KR102300438B1 - Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery - Google Patents

Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery Download PDF

Info

Publication number
KR102300438B1
KR102300438B1 KR1020210012965A KR20210012965A KR102300438B1 KR 102300438 B1 KR102300438 B1 KR 102300438B1 KR 1020210012965 A KR1020210012965 A KR 1020210012965A KR 20210012965 A KR20210012965 A KR 20210012965A KR 102300438 B1 KR102300438 B1 KR 102300438B1
Authority
KR
South Korea
Prior art keywords
lithium difluorophosphate
crystals
comparative example
lithium
purity
Prior art date
Application number
KR1020210012965A
Other languages
Korean (ko)
Inventor
이상율
김경철
김경환
박수철
Original Assignee
주식회사 천보
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 천보 filed Critical 주식회사 천보
Priority to KR1020210012965A priority Critical patent/KR102300438B1/en
Priority to KR1020210073458A priority patent/KR102570659B1/en
Application granted granted Critical
Publication of KR102300438B1 publication Critical patent/KR102300438B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/455Phosphates containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a method for manufacturing a lithium difluorophosphate salt crystal. More specifically, provide is a method for manufacturing a lithium difluorophosphate salt crystal with high yields and high purity, wherein the manufactured high purity lithium difluorophosphate salt crystal can be applied to various uses.

Description

용해성이 우수한 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법 및 이를 이용한 2차 전지용 비수계 전해액{Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery}A method for manufacturing a high-purity lithium difluorophosphate salt crystal having excellent solubility and a non-aqueous electrolyte solution for a secondary battery using the same

본 발명은 디플루오로인산리튬염 결정체의 제조방법 및 이를 포함하는 2차 전지용 비수계 전해액에 관한 것이다. The present invention relates to a method for preparing a crystal of a lithium difluorophosphate salt and to a non-aqueous electrolyte for a secondary battery comprising the same.

디플루오로인산리튬염은 목재의 보존제(특허문헌 1 참조), 칫솔 살균제, 폴리머 안정화제 등 산업적으로 유용한 화합물이다.Lithium difluorophosphate salt is an industrially useful compound such as a wood preservative (see Patent Document 1), a toothbrush disinfectant, and a polymer stabilizer.

그런데, 최근의 전기 제품의 경량화, 소형화에 수반하여, 높은 에너지 밀도를 갖는 2 차 전지, 예를 들어 리튬 이온 2 차 전지의 개발이 진행되고 있다. 또, 이 리튬 이온 2 차 전지의 적용 분야가 확대됨에 따라, 전지 특성의 개선이 보다 더욱 요망되고 있다. 이러한 리튬 이온 2 차 전지의 부하 특성, 사이클 특성, 보존 특성, 저온 특성 등의 전지 특성을 개량하기 위해서, 비수계 용매나 전해질에 대해 여러 가지 검토가 이루어지고 있다. 예를 들어, 비닐탄산에틸렌 화합물을 함유하는 전해액을 사용함으로써, 전해액의 분해를 최소한으로 억제하고, 보존 특성, 사이클 특성이 우수한 전지를 제조하고 있으며, 기존 리튬 이온 2차 전지에는 프로판술톤을 함유한 전해액을 사용하여 보존 후의 회복 용량을 증가시키는 기술이 개시되어 있다.By the way, development of the secondary battery which has a high energy density, for example, a lithium ion secondary battery is advancing with weight reduction and miniaturization of electrical appliances in recent years. Moreover, as the field of application of this lithium ion secondary battery expands, the improvement of battery characteristics is still more desired. In order to improve battery characteristics such as load characteristics, cycle characteristics, storage characteristics, and low temperature characteristics of such lithium ion secondary batteries, various studies have been made on non-aqueous solvents and electrolytes. For example, by using an electrolyte containing a vinyl ethylene carbonate compound, the decomposition of the electrolyte is minimized, and a battery with excellent storage and cycle characteristics is manufactured. A technique for increasing the recovery capacity after storage by using an electrolytic solution is disclosed.

그러나, 기존 리튬 이온 2차 전지 전해액은 보존 특성이나 사이클 특성을 향상시키는 효과는 어느 정도 발휘되지만, 부극(負極)측에서 저항이 높은 피막이 형성되기 때문에, 저온 방전 특성이나 대전류 방전 특성 등이 저하되는 문제가 있다.However, conventional lithium ion secondary battery electrolytes exhibit the effect of improving storage characteristics and cycle characteristics to some extent, but since a film with high resistance is formed on the negative electrode side, low-temperature discharge characteristics and large-current discharge characteristics are lowered. there is a problem.

이에 저온 방전 특성, 대전류 방전 특성, 고온 보존 특성, 사이클 특성을 향상시키면서 안전성이 우수한 첨가제로서 디플루오로인산리튬염을 2차 전지 전해액 성분으로 적용한 기술이 개발되었으나, 디플루오로인산리튬염 제조시 제조 효율 및 순도 등이 떨어지는 문제가 있다.Accordingly, a technology has been developed in which lithium difluorophosphate salt is applied as a secondary battery electrolyte component as an additive with excellent safety while improving low-temperature discharge characteristics, high-current discharge characteristics, high-temperature storage characteristics, and cycle characteristics. There is a problem in that manufacturing efficiency and purity are lowered.

일본 공개특허번호 제2002-501034호(공개일 2002.01.15.)Japanese Patent Laid-Open No. 2002-501034 (published on January 15, 2002) 일본 공개특허번호 제2001-006729호(공개일 2001.01.12.)Japanese Patent Application Laid-Open No. 2001-006729 (published on January 12, 2001)

본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로, 본 발명이 해결하려는 과제는 디플루오로인산리튬염 결정체를 고순도로 제조하는 새로운 방법 제시하고, 이렇게 제조된 디플루오로인산리튬염 결정체를 2차 전지 등의 전해질로 제공하는 데 목적이 있다. The present invention has been devised to solve the above problems, and the problem to be solved by the present invention is to present a new method for producing a high purity lithium difluorophosphate salt crystal, and to prepare the lithium difluorophosphate salt crystal 2 An object of the present invention is to provide it as an electrolyte for a secondary battery or the like.

상기 과제를 해결하기 위한 본 발명의 디플루오로인산리튬염 결정체를 제조하는 방법은 무용매 하에서 리튬헥사플로오로포스페이트(LiPF6), 염화물, 실리콘계 화합물 및 물과 반응시켜서 디플루오로인산리튬염 결정체(LiPO2F2)를 합성하는 1단계; 및 상기 디플루오로인산리튬염 결정체를 정제시켜서 재결정시키는 2단계;를 포함하는 공정을 수행하여 디플루오로인산리튬염 결정체를 제조한다.The method for preparing lithium difluorophosphate crystals of the present invention for solving the above problems is to react with lithium hexafluorophosphate (LiPF 6 ), chloride, silicon-based compound, and water in the absence of a solvent to form lithium difluorophosphate crystals Step 1 of synthesizing (LiPO 2 F 2 ); and a second step of purifying and recrystallizing the lithium difluorophosphate salt crystal to prepare a lithium difluorophosphate salt crystal.

본 발명의 바람직한 일실시예로서, 상기 실리콘계 화합물은 하기 화학식 1로 표시되는 실리콘계 화합물을 포함할 수 있다.As a preferred embodiment of the present invention, the silicone-based compound may include a silicone-based compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112021011955255-pat00001
Figure 112021011955255-pat00001

화학식 1에서, 상기 R1 내지 R3 각각은 독립적인 것으로서, C1 ~ C5의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기, C6 ~ C8의 사이클로알킬기, C1 ~ C10의 알콕시기, 할라이드기를 포함하는 C1 ~ C5의 직쇄형 알킬기, 할라이드기를 포함하는 C3 ~ C5의 분쇄형 알킬기, 아릴(aryl)기 또는 할라이드기를 포함하는 아릴기를 포함하며,In Formula 1, R 1 To R 3 Each is independent, C 1 To C 5 A straight-chain alkyl group, C 3 To C 5 A pulverized alkyl group, C 6 To C 8 A cycloalkyl group, C 1 To C 10 Of an alkoxy group, a C 1 ~ C 5 straight-chain alkyl group including a halide group, a C 3 ~ C 5 pulverized alkyl group including a halide group, an aryl group or an aryl group including a halide group,

상기 R4 내지 R7 각각은 독립적인 것으로서, 수소원자, C1 ~ C5의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기, C1 ~ C10의 알콕시기 또는 아릴기를 포함하고, 상기 X는 0 ~ 10의 정수이다.Each of R 4 to R 7 is independent, and includes a hydrogen atom, a C 1 to C 5 straight-chain alkyl group, a C 3 to C 5 pulverized alkyl group, a C 1 to C 10 alkoxy group or an aryl group, and X is an integer from 0 to 10.

본 발명의 바람직한 일실시예로서, 상기 방법 1의 1단계는 리튬헥사플로오로포스페이트, 염화물 및 실리콘계 화합물을 분쇄 혼합하여 혼합 분쇄물을 제조하는 1-1단계; 상기 혼합 분쇄물을 반응기로 투입한 후, 반응기에 질소 가스를 통기시켜 반응기 내부 공기를 질소 가스로 치환시키는 1-2단계; 증기를 상기 반응기에 투입 및 버블링(bubbling)시켜서 반응을 수행한 후, 여과하여 반응생성물을 얻는 1-3단계;를 포함하는 공정을 수행할 수 있다.As a preferred embodiment of the present invention, the first step of the method 1 is step 1-1 of preparing a mixed pulverized product by pulverizing and mixing lithium hexafluorophosphate, chloride and a silicon-based compound; 1-2 steps of introducing the mixed pulverized material into the reactor and then venting nitrogen gas through the reactor to replace the air inside the reactor with nitrogen gas; After performing the reaction by introducing and bubbling steam into the reactor, steps 1-3 of filtering the reaction product to obtain a reaction product; may be performed.

본 발명의 바람직한 일실시예로서, 상기 리튬헥사플로오로포스페이트, 염화물 및 실리콘 화합물은 1 : 2.8 ~ 4.5 : 0.2 ~ 0.7 몰비로 분쇄 혼합할 수 있다.As a preferred embodiment of the present invention, the Lithium hexafluorophosphate, chloride, and silicon compound may be ground and mixed in a molar ratio of 1: 2.8 to 4.5: 0.2 to 0.7.

본 발명의 바람직한 일실시예로서, 상기 방법 1의 1-2단계는 질소 가스를 40 ~ 55℃ 하에서 20분 ~ 50분 동안 투입하여 반응기 내부를 질소 가스로 치환시킬 수 있다.As a preferred embodiment of the present invention, in steps 1-2 of Method 1, nitrogen gas may be introduced for 20 to 50 minutes under 40 to 55° C. to replace the inside of the reactor with nitrogen gas.

본 발명의 바람직한 일실시예로서, 상기 방법 1의 1-3단계의 증기의 온도는 50 ~ 80℃일 수 있다.As a preferred embodiment of the present invention, the temperature of the steam in steps 1-3 of method 1 may be 50 ~ 80 ℃.

본 발명의 바람직한 일실시예로서, 상기 1-3단계의 증기 투입량은 1-1단계의 리튬헥사플로오로포스페이트 1몰에 대하여, 3.5 ~ 4.5 몰비로 도입할 수 있다. 이때, 상기 증기의 몰비는 증기 내 함유하고 있는 물 기준의 몰비를 의미한다.As a preferred embodiment of the present invention, the amount of steam input in step 1-3 may be introduced in a molar ratio of 3.5 to 4.5 with respect to 1 mole of lithium hexafluorophosphate in step 1-1. In this case, the molar ratio of the steam means the molar ratio based on the water contained in the steam.

본 발명의 바람직한 일실시예로서, 상기 1단계에서 합성된 디플루오로인산리튬염 결정체의 수율은 85 ~ 99.9% 일 수 있다.As a preferred embodiment of the present invention, the yield of the crystals of the lithium difluorophosphate synthesized in step 1 may be 85 to 99.9%.

본 발명의 바람직한 일실시예로서, 상기 2단계는 반응기에 디플루오로인산리튬염 결정체 및 정제 용매를 투입 및 교반하여 정제공정을 수행하는 2-1단계; 정제된 반응물을 1차 진공농축시키는 2-2단계; 1차 진공농축물을 2차 진공농축시키는 2-3단계; 및 2차 진공농축물을 건조 공정을 수행한 후, 냉각시켜서 재결정화된 디플루오로인산리튬염 결정체를 수득하는 2-4단계;를 포함하는 공정을 수행할 수 있다.As a preferred embodiment of the present invention, the second step is step 2-1 of performing a purification process by introducing and stirring lithium difluorophosphate crystals and a purification solvent into a reactor; Step 2-2 of first vacuum-concentrating the purified reactant; 2-3 step of second vacuum concentration of the first vacuum concentrate; and 2-4 steps of obtaining recrystallized crystals of a lithium difluorophosphate salt by cooling the secondary vacuum concentrate after performing a drying process;

본 발명의 바람직한 일실시예로서, 상기 2-1단계의 상기 반응기는 반응기 자켓(jacket), 진공펌프, 콘덴서(condenser) 및 리시버(receiver)가 설치되어 있을 수 있다.As a preferred embodiment of the present invention, the reactor of step 2-1 may be equipped with a reactor jacket, a vacuum pump, a condenser and a receiver.

본 발명의 바람직한 일실시예로서, 상기 2-1단계의 상기 정제 용매는 디플루오로인산리튬염 결정체 100 중량부에 대하여, 400 ~ 500 중량부로 사용할 수 있다.As a preferred embodiment of the present invention, the purification solvent in step 2-1 may be used in an amount of 400 to 500 parts by weight based on 100 parts by weight of the lithium difluorophosphate crystal.

본 발명의 바람직한 일실시예로서, 상기 2-1단계의 상기 정제 용매는 탄소수 2 ~ 4의 알코올 수용액 및 알킬아세테이트를 포함할 수 있다.As a preferred embodiment of the present invention, the purification solvent of step 2-1 may include an aqueous alcohol solution having 2 to 4 carbon atoms and an alkyl acetate.

본 발명의 바람직한 일실시예로서, 상기 2-1단계의 상기 정제 용매는 상기 알코올 수용액 및 알킬아세테이트를 1 : 1.5 ~ 2.5 중량비로 포함할 수 있다.As a preferred embodiment of the present invention, the purification solvent of step 2-1 may include the alcohol aqueous solution and the alkyl acetate in a weight ratio of 1: 1.5 to 2.5.

본 발명의 바람직한 일실시예로서, 상기 2-1단계의 정제공정은 질소 분위기 및 23℃ ~ 30℃ 하에서 수행하고, 2-2단계의 상기 1차 진공농축은 40℃ ~ 45℃ 및 25 ~ 30 torr 압력 하에서 수행하며, 2-3단계의 상기 2차 진공농축은 40℃ ~ 45℃ 및 2 torr 이하의 압력 하에서 수행할 수 있다.As a preferred embodiment of the present invention, the purification process of step 2-1 is performed under a nitrogen atmosphere and 23° C. to 30° C., and the first vacuum concentration in step 2-2 is 40° C. to 45° C. and 25 to 30 It is carried out under a torr pressure, and the second vacuum concentration of steps 2-3 may be performed at 40° C. to 45° C. and a pressure of 2 torr or less.

본 발명의 바람직한 일실시예로서, 상기 2-4단계의 건조 공정은 로터리 증류건조기(rotary evaporator)를 이용하여 2 torr 이하의 진공 분위기 및 70℃ ~ 90℃ 하에서 수행할 수 있다.As a preferred embodiment of the present invention, the drying process of steps 2-4 may be performed under a vacuum atmosphere of 2 torr or less and 70° C. to 90° C. using a rotary evaporator.

본 발명의 바람직한 일실시예로서, 상기 2-4단계의 재결정화된 디플루오로인산리튬염 결정체의 수율은 80 ~ 95%일 수 있다.As a preferred embodiment of the present invention, the yield of the recrystallized lithium difluorophosphate crystals in steps 2-4 may be 80 to 95%.

본 발명의 바람직한 일실시예로서, 상기 2-4단계의 재결정화된 디플루오로인산리튬염 결정체의 하기 방정식 1의 순도 증가율을 만족할 수 있다. As a preferred embodiment of the present invention, the purity increase rate of the following Equation 1 of the recrystallized lithium difluorophosphate crystals in steps 2-4 may be satisfied.

[방정식 1] [Equation 1]

3.8% ≤ (B-A)/Aⅹ100% ≤ 10%3.8% ≤ (B-A)/Ax100% ≤ 10%

방정식 1에서 A는 1단계의 합성된 디플루오로인산리튬염 결정체의 순도(%)이고, B는 2단계의 재결정된 디플루오로인삼리늄염 결체의 순도(%)이다.In Equation 1, A is the purity (%) of the synthesized lithium difluorophosphate salt crystal in step 1, and B is the purity (%) of the recrystallized difluorophosphate lithium salt complex in step 2.

본 발명의 바람직한 일실시예로서, 2단계의 재결정화된 디플루오로인산리튬염 결정체를 건조시키는 3단계;를 더 포함할 수도 있다.As a preferred embodiment of the present invention, a third step of drying the recrystallized two-step recrystallized lithium difluorophosphate crystal; may further include.

본 발명의 다른 목적은 상기 제조방법으로 제조한 고순도의 디플루오로인산리튬염 결정체를 제공하는데 있다.Another object of the present invention is to provide a high-purity lithium difluorophosphate crystal prepared by the above method.

본 발명의 바람직한 일실시예로서, 본 발명의 디플루오로인산리튬염 결정체는 평균입자지름이 D10이 2.500 ~ 6.000㎛, D50이 21.000 ~ 26.000㎛ 및 D90이 67.500 ~ 88.000㎛ 만족할 수 있다.As a preferred embodiment of the present invention, the crystals of the lithium difluorophosphate salt of the present invention have an average particle diameter of D 10 of 2.500 ~ 6.000㎛, D 50 of 21.000 ~ 26.000㎛, and D 90 may satisfy 67.500 ~ 88.000㎛ .

본 발명의 바람직한 일실시예로서, 본 발명의 디플루오로인산리튬염 결정체는 결정체의 겉보기 밀도 및 탭밀도는 하기 방정식 2를 만족할 수 있다.As a preferred embodiment of the present invention, in the crystal of the lithium difluorophosphate salt of the present invention, the apparent density and tap density of the crystal may satisfy Equation 2 below.

[방정식 2][Equation 2]

0.580 ≤ (겉보기 밀도)/(탭 밀도) ≤ 0.6100.580 ≤ (apparent density)/(tap density) ≤ 0.610

방정식 2에서 상기 겉보기밀도는 디플루오로인산리튬염 결정체의 겉보기 밀도(g/cm3)이고, 탭 밀도는 디플루오로인산리튬염 결정체의 탭 밀도(g/cm3)이다.In Equation 2, the apparent density is the apparent density (g/cm 3 ) of the crystals of the lithium difluorophosphate salt, and the tap density is the tap density (g/cm 3 ) of the crystals of the lithium difluorophosphate salt.

본 발명의 또 다른 목적은 상기 고순도의 디플루오로인산리튬염 결정체를 2차 전지용 비수계 전해액의 전해질로 제공하는데 있다.Another object of the present invention is to provide the high-purity lithium difluorophosphate crystal as an electrolyte for a non-aqueous electrolyte for a secondary battery.

또한, 본 발명의 목적은 디플루오로인산리튬염 결정체를 전해질로 포함하는 2차 전지용 비수계 전해액을 제공하고자 한다.In addition, an object of the present invention is to provide a non-aqueous electrolyte for a secondary battery comprising a lithium difluorophosphate salt crystal as an electrolyte.

본 발명의 디플루오로인산리튬염 결정체 제조방법은 무용매 합성법으로서, 고순도의 디플루오로인산리튬염 결정체를 높은 수율로 제공할 수 있으며, 제조된 디플루오로인산리튬염 결정체를 2차 전지용 비수계 전해액의 전해질로 도입하여 안정성이 우수한 2차 전지용 비수계 전해액을 제공할 수 있다. 또한, 본 발명의 디플루오로인산리튬염 결정체 제조시, 정제 공정에서 특정 정제 용매를 사용하여 정제 및 재결정화시키면 특정 범위의 입자 크기 및 밀도 특성을 가지며, 이와 같이 재결정화된 디플루오로인산리툼염 결정체는 2차 전지 전해액에 대한 용해성이 우수한 특성이 있다.The method for preparing lithium difluorophosphate salt crystals of the present invention is a solvent-free synthesis method, which can provide high-purity lithium difluorophosphate salt crystals in a high yield, and the prepared lithium difluorophosphate salt crystals can be used as a non-toxic compound for secondary batteries. It is possible to provide a non-aqueous electrolyte solution for a secondary battery having excellent stability by introducing it as an electrolyte of an aqueous electrolyte solution. In addition, when the crystals of the lithium difluorophosphate salt of the present invention are prepared, when purified and recrystallized using a specific purification solvent in the purification process, the crystals have particle size and density characteristics within a specific range, and thus recrystallized lithium difluorophosphate salt The crystal has excellent solubility in the secondary battery electrolyte.

도 1은 실시예 1의 디플루오로인산리툼염 결정체 입자분포도 측정 결과 그래프이다.1 is a graph of the measurement result of the crystal particle distribution of lithum difluorophosphate salt of Example 1. FIG.

이하 본 발명의 디플루오로인산리튬염 결정체를 고순도로 제조하는 방법에 대하여 좀 더 구체적으로 설명을 한다.Hereinafter, a method for preparing the crystals of the lithium difluorophosphate salt of the present invention with high purity will be described in more detail.

본 발명의 디플루오로인산리튬염 결정체는 무용매 하에서 제조할 수 있다.The crystals of the lithium difluorophosphate salt of the present invention can be prepared in the absence of a solvent.

구체적으로 설명하면, 무용매 하에서 리튬헥사플로오로포스페이트(LiPF6), 염화물, 실리콘계 화합물 및 물과 반응시켜서 디플루오로인산리튬염 결정체(LiPO2F2)를 합성하는 1단계; 및 상기 디플루오로인산리튬염 결정체를 정제시켜서 재결정시키는 2단계;를 포함하는 공정을 수행하여 디플루오로인산리튬염 결정체를 고순도로 제조할 수 있다.Specifically, the first step of synthesizing a lithium difluorophosphate crystal (LiPO 2 F 2 ) by reacting with lithium hexafluorophosphate (LiPF 6 ), chloride, a silicon-based compound, and water in the absence of a solvent; and a second step of purifying and recrystallizing the crystals of the lithium difluorophosphate salt.

상기 1단계는 반제품화된, 비정제된 디플루오로인산리튬염 결정체 합성하는 공정으로서, 리튬헥사플로오로포스페이트, 염화물 및 실리콘계 화합물을 분쇄 혼합하여 혼합 분쇄물을 제조하는 1-1단계; 상기 혼합 분쇄물을 반응기로 투입한 후, 반응기에 질소 가스를 통기시켜 반응기 내부 공기를 질소 가스로 치환시키는 1-2단계; 및 상기 반응기 내 증기(기체 형태의 물)를 상기 반응기에 투입 및 버블링(bubbling)시키면서 반응을 수행한 후, 여과하여 반응생성물을 얻는 1-3단계;를 포함하는 공정을 수행할 수 있다.The first step is a process of synthesizing semi-finished, unrefined lithium difluorophosphate crystals, step 1-1 of preparing a mixed pulverized product by pulverizing and mixing lithium hexafluorophosphate, chloride and a silicon-based compound; 1-2 steps of introducing the mixed pulverized material into the reactor and then venting nitrogen gas through the reactor to replace the air inside the reactor with nitrogen gas; And after performing the reaction while introducing and bubbling the vapor (water in gaseous form) in the reactor to the reactor, and then filtration to obtain a reaction product; Steps 1-3; may be performed.

상기 1-1단계에서 상기 리튬헥사플로오로포스페이트, 염화물 및 실리콘계 화합물은 1 : 2.8 ~ 4.5 : 0.2 ~ 1.0 몰비로, 바람직하게는 1 : 3.0 ~ 4.0 : 0.4 ~ 0.8 몰비로, 더욱 바람직하게는 1 : 3.4 ~ 3.8 : 0.5 ~ 0.7 몰비로 분쇄 혼합할 수 있다. 이때, 염화물 몰비가 2.8 몰비 미만이면 수율이 크게 감소하는 문제가 있을 수 있고, 염화물 몰비가 4.5 몰비를 초과하면 부생물의 증가뿐만 아니라 가격 경제성이 떨어지는 문제가 있을 수 있으며, 최종 제품인 정제된 디플루오로인산리튬염 결정체의 평균 입자가 커지는 문제가 있을 수 있다. 그리고, 상기 실리콘계 화합물의 사용량이 0.2 몰비 미만이면 상기 정제된 디플루오로인산리튬염 결정체의 입자 분포도 넓게 형성되고, D90 값이 너무 커져서, 결정체가 균질하지 못한 문제 및 수율이 감소하는 문제가 있을 수 있고, 1.0 몰비를 초과하면 오히려 수율 증대가 없으면서 오히려, 정제된 디플루오로인산리튬염 결정체의 순도가 감소하는 문제가 있을 수 있다.In step 1-1 above, Lithium hexafluorophosphate, chloride and silicon-based compound are 1:2.8 to 4.5: 0.2 to 1.0 molar ratio, preferably 1:3.0 to 4.0: 0.4 to 0.8 molar ratio, more preferably 1:3.4 to 3.8: 0.5 to It can be pulverized and mixed in a molar ratio of 0.7. At this time, if the molar ratio of chloride is less than 2.8 molar ratio, there may be a problem in that the yield is greatly reduced, and if the molar ratio of chloride exceeds 4.5 molar ratio, there may be a problem of not only an increase in by-products but also a decrease in price economics, and the final product, purified difluoro There may be a problem in that the average particle size of the lithium lyophosphate crystals increases. And, if the amount of the silicon-based compound used is less than 0.2 molar ratio, the particle distribution of the purified lithium difluorophosphate salt crystal is formed widely, and the D 90 value is too large, so there is a problem that the crystal is not homogeneous and the yield is reduced. And, if the molar ratio exceeds 1.0, there may be a problem in that the purity of the purified lithium difluorophosphate crystals is reduced, while there is no increase in yield.

상기 염화물로는 염화리튬, 염화나트륨, 염화칼륨, 염화세슘 등의 알칼리 금속염, 염화마그네슘, 염화칼슘, 염화스트론튬, 염화바륨, 염화알루미늄, 염화암모늄, 4염화 규소, 염화철(II), 염화철(III), 염화니켈, 사염화티타늄, 염화 크롬(III), 염화망간 및 염화구리 중에서 선택된 단종 또는 2종 이상을 사용할 수 있으며, 바람직하게는 염화리튬, 염화나트륨, 염화칼륨, 염화세슘, 염화마그네슘, 염화칼슘, 염화스트론튬, 염화바륨 및 염화알루미늄 중에서 선택된 단종 또는 2종 이상을 사용할 수 있으며, 더욱 바람직하게는 염화리튬을 사용하는 것이 불순물로서의 양이온을 포함하지 않기 때문에 적절하다.Examples of the chloride include alkali metal salts such as lithium chloride, sodium chloride, potassium chloride and cesium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, aluminum chloride, ammonium chloride, silicon tetrachloride, iron(II) chloride, iron(III) chloride, chloride Nickel, titanium tetrachloride, chromium (III) chloride, manganese chloride, and copper chloride may be used alone or two or more selected from the group consisting of, preferably lithium chloride, sodium chloride, potassium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, chloride A single type or two or more types selected from barium and aluminum chloride can be used, and lithium chloride is more preferably used because it does not contain a cation as an impurity.

그리고, 상기 실리콘계 화합물은 하기 화학식 1로 표시되는 실리콘계 화합물을 포함할 수 있다.In addition, the silicone-based compound may include a silicone-based compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure 112021011955255-pat00002
Figure 112021011955255-pat00002

상기 화학식 1에서, 상기 R1 내지 R3 각각은 독립적인 것으로서, C1 ~ C5의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기, C6 ~ C8의 사이클로알킬기, C1 ~ C10의 알콕시기, 할라이드기를 포함하는 C1 ~ C5의 직쇄형 알킬기, 할라이드기를 포함하는 C3 ~ C5의 분쇄형 알킬기, 아릴(aryl)기 또는 할라이드기를 포함하는 아릴기를 포함하며, 바람직하게는 C1 ~ C5의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기, C1 ~ C5의 알콕시기, 할라이드기를 포함하는 C1 ~ C3의 직쇄형 알킬기, 할라이드기를 포함하는 C3 ~ C5의 분쇄형 알킬기, 페닐기, 벤질기 또는 할라이드기를 포함하는 페닐기를 포함하며, 더욱 바람직하게는 C1 ~ C3의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기 또는 C1 ~ C3의 알콕시기를 포함한다.In Formula 1, R 1 To R 3 Each is independent, C 1 To C 5 A straight-chain alkyl group, C 3 To C 5 A pulverized alkyl group, C 6 To C 8 A cycloalkyl group, C 1 To C A C 1 ~ C 5 linear alkyl group containing a 10 alkoxy group, a halide group, a C 3 ~ C 5 pulverized alkyl group containing a halide group, an aryl group or an aryl group containing a halide group, preferably is a C 1 to C 5 straight-chain alkyl group, C 3 to C 5 pulverized alkyl group, C 1 to C 5 alkoxy group, C 1 to C 3 straight-chain alkyl group including a halide group, C 3 including a halide group ~ C 5 includes a phenyl group including a pulverized alkyl group, a phenyl group, a benzyl group or a halide group, more preferably a C 1 ~ C 3 straight-chain alkyl group, C 3 ~ C 5 A pulverized alkyl group or C 1 ~ C The alkoxy group of 3 is included.

상기 화학식 1의 상기 R4 내지 R7 각각은 독립적인 것으로서, 수소원자, C1 ~ C5의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기, C1 ~ C10의 알콕시기 또는 아릴기를 포함하고, 바람직하게는 수소원자, C1 ~ C5의 직쇄형 알킬기, C3 ~ C5의 분쇄형 알킬기, 페닐기 또는 벤질기를 포함하며, 더욱 바람직하게는 C1 ~ C3의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기를 포함할 수 있다.In Formula 1, each of R 4 to R 7 is independent, and a hydrogen atom, a C 1 to C 5 linear alkyl group, a C 3 to C 5 pulverized alkyl group, a C 1 to C 10 alkoxy group or an aryl group and preferably a hydrogen atom, a C 1 to C 5 straight-chain alkyl group, a C 3 to C 5 pulverized alkyl group, a phenyl group or a benzyl group, more preferably a C 1 to C 3 straight-chain alkyl group or C 3 ~ C 5 may include a pulverized alkyl group.

그리고, 화학식 1의 상기 X는 0 ~ 10의 정수, 바람직하게는 0 ~ 5의 정수, 더욱 바람직하게는 1 ~ 3의 정수이다.And, X in Formula 1 is an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 1 to 3.

다음으로, 1-2단계는 회수된 혼합 분쇄물을 반응기에 투입한 뒤, 40 ~ 55℃ 하에서 반응기 내부에 질소 가스를 20분 ~ 50분 동안, 바람직하게는 45 ~ 52℃ 하에서 20분 ~ 50분 동안 통기시켜서, 반응기 내부 공기를 질소 가스로 치환시키는 공정이다. Next, in steps 1-2, after the recovered mixed pulverized material is put into the reactor, nitrogen gas is introduced into the reactor at 40 to 55° C. for 20 to 50 minutes, preferably at 45 to 52° C. for 20 to 50 minutes. It is a process in which the air inside the reactor is replaced with nitrogen gas by venting for a minute.

다음으로, 1-3단계는 상기 증기의 온도는 50 ~ 80℃, 바람직하게는 65℃ ~ 80℃, 더욱 바람직하게는 65 ~ 80℃로 상기 반응기에 공급될 수 있다. 이때, 증기의 온도가 50℃ 미만이면 반응생성물의 수율 및 순도가 떨어질 수 있고, 80℃를 초과하면 반응기 내 온도가 너무 높아져서 급격히 반응이 진행되어 안정성에 문제가 있을 수 있다.Next, in steps 1-3, the temperature of the steam may be supplied to the reactor at 50 to 80°C, preferably at 65°C to 80°C, more preferably at 65 to 80°C. At this time, if the temperature of the steam is less than 50 ℃, the yield and purity of the reaction product may fall, and if it exceeds 80 ℃, the temperature in the reactor is too high, the reaction proceeds rapidly, and there may be a problem in stability.

그리고, 1-3단계의 증기는 1-1단계의 리튬헥사플로오로포스페이트 1몰에 대하여, 3.5 ~ 5.0 몰비로, 바람직하게는 3.8 ~ 5.0 몰비로, 더욱 바람직하게는 4.2 ~ 5.0 몰비로 공급할 수 있다. 이때, 증기 공급량이 3.5 몰비 미만이면 수율이 떨어지는 문제가 있을 수 있고, 5.0 몰비를 초과하면 가수분해 반응이 진행하여 모노플루오로 인산염이 추가로 가수분해 반응이 진행되어 인산염이 각각 부생하는 문제가 있을 수 있다. 이때, 상기 증기의 몰비는 증기 내 포함하고 있는 물의 양을 기준으로 표현한 것이다.And, the steam of step 1-3 can be supplied in a molar ratio of 3.5 to 5.0, preferably in a molar ratio of 3.8 to 5.0, more preferably in a molar ratio of 4.2 to 5.0, with respect to 1 mole of lithium hexafluorophosphate in step 1-1. have. At this time, if the steam supply amount is less than 3.5 molar ratio, there may be a problem in that the yield is lowered, and if it exceeds 5.0 molar ratio, the hydrolysis reaction proceeds and the monofluorophosphate is further hydrolyzed, so there is a problem that the phosphate is by-produced. can In this case, the molar ratio of the steam is expressed based on the amount of water contained in the steam.

또한, 1-3단계는 45 ~ 60℃, 바람직하게는 45 ~ 60℃ 하에서 약 7 ~ 12시간, 바람직하게는 약 8 ~ 10 시간 정도 혼합 분쇄물 내 리튬헥사플로오로포스페이트, 염화물, 실리콘계 화합물 및 물을 반응 및 합성시킨 반응생성물인 디플루오로인산리튬염을 제조할 수 있다.In addition, in steps 1-3, lithium hexafluorophosphate, chloride, silicon-based compound and A lithium difluorophosphate salt, which is a reaction product obtained by reacting and synthesizing water, can be prepared.

그리고, 당업계의 일반적인 여과방법으로 여과를 수행할 수 있으며, 구체적인 일례를 들면, 합성 반응이 종료된 합성된 반응액을 10℃ ~ 15℃로 냉각시킬 수 있으며, 바람직하게는 브라인 냉각을 수행하여 냉각시킨 후, 냉각된 합성된 반응액으로부터 고체 및 액체를 분리하도록 여과하여(또는 필터링시켜서) 디플루오로인산리튬염 결정체를 수득할 수 있다.And, filtration may be performed by a general filtration method in the art, and for a specific example, the synthesized reaction solution after the synthesis reaction may be cooled to 10° C. to 15° C., preferably by performing brine cooling After cooling, it is possible to obtain crystals of lithium difluorophosphate salt by filtration (or filtering) to separate solids and liquids from the cooled synthesized reaction solution.

상기 1-1 ~ 1-3단계를 거쳐서 수득한 디플루오로인산리튬염 결정체의 수율은 바람직하게는 85.0% ~ 99.9% 일 수 있고, 더욱 바람직하게는 91.0% ~ 99.0%일 수 있다.The yield of the crystals of the lithium difluorophosphate salt obtained through steps 1-1 to 1-3 may be preferably 85.0% to 99.9%, more preferably 91.0% to 99.0%.

상기 2단계는 상기 1단계에서 제조한 디플루오로인산리튬염 결정체를 정제시켜서 재결정시키는 2단계;를 수행하는 공정이다.The second step is a second step of purifying and recrystallizing the crystals of the lithium difluorophosphate salt prepared in the first step;

상기 2단계는 반응기에 디플루오로인산리튬염 결정체 및 정제 용매를 투입 및 교반하여 정제공정을 수행하는 2-1단계; 정제된 반응물을 1차 진공농축시키는 2-2단계; 1차 진공농축물을 2차 진공농축시키는 2-3단계; 및 2차 진공농축물을 건조 공정을 수행한 후, 냉각시켜서 재결정화된 디플루오로인산리튬염 결정체를 수득하는 2-4단계;를 수행할 수 있다.The second step is a 2-1 step of performing a purification process by introducing and stirring lithium difluorophosphate salt crystals and a purification solvent into a reactor; Step 2-2 of first vacuum-concentrating the purified reactant; 2-3 step of second vacuum concentration of the first vacuum concentrate; and 2-4 steps of obtaining recrystallized crystals of a lithium difluorophosphate salt by cooling the secondary vacuum concentrate after drying.

2단계의 상기 반응기는 반응기 자켓(jacket), 진공펌프(vaccum pump), 콘덴서(condenser), 스크러버(scrubber) 및/또는 리시버(receiver)가 설치되어 있을 수 있다.In the second stage of the reactor, a reactor jacket, a vacuum pump, a condenser, a scrubber, and/or a receiver may be installed.

상기 2-1 단계의 정제 용매는 알코올 수용액 및 알킬아세테이트를 혼합하여 사용하며, 알킬아세테이트를 혼합 사용함으로써, 알코올 수용액 단독으로 사용할 때 보다 정제 용매 사용량을 줄이면서 알킬아세테이트 사용양 조절을 통해 재결정화된 디플로오로인산리튬염 결정체의 입자 크기를 조절 및 특정 크기 범위의 디플로오로인산리튬염 결정체를 균질한 결정체를 높은 수율로 수득할 수 있다.The purification solvent of step 2-1 is used by mixing an aqueous alcohol solution and an alkyl acetate, and by using a mixture of alkyl acetate, the amount of the purified solvent is reduced compared to when the aqueous alcohol solution is used alone, and recrystallized by adjusting the amount of alkyl acetate used. By controlling the particle size of the crystals of the lithium difluorophosphate, it is possible to obtain homogeneous crystals of the crystals of the lithium difluorophosphate in a specific size range in high yield.

그리고, 상기 정제 용매는 알코올 수용액 및 알킬아세테이트를 1 : 1.5 ~ 2.5 중량비로, 바람직하게는 1 : 1.8 ~ 2.5 중량비로, 더욱 바람직하게는 1 : 1.8 ~ 2.3 중량비로 포함할 수 있다. 이때, 정제 용매 내 알킬아세테이트 사용량이 1.5 중량비 미만이면 재결정화된 디플로오로인산리튬염의 결정체 평균 크기(D50)가 너무 작아져서 제조하고자 하는 적정 크기 범위의 결정체를 높은 수율로 수득하지 못할 수 있고, 탭 밀도가 감소하며, 알킬아세테이트 사용량이 2.5 중량비를 초과하면 수득된 디플루오로인산리튬염의 순도가 오히려 낮아지는 문제 및 탭 밀도가 너무 높은 문제가 있을 수 있으므로 상기 범위 내로 사용하는 것이 좋다.And, the purification solvent may include an aqueous alcohol solution and an alkyl acetate in a weight ratio of 1: 1.5 to 2.5, preferably, in a weight ratio of 1: 1.8 to 2.5, more preferably in a weight ratio of 1: 1.8 to 2.3. At this time, if the amount of alkylacetate used in the purification solvent is less than 1.5 weight ratio, the average crystal size (D 50 ) of the recrystallized lithium difluorophosphate salt becomes too small, so it may not be possible to obtain crystals in the appropriate size range to be prepared in high yield. , the tap density is reduced, and when the amount of alkylacetate used exceeds 2.5 weight ratio, there may be problems in that the purity of the obtained lithium difluorophosphate salt is rather low and the tap density is too high, so it is preferable to use it within the above range.

상기 정제 용매의 사용량은 디플루오로인산리튬염 결정체 100 중량부에 대하여, 400 ~ 500 중량부로, 바람직하게는 420 ~ 500 중량부를, 더욱 바람직하게는 440 ~ 480 중량부를 사용할 수 있다. 이때, 정제 용매의 사용량이 400 중량부 미만이면 용해도가 떨어져 정제가 저하되는 문제가 있을 수 있고, 500 중량부를 초과하여 사용하면 비경제적이다.The amount of the purification solvent used is 400 to 500 parts by weight, preferably 420 to 500 parts by weight, more preferably 440 to 480 parts by weight, based on 100 parts by weight of the lithium difluorophosphate salt crystal. In this case, if the amount of the purification solvent used is less than 400 parts by weight, there may be a problem in that the solubility is lowered and the tablet is deteriorated, and if it is used in excess of 500 parts by weight, it is uneconomical.

상기 2-1 단계의 알코올 수용액은 탄소수 2 ~ 4의 알코올 수용액을, 바람직하게는 탄소수 2 ~ 3의 알코올 수용액을, 더욱 바람직하게는 99.5% ~ 99.8% 농도의 에탄올 수용액을 사용할 수 있다. As the aqueous alcohol solution in step 2-1, an aqueous alcohol solution having 2 to 4 carbon atoms, preferably an aqueous alcohol solution having 2 to 3 carbon atoms, and more preferably an aqueous ethanol solution having a concentration of 99.5% to 99.8% may be used.

또한, 상기 2-1 단계의 상기 알킬아세테이트는 메틸아세테이트, 에틸아세테이트 및 프로필아세테이트 중에서 선택된 1종 이상으로 포함할 수 있고, 바람직하게는 메틸아세테이트 및 에틸아세테이트 중에서 선택된 1종 이상을 포함할 수 있으며, 더욱 바람직하게는 에틸아세테이트를 포함할 수 있다.In addition, the alkyl acetate of step 2-1 may include at least one selected from methyl acetate, ethyl acetate and propyl acetate, and preferably include at least one selected from methyl acetate and ethyl acetate, More preferably, ethyl acetate may be included.

또한, 상기 2-1 단계의 정제 공정은 질소 분위기 및 23℃ ~ 30℃ 하에서 수행하는 것이, 바람직하게는 질소 분위기 및 23℃ ~ 27℃ 하에서 수행하는 것이 좋다. In addition, the purification process of step 2-1 is preferably performed under a nitrogen atmosphere and 23°C to 30°C, preferably under a nitrogen atmosphere and 23°C to 27°C.

다음으로, 상기 2-2단계는 2-1단계에서 정제공정을 수행한 반응물을 1차적으로 진공 농축시키는 공정으로서, 1차 진공농축은 40℃ ~ 45℃로 반응기 내부 온도를 상승시킨 후, 25 ~ 30 torr 압력을 유지하면서 진공 농축을 실시할 수 있으며, 반응기로부터 증류된 알코올 증기가 콘덴서에서 응축되어 리시버에 액체가 수거 되지 않을 때까지 수행할 수 있다. 이때, 1차 진공농축을 40℃ 미만에서 수행시 용매가 증류되지 않아 생산성이 저하되는 문제가 있을 수 있고, 45℃를 초과하는 온도에서 수행하면 결정이 석출되어 2차 건조기로 이동이 불가능한 문제가 발생할 수 있다. 그리고, 1차 진공 농축 압력이 25 torr 미만이면 펌프로 용매가 넘어가는 문제가 있을 수 있고, 30 torr를 초과하면 시간이 증가하여 생산성이 저하되는 문제가 있을 수 있다. Next, step 2-2 is a process of first vacuum-concentrating the reactants subjected to the purification process in step 2-1. The first vacuum concentration is after increasing the reactor internal temperature to 40° C. to 45° C., 25 The vacuum concentration can be carried out while maintaining the pressure of ~ 30 torr, and the alcohol vapor distilled from the reactor is condensed in the condenser and the liquid is not collected in the receiver. At this time, when the primary vacuum concentration is performed at less than 40 ℃, there may be a problem that the solvent is not distilled and the productivity is lowered. can occur And, if the primary vacuum concentration pressure is less than 25 torr, there may be a problem that the solvent is passed over to the pump, and if it exceeds 30 torr, there may be a problem that the time increases and productivity is lowered.

다음으로, 2-3단계는 1차 진공농축물을 2차적으로 진공농축시키는 공정으로서, 40℃ ~ 45℃ 및 2 torr 이하의 압력 하에서 수행하는 것이, 바람직하게는 40℃ ~ 45℃ 및 1 torr 이하의 압력 하에서 수행하는 것이 좋다. 2-3단계는 적정 양의 진공농축물이 발생하면 질소로 진공을 파기시켜서 2차 진공농축 공정을 종결시키면 된다. 이때, 2차 진공농축 압력이 2 torr를 초과하면 농축 시간이 증가하여 생산성이 저하하는 문제가 있을 수 있다.Next, step 2-3 is a process of secondarily vacuum-concentrating the primary vacuum concentrate, and is preferably carried out at 40° C. to 45° C. and under a pressure of 2 torr or less, preferably 40° C. to 45° C. and 1 torr. It is recommended to carry out under the following pressure. In step 2-3, when an appropriate amount of vacuum concentration is generated, the vacuum is broken with nitrogen to terminate the second vacuum concentration process. At this time, when the secondary vacuum concentration pressure exceeds 2 torr, there may be a problem in that the concentration time increases and productivity decreases.

다음으로, 2-4단계에서 2차 진공농축물을 건조시키는데, 이때 건조는 당업계에서 사용하는 일반적인 건조방법을 이용하여 수행할 수 있으며, 바람직한 일구현예를 들면, 로터리 증류건조기(rotary evaporator)를 이용하여 2 torr 이하의 진공 분위기 및 70℃ ~ 90℃ 하에서, 바람직하게는 1 torr 이하의 진공 분위기 및 80℃ ~ 90℃ 하에서 10 ~ 14시간 정도 로터리 건조를 수행하는 것이 좋다.Next, the secondary vacuum concentrate is dried in steps 2-4, wherein the drying can be performed using a general drying method used in the art, and a preferred embodiment, for example, a rotary evaporator (rotary evaporator) It is good to perform rotary drying for about 10 to 14 hours under a vacuum atmosphere of 2 torr or less and 70°C to 90°C, preferably under a vacuum atmosphere of 1 torr or less and 80°C to 90°C.

건조 공정이 완료되면 건조물을 25℃ 이하로 냉각시켜서 최종적으로 재결정화된 디플루오로인산리튬염 결정체를 수득할 수 있다.When the drying process is completed, the dried product may be cooled to 25° C. or less to finally obtain recrystallized crystals of the lithium difluorophosphate salt.

이렇게 1단계 및 2단계 공정을 수행하여 제조한 본 발명의 재결정화된 디플루오로인산리튬염 결정체는 수율이 80% 이상, 바람직하게는 80 ~ 95%, 더욱 바람직하게는 수율이 85.0 ~ 95.0%일 수 있다. The recrystallized lithium difluorophosphate crystals of the present invention prepared by performing the first and second steps in this way have a yield of 80% or more, preferably 80 to 95%, more preferably 85.0 to 95.0% in yield. can be

그리고, 재결정화된 디플루오로인산리튬염 결정체는 순도가 하기 방정식 1을 만족할 수 있다.In addition, the recrystallized crystals of the lithium difluorophosphate salt may have a purity satisfying Equation 1 below.

[방정식 1][Equation 1]

3.8% ≤ (B-A)/AХ100% ≤ 10%, 바람직하게는 4.4% ≤ (B-A)/AХ100% ≤ 8.8%, 더욱 바람직하게는 4.8% ≤ (B-A)/AХ100% ≤ 8.0%3.8% ≤ (B-A)/AХ100% ≤ 10%, preferably 4.4% ≤ (B-A)/AХ100% ≤ 8.8%, more preferably 4.8% ≤ (B-A)/AХ100% ≤ 8.0%

상기 방정식 1에서 A는 1단계의 합성된 디플루오로인산리튬염 결정체의 순도(%)이고, B는 2단계의 재결정된 디플루오로인삼리늄염 결체의 순도(%)이다.In Equation 1, A is the purity (%) of the crystals of the lithium difluorophosphate synthesized in the first step, and B is the purity (%) of the recrystallized difluorophosphate lithium salt complex in the second step.

또한, 본 발명의 디플루오로인산리튬염 결정체는 입자분포도 측정시, 평균입자지름 D10이 2.500 ~ 6.000㎛, D50이 21.000 ~ 26.000㎛ 및 D90이 67.500 ~ 88.000㎛ 만족할 수 있으며, 바람직하게는 D10이 2.800 ~ 6.000㎛, D50이 21.000 ~ 25.900㎛ 및 D90이 68.000 ~ 88.000㎛을 만족할 수 있다.In addition, the crystals of the lithium difluorophosphate salt of the present invention may satisfy the average particle diameter D 10 of 2.500 ~ 6.000 μm, D 50 of 21.000 ~ 26.000 μm and D 90 of 67.500 ~ 88.000 μm when the particle distribution is measured. may satisfy 2.800 ~ 6.000㎛ D 10 , 21.000 ~ 25.900㎛ D 50 , and 68.000 ~ 88.000㎛ D 90 .

또한, 본 발명의 디플루오로인산리튬염 결정체는 결정체의 겉보기 밀도 및 탭밀도는 하기 방정식 2를 만족할 수 있다.In addition, in the crystal of the lithium difluorophosphate salt of the present invention, the apparent density and tap density of the crystal may satisfy Equation 2 below.

[방정식 2][Equation 2]

0.5800 ≤ (겉보기 밀도)/(탭 밀도) ≤ 0.6100, 바람직하게는 0.5820 ≤ (겉보기 밀도)/(탭 밀도) ≤ 0.60500.5800 ≤ (apparent density)/(tap density) ≤ 0.6100, preferably 0.5820 ≤ (apparent density)/(tap density) ≤ 0.6050

방정식 2에서 상기 겉보기밀도는 디플루오로인산리튬염 결정체의 겉보기 밀도(g/cm3)이고, 탭 밀도는 디플루오로인산리튬염 결정체의 탭 밀도(g/cm3)이다.In Equation 2, the apparent density is the apparent density (g/cm 3 ) of the crystals of the lithium difluorophosphate salt, and the tap density is the tap density (g/cm 3 ) of the crystals of the lithium difluorophosphate salt.

이러한 방법으로 제조한 본 발명의 디플루오로인산리튬염 결정체는 다양한 용도로 사용될 수 있으며, 예를 들면, 클로로에틸렌 폴리머의 안정화제, 반응 윤활유의 촉매, 칫솔의 살균제 및 목재의 보존제 등으로 사용될 수 있으며, 바람직하게는 2차 전지용 비수계 전해액의 전해질로 사용할 수 있으며, 더욱 바람직하게는 본 발명의 디플루오로인산리튬염 결정체는 2차 전지용 비수계 전해액에 대한 용해성이 우수한 바, 2차 전지용 비수계 전해액의 전해질로 사용하기 적합하다.The crystals of the lithium difluorophosphate salt of the present invention prepared in this way can be used for various purposes, for example, it can be used as a stabilizer for chloroethylene polymer, as a catalyst for reactive lubricant, as a disinfectant for toothbrushes, and as a preservative for wood. Preferably, it can be used as an electrolyte of a non-aqueous electrolyte for a secondary battery, and more preferably, the lithium difluorophosphate crystal of the present invention has excellent solubility in a non-aqueous electrolyte for a secondary battery. It is suitable for use as an electrolyte of an aqueous electrolyte solution.

이하에서는 본 발명을 실시예를 통하여 더욱 구체적으로 설명한다. 그러나, 하기 실시예에 의해 본 발명의 권리범위를 한정하여 해석해서는 안되며, 하기 실시예는 본 발명의 이해를 돕기 위한 것이다.Hereinafter, the present invention will be described in more detail through examples. However, it should not be construed as limiting the scope of the present invention by the following examples, and the following examples are provided to aid understanding of the present invention.

[실시예][Example]

실시예1 : 재결정화된 디플루오로인산리튬염 결정체의 제조Example 1: Preparation of recrystallized lithium difluorophosphate salt crystals

(1) 디플루오로인산리튬염 결정체(LiPO2F2)을 합성(1단계)(1) Synthesis of a lithium difluorophosphate salt crystal (LiPO 2 F 2 ) (Step 1)

노점(dew point temperature) 50℃ 미만의 온도에서 퍼플루오로알콕시 알칸(PFA) 소재의 반응기에 리튬헥사플로오로포스페이트, 염화물인 염화리튬 및 하기 화학식 1-1로 표시되는 실리콘계 화합물을 1 : 3.43 : 0.52 중량비로 분쇄 혼합한 후, 반응기 내부를 50℃로 승온시킨 다음, 질소 가스를 30분간 통기시켜 반응기 내부를 질소 분위기로 치환하여 준 뒤, 50℃로 승온하여 30분간 수행하였다. In a reactor of perfluoroalkoxy alkane (PFA) material at a dew point temperature of less than 50° C., lithium hexafluorophosphate, lithium chloride as a chloride, and a silicon-based compound represented by the following Chemical Formula 1-1 were mixed 1: 3.43: After grinding and mixing at a weight ratio of 0.52, the inside of the reactor was heated to 50° C., and then nitrogen gas was vented for 30 minutes to replace the inside of the reactor with a nitrogen atmosphere, and then the temperature was raised to 50° C. for 30 minutes.

다음으로 교반을 수행하면서, 반응기에 70℃의 증기 28g를 투입 및 버블링(bubbling)시키면서, 50℃에서 9 시간 반응을 수행한 다음, 반응기 내부를 12 ~ 13℃로 냉각시켰다. 이때, 상기 증기는 70℃의 온수에 질소 가스를 버블링시켜서 반응기에 투입하였다. Next, while stirring, 28 g of steam at 70° C. was introduced into the reactor and bubbling, and the reaction was performed at 50° C. for 9 hours, and then the inside of the reactor was cooled to 12 to 13° C. At this time, the steam was introduced into the reactor by bubbling nitrogen gas in hot water of 70 ℃.

다음으로, 냉각된 합성된 반응액을 여과시켜서 디플루오로인산리튬염 결정체 수득하였다(수율 94.7%, 순도 95.50%).Next, the cooled synthesized reaction solution was filtered to obtain crystals of a lithium difluorophosphate salt (yield 94.7%, purity 95.50%).

(2) 재결정화된 디플루오로인산리튬염 결정체의 제조(2단계)(2) Preparation of recrystallized lithium difluorophosphate crystals (Step 2)

반응기 자켓, 진공펌프, 콘덴서, 스크러버 및/또는 리시버 등이 설치되어 있는 반응기 내부에 상기 디플루오로인산리튬염 결정체 100 중량부 및 정제 용매 478 중량부를 투입 및 교반하고, 반응기 온도를 24℃ ~ 25℃를 유지시켰으며, 부생된 플루오르화 리튬을 탈 여과 분리하였다.100 parts by weight of the lithium difluorophosphate crystal and 478 parts by weight of a purified solvent are added and stirred in a reactor in which a reactor jacket, a vacuum pump, a condenser, a scrubber and/or a receiver are installed, and the reactor temperature is adjusted to 24° C. to 25 ℃ was maintained, and lithium fluoride as a by-product was separated by defiltration.

이때, 상기 정제 용매는 99.5% ~ 99.8% 농도의 에탄올 수용액 및 에틸아세테이트를 1 : 2.1 중량비로 포함한다.At this time, the purification solvent contains an aqueous solution of ethanol and ethyl acetate having a concentration of 99.5% to 99.8% in a weight ratio of 1:2.1.

다음으로, 반응기 자켓에 온수를 투입하여, 반응기 내부 온도 43 ~ 44℃를 유지시키면서 진공펌프를 작동하여 반응기 내부의 초기 압력 약 28 torr를 유지시키면서 1차 진공농축을 수행하였다. 1차 진공농축은 반응기로부터 증류된 알코올 증기가 콘덴서에서 응축되어 리시버에 액체가 수거되지 않을 때까지 수행하였다.Next, hot water was put into the reactor jacket, and the vacuum pump was operated while maintaining the reactor internal temperature of 43 to 44° C., and the primary vacuum concentration was performed while maintaining the initial pressure of about 28 torr inside the reactor. The first vacuum concentration was performed until the alcohol vapor distilled from the reactor was condensed in the condenser and no liquid was collected in the receiver.

다음으로, 내부 온도 43℃ ~ 44℃를 유지시키면서 압력을 1 torr로 감압시켜서 1차 진공농축시킨 진공농축물을 잔존한 알코올 수용액이 콘덴서에서 응축되어 리시버에 액체가 발생하지 않을 때까지 2차 진공농축을 수행하였다.Next, while maintaining the internal temperature of 43 ℃ ~ 44 ℃, the pressure is reduced to 1 torr and the vacuum concentrate is first vacuum concentrated, and the remaining alcohol solution is condensed in the condenser and the second vacuum until no liquid is generated in the receiver. Concentration was carried out.

다음으로, 로터리 증류건조기(rotary evaporator)를 이용하여 1 torr 진공도를 가진 펌프로 증류하면서 및 85℃ 하에서 12시간 동안 완전 건조시킨 다음, 건조물을 25℃로 냉각시켜서 최종적으로 재결정화된 디플루오로인산리튬염 결정체를 수득하였다(수율 91.8%, 순도 99.95%). Next, using a rotary evaporator, difluorophosphoric acid finally recrystallized by distilling with a pump having a vacuum degree of 1 torr and completely dried under 85° C. for 12 hours, and then cooled to 25° C. A lithium salt crystal was obtained (yield 91.8%, purity 99.95%).

실시예 2 ~ 실시예 7 및 비교예 1 ~ 비교예 6Examples 2 to 7 and Comparative Examples 1 to 6

상기 실시예 1과 동일한 방법으로 재결정화된 디플루오로인산리튬염 결정체를 제조하되, 하기 표 1과 같이 성분의 사용량을 달리하여 실시예2 ~ 실시예 7 및 비교예 1 ~ 비교예 6을 각각 실시하였다. 그리고, 결정화된 LiPO2F2 합성(1단계) 및 재결정화된 LiPO2F2 결정체(2단계)를 하기 방정식 1에 의거하여 순도 증가율을 측정하여 하기 표 2에 나타내었다.Recrystallized lithium difluorophosphate crystals were prepared in the same manner as in Example 1, but Examples 2 to 7 and Comparative Examples 1 to 6 were prepared by varying the amount of the component as shown in Table 1 below. carried out. In addition, the purity increase rate of the crystallized LiPO 2 F 2 synthesis (step 1) and the recrystallized LiPO 2 F 2 crystal (step 2) was measured based on Equation 1 below and shown in Table 2 below.

구분division 결정화된 LiPO2F2 합성 (1단계)Crystallized LiPO 2 F 2 Synthesis (Step 1) 재결정화된 LiPO2F2 결정체 제조
(2단계-정제공정)
Recrystallized LiPO 2 F 2 Crystalline Preparation
(Step 2 - Purification process)
LiPF6
(몰)
LiPF 6
(mole)
염화물
(몰)
chloride
(mole)
실란계
화합물
(몰)
silane
compound
(mole)

(증기압분수, 몰)
water
(vapor pressure fraction, mole)
1단계의LiPO2F2
(중량부)
LiPO 2 F 2 in step 1
(parts by weight)
정제
용매
(중량부)
refine
menstruum
(parts by weight)
알코올 수용액 :
알킬아세테이트
(중량비)
Aqueous alcohol solution:
alkyl acetate
(weight ratio)
실시예1Example 1 1One 3.423.42 0.520.52 3.933.93 100100 478478 1 : 2.11: 2.1 실시예2Example 2 1One 3.423.42 0.400.40 3.933.93 100100 478478 1 : 2.11: 2.1 실시예3Example 3 1One 3.423.42 0.800.80 3.933.93 100100 478478 1 : 2.11: 2.1 실시예4Example 4 1One 3.423.42 0.520.52 4.754.75 100100 478478 1 : 2.11: 2.1 실시예5Example 5 1One 3.423.42 0.520.52 3.653.65 100100 478478 1 : 2.11: 2.1 실시예6Example 6 1One 3.423.42 0.520.52 3.933.93 100100 420420 1 : 2.11: 2.1 실시예7Example 7 1One 3.423.42 0.520.52 3.933.93 100100 478478 1 : 1.81: 1.8 실시예8Example 8 1One 3.423.42 0.520.52 3.933.93 100100 478478 1 : 2.31:2.3 비교예1Comparative Example 1 1One 4.224.22 -- 3.933.93 100100 604604 1 : 01: 0 비교예2Comparative Example 2 1One 5.605.60 -- 3.933.93 100100 604604 1 : 01: 0 비교예3Comparative Example 3 1One 3.423.42 0.180.18 3.933.93 100100 478478 1 : 2.11: 2.1 비교예4Comparative Example 4 1One 3.423.42 1.201.20 3.933.93 100100 478478 1 : 2.11: 2.1 비교예5Comparative Example 5 1One 3.423.42 0.520.52 5.105.10 100100 478478 1 : 2.11: 2.1 비교예6 Comparative Example 6 1One 3.423.42 0.520.52 3.313.31 100100 478478 1 : 2.11: 2.1 비교예7Comparative Example 7 1One 3.423.42 0.520.52 3.933.93 100100 540540 1 : 2.11: 2.1 비교예8 Comparative Example 8 1One 3.423.42 0.520.52 3.933.93 100100 375375 1 : 2.11: 2.1 비교예9Comparative Example 9 1One 3.423.42 0.520.52 3.933.93 100100 478478 1 : 1.0 1: 1.0 비교예10 Comparative Example 10 1One 3.423.42 0.520.52 3.933.93 100100 478478 1 : 2.81:2.8

구분division 1단계
수율(%)/순도(%)
Step 1
Yield (%) / Purity (%)
2단계
수율(%)/순도(%)
Step 2
Yield (%) / Purity (%)
순도 증가율(%)Purity increase rate (%)
실시예 1Example 1 94.7 / 95.594.7 / 95.5 91.8 / 99.9491.8 / 99.94 4.654.65 실시예 2Example 2 95.2 / 95.395.2 / 95.3 90.3 / 99.9190.3 / 99.91 4.834.83 실시예 3Example 3 92.8 / 95.092.8 / 95.0 90.2 / 99.6390.2 / 99.63 4.874.87 실시예 4Example 4 87.3 / 94.887.3 / 94.8 85.4 / 99.7285.4 / 99.72 5.195.19 실시예 5Example 5 90.4 / 95.090.4 / 95.0 87.1 / 99.8587.1 / 99.85 5.105.10 실시예 6Example 6 94.7 / 95.594.7 / 95.5 88.8 / 99.8088.8 / 99.80 4.504.50 실시예 7Example 7 94.7 / 95.594.7 / 95.5 92.3 / 99.9392.3 / 99.93 4.644.64 실시예 8Example 8 94.7 / 95.594.7 / 95.5 90.5 / 99.8290.5 / 99.82 4.524.52 비교예 1Comparative Example 1 95.5 / 95.2 95.5 / 95.2 93.2 / 99.9093.2 / 99.90 4.944.94 비교예 2Comparative Example 2 80.2 / 94.280.2 / 94.2 77.5 / 99.5377.5 / 99.53 5.665.66 비교예 3Comparative Example 3 95.3 / 95.295.3 / 95.2 91.3 / 99.9391.3 / 99.93 4.974.97 비교예 4Comparative Example 4 92.8 / 93.492.8 / 93.4 88.9 / 96.5488.9 / 96.54 3.363.36 비교예 5Comparative Example 5 85.0 / 94.085.0 / 94.0 82.2 / 98.2382.2 / 98.23 4.504.50 비교예 6Comparative Example 6 87.2 / 95.287.2 / 95.2 84.0 / 99.9284.0 / 99.92 4.964.96 비교예 7Comparative Example 7 94.7 / 95.594.7 / 95.5 91.8 / 99.9291.8 / 99.92 4.634.63 비교예 8Comparative Example 8 94.7 / 95.594.7 / 95.5 83.4 / 98.1083.4 / 98.10 2.722.72 비교예 9Comparative Example 9 94.7 / 95.594.7 / 95.5 92.8 / 99.9192.8 / 99.91 4.624.62 비교예 10Comparative Example 10 94.7 / 95.594.7 / 95.5 90.7 / 99.6390.7 / 99.63 4.324.32

상기 표 1 및 표 2를 살펴보면, 1단계에서 실란계 화합물을 사용하지 않은 비교예 1 ~ 2와 실시예 1을 비교할 때, 1단계에서 염화물과 함께 실란계 화합물을 사용하여 디플루오로인산리튬염을 합성하는 것이, 수율은 다소 떨어지나, 순도는 오히려 다소 증가하는 결과를 보였다.Looking at Tables 1 and 2, when comparing Comparative Examples 1 to 2 and Example 1 in which the silane-based compound was not used in the first step, a lithium difluorophosphate salt using a silane-based compound together with a chloride in the first step synthesizing, the yield was somewhat decreased, but the purity was rather slightly increased.

또한, 1단계에서 LiPF6 1몰에 대하여, 실란계 화합물을 0.2 몰비 미만인 0.18 몰비로 사용한 비교예 3의 경우, 실시예 1 및 실시예 2와 비교할 때, 순도 증가가 없으면서 오히려 수율이 다소 떨어졌다. 그리고, 1단계에서 LiPF6 1몰에 대하여, 실란계 화합물을 1.0 몰비를 초과하여 사용한 1.20 몰비로 사용한 비교예 4의 경우, 실시예 3과 비교할 때 오히려 순도가 감소하는 경향을 보였다.In addition, in the case of Comparative Example 3, in which the silane-based compound was used in a molar ratio of 0.18, which is less than 0.2 molar ratio, with respect to 1 mole of LiPF 6 in step 1, there was no increase in purity and the yield was rather decreased compared to Examples 1 and 2 . And, in the case of Comparative Example 4 in which the silane-based compound was used in a molar ratio of 1.20 in excess of 1.0 molar ratio to 1 mole of LiPF 6 in step 1, compared with Example 3, the purity tended to decrease.

또한, 1단계에서 LiPF6몰에 대하여, 증기압분 수, 즉 증기인 물을 5.0 몰비 초과하여 사용한 비교예 5의 경우, 실시예 4와 비교할 때, 부반응이 발생하여 수율 및 순도 모두 다소 낮아지는 문제가 있었으며, 증기를 3.5 몰비 미만으로 투입한 비교예 6의 경우, 실시예 5와 비교할 때, 수율이 감소하는 문제가 있었다. In addition, in the case of Comparative Example 5, in which the number of vapor pressure fractions, that is, water, which is steam, was used in excess of 5.0 molar ratio with respect to 6 moles of LiPF in step 1, when compared with Example 4, a side reaction occurred and both yield and purity were somewhat lowered. There was, and in the case of Comparative Example 6, in which steam was added at a molar ratio of less than 3.5, there was a problem in that the yield decreased when compared to Example 5.

그리고, 2단계 반응에서 정제 용매 사용량이 500 중량부 초과한 비교예 7의 경우, 실시예 1과 비교할 때, 2단계 공정에서 정제 용매 과다 사용으로 수율 증대가 없는 문제가 있었다. 또한, 정제 용매 사용량이 400 중량부 미만인 비교예 8의 경우, 1단계에서의 수율 94.7% 보다 2단계서의 수율이 83.4%로 너무 크게 낮아지는 문제 및 순도가 상대적으로 너무 크게 낮아지는 문제가 있었다. And, in the case of Comparative Example 7, in which the amount of the purification solvent used in the two-step reaction exceeded 500 parts by weight, there was a problem in that there was no increase in yield due to excessive use of the purification solvent in the two-step process, compared to Example 1. In addition, in the case of Comparative Example 8, in which the amount of the purification solvent used was less than 400 parts by weight, there was a problem in that the yield in the second step was too significantly lowered to 83.4% than the yield in the first step of 94.7%, and there was a problem in that the purity was lowered relatively too much. .

또한, 정제 공정시, 정제 용매를 알코올 수용액에 대해 알킬아세테이트를 1.5 중량비 미만인 1.0 중량비로 사용한 비교예 9의 경우, 실시예 7(1.8 중량비)와 비교할 때, 큰 차이가 없었다. 그리고, 정제 공정시, 정제 용매를 알코올 수용액에 대해 알킬아세테이트를 2.5 중량비를 초과한 2.8 중량비로 사용한 비교예 10의 경우, 실시예 8(2.3 중량비)와 비교할 때, 재결정화된 디플루오로인산리튬염 결정체의 순도가 오히려 낮아지는 문제가 있었다.In addition, in the case of Comparative Example 9 in which the purification solvent was used in a 1.0 weight ratio of less than 1.5 weight ratio of alkyl acetate to the alcohol aqueous solution during the purification process, compared with Example 7 (1.8 weight ratio), there was no significant difference. And, in the case of Comparative Example 10 in which the purifying solvent was used in a 2.8 weight ratio exceeding 2.5 weight ratio with respect to the alcohol aqueous solution as the purification solvent, compared with Example 8 (2.3 weight ratio), recrystallized lithium difluorophosphate There was a problem in that the purity of the salt crystal was rather lowered.

실시예 9 및 비교예 11 ~ 15Example 9 and Comparative Examples 11 to 15

상기 실시예 1과 동일한 방법으로 재결정화된 디플루오로인산리튬염 결정체를 제조하되, 하기 표 3과 같이 제조 조건에 변화를 주어 실시예9 및 비교예 11 ~ 비교예 15를 각각 실시하였다. 이때, 2단계의 진공압축 조건을 달리하였다. 그리고, 결정화된 LiPO2F2 합성(1단계) 및 재결정화된 LiPO2F2 결정체(2단계)를 상기 방정식 1에 의거하여 순도 증가율을 측정하여 하기 표 4에 나타내었다.Recrystallized lithium difluorophosphate crystals were prepared in the same manner as in Example 1, but Example 9 and Comparative Examples 11 to 15 were performed by changing the production conditions as shown in Table 3 below. At this time, the vacuum compression conditions of the two steps were different. And, the purity increase rate of the crystallized LiPO 2 F 2 synthesis (step 1) and the recrystallized LiPO 2 F 2 crystal (step 2) were measured based on Equation 1, and are shown in Table 4 below.

구분
(중량부)
division
(parts by weight)
재결정화된 LiPO2F2 결정체 제조(2단계)Recrystallized LiPO 2 F 2 Crystals Preparation (Step 2)
1차 진공농축시
압력
1st vacuum concentration
pressure
1차 진공농축시 온도Temperature at the time of primary vacuum concentration 2차 진공농축시
압력
2nd vacuum concentration
pressure
수율(%)/
순도(%)
transference number(%)/
water(%)
실시예 1Example 1 28 torr28 torr 43 ~ 44℃43 ~ 44℃ 1 torr1 torr 93%/99.9%93%/99.9% 실시예 9Example 9 28 torr28 torr 40 ~ 41℃40 ~ 41℃ 1 torr1 torr 92%/99.9%92%/99.9% 비교예 11Comparative Example 11 28 torr28 torr 35 ~ 36℃35 ~ 36℃ 1 torr1 torr 92%/96.9%92%/96.9% 비교예 12Comparative Example 12 28 torr28 torr 48 ~ 49℃48 ~ 49℃ 1 torr1 torr 92%/99.8%92%/99.8% 비교예 13Comparative Example 13 35 torr35 torr 43 ~ 44℃43 ~ 44℃ 1 torr1 torr 88%/99.8%88%/99.8% 비교예 14Comparative Example 14 1 torr1 torr 43 ~ 44℃43 ~ 44℃ 1 torr1 torr 83%/97.0%83%/97.0% 비교예 15Comparative Example 15 21 torr21 torr 43 ~ 44℃43 ~ 44℃ 1 torr1 torr 85%/97.1%85%/97.1%

구분division 1단계
수율(%)/순도(%)
Step 1
Yield (%) / Purity (%)
2단계
수율(%)/순도(%)
Step 2
Yield (%) / Purity (%)
순도 증가율(%)Purity increase rate (%)
실시예 1Example 1 94.7 / 95.594.7 / 95.5 91.8 / 99.9491.8 / 99.94 4.614.61 실시예 9Example 9 94.7 / 95.594.7 / 95.5 91.0 / 99.9791.0 / 99.97 4.684.68 비교예 11Comparative Example 11 94.7 / 95.594.7 / 95.5 89.7 / 96.2989.7 / 96.29 0.830.83 비교예 12Comparative Example 12 94.7 / 95.594.7 / 95.5 91.9 / 99.9091.9 / 99.90 4.614.61 비교예 13Comparative Example 13 94.7 / 95.594.7 / 95.5 85.4 / 99.7785.4 / 99.77 4.474.47 비교예 14Comparative Example 14 94.7 / 95.594.7 / 95.5 84.2 / 99.8184.2 / 99.81 4.514.51 비교예 15Comparative Example 15 94.7 / 95.594.7 / 95.5 85.1 / 97.0485.1 / 97.04 1.621.62

상기 표 2의 1단계 및 2단계의 수율/순도를 살펴보면, 실시예 1, 실시예 10의 경우, 재결정화된 LiPO2F2 결정체 85% 이상의 높은 수율 및 4.5% 이상의 높은 순도 증가율을 보였다.Looking at the yield/purity of steps 1 and 2 in Table 2, in the case of Examples 1 and 10, the recrystallized LiPO 2 F 2 crystals showed a high yield of 85% or more and a high purity increase rate of 4.5% or more.

또한, 1차 진공농축 온도가 40℃ 미만인 비교예 11의 경우, 실시예 10 과 비교할 때, 1차 수율 보다 2차 수율이 크게 낮아지는 문제를 보였고, 1차 진공농축 온도가 45℃를 초과한 비교예 12의 경우 수율 변화는 없으나, 순도가 오히려 감소하는 문제가 있었다.In addition, in the case of Comparative Example 11 in which the primary vacuum concentration temperature was less than 40 °C, compared with Example 10, the secondary yield was significantly lower than the primary yield, and the primary vacuum concentration temperature exceeded 45 °C. In the case of Comparative Example 12, there was no change in yield, but there was a problem in that the purity was rather decreased.

또한, 2단계 반응의 1차 진공농축시, 30 torr 초과한 압력 하에서 1차 진공농축을 수행한 비교예 13의 경우, 1단계에서 합성된 결정화된 LiPO2F2와 비교하여 재결정화된 LiPO2F2 결정체의 수율이 낮아지고, 순도 증가율도 낮은 문제가 있었으며, 25 torr 미만 압력 하에서 1차 진공농축을 수행한 비교예 15의 경우, 실시예 1와 비교할 때, 순도 증가율 향상이 낮은 문제가 있었다.In addition, in the case of Comparative Example 13 in which the first vacuum concentration was performed under a pressure exceeding 30 torr during the first vacuum concentration of the two-step reaction, the recrystallized LiPO 2 compared to the crystallized LiPO 2 F 2 synthesized in the first step The yield of F 2 crystals was low, and there was a problem that the purity increase rate was also low, and in the case of Comparative Example 15, in which the primary vacuum concentration was performed under a pressure of less than 25 torr, there was a problem that the improvement of the purity increase rate was low compared to that of Example 1. .

그리고, 1차 및 2차 진공농축을 동일한 압력(1 torr) 및 온도(43 ~ 44℃) 하에서 실시하여 실질적으로 다단 진공농축이 아닌 단일 단계의 진공농축을 수행한 비교예 14의 경우, 수율이 크게 감소하는 문제가 있었다. And, in the case of Comparative Example 14, in which the first and second vacuum concentration was performed under the same pressure (1 torr) and temperature (43 to 44° C.), and not substantially multi-stage vacuum concentration, but a single step vacuum concentration, the yield was There was a problem with a significant decrease.

실험예 1 : 재결정화된 디플루오로인산리튬염 결정체의 입자 특성 분석Experimental Example 1: Particle Characterization of Recrystallized Lithium Difluorophosphate Crystals

상기 실시예 1, 실시예 7 ~ 8 및 비교예 9 ~ 10 에서 제조한 재결정화된 디플루오로인산리튬염 결정체의 입자 분포도, 겉보기 밀도, 탭 밀도를 측정하였으며, 그 결과를 하기 표 5 및 표 6에 나타내었다. 그리고, 실시예 1의 입자 분포도 측정 그래프를 도 1에 나타내었다.The particle distribution, apparent density, and tap density of the recrystallized lithium difluorophosphate crystals prepared in Examples 1, 7 to 8 and Comparative Examples 9 to 10 were measured, and the results are shown in Table 5 and Tables below. 6 is shown. And, the particle distribution measurement graph of Example 1 is shown in FIG. 1 .

구분division 결정체 입자 분포도Crystal particle distribution diagram D10(㎛)D 10 (μm) D50(㎛)D 50 (μm) D90(㎛)D 90 (μm) 실시예 1Example 1 2.8752.875 25.1325.13 85.7085.70 실시예 2Example 2 5.5305.530 21.1121.11 68.6868.68 실시예 3Example 3 4.2744.274 25.8925.89 87.5287.52 비교예 1Comparative Example 1 2.4522.452 31.0731.07 95.2495.24 비교예 3Comparative Example 3 2.6522.652 29.8529.85 92.3192.31 비교예 4Comparative Example 4 7.2137.213 26.0226.02 80.8880.88

구분division 겉보기 밀도
(g/cm3)
Apparent density
(g/cm 3 )
탭 밀도
(g/cm3)
tap density
(g/cm 3 )
겉보기 밀도/탭 밀도Apparent Density/Tap Density
실시예 1Example 1 0.52880.5288 0.89370.8937 0.59170.5917 실시예 2Example 2 0.52760.5276 0.87350.8735 0.60400.6040 실시예 3Example 3 0.52970.5297 0.90950.9095 0.58240.5824 비교예 1Comparative Example 1 0.51340.5134 0.81420.8142 0.63060.6306 비교예 3Comparative Example 3 0.52510.5251 0.83710.8371 0.62730.6273 비교예 4Comparative Example 4 0.53020.5302 0.93440.9344 0.56740.5674

상기 표 5 및 표 6을 살펴보면, 1단계 반응시, 실리콘계 화합물을 사용하지 않은 비교예 1 및 실리콘계 화합물을 0.2 몰비 미만인 0.18 몰비로 사용한 비교예 3의 경우, 입자 분포가 매우 넓게 형성되어 결정체가 균질하지 못하며, 재결정화된 결정체의 밀도가 전반적으로 낮음을 확인할 수 있었다.Referring to Tables 5 and 6, in the case of Comparative Example 1 without using a silicone compound and Comparative Example 3 using a silicone-based compound in a 0.18 molar ratio that is less than 0.2 in the first-step reaction, the particle distribution is very wide and the crystals are homogeneous It was confirmed that the density of the recrystallized crystals was generally low.

이에 반해, 실시예 1 ~ 3의 경우, D10과 D90의 차가 비교예 1 ~ 2에 비해 작은 것을 확인할 수 있으며, 이를 통해서 균질한 크기의 결정체를 수득할 수 있음을 확인할 수 있었다.On the other hand, in the case of Examples 1 to 3 , it can be seen that the difference between D 10 and D 90 is smaller than Comparative Examples 1 and 2, and it can be confirmed that crystals of a homogeneous size can be obtained through this.

상기 실시예를 통하여, 본 발명이 제시하는 방법을 이용하여 고순도의 디플루오로인산리튬염 결정체를 높은 수율로 제조할 수 있음을 확인할 수 있었다. 이러한 방법으로 제조한 본 발명의 디플루오로인산리튬염 결정체는 클로로에틸렌 폴리머의 안정화제, 반응 윤활유의 촉매, 칫솔의 살균제 및 목재의 보존제 등의 조성으로 사용될 수 있으며, 바람직하게는 2차 전지용 비수계 전해액의 전해질로 도입하여 안정성이 우수한 2차 전지용 비수계 전해액을 제공할 수 있다.Through the above examples, it was confirmed that high-purity lithium difluorophosphate crystals could be prepared in high yield by using the method presented by the present invention. The crystals of the lithium difluorophosphate salt of the present invention prepared in this way can be used as a composition of a chloroethylene polymer stabilizer, a catalyst for reaction lubricating oil, a toothbrush sterilizer and a wood preservative, etc. It is possible to provide a non-aqueous electrolyte for a secondary battery having excellent stability by introducing it as an electrolyte of an aqueous electrolyte.

Claims (14)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 입자분포도 측정시, 평균입자지름이 D10 값은 2.500 ~ 6.000㎛, D50 값은 21.000 ~ 26.000㎛ 및 D90 값은 67.500 ~ 88.000㎛을 만족하는 것을 특징으로 하는 용해성이 우수한 디플루오로인산리튬염 결정체.
When the particle distribution is measured, lithium difluorophosphate with excellent solubility, characterized in that the average particle diameter of the D 10 value is 2.500 ~ 6.000 μm, the D 50 value is 21.000 ~ 26.000 μm, and the D 90 value is 67.500 ~ 88.000 μm salt crystals.
제12항의 디플루오로인산리튬염 결정체를 전해질로 포함하는 2차 전지용 비수계 전해액.
A non-aqueous electrolyte for a secondary battery comprising the lithium difluorophosphate salt crystal of claim 12 as an electrolyte.
제12항에 있어서, 상기 디플루오로인산리튬염 결정체는 겉보기 밀도 및 탭 밀도가 하기 방정식 2를 만족하는 것을 특징으로 하는 용해성이 우수한 디플루오로인산리튬염 결정체;
[방정식 2]
0.5800 ≤ (겉보기 밀도)/(탭 밀도) ≤ 0.6100
방정식 2에서 상기 겉보기밀도는 디플루오로인산리튬염 결정체의 겉보기 밀도(g/cm3)이고, 탭 밀도는 디플루오로인산리튬염 결정체의 탭 밀도(g/cm3)이다.
[13] The lithium difluorophosphate crystal according to claim 12, wherein the lithium difluorophosphate crystal has an apparent density and a tap density satisfying Equation 2 below;
[Equation 2]
0.5800 ≤ (apparent density)/(tap density) ≤ 0.6100
In Equation 2, the apparent density is the apparent density (g/cm 3 ) of the crystals of the lithium difluorophosphate salt, and the tap density is the tap density (g/cm 3 ) of the crystals of the lithium difluorophosphate salt.
KR1020210012965A 2021-01-29 2021-01-29 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery KR102300438B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210012965A KR102300438B1 (en) 2021-01-29 2021-01-29 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery
KR1020210073458A KR102570659B1 (en) 2021-01-29 2021-06-07 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210012965A KR102300438B1 (en) 2021-01-29 2021-01-29 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210073458A Division KR102570659B1 (en) 2021-01-29 2021-06-07 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery

Publications (1)

Publication Number Publication Date
KR102300438B1 true KR102300438B1 (en) 2021-09-09

Family

ID=77777541

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210012965A KR102300438B1 (en) 2021-01-29 2021-01-29 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery
KR1020210073458A KR102570659B1 (en) 2021-01-29 2021-06-07 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210073458A KR102570659B1 (en) 2021-01-29 2021-06-07 Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery

Country Status (1)

Country Link
KR (2) KR102300438B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177257A1 (en) * 2022-03-17 2023-09-21 솔브레인 주식회사 Difluorophosphate preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230166926A (en) 2022-05-31 2023-12-07 이피캠텍 주식회사 Producing method for Lithium salt of difluorophosphate for second battery
KR102596525B1 (en) * 2023-02-28 2023-10-31 이피캠텍 주식회사 Manufactuiring method for lithium difluorophosphate and Lithium difluorophosphate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006729A (en) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP2002501034A (en) 1998-01-24 2002-01-15 バイエル・アクチエンゲゼルシヤフト Wood preservative
KR20090042979A (en) * 2006-08-22 2009-05-04 미쓰비시 가가꾸 가부시키가이샤 Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
KR20170078784A (en) * 2014-12-09 2017-07-07 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method for lithium difluorophosphate powder, and lithium difluorophosphate
KR101925047B1 (en) * 2018-08-01 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925053B1 (en) * 2018-06-22 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925044B1 (en) * 2018-06-21 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
JP2021004145A (en) * 2019-06-25 2021-01-14 関東電化工業株式会社 Lithium difluorophosphate powder and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501034A (en) 1998-01-24 2002-01-15 バイエル・アクチエンゲゼルシヤフト Wood preservative
JP2001006729A (en) 1999-06-18 2001-01-12 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
KR20090042979A (en) * 2006-08-22 2009-05-04 미쓰비시 가가꾸 가부시키가이샤 Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
KR20170078784A (en) * 2014-12-09 2017-07-07 샌트랄 글래스 컴퍼니 리미티드 Manufacturing method for lithium difluorophosphate powder, and lithium difluorophosphate
KR101925044B1 (en) * 2018-06-21 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925053B1 (en) * 2018-06-22 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925047B1 (en) * 2018-08-01 2018-12-04 주식회사 천보 Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
JP2021004145A (en) * 2019-06-25 2021-01-14 関東電化工業株式会社 Lithium difluorophosphate powder and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177257A1 (en) * 2022-03-17 2023-09-21 솔브레인 주식회사 Difluorophosphate preparation method

Also Published As

Publication number Publication date
KR20220110030A (en) 2022-08-05
KR102570659B1 (en) 2023-08-25

Similar Documents

Publication Publication Date Title
KR102300438B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellet solubility and Non-aqueous electrolyte for secondary battery
KR101925051B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925053B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925044B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101887488B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR101925049B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
EP3381923A1 (en) Novel method for preparing lithium bis(fluorosulfonyl)imide
KR101925047B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR102396069B1 (en) Crystallization of Lithium bis(oxalate)borate and Manufacturing method of the same with high-purity
KR102036924B1 (en) Method for producing alkali metal hexafluorophosphate, alkali metal hexafluorophosphate, method for producing electrolyte concentrate comprising alkali metal hexafluorophosphate, and method for producing secondary battery
KR102218938B1 (en) Manufacturing method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
CN115340573B (en) Preparation method of lithium difluorobis (oxalate) phosphate
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
CN116239130B (en) Method for co-producing hexafluorophosphate and difluorophosphate by one-pot method
US9343774B2 (en) Method for producing a lithium hexafluorophosphate concentrated liquid
CN113929711A (en) Preparation method of lithium difluoroborate
KR102300440B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
KR102300441B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
KR102219684B1 (en) A method for preparing litium difluorophosphate
KR102231049B1 (en) Manufacturing method for high-purity crystallization of lithium difluorophosphate with excellent solubility and Non-aqueous electrolyte for secondary battery
CN113044825A (en) Production process and production system of lithium difluorophosphate
CN112239477A (en) Preparation method of bis (2,2, 2-trifluoroethyl) methyl phosphate
KR102267470B1 (en) Economical and efficient manufacturing process of lithium difluorophosphate having high-purity
JPH06298720A (en) Purification of fluoroalkyl sulfonic acid
KR102275418B1 (en) method for preparing lithium bisfluorosulfonylimide

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant