한 일실시예로서, 본 발명의 제조방법에 있어서, 상기 에스테르계 용매는 디메틸카르보네이트, 에틸메틸카르보네이트, 디에틸카르보네이트, 에틸렌카르보네이트, 인산트리메틸에스테르, 인산트리에틸에스테르, 아인산트리메틸에스테르 및 아인산트리에틸메틸에스테르 중에서 선택된 1종 이상을 포함할 수 있다.As a preferred embodiment of the present invention, in the production method of the present invention, the ester-based solvent is dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethylene carbonate, trimethyl phosphate, trimethyl phosphate. It may include one or more selected from ethyl ester, trimethyl phosphite, and triethyl methyl phosphite.

본 발명의 바람직한 일실시예로서, 재결정화되어 수득된 디플루오로인산리튬염 결정체는 수율 82.0 ~ 93.0% 및 순도 94.0 ~ 99.8%일 수 있다. As a preferred embodiment of the present invention, lithium difluorophosphate salt crystals obtained by recrystallization may have a yield of 82.0 to 93.0% and a purity of 94.0 to 99.8%.

본 발명의 다른 목적은 앞서 설명한 상기 제조방법으로 제조한 디플루오로인산리튬염 결정체를 제공하는데 있다.Another object of the present invention is to provide lithium difluorophosphate salt crystals prepared by the above-described production method.

본 발명의 또 다른 목적은 상기 방법으로 제조한 디플루오로인산리튬염 결정체를 2차 전지용 비수계 전해액의 전해질로 제공하는데 있다.Another object of the present invention is to provide the lithium difluorophosphate salt crystal prepared by the above method as an electrolyte for a non-aqueous electrolyte solution for a secondary battery.

본 발명의 또 다른 목적은 상기 디플루오로인산리튬염 결정체를 전해질로 포함하는 2차 전지용 비수계 전해액을 제공하고자 한다.Another object of the present invention is to provide a non-aqueous electrolyte solution for secondary batteries containing the lithium difluorophosphate salt crystals as an electrolyte.

본 발명의 디플루오로인산리튬염 결정체 제조방법은 특별한 고도의 정제 공정 없이도, 높은 순도의 디플루오로인산리튬염 결정체를 높은 생산성으로 제조가 가능하며, 제조된 디플루오로인산리튬염 결정체를 2차 전지용 비수계 전해액의 전해질로 도입함으로써, 안정성이 우수한 2차 전지용 비수계 전해액을 제공할 수 있다.The method for producing lithium difluorophosphate salt crystals of the present invention is capable of producing high purity lithium difluorophosphate salt crystals with high productivity without a special advanced purification process, and the produced lithium difluorophosphate salt crystals can be produced in 2 steps. By introducing it as an electrolyte for a non-aqueous electrolyte solution for secondary batteries, it is possible to provide a non-aqueous electrolyte solution for secondary batteries with excellent stability.

이하 본 발명의 디플루오로인산리튬염 결정체를 제조하는 방법에 대하여 자세하게 설명을 한다.Hereinafter, the method for producing the lithium difluorophosphate salt crystal of the present invention will be described in detail.

본 발명의 디플루오로인산리튬염 결정체는 유기용매 하에서, 헥사플루오로인산리튬(LiPF6), 메타붕산리튬 및 크라운 에테르 화합물을 반응시켜서 디플루오로인산리튬(LiPO2F2)염 결정체를 합성하는 공정을 수행하여 제조하며, 좀 더 구체적으로 설명하면, 헥사플루오로인산리튬(LiPF6), 메타붕산리튬 및 크라운 에테르 화합물을 유기용매에 투입 및 교반하여 혼합액을 제조하는 1-1단계; 상기 혼합액을 반응기에 투입한 후, 반응기 내부를 불활성 분위기로 전환시킨 다음, 온도를 상승시킨 후, 교반시키면서 반응을 수행하는 1-2단계; 및 반응 완료 후, 여과, 세척 및 건조를 수행하여 디플루오로인산리튬염 결정체를 수득하는 1-3단계;를 포함하는 공정을 수행한다.The lithium difluorophosphate salt crystal of the present invention is synthesized by reacting lithium hexafluorophosphate (LiPF 6 ), lithium metaborate and a crown ether compound in an organic solvent to synthesize lithium difluorophosphate (LiPO 2 F 2 ) salt crystal. It is manufactured by performing the following process, and more specifically, step 1-1 of preparing a mixed solution by adding and stirring lithium hexafluorophosphate (LiPF 6 ), lithium metaborate, and crown ether compound to an organic solvent; Step 1-2 of adding the mixed solution to the reactor, converting the inside of the reactor to an inert atmosphere, raising the temperature, and performing the reaction while stirring; And after completion of the reaction, steps 1-3 of performing filtration, washing and drying to obtain lithium difluorophosphate salt crystals.

상기 1-1단계의 헥사플루오로인산리튬, 메타붕산리튬 및 크라운 에테르 화합물의 유기용매에 대한 투입량은 헥사플루오로인산리튬, 메타붕산리튬 및 크라운 에테르 화합물을 1 : 0.5 ~ 1.0 : 0.3 ~ 0.8 몰비인 것이, 바람직하게는 1 : 0.6 ~ 1.0 : 0.4 ~ 0.8 몰비인 것이, 더욱 바람직하게는 1 : 0.7 ~ 1.0 : 0.5 ~ 0.8 몰비인 것이 부반응에 의한 부산물 최소화 측면 및 디플루오로인산리튬염 결정체 수율 측면에서 좋다.The amount of lithium hexafluorophosphate, lithium metaborate and crown ether compound added to the organic solvent in step 1-1 is lithium hexafluorophosphate, lithium metaborate and crown ether compound at a molar ratio of 1:0.5 to 1.0:0.3 to 0.8. Preferably, the molar ratio is 1:0.6 to 1.0:0.4 to 0.8, and more preferably, the molar ratio is 1:0.7 to 1.0:0.5 to 0.8 in terms of minimizing by-products due to side reactions and the yield of lithium difluorophosphate salt crystals. Good from the side.

그리고, 상기 크라운 에테르 화합물은 치환된 또는 비치환 크라운 에테르 화합물을 사용하며, 상기 크라운 에테르 화합물은 1,4,7,10-테트라옥사사이클로도데케인(1,4,7,10-Tetraoxacyclododecane), 1,4,7,10,13-펜타옥사사이클로펜타데케인(1,4,7,10,13-pentaoxacyclopentadecane), 1,4,7,10,13,16-헥사옥사사이클로옥타데케인(1,4,7,10,13,16-hexaoxacyclooctadecane) 및 4,13-다이아자-18-크라운-6-에테르(diaza-18-crown-6-ether) 중에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 1,4,7,10-테트라옥사사이클로도데케인 및 1,4,7,10,13-펜타옥사사이클로펜타데케인 중에서 선택된 1종 이상을 포함할 수 있고, 더욱 바람직하게는 1,4,7,10-테트라옥사사이클로도데케인을 사용할 수 있다.In addition, the crown ether compound uses a substituted or unsubstituted crown ether compound, and the crown ether compound is 1,4,7,10-Tetraoxacyclododecane (1,4,7,10-Tetraoxacyclododecane), 1 ,4,7,10,13-pentaoxacyclopentadecane (1,4,7,10,13-pentaoxacyclopentadecane), 1,4,7,10,13,16-hexaoxacyclooctadecane (1, 4,7,10,13,16-hexaoxacyclooctadecane) and 4,13-diaza-18-crown-6-ether (diaza-18-crown-6-ether), preferably It may include at least one selected from 1,4,7,10-tetraoxacyclododecane and 1,4,7,10,13-pentaoxacyclopentadecane, more preferably 1,4 , 7,10-tetraoxacyclododecane can be used.

그리고, 상기 크라운 에테르 화합물이 치환기를 가지는 경우, 상기 치환기는 C1~C3의 직쇄형 수산화알킬기(-ROH, 여기서, R은 C1~C3의 직쇄형 알킬렌기)를 치환기로서 1개 또는 2개 이상을 포함할 수도 있다.And, when the crown ether compound has a substituent, the substituent is one C 1 to C 3 straight-chain hydroxyalkyl group (-ROH, where R is a C 1 to C 3 straight-chain alkylene group) as a substituent. It may contain two or more.

또한, 상기 유기용매는 카보네이트계 용매를 사용할 수 있고, 상기 카보네이트 용매는 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 비닐 카보네이트 및 메틸프로피오네이트 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 디메틸카보네이트, 디에틸카보네이트 및 메틸에틸카보네이트 중에서 선택된 1종 이상을 포함할 수 있고, 더욱 바람직하게는 디메틸카보네이트 및 디에틸카보네이트 중에서 선택된 1종 이상을 포함할 수 있다. 그리고, 상기 유기용매는 반응물의 용해성, 반응성 향상 측면에서 상기 카보네이트계 용매와 함께 아세톤을 혼합 사용하는 것이 유리하며, 바람직하게는 상기 카보네이트계 용매 및 아세톤을 1 : 0.05 ~ 0.20 중량비로, 더욱 바람직하게는 1:0.08 ~ 0.15 중량비로 혼합사용하는 것이 좋다.In addition, the organic solvent may be a carbonate-based solvent, and the carbonate solvent may include one or more selected from dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, vinyl carbonate, and methyl propionate, preferably It may include one or more types selected from dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, and more preferably, it may include one or more types selected from dimethyl carbonate and diethyl carbonate. In terms of improving the solubility and reactivity of the reactant, it is advantageous to use a mixture of acetone and the carbonate-based solvent as the organic solvent. Preferably, the carbonate-based solvent and acetone are mixed in a weight ratio of 1:0.05 to 0.20, more preferably. It is recommended to mix and use at a weight ratio of 1:0.08 to 0.15.

또한, 상기 1-1단계의 혼합액은 반응촉매를 더 포함할 수 있으며, 반응촉매는 크라운 에테르 화합물의 개환을 촉진하면서 LiPF6과 메타붕산리튬의 반응을 촉진하는 역할을 하는 것을 사용할 수 있으며, 바람직하게는 SeO2F2 및 SeO2Cl2 중에서 선택된 1종 이상을 사용할 수 있으며, 더욱 바람직하게는 SeO2F2를 소량으로 사용할 수 있다. 바람직한 예를 들면, 헥사플루오로인산리튬 1몰에 대해 상기 반응촉매는 0.001~0.020 몰비로 투입할 수 있다.In addition, the mixed solution of step 1-1 may further include a reaction catalyst, and the reaction catalyst may be one that promotes the reaction between LiPF 6 and lithium metaborate while promoting ring opening of the crown ether compound, and is preferably used. Typically, one or more types selected from SeO 2 F 2 and SeO 2 Cl 2 may be used, and more preferably, SeO 2 F 2 may be used in a small amount. For a preferred example, the reaction catalyst may be added at a molar ratio of 0.001 to 0.020 per mole of lithium hexafluorophosphate.

그리고, 1-2단계의 불활성 분위기는 질소 가스 또는 아르곤 가스 등의 비활성 기체를 투입하여 형성시킬 수 있다.Additionally, the inert atmosphere in steps 1 and 2 can be formed by adding an inert gas such as nitrogen gas or argon gas.

1-2단계의 반응은 반응기 내부를 불활성 분위기로 전환시킨 후, 반응기 내부온도가 50 ~ 80℃, 바람직하게는 55 ~ 70℃, 더욱 바람직하게는 55 ~ 65℃가 될때까지 가열한 후, 이 온도를 유지하면서 서서히 교반시키면서 8 ~ 20시간 동안 , 바람직하게는 10 ~ 16 시간 동안 수행할 수 있다. 이때, 반응온도가 50℃ 미만이면 디플루오로인산리튬염 수율이 낮을 수 있고, 반응온도가 80℃를 초과하더라도 더 이상 수율이 증가가 없으며, 오히려 부반응에 의한 원치않는 불순물이 발생하여 합성된 디플루오로인산리튬염의 순도가 낮아질 수 있으므로 상기 온도 하에서 반응을 수행하는 것이 유리하다. 그리고, 반응 시간은 상기 온도에서 높은 수율, 순도의 디플루오로인산리튬염을 합성하기 위한 적정 시간이다.The reaction in steps 1-2 is performed by converting the inside of the reactor to an inert atmosphere, heating until the internal temperature of the reactor reaches 50 to 80°C, preferably 55 to 70°C, and more preferably 55 to 65°C. It can be performed for 8 to 20 hours, preferably for 10 to 16 hours, while maintaining the temperature and stirring slowly. At this time, if the reaction temperature is less than 50℃, the yield of lithium difluorophosphate salt may be low, and even if the reaction temperature exceeds 80℃, the yield no longer increases. Rather, unwanted impurities due to side reactions are generated and the synthesized difluorophosphate salt yield is low. Since the purity of the lithium fluorophosphate salt may be lowered, it is advantageous to carry out the reaction under the above temperature. And, the reaction time is an appropriate time for synthesizing lithium difluorophosphate salt with high yield and purity at the above temperature.

1-3단계는 반응 완료 후, 멤브레인 필터 등을 이용하여 여과를 수행하여 결정체를 수득한 후, 이를 당업계에서 사용하는 일반적인 방법으로 필터링 방법을 제한없이 사용할 수 있다.In steps 1-3, after completion of the reaction, filtration is performed using a membrane filter, etc. to obtain crystals, and then the filtering method can be used without limitation using a common method used in the industry.

그리고, 필터링하여 수득한 결정체를 세척한 후, 건조시켜서 세척액을 증발시켜서 디플루오로인산리튬염 결정체를 수득할 수 있다. 이때, 세척은 디플루오로인산리튬염이 용해되지 않는 용매를 제한없이 사용할 수 있으며, 건조 방법도 제한없이 사용할 수 있고, 다만 건조는 디플루오로인산리튬염의 변색 등을 방지하기 위해 90℃ 이상의 열을 가하지 않는 범위에서 수행하는 것이 바람직하다.Then, after washing the crystals obtained by filtering, drying them and evaporating the washing liquid, lithium difluorophosphate salt crystals can be obtained. At this time, solvents in which the lithium difluorophosphate salt does not dissolve can be used without limitation for washing, and drying methods can be used without limitation. However, drying must be done at a temperature of 90°C or higher to prevent discoloration of the lithium difluorophosphate salt. It is desirable to perform it in a range that does not apply.

이와 같은 방법을 통해서, 수율 84.0 ~ 95.0% 및 순도 90.0 ~ 98.0%의, 바람직하게는 수율 85.0 ~ 94.0% 및 순도 92.0 ~ 97.0%의 디플루오로인산리튬염 결정체를 수득할 수 있다.Through this method, lithium difluorophosphate salt crystals can be obtained with a yield of 84.0 to 95.0% and a purity of 90.0 to 98.0%, preferably with a yield of 85.0 to 94.0% and a purity of 92.0 to 97.0%.

또한, 본 발명의 디플루오로인산리튬염 결정체 제조방법은 앞서 제조한 디플루오로인산리튬염 결정체의 순도를 향상시키기 위해서 정제 및 재결정 공정을 더 수행할 수도 있다.In addition, the method for producing lithium difluorophosphate salt crystals of the present invention may further perform purification and recrystallization processes to improve the purity of the previously prepared lithium difluorophosphate salt crystals.

정제 공정은 당업계에서 사용하는 일반적인 공정을 통해서 수행할 수 있지만, 수율이 저하를 방지하면서 순도 증대를 위해서 디플루오로인산리튬염 결정체 및 에스테르계 용매 중에서 선택된 1종 이상의 용매를 투입 및 교반하여 정제공정을 수행하는 2-1단계; 여과를 수행하여 여과액을 수득하는 2-2단계; 및 여과액을 열처리 및 냉각시켜서 재결정화된 디플루오로인산리튬염을 수득하는 2-3단계;를 수행할 수 있다.The purification process can be performed through a general process used in the industry, but to prevent a decrease in yield and increase purity, purification is performed by adding and stirring one or more solvents selected from lithium difluorophosphate salt crystals and ester solvents. Step 2-1 of performing the process; Step 2-2 of performing filtration to obtain a filtrate; and steps 2-3 of heat-treating and cooling the filtrate to obtain recrystallized lithium difluorophosphate salt.

상기 2-1단계의 정제공정은 디플루오로인산리튬염 결정체만 용해되고 불순물은 용해되지 않은 용매를 사용하여 앞서 제조한 디플루오로인산리튬염 결정체를 용해시키는 공정이다.The purification process of step 2-1 is a process of dissolving the previously prepared lithium difluorophosphate salt crystals using a solvent in which only the lithium difluorophosphate salt crystals are dissolved and impurities are not dissolved.

상기 용매로는 에스테르계 용매를 사용하는 것이 좋으며, 상기 에스테르계 용매는 디메틸카르보네이트, 에틸메틸카르보네이트, 디에틸카르보네이트, 에틸렌카르보네이트, 인산트리메틸에스테르, 인산트리에틸에스테르, 아인산트리메틸에스테르 및 아인산트리에틸메틸에스테르 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 디메틸카르보네이트, 에틸메틸카르보네이트, 디에틸카르보네이트, 인산트리메틸에스테르 및 아인산트리메틸에스테르 중에서 선택된 1종 이상을 포함할 수 있고, 더욱 바람직하게는 디메틸카르보네이트 및 인산트리메틸에스테르를 1 : 0.5 ~ 1.0 중량비로 혼합한 것을 사용할 수 있다.It is recommended to use an ester-based solvent as the solvent, and the ester-based solvent is dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, ethylene carbonate, trimethyl phosphate, triethyl phosphate, and phosphorous acid. It may contain one or more types selected from trimethyl ester and triethylmethyl phosphite, and preferably one type selected from dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, trimethyl phosphate, and trimethyl phosphorous acid. It may include the above, and more preferably, a mixture of dimethyl carbonate and trimethyl phosphate ester in a weight ratio of 1:0.5 to 1.0 can be used.

그리고, 용매 사용량은 디플루오로인산리튬염 결정체의 5 ~ 30배 정도의 중량비를, 바람직하게는 5 ~ 15배 정도의 중량비로 사용하는 것이 용해 측면에서 적절하다.In terms of dissolution, it is appropriate to use a solvent that is 5 to 30 times the weight ratio of the lithium difluorophosphate salt crystal, and preferably 5 to 15 times the weight ratio of the lithium difluorophosphate salt crystal.

그리고, 정제 공정은 온도 40 ~ 70℃, 바람직하게는 50 ~ 60℃ 하에서 교반시키면서 수행하는 것이 디플루오로인산리튬염 결정체의 빠른 용해 측면에서 적절하여, 온도가 너무 낮으면 정제 공정이 너무 길어지고, 70℃를 초과하는 것은 비경제적이다.In addition, it is appropriate to carry out the purification process at a temperature of 40 to 70°C, preferably 50 to 60°C while stirring, in terms of rapid dissolution of the lithium difluorophosphate salt crystals. If the temperature is too low, the purification process will be too long and , exceeding 70℃ is uneconomical.

그리고, 2-2단계는 2-1단계를 수행한 디플루오로인산리튬염이 용해된 용액을 멤브레인 필터 등을 이용하여 여과하여 불순물이 제거된 여과액을 수득하는 공정이며, 이때, 여과는 당업계에서 사용하는 일반적이 여과방법으로 수행할 수 있다.In addition, step 2-2 is a process of filtering the solution in which the lithium difluorophosphate salt dissolved in step 2-1 is filtered using a membrane filter, etc. to obtain a filtrate from which impurities have been removed. At this time, filtration is performed by removing sugar. It can be performed using common filtration methods used in the industry.

그리고, 2-3단계는 여과액을 열처리하여 정제에 사용된 에스테르계 용매를 증류 제거하여 재결정화된 백색의 디플루오로인산리튬염 결정체를 수득하는 공정이다. 이때, 열처리는 사용된 에스테르계 용매의 끓는점을 초과하는 온도로 열을 가하면서 수행한다.And, steps 2-3 are a process of heat-treating the filtrate to distill off the ester-based solvent used for purification to obtain recrystallized white lithium difluorophosphate salt crystals. At this time, the heat treatment is performed by applying heat to a temperature exceeding the boiling point of the ester solvent used.

이러한 정제공정을 수행하여 수득된 디플루오로인산리튬염 결정체는 1-1 ~ 1-3단계를 통해 제조된 디플루오로인산리튬염 결정체 보다 수율은 다소 낮아지지만, 순도가 향상될 수 있으며, 바람직하게는 수율 82.0 ~ 93.0% 및 순도 94.0 ~ 99.8%의, 바람직하게는 수율 84.0 ~ 93.0% 및 순도 95.0 ~ 99.5%의 재결정화된 디플루오로인산리튬염 결정체를 수득할 수 있다.The yield of the lithium difluorophosphate salt crystals obtained by performing this purification process is somewhat lower than that of the lithium difluorophosphate salt crystals prepared through steps 1-1 to 1-3, but the purity can be improved, and it is preferable Preferably, recrystallized lithium difluorophosphate salt crystals can be obtained with a yield of 82.0 to 93.0% and a purity of 94.0 to 99.8%, preferably with a yield of 84.0 to 93.0% and a purity of 95.0 to 99.5%.

앞서 설명한 방법으로 제조한 본 발명의 디플루오로인산리튬염 결정체는 다양한 용도로 사용될 수 있으며, 바람직한 예를 들면, 2차 전지용 비수계 전해액의 전해질로 사용할 수 있다.The lithium difluorophosphate salt crystal of the present invention prepared by the method described above can be used for various purposes, for example, it can be used as an electrolyte in a non-aqueous electrolyte solution for secondary batteries.

이하에서는 본 발명을 실시예를 통하여 더욱 구체적으로 설명한다. 그러나, 하기 실시예에 의해 본 발명의 권리범위를 한정하여 해석해서는 안되며, 하기 실시예는 본 발명의 이해를 돕기 위한 것이다.Hereinafter, the present invention will be described in more detail through examples. However, the scope of the present invention should not be construed as limited by the following examples, and the following examples are intended to aid understanding of the present invention.

[실시예][Example]

실시예1 : 디플루오로인산리튬염 결정체의 제조Example 1: Preparation of lithium difluorophosphate salt crystals

(1) 디플루오로인산리튬염 결정체 제조(1단계)(1) Preparation of lithium difluorophosphate salt crystals (step 1)

건조된 반응기 내에 헥사플루오로인산리튬, 메타붕산리튬, 1,4,7,10-테트라옥사사이클로도데케인, 셀레노닐플루오라이드(selenonyl fluoride, 반응촉매) 및 디메틸카보네이트(유기용매)를 투입한 후, 밀봉시킨 다음, 아르곤 가스를 투입하였다. 이때, 헥사플루오로인산리튬, 메타붕산리튬 및 1,4,7,10-테트라옥사사이클로도데케인의 투입 몰비는 1:0.85:0.60 몰비였고, 반응촉매 투입 몰비는 헥사플루오로인산리튬 1몰에 대해 0.005 몰비였다. 그리고, 상기 유기용매는 디메틸카보네이트 및 아세톤을 1:0.1 중량비로 혼합한 혼합용매를 사용하였다.After adding lithium hexafluorophosphate, lithium metaborate, 1,4,7,10-tetraoxacyclododecane, selenonyl fluoride (reaction catalyst), and dimethyl carbonate (organic solvent) into the dried reactor. , It was sealed, and then argon gas was introduced. At this time, the molar ratio of lithium hexafluorophosphate, lithium metaborate, and 1,4,7,10-tetraoxacyclododecane was 1:0.85:0.60, and the molar ratio of reaction catalyst was 1 mole of lithium hexafluorophosphate. The molar ratio was 0.005. And, the organic solvent used was a mixed solvent in which dimethyl carbonate and acetone were mixed at a weight ratio of 1:0.1.

그리고, 아르곤 가스 분위기 하에서 57~59℃로 승온시킨 후, 이 온도를 유지 및 천천히 교반시키면서 12시간 동안 반응을 수행하였다.Then, the temperature was raised to 57-59°C under an argon gas atmosphere, and the reaction was performed for 12 hours while maintaining this temperature and stirring slowly.

반응이 완료된 후, 반응기 온도를 실온으로 낮춘 다음, 멤브레인 필터로 반응완료된 용액을 여과(필터링)하여서 결정체를 수득하였다. After the reaction was completed, the reactor temperature was lowered to room temperature, and then the reaction solution was filtered using a membrane filter to obtain crystals.

그리고, 수득한 결정체를 디메틸카보네이트로 세척한 후, 70℃ 온도 분위기 하에서 회전 증발기(rotary evaporator)로 건조를 수행한 후, 냉각시켜서 디플루오로인산리튬염 결정체를 수득하였다.Then, the obtained crystals were washed with dimethyl carbonate, dried using a rotary evaporator in an atmosphere at 70°C, and then cooled to obtain lithium difluorophosphate salt crystals.

합성된 디플루오로인산리튬염 결정체의 수율은 89.75%였고, 순도는 95.33%였다.The yield of the synthesized lithium difluorophosphate salt crystals was 89.75%, and the purity was 95.33%.

(2) 정제 공정(2단계)(2) Purification process (step 2)

디플루오로인산리튬염 결정체의 순도를 높이기 위해서, 정제공정을 추가적으로 수행하였다.In order to increase the purity of the lithium difluorophosphate salt crystals, an additional purification process was performed.

디메틸카보네이트 및 인산트리메틸에스테르를 1 : 0.65 중량비로 혼합한 혼합용매를 준비하였다. 상기 혼합용매를 55℃ 정도로 가열한 후, 앞서 제조한 디플루오로인산리튬염 결정체를 투입하고, 교반시켜서 디플루오로인산리튬염 결정체를 혼합용매에 용해시킨 용액을 제조하였다.A mixed solvent was prepared by mixing dimethyl carbonate and trimethyl phosphate at a weight ratio of 1:0.65. After heating the mixed solvent to about 55°C, the previously prepared lithium difluorophosphate salt crystals were added and stirred to prepare a solution in which the lithium difluorophosphate salt crystals were dissolved in the mixed solvent.

다음으로, 상기 용액을 멤브레인 필터로 여과를 수행한 후, 여과액을 수득하였다.Next, the solution was filtered using a membrane filter, and then a filtrate was obtained.

다음으로, 상기 여과액을 70℃ 온도 분위기 하에서 회전 증발기(rotary evaporator)로 건조를 수행한 후, 냉각시켜서 재결정화된 디플루오로인산리튬염 결정체를 수득하였다.Next, the filtrate was dried using a rotary evaporator under a temperature atmosphere of 70°C, and then cooled to obtain recrystallized lithium difluorophosphate salt crystals.

재결정화된 디플루오로인산리튬염 결정체의 수율은 87.93%였고, 순도는 98.72%였다.The yield of recrystallized lithium difluorophosphate salt crystals was 87.93%, and the purity was 98.72%.

실시예 2 ~ 실시예 4 Examples 2 to 4

상기 실시예 1과 동일한 방법으로 디플루오로인산리튬염 결정체를 제조하고, 정제공정을 수행하되, 1,4,7,10-테트라옥사사이클로도데케인 대신 하기 표 1과 같이 크라운 에테르 화합물을 달리하여 디플루오로인산리튬염 결정체를 각각 제조하여 실시예 2 ~ 5를 각각 실시하였다.Lithium difluorophosphate salt crystals were prepared in the same manner as in Example 1, and a purification process was performed, except that instead of 1,4,7,10-tetraoxacyclododecane, the crown ether compound was used as shown in Table 1 below. Each lithium difluorophosphate salt crystal was prepared and Examples 2 to 5 were respectively performed.

실시예 6 ~ 실시예 7 Examples 6 to 7

상기 실시예 1과 동일한 방법으로 디플루오로인산리튬염 결정체를 제조하고, 정제공정을 수행하되, 유기용매로서 디메틸카보네이트 대신 디에틸카보네이트 또는 메틸에틸카보네이트를 아세톤한 혼합한 혼합용매를 사용하여 실시예 6 및 실시예 7을 실시하였다.Lithium difluorophosphate salt crystals were prepared in the same manner as in Example 1, and a purification process was performed, except that instead of dimethyl carbonate, a mixed solvent containing diethyl carbonate or methyl ethyl carbonate with acetone was used as the organic solvent. Examples 6 and 7 were carried out.

실시예 8 ~ 실시예 9Examples 8 to 9

상기 실시예 1과 동일한 방법으로 디플루오로인산리튬염 결정체를 제조하고, 정제공정을 수행하되, 정제공정에 사용하는 용매로서 혼합용매가 아닌 디메틸카보네이트 단독 또는 인산트리메틸에스테르 단독으로 사용하여 정제공정을 수행하여 실시예 8 및 실시예 9를 실시하였다.Lithium difluorophosphate salt crystals were prepared in the same manner as in Example 1, and a purification process was performed, except that dimethyl carbonate alone or trimethyl phosphate alone was used as the solvent used in the purification process, rather than a mixed solvent. Example 8 and Example 9 were carried out.

구분division LiPO2F2 합성(1단계)LiPO 2 F 2 synthesis (step 1) 정제공정 (2단계)Refining process (step 2) 크라운
에테르
화합물
crown
ether
compound
유기용매organic solvent 수율(%)/순도(%)Yield (%)/Purity (%) 용매menstruum 수율(%)/순도(%)Yield (%)/Purity (%)
실시예 1Example 1 (1)(One) 디메틸
카보네이트,
아세톤
dimethyl
carbonate,
acetone
89.75/95.3389.75/95.33 혼합용매(6) Mixed solvent (6) 87.93/98.7487.93/98.74
실시예 2Example 2 (2)(2) 89.97/96.2889.97/96.28 87.77/99.1087.77/99.10 실시예 3Example 3 (3)(3) 87.26/94.8287.26/94.82 85.52/97.7685.52/97.76 실시예 4Example 4 (4)(4) 90.50/95.9190.50/95.91 88.84/99.4288.84/99.42 실시예 5Example 5 (5)(5) 92.13/94.9492.13/94.94 89.14/99.3589.14/99.35 실시예 6Example 6 (1)(One) 디에틸
카보네이트,
아세톤
diethyl
carbonate,
acetone
86.47/95.0286.47/95.02 84.56/97.0384.56/97.03
실시예 7Example 7 (1)(One) 메틸에틸카보네이트,
아세톤
methyl ethyl carbonate,
acetone
87.51/95.1787.51/95.17 84.96/98.4084.96/98.40
실시예 8Example 8 (1)(One) 디메틸
카보네이트,
아세톤
dimethyl
carbonate,
acetone
89.75/95.3389.75/95.33 디메틸
카보네이트 단독
dimethyl
carbonate sole
88.05/98.4088.05/98.40
실시예 9Example 9 (1)(One) 인산트리메틸
에스테르
단독
Trimethyl phosphate
ester
single
86.44/98.4786.44/98.47
(1) : 1,4,7,10-테트라옥사사이클로도데케인
(2) : 1,4,7,10,13-펜타옥사사이클로펜타데케인
(3) : 1,4,7,10,13,16-헥사옥사사이클로옥타데케인
(4) : 4,13-다이아자-18-크라운-6-에테르
(5) : 2,5,8,11,14-수산화메틸-1,4,7,10,13-펜타옥사사이클로펜타데케인
(6) : 디메틸카르보네이트 및 인산트리메틸에스테르를 1 : 0.65 중량비로 포함
(1): 1,4,7,10-tetraoxacyclododecane
(2): 1,4,7,10,13-pentaoxacyclopentadecane
(3): 1,4,7,10,13,16-hexaoxacyclooctadecane
(4): 4,13-diaza-18-crown-6-ether
(5): 2,5,8,11,14-methyl hydroxide-1,4,7,10,13-pentaoxacyclopentadecane
(6): Contains dimethyl carbonate and trimethyl phosphate in a weight ratio of 1:0.65.

상기 표 1의 수율, 순도 측정 결과를 살펴보면, LiPO2F2 합성(1단계)공정에서 제조된 디플루오로인산리튬염 결정체가 전반적으로 85.00% 이상의 수율을 가지면서 90.0% 이상의 높은 순도를 가짐을 확인할 수 있었다. 그리고, 이를 정제 수행하여 재결화시켜 수득한 LiPO2F2 결정체의 수율은 다소 낮아지나, 순도가 크게 향상됨을 확인할 수 있었으며, 재결정화시켜 수득한 LiPO2F2 결정체의 순도는 전반적으로 95.00% 이상으로 고순도로 수득할 수 있음을 확인할 수 있었다.Looking at the yield and purity measurement results in Table 1, it can be seen that the lithium difluorophosphate salt crystals prepared in the LiPO 2 F 2 synthesis (step 1) process have an overall yield of over 85.00% and a high purity of over 90.0%. I was able to confirm. In addition, it was confirmed that the yield of LiPO 2 F 2 crystals obtained by purification and recrystallization was somewhat lower, but the purity was greatly improved, and the overall purity of LiPO 2 F 2 crystals obtained by recrystallization was 95.00% or more. It was confirmed that it could be obtained with high purity.

특히, LiPO2F2 합성(1단계)공정에서 실시예 1~2및 4의 경우, 실시예 3 보다 상대적으로 더 높은 수율, 순도로 LiPO2F2 결정체를 수득할 수 있었다. 또한, 실시예 1 ~ 4 보다 실시예 5가 순도는 다소 낮으나, 높은 수율로 LiPO2F2 결정체를 수득할 수 있음 확인할 수 있었다.In particular, in the case of Examples 1 to 2 and 4 in the LiPO 2 F 2 synthesis (step 1) process, LiPO 2 F 2 crystals were obtained with relatively higher yield and purity than Example 3. In addition, although the purity of Example 5 was somewhat lower than that of Examples 1 to 4, it was confirmed that LiPO 2 F 2 crystals could be obtained in high yield.

그리고, 실시예 1과 실시예 6~7의 수율, 순도 측정결과를 볼 때, 디에틸카보네이트와 메틸에틸 카보네이트 보다 디메틸카보네이트를 사용하는 것이 수율, 순도 측면에서 상대적으로 유리함을 확인할 수 있었다.In addition, when looking at the yield and purity measurement results of Example 1 and Examples 6 to 7, it was confirmed that using dimethyl carbonate was relatively more advantageous in terms of yield and purity than diethyl carbonate and methylethyl carbonate.

그리고, 정제공정시 정제용매로서 디메틸카보네이트와 인산트리메틸에스테르를 단독으로 사용하는 것 보다 이를 혼합하여 정제용매로 사용하는 것이 순도 증대 측면에서 상대적으로 더 유리함을 확인할 수 있었다.In addition, it was confirmed that using a mixture of dimethyl carbonate and trimethyl phosphate as a purification solvent during the purification process is relatively more advantageous in terms of increasing purity than using them alone.

실시예 10 ~ 11 및 비교예 1 ~ 4Examples 10 to 11 and Comparative Examples 1 to 4

상기 실시예 2와 동일한 방법으로 디플루오로인산리튬염 결정체를 제조하고, 정제공정을 수행하되, 헥사플루오로인산리튬 및 크라운 에테르 화합물인 1,4,7,10,13-펜타옥사사이클로펜타데케인 사용 몰비를 하기 표 2와 같이 달리하여, 실시예 10 ~ 11 및 비교예 1 ~ 2를 각각 실시하여, 재결정화된 디플루오로인산리튬염 결정체를 제조하였다.Lithium difluorophosphate salt crystals were prepared in the same manner as in Example 2, and a purification process was performed, except that lithium hexafluorophosphate and the crown ether compound 1,4,7,10,13-pentaoxacyclopentade were used. Recrystallized lithium difluorophosphate salt crystals were prepared by performing Examples 10 to 11 and Comparative Examples 1 to 2, respectively, by varying the molar ratio of cane used as shown in Table 2 below.

또한, 메타붕산리튬의 사용 몰비를 하기 표 2와 같이 달리하여, 실시예 12 ~ 13 및 비교예 3 ~ 4를 각각 실시하여, 재결정화된 디플루오로인산리튬염 결정체를 제조하였다.In addition, Examples 12 to 13 and Comparative Examples 3 to 4 were respectively performed by varying the molar ratio of lithium metaborate as shown in Table 2 below to prepare recrystallized lithium difluorophosphate salt crystals.

실시예 12 ~ 13 및 비교예 3 및 비교예 4Examples 12 to 13 and Comparative Examples 3 and 4

상기 실시예 2와 동일한 방법법으로 디플루오로인산리튬염 결정체를 제조하고, 정제 및 재결정화 공정을 수행하되, 또한, 메타붕산리튬의 사용 몰비를 하기 표 2와 같이 달리하여, 실시예 12 ~ 13 및 비교예 3 ~ 4를 각각 실시하여, 디플루오로인산리튬염 결정체 및 재결정화된 디플루오로인산리튬염 결정체를 제조하였다.Lithium difluorophosphate salt crystals were prepared using the same method as in Example 2, and purification and recrystallization processes were performed, but the molar ratio of lithium metaborate used was changed as shown in Table 2 below, Examples 12 to 12. 13 and Comparative Examples 3 to 4 were performed respectively to prepare lithium difluorophosphate salt crystals and recrystallized lithium difluorophosphate salt crystals.

구분division LiPO2F2 합성(1단계)LiPO 2 F 2 synthesis (step 1) 정제공정 (2단계)Refining process (step 2) LiPF6 : 메타붕산리튬:
크라운
에테르 화합물의 몰비
LiPF 6 : Lithium metaborate:
crown
molar ratio of ether compounds
수율(%)/순도(%)Yield (%)/Purity (%) 용매menstruum 수율(%)/순도(%)Yield (%)/Purity (%)
실시예 2Example 2 1:0.85:0.601:0.85:0.60 89.97/96.2889.97/96.28 혼합용매mixed solvent 87.77/99.1087.77/99.10 실시예 10Example 10 1:0.85:0.401:0.85:0.40 86.64/96.2386.64/96.23 84.57/99.1184.57/99.11 실시예 11Example 11 1:0.85:0.801:0.85:0.80 91.02/94.8791.02/94.87 87.85/98.2487.85/98.24 실시예 12Example 12 1:0.50:0.601:0.50:0.60 87.75/95.1487.75/95.14 85.28/98.8385.28/98.83 실시예 13Example 13 1:1.00:0.601:1.00:0.60 90.12/96.3090.12/96.30 87.81/99.1287.81/99.12 비교예 1Comparative Example 1 1:0.85:0.251:0.85:0.25 82.33/96.3282.33/96.32 80.55/99.1580.55/99.15 비교예 2Comparative Example 2 1:0.85:1.051:0.85:1.05 90.94/92.7290.94/92.72 87.81/97.8287.81/97.82 비교예 3Comparative Example 3 1:0:0.601:0:0.60 82.81/93.7982.81/93.79 79.93/96.9379.93/96.93 비교예 4Comparative Example 4 1:1.20:0.601:1.20:0.60 90.18/95.3790.18/95.37 86.27/98.6586.27/98.65

상기 표 2의 수율, 순도 측정결과를 살펴보면, LiPO2F2 결정체 합성(1단계)시, 크라운 에테르 화합물을 0.30 몰비 미만으로 사용한 비교예 1의 경우, 실시예 2 및 실시예 10과 비교할 때, 순도는 유사하나, 수율이 크게 떨어지는 결과를 보였다.Looking at the yield and purity measurement results in Table 2, in the case of Comparative Example 1, in which the crown ether compound was used at a molar ratio of less than 0.30 during LiPO 2 F 2 crystal synthesis (step 1), when compared to Examples 2 and 10, The purity was similar, but the yield was significantly lower.

또한, LiPO2F2 결정체 합성(1단계)시, 크라운 에테르 화합물을 0.80 몰비를 초과하여 사용한 비교예 2의 경우, 실시예 2 및 실시예 11과 비교할 때, 수율 향상이 거의 동등하면서 오히려 순도가 크게 떨어지는 결과를 보였다.In addition, in the case of Comparative Example 2, in which the crown ether compound was used in a mole ratio exceeding 0.80 when synthesizing LiPO 2 F 2 crystals (step 1), compared to Examples 2 and 11, the yield improvement was almost equal, but the purity was higher. The results showed a significant drop.

이를 통해서, LiPO2F2 결정체 합성(1단계)시, 크라운 에테르 화합물을 LiPF6 에 대한 크라운 에테르 화합물의 투입 몰비가 0.30 ~ 0.80 범위로 사용하는 것이 적정 수율 및 순도 확보 측면에서 바람직함을 확인할 수 있었다.Through this, it can be confirmed that when synthesizing LiPO 2 F 2 crystals (step 1), it is preferable to use the crown ether compound at an input molar ratio of 0.30 to 0.80 to LiPF 6 in terms of securing appropriate yield and purity. there was.

그리고, 메타붕산리튬을 사용하지 않은 비교예 3의 경우, 실시예 2및 실시예 12와 비교할 때, 수율이 상대적으로 크게 감소하는 문제가 있음을 확인할 수 있었으며, 메타붕산리튬을 과량 사용한 비교예 4의 경우, 실시예 2 및 실시예 13과 비교할 때,수율은 다소 높으나, 오히려 상대적으로 순도가 낮아지는 문제가 있었다. 이를 통해서, LiPO2F2 결정체 합성(1단계)시, LiPF6 에 대한 메타붕산리튬의 투입 몰비가 0.50 ~ 1.00 범위 정도로 사용하는 것이 적정 수율 및 순도 확보 측면에서 바람직함을 확인할 수 있었다.In addition, in the case of Comparative Example 3 in which lithium metaborate was not used, it was confirmed that there was a problem of a relatively large decrease in yield compared to Examples 2 and 12, and in Comparative Example 4 in which an excessive amount of lithium metaborate was used. In the case of, compared to Example 2 and Example 13, the yield was somewhat higher, but there was a problem of relatively lower purity. Through this, it was confirmed that when synthesizing LiPO 2 F 2 crystals (step 1), it is preferable to use an input molar ratio of lithium metaborate to LiPF 6 in the range of 0.50 to 1.00 in terms of securing appropriate yield and purity.

제조예 1 ~ 13: 2차 전지용 비수계 전해액의 제조Preparation Examples 1 to 13: Preparation of non-aqueous electrolyte solution for secondary batteries

에틸렌카르보네이트(EC)와 에틸메틸카르보네이트(EMC)를 3:7의 부피비로 혼합한 비수 용매에, 전해질로서 헥사플루오로인산리튬(LiPF6)을 1.1㏖/L의 비율로 용해시킨 용액에, 실시예 1에서 정제한 디플루오로인산리튬을 용액에 대하여 1 중량% 첨가하여 비수전해액을 제조하여 제조예 1을 실시하였다.Lithium hexafluorophosphate (LiPF 6 ) as an electrolyte was dissolved at a ratio of 1.1 mol/L in a non-aqueous solvent containing ethylene carbonate (EC) and ethylmethyl carbonate (EMC) mixed at a volume ratio of 3:7. Preparation Example 1 was performed by adding 1% by weight of lithium difluorophosphate purified in Example 1 to the solution to prepare a non-aqueous electrolyte.

또한, 제조예 1과 동일한 방법으로 2차 전지용 비수계 전해액을 제조하되, 실시예 1 대신 실시예 2 내지 실시예 13에서 제조한 디플루오로인산리튬염 결정체 각각을 첨가하여 2차 전지용 비수계 전해액을 각각 제조하여 제조예 2 내지 제조예 12를 각각 실시하였다.In addition, a non-aqueous electrolyte solution for a secondary battery was prepared in the same manner as Preparation Example 1, but each of the lithium difluorophosphate salt crystals prepared in Examples 2 to 13 was added instead of Example 1 to produce a non-aqueous electrolyte solution for a secondary battery. were prepared and Preparation Examples 2 to 12 were carried out, respectively.

상기 실시예를 통하여, 본 발명이 제시하는 방법을 이용하여 순도의 디플루오로인산리튬염 결정체를 높은 수율로 제조할 수 있음을 확인할 수 있었다. 이러한 방법으로 제조한 본 발명의 디플루오로인산리튬염 결정체는 2차 전지용 비수계 전해액의 전해질로 도입하여 안정성이 우수한 2차 전지용 비수계 전해액을 제공할 수 있다.Through the above examples, it was confirmed that pure lithium difluorophosphate salt crystals can be produced in high yield using the method proposed by the present invention. The lithium difluorophosphate salt crystal of the present invention prepared by this method can be introduced as an electrolyte of a non-aqueous electrolyte solution for secondary batteries to provide a non-aqueous electrolyte solution for secondary batteries with excellent stability.

Claims (10)

유기용매 하에서, 헥사플루오로인산리튬(LiPF6), 메타붕산리튬 및 크라운 에테르 화합물을 반응시켜서, 디플루오로인산리튬(LiPO2F2)염 결정체를 합성하는 공정을 수행하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
A process for synthesizing lithium difluorophosphate (LiPO 2 F 2 ) salt crystals by reacting lithium hexafluorophosphate (LiPF 6 ), lithium metaborate and a crown ether compound in an organic solvent. Method for producing lithium fluorophosphate salt crystals.
제1항에 있어서, 상기 합성된 디플루오로인산리튬염 결정체를 정제 및 재결정 공정;을 더 수행하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 1, further comprising purifying and recrystallizing the synthesized lithium difluorophosphate salt crystals.
제1항에 있어서, 디플루오로인산리튬염 결정체를 합성하는 공정은,
헥사플루오로인산리튬(LiPF6), 메타붕산리튬 및 크라운 에테르 화합물을 유기용매에 투입 및 교반하여 혼합액을 제조하는 1-1단계;
상기 혼합액을 반응기에 투입한 후, 반응기 내부를 불활성 분위기로 전환시킨 다음, 반응기 내부 온도 50 ~ 80℃ 하에서 교반시키면서 반응을 수행하는 1-2단계; 및
반응 완료 후, 여과, 세척 및 건조를 수행하여 디플루오로인산리튬염 결정체를 수득하는 1-3단계;를 포함하는 공정을 수행하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 1, wherein the process of synthesizing lithium difluorophosphate salt crystals comprises:
Step 1-1 of preparing a mixed solution by adding and stirring lithium hexafluorophosphate (LiPF 6 ), lithium metaborate, and crown ether compound into an organic solvent;
Steps 1-2 of adding the mixed solution to the reactor, converting the inside of the reactor to an inert atmosphere, and then performing the reaction while stirring at an internal temperature of 50 to 80°C; and
A method for producing lithium difluorophosphate salt crystals, characterized in that a process comprising steps 1-3 of obtaining lithium difluorophosphate salt crystals by performing filtration, washing and drying after completion of the reaction.
제1항에 있어서, 크라운 에테르 화합물은 치환된 또는 비치환 크라운 에테르 화합물이며,
1,4,7,10-테트라옥사사이클로도데케인(1,4,7,10-Tetraoxacyclododecane), 1,4,7,10,13-펜타옥사사이클로펜타데케인(1,4,7,10,13-pentaoxacyclopentadecane), 1,4,7,10,13,16-헥사옥사사이클로옥타데케인(1,4,7,10,13,16-hexaoxacyclooctadecane) 및 4,13-다이아자-18-크라운-6-에테르(diaza-18-crown-6-ether) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 1, wherein the crown ether compound is a substituted or unsubstituted crown ether compound,
1,4,7,10-Tetraoxacyclododecane (1,4,7,10-Tetraoxacyclododecane), 1,4,7,10,13-pentaoxacyclopentadecane (1,4,7,10, 13-pentaoxacyclopentadecane), 1,4,7,10,13,16-hexaoxacyclooctadecane (1,4,7,10,13,16-hexaoxacyclooctadecane) and 4,13-diaza-18-crown- A method for producing a lithium difluorophosphate salt crystal, comprising at least one selected from 6-ether (diaza-18-crown-6-ether).
제1항에 있어서, 상기 유기용매는 디메틸카보네이트, 디에틸카보네이트, 메틸에틸카보네이트, 비닐 카보네이트 및 메틸프로피오네이트 중에서 선택된 1종 이상을 포함하는 카보네이트계 용매를 사용하거나, 또는
상기 카보네이트계 용매 및 아세톤의 혼합용매를 사용하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 1, wherein the organic solvent is a carbonate-based solvent containing at least one selected from dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, vinyl carbonate, and methyl propionate, or
A method for producing lithium difluorophosphate salt crystals, characterized in that using a mixed solvent of the carbonate-based solvent and acetone.
제3항에 있어서, 1-1단계의 상기 혼합액은 반응촉매를 더 포함하며,
1-1단계의 헥사플루오로인산리튬, 메타붕산리튬 및 크라운 에테르 화합물의 유기용매에 대한 투입량은 헥사플루오로인산리튬, 메타붕산리튬 및 크라운 에테르 화합물을 1 : 0.5 ~ 1.0 : 0.3 ~ 0.8 몰비인 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 3, wherein the mixed solution in step 1-1 further includes a reaction catalyst,
The amount of lithium hexafluorophosphate, lithium metaborate, and crown ether compound added to the organic solvent in step 1-1 is lithium hexafluorophosphate, lithium metaborate, and crown ether compound at a molar ratio of 1:0.5 ~ 1.0: 0.3 ~ 0.8. A method for producing lithium difluorophosphate salt crystals.
제2항에 있어서, 상기 정제 및 재결정화 공정은,
디플루오로인산리튬염 결정체 및 에스테르계 용매 중에서 선택된 1종 이상의 용매를 투입 및 교반하여 정제공정을 수행하는 2-1단계;
여과를 수행하여 여과액을 수득하는 2-2단계; 및
여과액을 열처리 및 냉각시켜서 재결정화된 디플루오로인산리튬염을 수득하는 2-3단계;
를 포함하는 공정을 수행하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 2, wherein the purification and recrystallization process,
Step 2-1 of performing a purification process by adding and stirring one or more solvents selected from lithium difluorophosphate salt crystals and ester solvents;
Step 2-2 of performing filtration to obtain a filtrate; and
Steps 2-3 of heat treating and cooling the filtrate to obtain recrystallized lithium difluorophosphate salt;
A method for producing lithium difluorophosphate salt crystals, characterized in that performing a process comprising:
제7항에 있어서, 상기 에스테르계 용매는 디메틸카르보네이트, 에틸메틸카르보네이트, 디에틸카르보네이트, 에틸렌카르보네이트, 인산트리메틸에스테르, 인산트리에틸에스테르, 아인산트리메틸에스테르 및 아인산트리에틸메틸에스테르 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 디플루오로인산리튬염 결정체의 제조방법.
The method of claim 7, wherein the ester-based solvent is dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, ethylene carbonate, trimethyl phosphate, triethyl phosphate, trimethyl phosphite, and triethylmethyl phosphite. A method for producing lithium difluorophosphate salt crystals, comprising at least one selected from esters.
삭제delete 삭제delete
KR1020230026930A 2023-02-28 2023-02-28 Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate KR102596526B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230026930A KR102596526B1 (en) 2023-02-28 2023-02-28 Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230026930A KR102596526B1 (en) 2023-02-28 2023-02-28 Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate

Publications (1)

Publication Number Publication Date
KR102596526B1 true KR102596526B1 (en) 2023-10-31

Family

ID=88543091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230026930A KR102596526B1 (en) 2023-02-28 2023-02-28 Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate

Country Status (1)

Country Link
KR (1) KR102596526B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501034A (en) 1998-01-24 2002-01-15 バイエル・アクチエンゲゼルシヤフト Wood preservative
KR20070065395A (en) * 2004-10-19 2007-06-22 미쓰비시 가가꾸 가부시키가이샤 Method for producing difluorophosphate, nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
KR20150004361A (en) * 2013-06-07 2015-01-12 스텔라 케미파 가부시키가이샤 Purification method for producing difluorophosphate
KR101887488B1 (en) * 2018-01-18 2018-08-10 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925047B1 (en) * 2018-08-01 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925053B1 (en) * 2018-06-22 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925049B1 (en) * 2018-08-02 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
WO2020124328A1 (en) * 2018-12-17 2020-06-25 深圳先进技术研究院 Pre-lithiated negative electrode fabrication method, fabricated pre-lithiated negative electrode, energy storage device, energy storage system, and electrical device
KR102219684B1 (en) * 2020-04-20 2021-02-24 (주)부흥산업사 A method for preparing litium difluorophosphate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501034A (en) 1998-01-24 2002-01-15 バイエル・アクチエンゲゼルシヤフト Wood preservative
KR20070065395A (en) * 2004-10-19 2007-06-22 미쓰비시 가가꾸 가부시키가이샤 Method for producing difluorophosphate, nonaqueous electrolyte solution for secondary battery and nonaqueous electrolyte secondary battery
KR20150004361A (en) * 2013-06-07 2015-01-12 스텔라 케미파 가부시키가이샤 Purification method for producing difluorophosphate
KR101887488B1 (en) * 2018-01-18 2018-08-10 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925053B1 (en) * 2018-06-22 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925047B1 (en) * 2018-08-01 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925049B1 (en) * 2018-08-02 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
WO2020124328A1 (en) * 2018-12-17 2020-06-25 深圳先进技术研究院 Pre-lithiated negative electrode fabrication method, fabricated pre-lithiated negative electrode, energy storage device, energy storage system, and electrical device
KR102219684B1 (en) * 2020-04-20 2021-02-24 (주)부흥산업사 A method for preparing litium difluorophosphate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hydrolysis in the system LiPF6-propylene carbonate-dimethyl carbonate-H2O(Journal of Fluorine Chemistry 126 (2005)27-31)

Similar Documents

Publication Publication Date Title
KR101925051B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR102036924B1 (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
KR101925044B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
CN111224164B (en) Preparation method of lithium difluorophosphate
KR102612816B1 (en) Manufacturing method for lithium bisoxalatoborate with high-purity and Non-aqueous electrolyte for secondary battery
CN109836444B (en) Preparation method of lithium difluoroborate
KR101925049B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR20200114962A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR102300438B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery
KR101982602B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (1)
KR101925047B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
CN113929711A (en) Preparation method of lithium difluoroborate
CN114751431A (en) Preparation method of sodium salt for sodium battery
KR20200114963A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
JPS5981870A (en) Manufacture of solute for nonaqueous electrolyte
KR20220135283A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
KR20220135281A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
KR102231049B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
KR102219684B1 (en) A method for preparing litium difluorophosphate
KR102218938B1 (en) Manufacturing method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR102596526B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate
KR102596524B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate and Crystallization of lithium difluorophosphate
KR20200114967A (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR102007476B1 (en) New purification method of bis(fluorosulfonyl)imide lithium salt)
KR102596525B1 (en) Manufactuiring method for lithium difluorophosphate and Lithium difluorophosphate

Legal Events

Date Code Title Description
GRNT Written decision to grant