KR102575649B1 - 투시형 디스플레이 장치 - Google Patents

투시형 디스플레이 장치 Download PDF

Info

Publication number
KR102575649B1
KR102575649B1 KR1020180047316A KR20180047316A KR102575649B1 KR 102575649 B1 KR102575649 B1 KR 102575649B1 KR 1020180047316 A KR1020180047316 A KR 1020180047316A KR 20180047316 A KR20180047316 A KR 20180047316A KR 102575649 B1 KR102575649 B1 KR 102575649B1
Authority
KR
South Korea
Prior art keywords
polarization
polarizer
light
see
display device
Prior art date
Application number
KR1020180047316A
Other languages
English (en)
Other versions
KR20190123511A (ko
Inventor
이창건
서원택
성기영
이홍석
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020180047316A priority Critical patent/KR102575649B1/ko
Priority to US16/130,613 priority patent/US10908424B2/en
Publication of KR20190123511A publication Critical patent/KR20190123511A/ko
Application granted granted Critical
Publication of KR102575649B1 publication Critical patent/KR102575649B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/008Systems specially adapted to form image relays or chained systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/0615Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors off-axis or unobscured systems in wich all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0185Displaying image at variable distance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application

Abstract

투시형 디스플레이 장치가 개시된다. 개시된 투시형 디스플레이 장치는, 영상 형성부와, 영상 형성부로부터 제공되는 영상을 전달하여 1차 이미징 영상을 형성하는 릴레이 광학계와, 릴레이 광학계로부터 전달된 1차 이미징 영상을 재이미징시켜 다중 깊이 평면을 만드는 광학 결합기를 포함한다. 릴레이 광학계는, 제1렌즈와, 광축에 대해 각도를 이루도록 배치되어 제1편광의 광은 반사시키고 제2편광의 광을 투과시키는 제1편광기와, 제1편광기쪽에서 입사되는 광을 반사 집속시키는 집속 미러부재와, 제1편광기와 집속 미러부재 사이에 입사광의 편광을 변환시키도록 마련된 편광변환기를 포함한다.

Description

투시형 디스플레이 장치{See-through type display apparatus}
투시형 디스플레이 장치에 관한 것으로, 보다 상세하게는 릴레이 광학계를 구비하는 투시형 디스플레이 장치에 관한 것이다.
최근 가상 현실(Virtual reality, VR)을 구현할 수 있는 전자기기 및 디스플레이 장치가 개발되면서, 이에 대한 관심이 높아지고 있다. 가상 현실의 다음 단계로 증강 현실(Augmented reality, AR) 및 혼합 현실(mixed reality, MR)을 실현할 수 있는 기술도 연구되고 있다.
증강 현실(AR)은, 완전 가상 세계를 전제로 하는 가상 현실(VR)과는 달리, 현실 세계의 환경 위에 가상의 대상이나 정보를 겹쳐(결합하여) 보여줌으로써 현실의 효과를 더욱 증가시키는 디스플레이 기술이다. 가상 현실(VR)이 게임이나 가상 체험과 같은 분야에만 한정적으로 적용이 가능했다면, 증강 현실(AR)은 다양한 현실 환경에 응용이 가능하다는 장점이 있다. 특히, 증강 현실(AR)은 유비쿼터스(ubiquitous) 환경이나 사물 인터넷(internet of things)(IoT) 환경에 적합한 차세대 디스플레이 기술로 주목받고 있다. 이러한 증강 현실(AR)은 현실 세계와 부가적인 정보(가상 세계)를 혼합하여 보여준다는 점에서 혼합 현실(MR)의 일례라고 할 수 있다.
증강 현실(AR) 안경형 장치는 개인 사용자로 하여금 가상 영상을 표현함과 동시에 외부 전경을 결합시킴으로써, 지금껏 없었던 새로운 경험을 이끌어낼 수 있는 기술이다. 개인을 위한 독립적인 장치로써 기능은 물론, 개인의 경험을 각각 안경형 장치를 착용한 사용자에게 공유할 수 있는 정보 전달 매체로서도 작동이 가능하다. 외부, 타인과의 실시간 상호 작용이 가능한 특징은 증강현실 안경형 장치가 인간의 삶 전반에 걸쳐서 새로운 가치를 창조할 수 있는 도구로 이용될 수 있다. 보다 현실감 있는 증강 현실을 위해서는 일반적인 작업을 진행하는 근거리에서부터, 먼 사물을 바라보는 원거리까지 자유자재로 자연스럽게 가상 영상을 표현하는 것이 매우 중요한 기술적 요소로 꼽힌다.
이러한 증강현실 안경형 장치는 일반적으로 눈앞의 특정한 깊이 위치에 영상을 2차원의 평면 형태로 투명시킨다. 이와 같이 특정 깊이에 형성된 2차원 평면 영상이 양안 시차를 통해 사람에게 3차원 영상을 인지시킨다.
현재 상용화되어 있는 가상 및 증강현실 안경형 장치는 단일 평면 깊이의 2차원 영상을 형성하고, 양안 시차를 일으켜 3차원 영상을 표현한다. 양안 시차는 인간이 3차원 물체를 인식하는데 가장 영향력 있는 깊이 인지 요소로 알려져 있지만, 이를 제외한 나머지 깊이 인지 요소의 부재는 증강현실 안경형 장치에서 부자연스러움을 증가시키는 요인으로 지적된다. 가상현실 장치에서는 눈에 보이는 모든 환경이 가상의 환경이지만, 증강현실의 특성상, 모든 깊이 인지 요소를 제공하는 실제 물체와 양안 시차만을 제공하는 가상 영상이 동시에 관찰된다. 따라서 실제 물체와 가상 영상을 실시간으로 번갈아 관찰하게 되면 모든 깊이 인지 요소를 만족시키는 상황과 양안 시차만을 만족시키는 상황이 반복된다. 따라서 이러한 조건은 인간으로 하여금 부자연스러움을 증가시키는 요소가 되는데, 이 부자연스러움 중에서 가장 큰 영향을 미치는 것이 폭주 (양안 시차에 의하여 양안이 이루는 각도)와 수정체 초점의 불일치 문제이다.
간단한 예로, 증강현실 장치는 2차원 평면이 A라는 깊이에 위치되도록 설계되어 있고, 실제 물체는 B라는 깊이에 위치했다고 가정을 한다. 이 때 실체 물체의 정보를 표현하기 위하여 증강현실 장치가 양안 시차를 조절하여 B라는 깊이에 3차원 영상을 띄우게 된다. 사용자가 실제 물체를 바라볼 때는 양안 시차와 수정체의 초점이 모두 실제 물체에 매칭되어 있다. 실제 물체를 바라보다가 실제 물체의 정보를 확인하기 위하여 가상 영상을 관찰하는 시점에서 가상 영상과 실제 물체는 같은 양안 시차 정보를 전달하지만, 가상 영상은 증강현실 장치에 의하여 A라는 깊이 위치에 표시가 되기 때문에 수정체의 초점은 B 위치에서 A로 변화하게 된다. 관찰 대상을 바꾸는 시작점에서는 인간의 눈이 B 위치에 초점을 맺고 있으므로, A 깊이의 가상 영상을 관찰할 때는 초점이 정확히 맞지 않은 상태이고, A 깊이로 초점을 맺기 위해서는 어느 정도의 시간이 소요되게 된다. 따라서 폭주와 초점 사이의 불일치 문제가 발생하게 된다. 이는 기존의 3차원 디스플레이에서 매우 잘 알려진 문제로, 이를 완화시키기 위하여 3차원 영상의 깊이 범위를 제한시킨다. 하지만 증강현실의 특성상 실제 물체와 가상 영상이 실시간으로 상호 작용을 하고, 실제 물체가 사용자의 바로 앞인 근거리에 위치할지, 혹은 매우 떨어진 원거리에 위치할지 특정 지을 수 없기 때문에 실시간 상호 작용에서 오는 불일치의 정도를 가늠하기 어렵고, 그 크기는 더 클 가능성이 매우 높다. 따라서 증강현실 안경형 장치의 사용자 편의성을 증가시키기 위해서는 이러한 불일치를 최소화하는 것이 매우 중요하다. 폭주와 초점 사이의 불일치를 줄이기 위해 다중 초점의 표현이 가능한 디스플레이 기술들이 많이 개발되어 왔지만, 디스플레이와 다중 초점 광학계의 고속 구동, 시야각의 제한, 컴퓨팅 파워(computing power)의 증가, 폼 팩터(form factor)라는 측면 때문에 실제 제품에는 적용되지 못하고 있는 실정이다.
작은 폼 팩터(form factor)를 유지하면서도 다중 초점 특성과 광시야각을 동시에 제공하여 사용자의 시각적 편의성을 증가시키고, 임장감있는 증강현실을 구현하는 투시형 디스플레이 장치를 제공한다.
일 유형에 따른 투시형 디스플레이 장치는, 영상 형성부와; 상기 영상 형성부로부터 제공되는 영상을 전달하여 1차 이미징 영상을 형성하는 릴레이 광학계와; 상기 릴레이 광학계로부터 전달된 1차 이미징 영상을 재이미징시켜 다중 깊이 평면을 만드는 광학 결합기;를 포함하며, 상기 릴레이 광학계는, 영상 형성부로부터 입사되는 광을 집속하도록 릴레이 광학계의 입사측에 마련되는 제1렌즈와; 광축에 대해 각도를 이루도록 배치되어 제1편광의 광은 반사시키고 제2편광의 광을 투과시키는 제1편광기와; 상기 제1편광기쪽에서 입사되는 광을 반사 집속시키는 집속 미러부재와; 상기 제1편광기와 상기 집속 미러부재 사이에 입사광의 편광을 변환시키도록 마련되어, 상기 집속 미러부재에 의해 반사되어 상기 제1편광기로 재입사되는 광이 상기 제1편광기로부터 입사되는 광의 편광과 직교하는 편광을 가지도록 입사광의 편광의 변환시키는 편광변환기;를 포함한다.
상기 영상 형성부 및 릴레이 광학계는 제1방향으로 배열되고, 상기 광학 결합기는 상기 릴레이 광학계에 대해 제2방향으로 배열되며, 상기 영상 형성부로부터 제공되는 영상의 광의 경로가 상기 제1방향을 따라 상기 릴레이 광학계로 향하고, 상기 릴레이 광학계에 의한 상기 1차 이미징 영상의 광의 경로가 상기 제2방향을 따라 상기 광학 결합기로 향하도록 마련된다.
투시형 디스플레이 장치는 장치를 착용하는 사용자의 양안에 대해, 상기 영상 형성부는 상기 릴레이 광학계의 내측이나 외측에 배치될 수 있다.
상기 집속 미러부재는, 오목 미러를 구비할 수 있다.
상기 집속 미러부재는 오목 미러를 구비하며, 상기 편광변환기와 오목 미러 사이에 제2렌즈;를 더 포함할 수 있다.
상기 집속 미러부재는, 렌즈와 오목 미러의 더블릿미러를 구비할 수 있다.
상기 제1렌즈는, 단렌즈를 구비할 수 있다.
상기 제1렌즈는, 볼록렌즈와 오목렌즈의 더블릿렌즈를 구비할 수 있다.
상기 제1편광기는 와이어 그리드 편광기일 수 있다.
상기 투시형 디스플레이 장치는 안경형 장치 또는 고글형 장치에 적용될 수 있다.
상기 투시형 디스플레이 장치는 헤드 장착형 디스플레이 장치에 적용될 수 있다.
상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 제1편광기는 상기 편광선택적 투과반사면이 상기 영상 형성부측으로 기울어지도록 배치되며, 상기 집속 미러부재와 편광변환기는, 상기 제1편광기를 투과한 제2편광의 광을 반사 집속시키며 제1편광 상태로 변환되어 상기 제1편광기로 입사되도록 하는 제1집속 미러부재 및 제1편광변환기와; 상기 제1편광기에서 반사된 상기 제1편광의 광을 반사 집속시키며 제2편광 상태로 변환시키는 제2집속 미러부재 및 제2편광변환기;를 포함하며, 상기 제1집속 미러부재 및 제1편광변환기로부터 상기 제1편광기로 재입사된 제1편광의 광은 상기 제1편광기에서 반사되어 상기 광학 결합기로 향하며, 상기 제2집속 미러부재 및 제2편광변환기로부터 상기 제1편광기로 재입사된 제2편광의 광은 상기 제1편광기를 투과하여 상기 광학 결합기로 향하도록 마련될 수 있다.
상기 영상 형성부와 제1편광기 사이에, 상기 영상 형성부쪽에서 상기 제1편광기로 입사되는 광이 상기 제1편광기를 투과하는 제2편광만을 포함하도록 하는 제2편광기;를 더 포함할 수 있다.
상기 영상 형성부는 제1영상을 형성하는 제1디스플레이와; 상기 제2영상을 형성하는 제2디스플레이와; 상기 제1 및 제2디스플레이에서 형성된 제1 및 제2영상의 광 중 어느 하나는 투과시키고 나머지 하나는 반사시켜, 상기 제1 및 제2영상이 상기 릴레이 광학계로 향하도록 하는 빔분할기;를 포함하여, 다중 초점을 형성하도록 마련될 수 있다.
상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 편광선택적 투과반사면이 상기 영상 형성부로부터 멀어지는 방향으로 기울어지도록 배치될 수 있다.
상기 영상 형성부는 영상을 형성하는 단일 디스플레이를 포함하며, 상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 편광선택적 투과반사면이 상기 영상 형성부로부터 멀어지는 방향으로 기울어지도록 배치되고, 상기 영상 형성부와 상기 제1편광기 사이에, 통과하는 광의 편광 상태를 시간 순서에 따라 제1편광과 제2편광으로 바꾸어주는 편광 회전자;를 더 구비하며, 상기 집속 미러부재와 편광변환기는, 상기 편광 회전자로부터 제2편광의 광이 입사될 때, 상기 제1편광기를 투과한 제2편광의 광을 반사 집속시키며 제1편광 상태로 변환되어 상기 제1편광기로 재입사되도록 하는 제1집속 미러부재 및 제1편광변환기와; 상기 편광 회전자로부터 제1편광의 광이 입사될 때, 상기 제1편광기에서 반사된 제1편광의 광을 반사 집속시키며 제2편광 상태로 변환되어 상기 제1편광기로 재입사되도록 하는 제2집속 미러부재 및 제2편광변환기;를 포함하여, 다중 초점을 구현하도록 마련되며, 상기 제1집속 미러부재 및 제1편광변환기로부터 상기 제1편광기로 재입사된 제1편광의 광은 상기 제1편광기에서 반사되어 상기 광학 결합기로 향하며, 상기 제2집속 미러부재 및 제2편광변환기로부터 상기 제1편광기로 재입사된 제2편광의 광은 상기 제1편광기를 투과하여 상기 광학 결합기로 향하도록 마련될 수 있다.
상기 영상 형성부는 영상을 형성하는 단일 디스플레이를 포함하며, 상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 편광선택적 투과반사면이 상기 영상 형성부로부터 멀어지는 방향으로 기울어지도록 배치되고, 상기 제1편광기와 편광변환기 사이에, 온,오프에 따라 입사광의 광의 편광 상태를 선택적으로 다른 편광으로 바꾸어주는 편광 회전자와; 상기 편광 회전자와 편광변환기 사이에, 입사광의 편광에 따라 다른 굴절율을 겪도록 하는 복굴절 렌즈;를 더 구비하여, 편광 회전자의 온,오프에 따라 상기 복굴절 렌즈를 통과하는 광이 겪는 굴절율 순서를 바꾸어주도록 마련되어, 다중 초점을 구현하도록 마련될 수 있다.
상기 영상 형성부는 영상을 형성하는 단일 디스플레이를 포함하며, 상기 집속 미러부재는, 집속 파워를 가변시킬 수 있도록 마련되어, 상기 릴레이 광학계의 초점을 변화시키도록 마련될 수 있다.
상기 집속 미러부재는, 집속 파워를 일정 범위 내에서 변형 가능한 프로그래머블 미러소자를 구비할 수 있다.
상기 프로그래머블 미러소자는 멤스 미러나 액정 기반 초점 가변 렌즈를 포함할 수 있다.
실시예에 따른 투시형 디스플레이 장치에 따르면, 릴레이 광학계의 제1렌즈와 집속 미러부재의 조합을 통해 다중 초점 영상을 1차적으로 이미징할 수 있고, 제1편광기를 적용함에 의해 충분한 길이의 광경로를 확보할 수 있어, 작은 폼팩터(form factor)를 유지할 수 있다. 이를 통해, 제2방향 즉, 수직 방향으로 연결된 광학 결합기 내부에서 릴레이 이미지가 형성되고, 광학 결합기와 가까운 위치에 재이미징을 할 수 있어, 광학 결합기의 파워를 크게 할 수 있어 넓은 시야각 제공이 가능하다.
또한, 이러한 투시형 디스플레이 장치를 적용하면, 릴레이 광학계의 길이를 축소에 의해 소형의 폼팩터를 갖는 투시형 디스플레이 장치 예컨대, 증강현실 안경형 장치를 구현할 수 있다.
도 1은 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여주는 사시도이다.
도 2 및 도 3은 도 1의 구성도를 개략적으로 보여준다.
도 4는 실시예에 따른 투시형 디스플레이 장치와 비교예에 따른 투시형 디스플레이 장치를 비교하여 보여준다.
도 5 내지 도 10은 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 11a 및 도 11b는 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 12a 및 도 12b는 실시예에 따른 투시형 디스플레이 장치를 좌우 대칭적으로 한쌍으로 구비하여 안경형 장치로 구현한 예를 보여준다.
도 13a 및 도 13b는 비교예의 투시형 디스플레이 장치를 좌우 대칭적으로 한쌍으로 구비하여 안경형 장치로 구현한 예를 보여준다.
도 14 내지 도 16은 본 발명의 실시예들에 따른 투시형 디스플레이 장치를 적용할 수 있는 다양한 전자기기를 보여준다.
이하, 첨부된 도면들을 참조하면서, 실시예에 따른 투시형 디스플레이 장치를 상세히 설명한다. 도면에서 동일한 참조번호는 동일 또는 유사한 구성 요소를 지칭하며, 각 구성 요소의 크기나 두께는 설명의 편의를 위해 과장되어 있을 수 있다. 한편, 이하에 설명되는 실시예들은 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다.
도 1은 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여주는 사시도이다. 도 2 및 도 3은 도 1의 구성도를 개략적으로 보여준다.
도 1 내지 도 3을 참조하면, 투시형 디스플레이 장치는, 영상 형성부(100)와, 영상 형성부(100)로부터 제공되는 영상을 전달하여 1차 이미징 영상을 형성하는 릴레이 광학계(200)와, 릴레이 광학계(200)로부터 전달된 1차 이미징 영상을 재이미징시켜 다중 깊이 평면을 만드는 광학 결합기(300)를 포함한다.
실시예에 따른 투시형 디스플레이 장치에 있어서, 영상 형성부(100)와 릴레이 광학계(200)는 제1방향으로 배열되고, 광학 결합기(300)는 릴레이 광학계(200)에 대해 제2방향으로 배열될 수 있다. 영상 형성부(100)는 영상 형성부(100)로부터 제공되는 영상의 광의 경로가 상기 제1방향을 따라 상기 릴레이 광학계(200)로 향하도록 마련될 수 있다. 예를 들어, 영상 형성부(100)가 제1 및 제2영상을 빔 분할기(150)에 의해 결합하도록 마련되는 경우, 빔 분할기(150)에 의해 결합된 제1 및 제2영상의 광의 경로가 제1방향을 따르도록 마련될 수 있다. 릴레이 광학계(200)에 의한 1차 이미징 영상의 광의 경로는 제2방향을 따라 상기 광학 결합기(300)로 향하도록 마련될 수 있다. 여기서, 제2방향은 제1방향과 수직을 이룰 수 있다. 또한, 필요시 제2방향은 제1방향과 수직 이외의 다른 각도를 이루도록 릴레이 광학계(200)나, 광학 결합기(300)를 구성할 수도 있다.
본 실시예에 있어서, 영상 형성부(100)는, 다중 초점을 구현하도록, 제1영상을 형성하는 디스플레이(110)와, 제2영상을 형성하는 디스플레이(130)와, 디스플레이(110)(130)에서 형성된 제1 및 제2영상의 광 중 어느 하나는 투과시키고 나머지 하나는 반사시켜, 제1 및 제2영상의 광의 경로를 결합시켜 릴레이 광학계(200)로 향하도록 하는 빔분할기(150)를 포함할 수 있다. 이를 위해, 디스플레이(110)와 디스플레이(130)는 제1영상의 광 출사면과 제2영상의 광 출사면이 서로 직각을 이루도록 배치될 수 있다. 이러한 영상 형성부(100)는 다중 초점을 구현하기 위한 다중 초점 모듈(multi-focal module)을 구성한다.
디스플레이(110)(130) 각각은 광원과, 이 광원에서의 광을 영상 정보에 따라 변조하여 영상을 형성하는 디스플레이 소자를 포함할 수 있으며, 영상을 확대 또는 축소하여 소정 위치로 전달하는 광학계를 더 포함할 수 있다. 디스플레이 소자는 예를 들어, LCoS(liquid crystal on silicon) 소자, LCD(liquid crystal display) 소자, OLED(organic light emitting diode) 디스플레이 소자, DMD(digital micromirror device)를 포함할 수 있고, 또한, Micro LED, QD(quantum dot) LED 등의 차세대 디스플레이 소자를 포함할 수 있다.
영상 형성부(100)와 릴레이 광학계(200)는 제1방향 즉, 수평 방향으로 연결되어 있으며, 릴레이 광학계(200)와 광학 결합기(300)는 제2방향 즉, 수직 방향으로 연결될 수 있다.
릴레이 광학계(200)는, 영상 형성부(100)로부터 입사되는 광을 집속하도록 릴레이 광학계(200)의 입사측에 마련되는 제1렌즈(210)와, 광축에 대해 각도를 이루도록 배치되어 제1편광의 광은 반사시키고 제2편광의 광은 투과시키는 제1편광기(220)와, 제1편광기(220)쪽에서 입사되는 광을 반사 집속시키는 집속 미러부재(250)와, 제1편광기(220)와 집속 미러부재(250) 사이에 입사광의 편광을 변환시키도록 마련된 편광변환기(230)를 포함할 수 있다. 편광변환기(230)는 집속 미러부재(250)에 의해 반사되어 제1편광기(220)로 재입사되는 광이 제1편광기(220)로부터 입사되는 광의 편광과 직교하는 편광이 되도록 입사광의 편광을 변환시키도록 마련될 수 있다.
제1렌즈(210)는 예를 들어, 단렌즈로 된 볼록렌즈일 수 있다. 대안으로 제1렌즈(210)는, 색차수를 저감하도록 더블릿 구조로 된 볼록렌즈를 구비할 수도 있다. 이와 같이, 제1렌즈(210)를 릴레이 광학계(200)의 다중 초점 영상이 입사되는 입사측에 위치시킴으로써, 영상 형성부(100)의 제1 및 제2디스플레이(110)(130)로부터 출발한 광 다발을 릴레이 광학계(200) 내부로 집속시켜주는 역할을 수행한다. 집속되어 들어간 영상 정보는 예를 들어, 도 2에 예시한 바와 같이, 제1편광기(220)를 투과하는 편광 성분일 수 있으며, 이 편광 성분의 영상 정보의 광은 릴레이 광학계(200)에 의해 릴레이 된다.
제1편광기(220)는, 영상 형성부(100)로부터 입사되는 광의 광축에 대해 각도를 이루는 편광선택적 투과반사면을 구비하여 입사광을 편광에 따라 투과 또는 반사시킨다. 제1편광기(220)는 제1편광의 광은 반사시키고 제2편광의 광은 투과시키도록 마련될 수 있다. 제1편광기(220)는, 플레이트형으로, 예를 들어, 와이어 그리드 편광기를 구비할 수 있다. 여기서, 제1편광 및 제2편광은 서로 직교하는 선편광일 수 있다. 이러한 플레이트형 제1편광기(220) 예컨대, 와이어 그리드 편광기를 이용함으로써, 작은 공간 안에서 효율적인 릴레이 이미징이 가능하게 된다.
도 1 내지 도 3에서는 제1편광기(220)의 편광선택적 투과반사면은 영상 형성부(100)에서 멀어지는 방향으로 기울어지게 배치되고, 영상 형성부(100)쪽에서 진행하는 광이 제1편광기(220)의 편광선택적 투과반사면을 투과하여 집속 미러부재(250)로 향하고, 집속 미러부재(250)에서 반사된 광이 제1편광기(220)의 편광선택적 투과반사면에서 반사되어 광학 결합기(300)로 향하도록 배치된 예를 보여준다.
도 1 내지 도 3에서와 같이, 제1편광기(220)의 편광선택적 투과반사면이 영상 형성부(100)에서 멀어지는 방향으로 기울어지게 배치되는 경우, 영상 형성부(100)에서 제1편광기(220)로 입사되는 광에 제1편광기(220)의 편광선택적 투과반사면을 투과하는 제2편광 이외에 제1편광 성분이 포함되는 경우에도, 영상 형성부(100)에서 입사되는 제1편광 성분의 광은 제1편광기(220)의 편광선택적 투과반사면에서 반사되어 광학 결합기(300)와 반대 방향으로 진행하므로, 노이즈로 작용하는 것을 방지할 수 있다.
편광변환기(230)는 입사광의 편광을 변환시키는 것으로, 예를 들어, 입사되는 선편광을 원편광으로, 입사되는 원편광을 선편광으로 변환시킬 수 있다. 이러한 편광변환기(230)로는 1/4파장판을 구비할 수 있다.
집속 미러부재(250)는, 제1편광기(220)쪽에서 입사되는 광은 반사 집속시켜 제1편광기(220)로 재입사되도록 하는 것으로, 예를 들어, 오목 미러를 구비할 수 있다. 여기서, 오목 미러는 구면형 오목 미러나 매니스커스 미러를 포함할 수 있다.
도 1 내지 도 3에서는 영상 형성부(100)로부터 릴레이 광학계(200)로 입사된 광이 제1편광기(220)를 투과하여 편광변환기(230) 및 집속 미러부재(250)로 향하고, 집속 미러부재(250)에서 반사 집속된 광이 제1편광기(220)에서 반사되어 광학 결합기(300)로 향하도록 편광 및 광학적 구성을 갖는 예를 보여주는데, 이는 예시적인 것으로 실시예가 이에 한정되는 것은 아니다. 즉, 영상 형성부(100)로부터 릴레이 광학계(200)로 입사된 광이 제1편광기(220)에서 반사되어 편광변환기(230) 및 집속 미러부재(250)로 향하고, 집속 미러부재(250)에서 반사 집속된 광이 제1편광기(220)를 투과하여 광학 결합기(300)로 향하도록 하는 편광 및 광학적 구성을 갖는 경우도 가능하다.
도 1 내지 도 3에 예시한 바와 같이, 영상 형성부(100)로부터 릴레이 광학계(200)로 입사되는 영상의 광이 제1편광기(220)를 투과할 수 있는 제2편광을 가지는 경우, 입사된 광은 제1렌즈(210)에 의해 집속되고, 제1편광기(220)를 투과하여 편광변환기(230)로 입사된다. 제2편광의 광은 편광변환기(230)를 통과하면서, 소정의 편광 예컨대, 일 원편광으로 변환되고, 이 일 원편광의 광은 집속 미러부재(250)에서 반사되면서 직교하는 다른 원편광으로 된다. 다른 원편광의 광은 편광변환기(230)를 다시 통과하면서 편광 변환되어, 제2편광에 직교하는 제1편광으로 된다. 제1편광의 광은 제1편광기(220)에서 반사되어, 광학 결합기(300)로 향한다.
한편, 광학 결합기(300)는 예를 들어, 도 1 내지 도 3에 예시한 바와 같이, 경로 전환 부재(310)와, 영상의 광을 반사 집속하여 사용자의 눈에 포커싱할 수 있는 집속 미러부재(350)를 포함할 수 있다. 집속 미러부재(350)는 예를 들어, 오목 미러로서, 예를 들어 구면형 오목 미러나 매니스커스 미러를 포함할 수 있다.
본 실시예에 따른 투시형 디스플레이 장치에서, 릴레이 광학계(200)로부터 광학 결합기(300)로 입사되는 광은 편광된 광 예컨대, 제1편광의 광이므로, 광효율을 증대하도록, 경로 전환 부재(310)로 편광빔분할기 예컨대, 플레이트형 편광빔분할기를 구비하고, 경로 전환 부재(310)와 집속 미러부재(350) 사이에 편광변환기(330) 예컨대, 1/4파장판을 더 구비할 수 있다. 경로 전환 부재(310)로 예를 들어, 와이어 그리드 편광기를 구비할 수 있다.
예를 들어, 릴레이 광학계(200)로부터 입사되는 제1편광의 광은 경로 전환 부재(310)를 투과하여 편광변환기(330)로 입사되고, 입사된 제1편광의 광은 편광변환기(330)를 통과하면서 예컨대, 일 원편광으로 되고, 집속 미러부재(3250)에서 반사되면서 직교하는 다른 원편광으로 된다. 다른 원편광의 광은 편광변환기(3230)를 다시 통과하면서 제1편광에 직교하는 제2편광으로 변환된다. 제2편광의 광은 경로 전환 부재(310)에서 반사되어 관찰자로 향하게 된다. 도 3에서 참조번호 10, 15는 각각 관찰자(10) 및 관찰자(10)의 눈(15)을 나타낸다.
여기서, 경로 전환 부재(310)로 편광빔분할기 대신에 반투명 경로 전환부재를 사용할 수 있으며, 이 경우 편광변환기(330)는 생략될 수 있다.
한편, 관찰자 전방의 환경, 예를 들어 실사(real environment. RE)로부터 오는 광은 경로 전환 부재(310)를 통과하여 관찰자(10)로 향할 수 있다. 관찰자(10) 전방의 환경, 예를 들어 실사(real environment. RE)로부터 오는 광은 제1편광 및 제2편광 성분을 모두 포함할 수 있으므로, 경로 전환 부재(310)를 통과하여 관찰자(10)로 향할 수 있다. 또한, 관찰자(10) 전방의 환경, 예를 들어 실사(real environment. RE)로부터 오는 광이 경로 전환 부재(310)를 투과하는 제1편광이 되도록 편광기(미도시)를 더 구비할 수도 있으며, 이 경우, 관찰자(10)에게는 제1편광의 광만이 도달하게 된다.
이상에서 설명한 실시예에 따른 투시형 디스플레이 장치에 따르면, 릴레이 광학계(200)의 제1렌즈(210)와 집속 미러부재(250)의 조합을 통해 다중 초점 영상을 1차적으로 이미징할 수 있고, 제1편광기(220)를 적용함에 의해 충분한 길이의 광경로를 확보할 수 있어, 작은 폼팩터(form factor)를 유지할 수 있다. 이를 통해, 제2방향 즉, 수직 방향으로 연결된 광학 결합기(300) 내부에서 릴레이 이미지가 형성되고, 광학 결합기(300)와 가까운 위치에 재이미징을 할 수 있어, 광학 결합기(300)의 파워를 크게 할 수 있어 넓은 시야각 제공이 가능하다.
또한, 실시예에 따른 투시형 디스플레이 장치에 따르면, 도 4의 비교 도면에서 알 수 있는 바와 같이, 릴레이 광학계(200)를 제1편광기(220) 및 집속 미러부재(250)를 포함하는 구조로 구성함으로써, 충분한 광경로를 확보할 수 있으므로, 소형 폼팩터를 가지는 투시형 디스플레이 장치를 구현할 수 있다.
도 4를 참조하면, 실시예의 릴레이 광학계(200)에 대응하는 비교예의 릴레이 광학계(200')는, 굴절 렌즈(215)와 반사 미러(225)를 구비한다.
즉, 실시예의 릴레이 광학계(200)의 제1편광기(220), 편광변환기(230), 집속 미러부재(250)의 기능을 하는 구성으로, 비교예의 릴레이 광학계(200')는 굴절 렌즈(215)와 반사 미러(225)를 구비한다.
비교예의 릴레이 광학계(200')에 따르면, 원하는 광경로 확보를 위해, 제1렌즈(210)로부터 굴절 렌즈(215) 사이의 거리가 요구되기 때문에, 릴레이 광학계(200')의 길이가 길어지게 된다.
이에 반해, 실시예의 릴레이 광학계(200)는 굴절 렌즈(215)와 반사 미러(225) 대신에 집속 미러부재(250)를 적용하고, 제1렌즈(210)와 집속 미러부재(250) 사이에 제1편광기(220) 및 편광변환기(230)를 배치함으로써, 릴레이 광학계(200)의 길이를 축소할 수 있으므로, 소형의 폼팩터를 갖는 투시형 디스플레이 장치 예컨대, 증강현실 안경형 장치를 구현할 수 있게 된다. 도 4의 예시를 참조하면, 실시예의 릴레이 광학계(200)는 비교예의 릴레이 광학계(200')에 비해 영상 형성부(100)측은 L1만큼 길이가 축소되며, 반대측은 L2만큼 길이가 늘어나게 된다. 따라서, 도 4에서 비교예의 릴레이 광학계(200')에 비해 실시예의 릴레이 광학계(200)의 길이는 L1-L2 (여기서, L1 > L2) 만큼 축소될 수 있다.
도 5는 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 5의 실시예는 도 2와 비교할 때, 단일 오목 미러로 된 집속 미러부재(250)를 구비하는 대신에, 볼록렌즈(271)와 오목 미러(273)의 더블릿미러 된 집속 미러부재(270)를 구비하는 점에 차이가 있다.
이와 같이, 색수차를 감소시킬 수 있는 볼록렌즈(271)와 오목 미러(273)의 더블릿미러를 집속 미러부재(270)로 적용하는 경우, 장치에서 발생할 수 있는 광학수차를 감소시킬 수 있다. 따라서, 렌즈 물질 선택의 자유도가 증가할 수 있다.
도 6은 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 6의 실시예는 도 2와 비교할 때, 단일 렌즈로 된 제1렌즈(210)를 구비하는 대신에, 볼록렌즈(212)와 오목렌즈(213)의 더블릿렌즈로 된 제1렌즈(211)를 구비하는 점에 차이가 있다.
이와 같이, 색수차를 감소시킬 수 있는 볼록렌즈(212)와 오목렌즈(213)의 더블릿렌즈를 제1렌즈(211)로 적용하는 경우, 장치에서 발생할 수 있는 광학수차를 감소시킬 수 있다. 따라서, 렌즈 물질 선택의 자유도가 증가할 수 있다.
도 7은 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 7의 실시예는 도 2와 비교할 때, 제1편광기(220)와 오목 미러로 된 집속 미러부재(250) 사이에 제2렌즈(240)를 더 삽입한 점에 차이가 있다. 이때, 제2렌즈(240)로는 단일 렌즈, 더블릿 렌즈, 이방성 렌즈 등 다양한 렌즈가 적용될 수 있다. 도 7에서는 제2렌즈(240)로 단일 렌즈를 적용한 경우를 예시적으로 보여준다.
이와 같이, 제1편광기(220)와 오목 미러로 된 집속 미러부재(250) 사이에 광학 소자가 위치하면 영상 정보가 중복으로 이 광학 소자를 겪게 된다. 따라서, 특정 파워를 가진 광학 소자 예컨대, 제2렌즈(240)가 이 위치에 삽입되면, 광학 소자를 두 번 겪는 것과 같은 경로를 가지게 되어 광학 소자의 전체적인 숫자를 감소시키고, 설계의 자유도를 높일 수 있다.
도 8은 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 8의 실시예는 도 2와 비교할 때, 제1편광기(220)가 편광선택적 투과반사면이 영상 형성부(100)측으로 기울어지게 배치되고, 광학 결합기(300)와 반대측에 집속 미러부재(255) 및 편광변환기(235)를 추가로 더 구비하는 점에 차이가 있다.
본 실시예에 따르면, 제1편광기(220)의 편광선택적 투과반사면이 영상 형성부(100)측으로 기울어지게 배치되므로, 영상 형성부(100)에서 제1편광기(220)로 입사되는 광에 제1편광기(220)의 편광선택적 투과반사면을 투과하는 제2편광 이외에 제1편광 성분이 포함되는 경우, 영상 형성부(100)에서 입사되는 제1편광 성분의 광은 제1편광기(220)의 편광선택적 투과반사면에서 반사되어 광학 결합기(300)로 향하여, 노이즈로 작용할 수 있다.
따라서, 이러한 노이즈 작용을 방지하도록 본 실시예의 투시형 디스플레이 장치는, 영상 형성부(100)와 제1편광기(220) 사이에, 영상 형성부(100) 쪽에서 제1편광기(220)로 입사되는 광이 제1편광기(220)를 투과하는 제2편광 성분만을 포함하도록 하는 제2편광기(280)를 더 구비할 수 있다. 제2편광기(280)로는 예를 들어, 선형 편광기를 구비할 수 있다.
본 실시예에 따르면, 영상 형성부(100)쪽에서 진행하는 광은 제2편광기(280)를 통과하면서, 제1편광기(220)를 투과할 수 있는 제2편광 성분만을 가지는 광이 되고, 제1편광기(220)의 편광선택적 투과반사면을 투과하여 편광변환기(230)로 입사된다. 광은 편광변환기(230)를 통과하면서 예컨대, 일 원편광으로 변환되고, 집속 미러부재(250)에서 반사되면서 예컨대, 직교하는 다른 원편광으로 되며, 편광변환기(230)를 재통과하면서, 제2편광에 직교하는 제1편광의 광이 된다. 제1편광의 광은 제1편광기(220)의 편광선택적 투과반사면에서 반사되어, 광학 결합기(300)와 반대측에 배치된 편광변환기(235)로 입사된다. 광은 편광변환기(235)를 통과하면서 예컨대, 일 원편광으로 변환되고, 집속 미러부재(255)에서 반사되면서 예컨대, 직교하는 다른 원편광으로 되며, 편광변환기(235)를 재통과하면서, 제1편광에 직교하는 제2편광의 광이 된다. 제2편광의 광은 제1편광기(220)의 편광선택적 투과반사면을 투과하여 광학 결합기(300)로 향한다.
이와 같이, 제1편광기(220)의 편광선택적 투과반사면이 영상 형성부(100)측으로 기울어지게 배치하고, 집속 미러부재(250)(255) 및 편광변환기(230)(235)를 두쌍 배치하는 경우, 제1편광기(220)를 기준으로 확보되는 광경로의 길이가 2배가 되기 때문에, 광학 설계의 자유도가 높아 성능을 쉽게 향상시킬 수 있다.
도 8의 실시예에서는, 제1렌즈(210)로 단렌즈를 구비하고, 집속 미러부재(250)(255)로 오목 미러를 구비하는 경우를 보여주는데, 이를 예시적인 것이다. 예를 들어, 제1렌즈(210)로 볼록렌즈와 오목렌즈의 더블릿 렌즈를 구비할 수 있다. 또한 집속 미러부재(250)(255)로, 볼록렌즈와 오목 미러의 더블릿 미러를 구비하거나, 집속 미러부재(250)(255)로 오목 미러를 구비하면서, 제1편광기(220)와 오목 미러 사이에 도 7에서와 같은 제2렌즈(240)를 더 구비할 수도 있다.
이상에서 도 1 내지 도 8을 참조로 설명한 다양한 실시예에 따른 투시형 디스플레이 장치에서는 다중 초점을 구현하도록 영상 형성부(100)를 제1영상을 형성하는 디스플레이(110)와, 제2영상을 형성하는 디스플레이(130)를 포함하도록 구성하는 경우를 예를 들어 설명하였는데, 실시예에 이에 한정되는 것은 아니며, 도 9 내지 도 11에서와 같이, 영상 형성부(100)에 단일 디스플레이(110)를 구비하면서, 다중 초점을 구현하기 위한 추가적인 구성을 포함할 수도 있다.
도 9는 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 9의 실시예는 도 2와 비교할 때, 영상 형성부(100)에 단일 디스플레이(110)를 구비하며, 광학 결합기(300)와 반대측에 집속 미러부재(255) 및 편광변환기(235)를 추가로 더 구비하면서, 영상 형성부(100)와 제1편광기(220) 사이에, 통과하는 광의 편광 상태를 시간 순서에 따라 제1편광과 제2편광으로 바꾸어주는 편광 회전자(290)를 더 구비하는 점에 차이가 있다. 이때, 편광 회전자(290)를 경유하여 제1편광기(220)로 입사되는 시간에 따라 바뀐 영상의 편광 상태에 따라 제1편광기(220)의 투과 편광 성분은 집속 미러부재(250)에 의해, 제1편광기(220)의 반사 편광 성분은 집속 미러부재(255)에 의해 서로 다른 초점 위치에 영상을 표현하도록 마련될 수 있다. 각각의 집속 미러부재(250)(255)는 편광에 따라 서로 다른 평면에 영상을 띄우기 위해 초점 또는 물체 거리를 다르게 할 수 있으며, 디스플레이 영상은 표현하고자 하는 초점 위치에 따라 알맞은 영상으로 동기화될 수 있다.
도 9에서는 편광 회전자(290)가 제1렌즈(210)와 제1편광기(220) 사이에 위치되어 릴레이 광학계(200)에 포함되는 것으로 도시하였는데, 편광 회전자(290) 위치는 달라질 수 있다. 예를 들어, 편광 회전자(290)는 영상 형성부(100)의 단일 디스플레이(110)와 제1렌즈(210) 사이에 위치하도록 영상 형성부(100)측에 배치될 수도 있다.
영상 형성부(100)에서 제공되는 디스플레이 영상의 편광 상태가 제1편광기(220)를 투과할 수 있는 제2편광인 경우를 고려하면, 편광 회전자(290) 오프(off)시, 영상 형성부(100)에서 입사되고 편광 회전자(290)를 편광 변화없이 통과한 제2편광의 광은 제1편광기(220)를 투과하여 편광변환기(230)로 입사된다. 광은 편광변환기(230)를 통과하면서 예컨대, 일 원편광으로 되고, 집속 미러부재(250)에서 반사 집속되면서 예컨대, 직교하는 다른 원편광으로 되고, 편광변환기(230)를 재통과하면서, 제1편광으로 변환된다. 변환된 제1편광의 광은 제1편광기(220)에서 반사되어 광학 결합기(300)로 향한다.
이와 같이 편광 회전자(290) 오프시, 편광 회전자(290)로부터 제2편광의 광이 입사되므로, 제1편광기(220)를 투과한 제2편광의 광은 집속 미러부재(250) 및 편광변환기(230)에 의해 반사 집속되며 제1편광 상태로 변환되어 제1편광기(220)로 재입사된다. 제1편광기(220)로 재입사된 제1편광의 광은 제1편광기(220)에서 반사되어 광학 결합기(300)로 향한다.
편광 회전자(290) 온(on)시, 영상 형성부(100)에서 입사되는 제2편광의 광은 편광 회전자(290)에 의해 제1편광으로 바뀌고, 제1편광기(220)에서 반사되어 편광변환기(235)로 입사된다. 광은 편광변환기(235)를 통과하면서 예컨대, 일 원편광으로 되고, 집속 미러부재(255)에서 반사 집속되면서 예컨대, 직교하는 다른 원편광으로 되고, 편광변환기(235)를 재통과하면서, 제2편광으로 변환된다. 변환된 제2편광의 광은 제1편광기(220)를 투과하여 광학 결합기(300)로 향한다.
이와 같이, 편광 회전자(290) 온시, 편광 회전자(290)로부터 제1편광의 광이 입사되므로, 제1편광기(220)에서 반사된 제1편광의 광은 집속 미러부재(255) 및 편광변환기(235)에 의해 반사 집속되며, 제2편광 상태로 변환되어 제1편광기(220)로 재입사된다. 제1편광기(220)로 재입사된 제2편광의 광은 제1편광기(220)를 투과하여 광학 결합기(300)로 향한다.
이와 같이 하나의 디스플레이(110)를 이용하면서, 디스플레이 영상의 편광 상태를 편광 회전자(290)를 통하여 시간의 순서에 따라 바꾸어 주면, 시간에 따라 바뀐 편광 상태에 따라, 제1편광기(220)를 투과하는 제2편광의 광은 집속 미러부재(250)에 의해, 제1편광기(220)에서 반사되는 제1편광의 광은 집속 미러부재(255)에 의해 서로 다른 초점 위치에 영상을 표현할 수 있다. 각각의 집속 미러부재(250)(255)는 편광에 따라 서로 다른 평면에 영상을 띄우기 위해 초점 또는 물체 거리를 다르게 할 수 있으며, 디스플레이 영상은 표현하고자 하는 초점 위치에 따라 알맞은 영상으로 동기화될 수 있다. 다중 초점을 구현하기 위해 두 장의 패널을 사용하던 것을 한 장의 패널과 편광 회전자(290)를 포함한 릴레이 광학계(200)로 대체하면, 영상 형성부(100)와 릴레이 광학계(200) 조합으로 구현되는 다중 초점 모듈의 전체적인 크기를 크게 감소시킬 수 있다.
도 10은 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 10의 실시예는 도 9와 비교할 때, 광학 결합기(300)와 반대측에 집속 미러부재(255) 및 편광변환기(235)를 추가로 구비하지 않으며, 통과하는 광의 편광 상태를 시간 순서에 따라 제1편광과 제2편광으로 바꾸어주는 편광 회전자(290)를 제1편광기(220)와 편광변환기(230) 사이에 구비하고, 복굴절 렌즈(257)를 편광 회전자(290)와 편광변환기(230) 사이에 더 구비한 점에 차이가 있다. 복굴절 렌즈(257)는, 입사광의 편광에 따라 다른 굴절율을 느끼므로, 입사되는 시간에 따라 바뀐 영상의 편광 상태에 따라 서로 다른 초점 거리를 겪게 되어 다중 초점 특성을 가지게 된다.
영상 형성부(100)에서 제공되는 디스플레이 영상의 편광 상태가 제1편광기(220)를 투과할 수 있는 제2편광인 경우를 고려하면, 편광 회전자(290) 오프(off)시, 영상 형성부(100)에서 입사되고 제1편광기(220)를 투과한 제2편광의 광은 편광 회전자(290)를 편광 변화없이 통과하며, 제2편광의 광은 복굴절렌즈(257)를 경유하는 동안 제1굴절율(n1)을 겪게 되고, 편광변환기(230)로 입사된다. 광은 편광변환기(230)를 통과하면서 일 원편광 예컨대, 우원편광으로 되고, 집속 미러부재(250)에서 반사 집속되면서 직교하는 다른 원편광 예컨대, 좌원편광으로 되고, 편광변환기(230)를 재통과하면서, 제1편광으로 변환된다. 변환된 제1편광의 광은 복굴절렌즈(257)를 재경유하는 동안 제2굴절율(n2)을 겪게 되고 편광 회전자(290)를 편광 변화없이 통과하고 제1편광기(220)에서 반사되어 광학 결합기(300)로 향한다.
편광 회전자(290) 온(on)시, 영상 형성부(100)에서 입사되는 제1편광기(220)를 투과한 제2편광의 광은 편광 회전자(290)에 의해 제1편광으로 바뀌고, 제1편광의 광은 복굴절렌즈(257)를 경유하는 동안 제2굴절율(n2)을 겪게 되고, 편광변환기(230)로 입사된다. 광은 편광변환기(230)를 통과하면서 예컨대, 좌원편광으로 되고, 집속 미러부재(250)에서 반사 집속되면서 예컨대, 직교하는 우원편광으로 되고, 편광변환기(230)를 재통과하면서, 제2편광으로 변환된다. 변환된 제2편광의 광은 복굴절렌즈(257)를 재경유하는 동안 제1굴절율(n1)을 겪게 되고 편광 회전자(290)에 의해 제1편광으로 바뀌고, 제1편광기(220)에서 반사되어 광학 결합기(300)로 향한다.
이와 같이 하나의 디스플레이(110)를 이용하면서, 디스플레이 영상의 편광 상태를 편광 회전자(290)를 통하여 시간의 순서에 따라 바꾸어 복굴절렌즈(257)를 통과하는 광이 겪는 굴절율 순서를 바꾸어주면, 편광 상태에 따라 광이 복굴절렌즈(257)에서 겪게 되는 제1굴절율(n1), 제2굴절율(n2)의 순서가 달라져 복굴절렌즈(257)에 의해 집속 미러부재(250)로 집속되는 정도, 집속 미러부재(250)에 반사 집속된후 복굴절렌즈(257)로 입사된 광이 복굴절 렌즈(257)에 의해 광학 결합기(300)로 집속되는 정도가 달라질 수 있다. 따라서, 디스플레이 영상의 편광 상태를 편광 회전자(290)를 통하여 시간의 순서에 따라 바꾸어 주면, 복굴절렌즈(257)와 집속 미러부재(250)의 조합에 의해 얻어지는 초점 거리가 서로 달라, 다중 초점 특성을 가지게 된다.
따라서, 복굴절렌즈(257)와 집속 미러부재(250)의 조합에 의해 서로 다른 평면에 이미징되는 두 영상에 의해 다중 초점 특성이 구현될 수 있다.
도 11a 및 도 11b는 다른 실시예에 따른 투시형 디스플레이 장치를 개략적으로 보여준다.
도 11a 및 도 11b의 실시예는 도 10과 비교할 때, 편광 회전자(290) 및 복굴절렌즈(257)를 구비하지 않으며, 집속 미러부재(259)를 집속 파워를 가변시킬 수 있도록 마련하여 릴레이 광학계(200)의 초점을 변환시키도록 된 점에 차이가 있다.
집속 미러부재(259)는, 프로그래머블 미러소자로서, 멤스 미러나 액정 기반 초점 가변 렌즈를 포함할 수 있다. 프로그래머블 미러소자로 액정 기반 초점 가변렌즈를 구비하는 경우, 액정 기반 초점 가변렌즈 배면에 반사층을 더 구비할 수 있다. 또한 집속 미러부재(259)를 반사 미러와 투과형 액정 기반 초점 가변렌즈를 조합한 구조로 형성할 수도 있다.
집속 미러부재(259)로 프로그래머블 미러소자를 구비하는 경우, 집속 파워를 파워1~파워N까지 일정 범위 내에서 변형 가능하므로, 릴레이 광학계(200)의 초점을 변화시켜 연속적인 깊이를 표현할 수 있다. 각 깊이 면에 대해 동기화된 이미지를 디스플레이(110)가 표현해주면 자연스러운 체적 영상을 표현할 수 있다.
이상에서 설명한 바와 같은 다양한 실시예에 따른 투시형 디스플레이 장치에 따르면, 제1편광기(220) 예컨대, 와이어 그리드 편광기 및 편광 변환기(230)(235) 예컨대, 1/4파장판을 포함하는 소형의 릴레이 광학계(200)를 사용하여, 디스플레이 영상을 광학 결합기(300) 내부에 1차 이미징시킨다. 이러한 릴레이 광학계(200)에 따르면, 광경로를 중복 이용하므로, 소형 폼 팩터를 유지할 수 있다.
또한, 다양한 실시예에 따른 투시형 디스플레이 장치에 따르면, 영상 형성부(100)에 복수의 디스플레이(110)(130)를 포함하여 다중 초점을 구현하거나, 단일 디스플레이(110)를 포함하면서 릴레이 광학계(200)에 예컨대, 편광 회전자(290), 복굴절렌즈(257), 프러그래머블 미러등을 포함시킴으로써 다중 초점을 구현할 수 있다.
이러한, 다양한 실시예에 따른 투시형 디스플레이 장치에 따르면, 다중 초점 기능을 가져 근거리 및 원거리에 상관없이 자연스러운 가상 영상을 표현하고, 넓은 시야각을 구현할 수 있다.
이상에서 설명한 바와 같은 다양한 실시예에 따른 투시형 디스플레이 장치는 도 12a 및 도 12b에서와 같이, 좌우 대칭적으로 한쌍으로 구비되어 안경형 장치 예컨대, 증강현실 안경형 장치로 구현될 수 있다.
예를 들어, 좌안(L), 우안(R) 각각을 위한 영상 형성부(100), 릴레이 광학계(200), 광학 결합기(300) 유닛이 좌우 대칭으로 한쌍 구비될 수 있다.
도 12a는 영상 형성부(100)가 릴레이 광학계(200)의 외측에 배치되는 경우를 보여준다. 도 12b는 영상 형성부(100)가 릴레이 광학계(200)의 내측에 중복 없이 배치되는 경우를 보여준다.
도 12a 및 도 12b에서 알 수 있는 바와 같이, 실시예에 따른 투시형 디스플레이 장치에 따르면 릴레이 광학계(200)를 소형의 폼 팩터를 갖도록 구현할 수 있으므로, 릴레이 광학계(200)를 안경형 장치를 착용하는 사용자의 양안(L)(R)에 대해 영상 형성부(100) 내측에 배치할 수 있는 충분한 공간이 확보될 수 있다.
도 13a 및 도 13b는 도 4의 비교예의 장치를 좌우 대칭적으로 한쌍으로 구비되어 안경형 장치로 구현한 예를 보인 것으로, 비교예의 릴레이 광학계(200)는 소형의 폼 팩터를 가지지 않으므로, 도 13a에서와 같이 영상 형성부(100)가 릴레이 광학계(200)의 외측에 배치되는 것은 가능하지만, 도 13b에서와 같이, 영상 형성부(100)를 릴레이 광학계(200)의 내측에 배치하는 것은 중복 영역이 생겨 불가능함을 알 수 있다.
이상에서 설명한 다양한 실시예들에 따른 투시형 디스플레이 장치의 적어도 일부는 웨어러블(wearable) 장치를 구성할 수 있다. 다시 말해, 투시형 디스플레이 장치는 웨어러블 장치에 적용될 수 있다. 일례로, 투시형 디스플레이 장치는 헤드 장착형 디스플레이(head mounted display)(HMD)에 적용될 수 있다. 또한, 투시형 디스플레이 장치는 안경형 디스플레이(glasses-type display) 또는 고글형 디스플레이(goggle-type display)에 적용될 수 있다. 도 14 내지 도 16은 본 발명의 실시예들에 따른 투시형 디스플레이 장치를 적용할 수 있는 다양한 전자기기를 보여주는 도면이다. 도 14 내지 도 16의 전자기기는 고글형, HMD, 안경형 장치 등의 예시이다. 도 14 내지 도 16과 같은 웨어러블 전자기기들은 스마트폰(smart phone)과 연동되어(혹은, 연결되어) 동작될 수 있다.
부가적으로, 본원의 다양한 실시예들에 따른 투시형 디스플레이 장치는 스마트폰 내에 구비시킬 수 있고, 이러한 스마트폰 자체를 투시형 디스플레이 장치로 사용할 수도 있다. 즉, 도 14 내지 도 16과 같은 웨어러블 기기가 아닌 소형 전자기기(모바일 전자기기) 내에 투시형 디스플레이 장치를 적용할 수 있다. 그 밖에도실시예에 따른 투시형 디스플레이 장치의 적용 분야는 다양하게 변화될 수 있다. 또한, 실시예에 따른 투시형 디스플레이 장치는 증강 현실(AR) 또는 혼합 현실(MR)을 구현하는데 적용할 수 있을 뿐 아니라, 그 밖에 다른 분야에도 적용할 수 있다. 다시 말해, 증강 현실(AR)이나 혼합 현실(MR)이 아니더라도, 복수의 영상을 동시에 볼 수 있는 멀티영상 디스플레이(110)에 다양한 실시예의 사상들이 적용될 수 있다.
100...영상 형성부 110,130...디스플레이
150...빔분할기 200...릴레이 광학계
210,211...제1렌즈 220...제1편광기
230,235...편광변환기 240...제2렌즈
250,255,259,270...집속 미러부재
290...편광 회전자 300...광학 결합기

Claims (20)

  1. 영상 형성부와;
    상기 영상 형성부로부터 제공되는 영상을 전달하여 1차 이미징 영상을 형성하는 릴레이 광학계와;
    상기 릴레이 광학계로부터 전달된 1차 이미징 영상을 재이미징시켜 다중 깊이 평면을 만드는 광학 결합기;를 포함하며,
    상기 릴레이 광학계는,
    영상 형성부로부터 입사되는 광을 집속하도록 릴레이 광학계의 입사측에 마련되는 제1렌즈와;
    광축에 대해 각도를 이루도록 배치되어 제1편광의 광은 반사시키고 제2편광의 광을 투과시키는 제1편광기와;
    상기 제1편광기쪽에서 입사되는 광을 반사 집속시키는 집속 미러부재와;
    상기 제1편광기와 상기 집속 미러부재 사이에 입사광의 편광을 변환시키도록 마련되어, 상기 집속 미러부재에 의해 반사되어 상기 제1편광기로 재입사되는 광이 상기 제1편광기로부터 입사되는 광의 편광과 직교하는 편광을 가지도록 입사광의 편광의 변환시키는 편광변환기;를 포함하는 투시형 디스플레이 장치.
  2. 제1항에 있어서, 상기 영상 형성부 및 릴레이 광학계는 제1방향으로 배열되고,
    상기 광학 결합기는 상기 릴레이 광학계에 대해 제2방향으로 배열되며,
    상기 영상 형성부로부터 제공되는 영상의 광의 경로가 상기 제1방향을 따라 상기 릴레이 광학계로 향하고,
    상기 릴레이 광학계에 의한 상기 1차 이미징 영상의 광의 경로가 상기 제2방향을 따라 상기 광학 결합기로 향하도록 마련되는 투시형 디스플레이 장치.
  3. 제2항에 있어서, 투시형 디스플레이 장치를 착용하는 사용자의 양안에 대해, 상기 영상 형성부는 상기 릴레이 광학계의 내측이나 외측에 배치되는 투시형 디스플레이 장치.
  4. 제1항에 있어서, 상기 집속 미러부재는,
    오목 미러를 구비하는 투시형 디스플레이 장치.
  5. 제4항에 있어서, 상기 편광변환기와 오목 미러 사이에 제2렌즈;를 더 포함하는 투시형 디스플레이 장치.
  6. 제1항에 있어서, 상기 집속 미러부재는,
    렌즈와 오목 미러의 더블릿미러를 구비하는 투시형 디스플레이 장치.
  7. 제1항에 있어서, 상기 제1렌즈는, 단렌즈를 구비하는 투시형 디스플레이 장치.
  8. 제1항에 있어서, 상기 제1렌즈는, 볼록렌즈와 오목렌즈의 더블릿렌즈를 구비하는 투시형 디스플레이 장치.
  9. 제1항에 있어서, 상기 제1편광기는 와이어 그리드 편광기인 것을 특징으로 하는 투시형 디스플레이 장치.
  10. 제1항에 있어서, 상기 투시형 디스플레이 장치는 안경형 장치 또는 고글형 장치에 적용되는 투시형 디스플레이 장치.
  11. 제1항에 있어서, 상기 투시형 디스플레이 장치는 헤드 장착형 디스플레이 장치에 적용되는 투시형 디스플레이 장치.
  12. 제1항에 있어서, 상기 제1편광기는 편광선택적 투과반사면을 가지며,
    상기 제1편광기는 상기 편광선택적 투과반사면이 상기 영상 형성부측으로 기울어지도록 배치되며,
    상기 집속 미러부재와 편광변환기는,
    상기 제1편광기를 투과한 제2편광의 광을 반사 집속시키며 제1편광 상태로 변환되어 상기 제1편광기로 입사되도록 하는 제1집속 미러부재 및 제1편광변환기와;
    상기 제1편광기에서 반사된 상기 제1편광의 광을 반사 집속시키며 제2편광 상태로 변환시키는 제2집속 미러부재 및 제2편광변환기;를 포함하며,
    상기 제1집속 미러부재 및 제1편광변환기로부터 상기 제1편광기로 재입사된 제1편광의 광은 상기 제1편광기에서 반사되어 상기 광학 결합기로 향하며,
    상기 제2집속 미러부재 및 제2편광변환기로부터 상기 제1편광기로 재입사된 제2편광의 광은 상기 제1편광기를 투과하여 상기 광학 결합기로 향하도록 된 투시형 디스플레이 장치.
  13. 제12항에 있어서, 상기 영상 형성부와 제1편광기 사이에, 상기 영상 형성부쪽에서 상기 제1편광기로 입사되는 광이 상기 제1편광기를 투과하는 제2편광만을 포함하도록 하는 제2편광기;를 더 포함하는 투시형 디스플레이 장치.
  14. 제1항 내지 제13항 중 어느 한 항에 있어서, 상기 영상 형성부는
    제1영상을 형성하는 제1디스플레이와;
    제2영상을 형성하는 제2디스플레이와;
    상기 제1 및 제2디스플레이에서 형성된 제1 및 제2영상의 광 중 어느 하나는 투과시키고 나머지 하나는 반사시켜, 상기 제1 및 제2영상이 상기 릴레이 광학계로 향하도록 하는 빔분할기;를 포함하여, 다중 초점을 형성하도록 된 투시형 디스플레이 장치.
  15. 제14항에 있어서, 상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 편광선택적 투과반사면이 상기 광축에 대해 각도를 이루도록 배치된 투시형 디스플레이 장치.
  16. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 영상 형성부는
    영상을 형성하는 단일 디스플레이를 포함하며,
    상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 편광선택적 투과반사면이 상기 광축에 대해 각도를 이루도록 배치되고,
    상기 영상 형성부와 상기 제1편광기 사이에, 통과하는 광의 편광 상태를 시간 순서에 따라 제1편광과 제2편광으로 바꾸어주는 편광 회전자;를 더 구비하며,
    상기 집속 미러부재와 편광변환기는,
    상기 편광 회전자로부터 제2편광의 광이 입사될 때, 상기 제1편광기를 투과한 제2편광의 광을 반사 집속시키며 제1편광 상태로 변환되어 상기 제1편광기로 재입사되도록 하는 제1집속 미러부재 및 제1편광변환기와;
    상기 편광 회전자로부터 제1편광의 광이 입사될 때, 상기 제1편광기에서 반사된 제1편광의 광을 반사 집속시키며 제2편광 상태로 변환되어 상기 제1편광기로 재입사되도록 하는 제2집속 미러부재 및 제2편광변환기;를 포함하여, 다중 초점을 구현하도록 마련되며,
    상기 제1집속 미러부재 및 제1편광변환기로부터 상기 제1편광기로 재입사된 제1편광의 광은 상기 제1편광기에서 반사되어 상기 광학 결합기로 향하며,
    상기 제2집속 미러부재 및 제2편광변환기로부터 상기 제1편광기로 재입사된 제2편광의 광은 상기 제1편광기를 투과하여 상기 광학 결합기로 향하도록 된 투시형 디스플레이 장치.
  17. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 영상 형성부는
    영상을 형성하는 단일 디스플레이를 포함하며,
    상기 제1편광기는 편광선택적 투과반사면을 가지며, 상기 편광선택적 투과반사면이 상기 광축에 대해 각도를 이루도록 배치되고,
    상기 제1편광기와 편광변환기 사이에, 온,오프에 따라 입사광의 광의 편광 상태를 선택적으로 다른 편광으로 바꾸어주는 편광 회전자와;
    상기 편광 회전자와 편광변환기 사이에, 입사광의 편광에 따라 다른 굴절율을 겪도록 하는 복굴절 렌즈;를 더 구비하여, 편광 회전자의 온,오프에 따라 상기 복굴절 렌즈를 통과하는 광이 겪는 굴절율 순서를 바꾸어주도록 마련되어, 다중 초점을 구현하도록 된 투시형 디스플레이 장치.
  18. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 영상 형성부는
    영상을 형성하는 단일 디스플레이를 포함하며,
    상기 집속 미러부재는, 집속 파워를 가변시킬 수 있도록 마련되어, 상기 릴레이 광학계의 초점을 변화시키도록 된 투시형 디스플레이 장치.
  19. 제18항에 있어서, 상기 집속 미러부재는,
    집속 파워를 일정 범위 내에서 변형 가능한 프로그래머블 미러소자를 구비하는 투시형 디스플레이 장치.
  20. 제19항에 있어서, 상기 프로그래머블 미러소자는 멤스 미러나 액정 기반 초점 가변 렌즈를 포함하는 투시형 디스플레이 장치.
KR1020180047316A 2018-04-24 2018-04-24 투시형 디스플레이 장치 KR102575649B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180047316A KR102575649B1 (ko) 2018-04-24 2018-04-24 투시형 디스플레이 장치
US16/130,613 US10908424B2 (en) 2018-04-24 2018-09-13 See-through type display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180047316A KR102575649B1 (ko) 2018-04-24 2018-04-24 투시형 디스플레이 장치

Publications (2)

Publication Number Publication Date
KR20190123511A KR20190123511A (ko) 2019-11-01
KR102575649B1 true KR102575649B1 (ko) 2023-09-06

Family

ID=68237703

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180047316A KR102575649B1 (ko) 2018-04-24 2018-04-24 투시형 디스플레이 장치

Country Status (2)

Country Link
US (1) US10908424B2 (ko)
KR (1) KR102575649B1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102575649B1 (ko) * 2018-04-24 2023-09-06 삼성전자주식회사 투시형 디스플레이 장치
KR20200001863A (ko) 2018-06-28 2020-01-07 삼성전자주식회사 디스플레이 장치
KR20200013453A (ko) 2018-07-30 2020-02-07 삼성전자주식회사 3차원 영상 표시 장치 및 영상 처리 방법
KR102546321B1 (ko) 2018-07-30 2023-06-21 삼성전자주식회사 3차원 영상 표시 장치 및 방법
US11467535B2 (en) 2019-05-08 2022-10-11 Samsung Electronics Co., Ltd. Multi-image display apparatus providing holographic image
CN111025638A (zh) * 2019-12-11 2020-04-17 深圳惠牛科技有限公司 一种ar光学显示模组及增强现实设备
CN110927970A (zh) * 2019-12-11 2020-03-27 深圳惠牛科技有限公司 一种ar光学显示模组及增强现实显示设备
TWI775069B (zh) * 2020-04-27 2022-08-21 宏碁股份有限公司 頭戴式顯示器
JP2022039460A (ja) * 2020-08-28 2022-03-10 キヤノン株式会社 観察装置
CN113777788A (zh) * 2021-09-09 2021-12-10 京东方科技集团股份有限公司 显示控制方法及装置、显示设备
CN114415272A (zh) * 2022-02-14 2022-04-29 成都耶塔科技有限责任公司 双折射晶体透镜和成像装置
KR20230155299A (ko) * 2022-05-03 2023-11-10 삼성전자주식회사 몰입감 있는 영상을 제공하는 디스플레이 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521064A (ja) * 2004-11-23 2008-06-19 ファーガソン パテント プロパティーズ リミテッド ライアビリティ カンパニー 偏光方法を有する立体液晶ディスプレイ(lcd)
US20170052379A1 (en) * 2015-08-18 2017-02-23 Quanta Computer Inc. See-through head-mounted display

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884991A (en) * 1997-02-18 1999-03-23 Torch Technologies Llc LCD projection system with polarization doubler
JP2001308003A (ja) * 2000-02-15 2001-11-02 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
JP2006504116A (ja) * 2001-12-14 2006-02-02 ディジタル・オプティクス・インターナショナル・コーポレイション 均一照明システム
US7348575B2 (en) * 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR101516141B1 (ko) * 2003-05-06 2015-05-04 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
JP2006010868A (ja) * 2004-06-23 2006-01-12 Sony Corp マイクロレンズアレイ、液晶表示装置、投射型表示装置
JP4622695B2 (ja) * 2004-08-27 2011-02-02 日本ビクター株式会社 投射型表示装置
US20070273798A1 (en) * 2006-05-26 2007-11-29 Silverstein Barry D High efficiency digital cinema projection system with increased etendue
US9182596B2 (en) 2010-02-28 2015-11-10 Microsoft Technology Licensing, Llc See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light
US8767305B2 (en) 2011-08-02 2014-07-01 Google Inc. Method and apparatus for a near-to-eye display
US9013793B2 (en) * 2011-09-21 2015-04-21 Google Inc. Lightweight eyepiece for head mounted display
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
US9063331B2 (en) 2013-02-26 2015-06-23 Microsoft Technology Licensing, Llc Optical system for near-eye display
AU2014248874B2 (en) 2013-03-11 2019-07-11 Magic Leap, Inc. System and method for augmented and virtual reality
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
KR102225563B1 (ko) 2014-05-30 2021-03-08 매직 립, 인코포레이티드 가상 및 증강 현실의 초점 평면들을 생성하기 위한 방법들 및 시스템
US20160077338A1 (en) * 2014-09-16 2016-03-17 Steven John Robbins Compact Projection Light Engine For A Diffractive Waveguide Display
US10571696B2 (en) * 2014-12-26 2020-02-25 Cy Vision Inc. Near-to-eye display device
EP3237953A1 (en) * 2014-12-26 2017-11-01 CY Vision Inc. Near-to-eye display device with variable resolution
US20180122143A1 (en) * 2016-03-15 2018-05-03 Sutherland Cook Ellwood, JR. Hybrid photonic vr/ar systems
KR102530558B1 (ko) 2016-03-16 2023-05-09 삼성전자주식회사 투시형 디스플레이 장치
KR102485447B1 (ko) * 2017-08-09 2023-01-05 삼성전자주식회사 광학 윈도우 시스템 및 이를 포함하는 투시형 디스플레이 장치
KR102575649B1 (ko) * 2018-04-24 2023-09-06 삼성전자주식회사 투시형 디스플레이 장치
US11256086B2 (en) * 2018-05-18 2022-02-22 Facebook Technologies, Llc Eye tracking based on waveguide imaging
KR20200001863A (ko) * 2018-06-28 2020-01-07 삼성전자주식회사 디스플레이 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521064A (ja) * 2004-11-23 2008-06-19 ファーガソン パテント プロパティーズ リミテッド ライアビリティ カンパニー 偏光方法を有する立体液晶ディスプレイ(lcd)
US20170052379A1 (en) * 2015-08-18 2017-02-23 Quanta Computer Inc. See-through head-mounted display

Also Published As

Publication number Publication date
US20190324271A1 (en) 2019-10-24
US10908424B2 (en) 2021-02-02
KR20190123511A (ko) 2019-11-01

Similar Documents

Publication Publication Date Title
KR102575649B1 (ko) 투시형 디스플레이 장치
KR102626922B1 (ko) 투시형 디스플레이 장치
US10955676B2 (en) Head mounted imaging apparatus with optical coupling
CN108347597B (zh) 图像显示装置
EP3586187B1 (en) Display system with variable power reflector
CN107247333B (zh) 可切换显示模式的显示系统
US11243396B2 (en) Display apparatus
CN210243962U (zh) 用于增强现实显示器的光学结构及增强现实显示器
US10989956B2 (en) Display device
CN111077672B (zh) 透视显示装置
US11194158B2 (en) Light guide with beam separator for dual images
CN112513710A (zh) 增强现实显示设备
CN112083569A (zh) 纳米波导镜片和三维显示装置及眼镜
KR20230084294A (ko) 증강 현실 및 근안 헤드셋들에 대한 광학 시스템들 및 디스플레이 엔진들
US11543662B2 (en) Augmented reality device including reflective polarizer and wearable device including the same
KR20130116548A (ko) 투과형 헤드 마운트 디스플레이용 광학시스템
KR102098287B1 (ko) 편광 변조 다초점 두부 장착형 디스플레이 장치
CN115047628A (zh) 显示系统及显示装置
CN214151259U (zh) 光学成像系统及头戴式显示设备
CN115220235B (zh) 双目波导近眼显示装置和增强现实显示设备
CN112925102A (zh) 光学成像系统及头戴式显示设备
WO2022089965A1 (en) Display system for generating three-dimensional image and method therefor
Lee et al. 79‐1: Invited Paper: Accommodative AR HMD Using Birefringent Crystal
CN117083555A (zh) 平坦波导中的偏振复用视场和光瞳扩展

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right