KR102570524B1 - Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same - Google Patents
Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same Download PDFInfo
- Publication number
- KR102570524B1 KR102570524B1 KR1020200179748A KR20200179748A KR102570524B1 KR 102570524 B1 KR102570524 B1 KR 102570524B1 KR 1020200179748 A KR1020200179748 A KR 1020200179748A KR 20200179748 A KR20200179748 A KR 20200179748A KR 102570524 B1 KR102570524 B1 KR 102570524B1
- Authority
- KR
- South Korea
- Prior art keywords
- corrosion resistance
- stainless steel
- machinability
- present
- austenitic stainless
- Prior art date
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 38
- 238000005260 corrosion Methods 0.000 title claims abstract description 38
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 title description 8
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 238000005098 hot rolling Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 32
- 238000005520 cutting process Methods 0.000 description 16
- 239000002244 precipitate Substances 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
내식성과 절삭성이 향상된 오스테나이트계 스테인리스강이 개시된다.
본 발명에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 중량%로, C: 0.05%이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함한다.An austenitic stainless steel with improved corrosion resistance and machinability is disclosed.
The austenitic stainless steel with improved corrosion resistance and machinability according to the present invention contains, by weight, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, the balance including Fe and unavoidable impurities.
Description
본 발명은 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법에 관한 것으로, 더욱 상세하게는 절삭성이 요구되고, 염수 등의 부식환경에서 사용될 수 있는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법에 관한 것이다.The present invention relates to austenitic stainless steel with improved corrosion resistance and machinability and a method for manufacturing the same, and more particularly, austenitic stainless steel with improved corrosion resistance and machinability that requires machinability and can be used in a corrosive environment such as salt water, and It is about its manufacturing method.
프레임, 챔버, 금형 등과 같은 기계부품에 사용되는 오스테나이트 스테인리스강은 밀링과 같은 절삭 가공을 통해 최종 형상으로 제조된다. 절삭 가공 시의 절삭 부하 저감, 절삭 속도 향상 및 공구 수명 향상을 위해서는 스테인리스강 소재의 절삭성이 요구된다. Austenitic stainless steel used for machine parts such as frames, chambers, molds, etc. is manufactured into final shapes through cutting processes such as milling. In order to reduce cutting load during cutting, improve cutting speed, and improve tool life, the machinability of stainless steel materials is required.
절삭성이 우수한 스테인리스강으로서는 강중에 Mn, S를 첨가하고 비금속 개재물인 MnS 화합물을 활용하여 절삭성을 향상시킨 강종이 널리 알려져 있다. 그러나 MnS 화합물은 염수와 같은 부식 환경에서 쉽게 용출되거나 공식을 발생시키는 시작점이 되어 스테인리스강의 내식성을 열화시키므로, MnS 화합물을 활용한 스테인리스강은 부식 환경에 노출되어 내식성이 요구되는 용도에서는 사용이 제한되는 문제가 있다. 이에 따라, 절삭성과 동시에 내식성을 확보할 수 있는 스테인리스강에 대한 개발이 요구되고 있다.As a stainless steel with excellent machinability, a steel type having improved machinability by adding Mn and S to the steel and utilizing a MnS compound, which is a non-metallic inclusion, is widely known. However, since MnS compounds are easily eluted in corrosive environments such as salt water or become the starting point of generating pitting and deteriorate the corrosion resistance of stainless steel, stainless steel using MnS compounds is exposed to corrosive environments and its use is limited in applications requiring corrosion resistance. there is a problem. Accordingly, there is a demand for the development of stainless steel capable of ensuring machinability and corrosion resistance at the same time.
본 발명의 일 측면은 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 및 그 제조방법을 제공하고자 한다. One aspect of the present invention is to provide an austenitic stainless steel with improved corrosion resistance and machinability and a manufacturing method thereof.
본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 중량%로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하고, BN 석출상이 10개 / 100x100μm2 이상 분포한다.Austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention, by weight, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, including the remainder Fe and unavoidable impurities, BN precipitation More than 10 phases / 100x100μm 2 are distributed.
또한, 본 발명의 일 실시 예에 따르면, MnS 석출상이 10개 / 100x100 μm2 이하로 분포할 수 있다.In addition, according to an embodiment of the present invention, 10 MnS precipitated phases / 100x100 μm 2 or less may be distributed.
또한, 본 발명의 일 실시 예에 따르면, 장축의 길이가 1μm 이상인 MnS 석출상이 10개 / 100x100 μm2 이하로 분포할 수 있다.In addition, according to an embodiment of the present invention, 10 MnS precipitated phases having a long axis length of 1 μm or more may be distributed in 10 / 100×100 μm 2 or less.
또한, 본 발명의 일 실시 예에 따르면, Cu: 0 초과 1%를 더 포함할 수 있다.In addition, according to one embodiment of the present invention, Cu: may further include more than 0 1%.
또한, 본 발명의 일 실시 예에 따르면, 공식전위는 300mV 이상일 수 있다.Also, according to an embodiment of the present invention, the pitting potential may be 300 mV or more.
본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강의 제조방법은 중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하는 강편을 1,150 내지 1,250℃에서 1시간 30분 이상 가열하는 단계; 가열된 강편을 열간 압연하는 단계; 및 압연된 압연재를 1,100 내지 1,250℃에서 30초 이상 유지하는 단계;를 포함한다.Method for manufacturing austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention, in weight %, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, remaining Fe and unavoidable impurities heating at 1,150 to 1,250 ° C. for 1 hour and 30 minutes or more; hot-rolling the heated slab; and holding the rolled material at 1,100 to 1,250° C. for 30 seconds or longer.
본 발명의 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 내식성 및 절삭성을 동시에 확보할 수 있다. The austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention can secure both corrosion resistance and machinability.
도 1a 및 도 1b는 각각 실시예7 및 비교예2의 열간압연 후 외관을 나타내는 사진이다.
도 2a 및 도 2b는 각각 실시예7 및 비교예1의 스테인리스강의 단면을 SEM으로 관찰한 사진이다. 1A and 1B are photographs showing appearances after hot rolling of Example 7 and Comparative Example 2, respectively.
2a and 2b are photographs of cross sections of stainless steels of Example 7 and Comparative Example 1 observed by SEM, respectively.
본 명세서가 실시 예들의 모든 요소들을 설명하는 것은 아니며, 본 발명이 속하는 기술분야에서 일반적인 내용 또는 실시 예들 간에 중복되는 내용은 생략한다. This specification does not describe all elements of the embodiments, and general content or overlapping content between the embodiments in the technical field to which the present invention pertains will be omitted.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, when a certain component is said to "include", this means that it may further include other components without excluding other components unless otherwise stated.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. The following examples are presented to sufficiently convey the spirit of the present invention to those skilled in the art. The present invention may be embodied in other forms without being limited only to the embodiments presented here.
본 발명에서는 내식성의 열화를 초래하는 MnS의 형성을 배제하여, MnS 석출상이 형성되지 않도록 하였다. 또한, MnS를 대체하여 절삭성을 향상시킬 수 있도록 BN 화합물을 도입하고자 하였다. In the present invention, the formation of MnS, which causes deterioration in corrosion resistance, was excluded, so that the MnS precipitate phase was not formed. In addition, it was intended to introduce a BN compound to improve cutting properties by replacing MnS.
다만, 적정 수준을 초과하여 B를 첨가하면 판재를 생산하기 위한 열간압연 중에 파단이 일어나는 문제가 발생하므로, 본 발명의 발명자들은 다양한 실험을 통하여 열간압연 시 파단을 억제하면서, 절삭성 개선에 유효한 수준의 BN 형성을 위한 최적화된 B, N 및 그 밖의 다른 원소의 함량을 찾아내었다. However, since the addition of B in excess of the appropriate level causes a problem in which breakage occurs during hot rolling to produce a plate, the inventors of the present invention suppress breakage during hot rolling through various experiments and obtain a level effective for improving machinability. Optimized contents of B, N and other elements for BN formation were found.
본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함한다. Austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention, by weight %, C: 0.05% or less (excluding 0), Si: more than 0 2%, Mn: more than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, the balance Fe and unavoidable impurities.
또한, Cu: 0 초과 1%를 더 포함할 수 있다. In addition, Cu: may further include more than 0 1%.
이하, 본 발명의 실시예에서의 합금성분 원소 함량의 수치한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical value of the alloy component element content in the embodiment of the present invention will be described. Hereinafter, unless otherwise specified, the unit is % by weight.
C의 함량은 0 초과 0.05%이다. The content of C is greater than zero and 0.05%.
C는 오스테나이트 형성 원소이고 불가피한 불순물로 작용하는 원소이다. C의 함량이 0.05%를 초과할 경우, 용접부 내식성을 저해할 수 있으므로, C의 함량을 0.05%로 제한한다.C is an austenite forming element and an element that acts as an unavoidable impurity. If the content of C exceeds 0.05%, the corrosion resistance of the welded part may be impaired, so the content of C is limited to 0.05%.
Si의 함량은 0 초과 2%이다.The content of Si is greater than 0 and 2%.
Si은 탈산제로서 첨가하고, 내식성을 향상시킬 수 있는 원소이다. 다만, Si의 함량이 2%를 초과할 경우, 인성을 저해할 수 있으므로, Si의 함량을 2% 이하로 제한한다.Si is an element that can be added as a deoxidizer and improve corrosion resistance. However, when the Si content exceeds 2%, the toughness may be impaired, so the Si content is limited to 2% or less.
Mn의 함량은 0 초과 2%이다.The content of Mn is greater than 0 and 2%.
Mn은 오스테나이트 안정화 원소이다. 다만, Mn의 함량이 2%를 초과할 경우, 내식성을 저해할 수 있으므로, Mn의 함량을 2% 이하로 제한한다.Mn is an austenite stabilizing element. However, if the Mn content exceeds 2%, corrosion resistance may be impaired, so the Mn content is limited to 2% or less.
S의 함량은 0.01% 이하이다.The content of S is 0.01% or less.
S는 본 발명에서 배제하고자 하는 MnS 형성을 방지하기 위하여 함량을 0.01% 이하로 제한한다.S is limited to 0.01% or less in order to prevent the formation of MnS to be excluded in the present invention.
Cr의 함량은 16 내지 22% 이다.The content of Cr is 16 to 22%.
Cr은 오스테나이트계 스테인리스 강의 내식성을 향상시키는 원소이다. Cr의 함량이 16% 미만일 경우, 전술한 효과를 나타내기 어렵고, Cr의 함량이 22%를 초과할 경우, 원료비의 상승과 인성의 저해를 초래할 수 있다. 따라서, 본 발명에서는 Cr의 함량을 16 내지 22%로 제한한다.Cr is an element that improves corrosion resistance of austenitic stainless steel. When the Cr content is less than 16%, it is difficult to exhibit the above-mentioned effects, and when the Cr content exceeds 22%, the raw material cost may increase and the toughness may be deteriorated. Therefore, in the present invention, the Cr content is limited to 16 to 22%.
Ni의 함량은 9 내지 15%이다.The content of Ni is 9 to 15%.
Ni은 오스테나이트 안정화 원소이다. Ni의 함량이 9% 미만일 경우, 전술한 효과를 나타내기 어렵고, Ni의 함량이 15%를 초과할 경우, 원료비의 상승을 초래하므로, 본 발명에서는 Ni의 함량을 9 내지 15%로 제한한다.Ni is an austenite stabilizing element. If the Ni content is less than 9%, the above-mentioned effect is difficult to exhibit, and if the Ni content exceeds 15%, the raw material cost increases. In the present invention, the Ni content is limited to 9 to 15%.
Mo의 함량은 0 초과 3%이다.The content of Mo is greater than 0 and 3%.
Mo은 내식성을 향상시키는 원소이다. 다만, Mo의 함량이 3%를 초과할 경우, 원료비의 상승을 초래한다. 따라서, 본 발명에서는 Mo의 함량을 3%로 제한한다.Mo is an element that improves corrosion resistance. However, when the content of Mo exceeds 3%, it causes an increase in raw material cost. Therefore, in the present invention, the content of Mo is limited to 3%.
B의 함량은 0.004 내지 0.06%이다. The content of B is 0.004 to 0.06%.
B는 BN을 확보하기 위해 첨가되는 원소이다. B의 함량이 0.004% 미만일 경우, 본 발명에서 목표로하는 충분한 BN을 형성시킬 수 없고, B의 함량이 0.06%를 초과할 경우, 열간압연 시 파단을 초래한다. 따라서, 본 발명에서는 B의 함량을 0.004 내지 0.06%로 제한한다.B is an element added to secure BN. If the content of B is less than 0.004%, sufficient BN targeted in the present invention cannot be formed, and if the content of B exceeds 0.06%, fracture occurs during hot rolling. Therefore, in the present invention, the content of B is limited to 0.004 to 0.06%.
N의 함량은 0.15 내지 0.25%이다.The content of N is 0.15 to 0.25%.
N는 BN을 확보하기 위해 첨가되는 원소이다. B의 함량이 0.15% 미만일 경우, 충분한 BN을 형성시킬 수 없고, B의 함량이 0.25%를 초과할 경우, 강의 인성의 저해를 초래한다. 따라서, 본 발명에서는 N의 함량을 0.15 내지 0.25%로 제한한다.N is an element added to secure BN. When the B content is less than 0.15%, sufficient BN cannot be formed, and when the B content exceeds 0.25%, the toughness of the steel is deteriorated. Therefore, in the present invention, the N content is limited to 0.15 to 0.25%.
Cu의 함량은 0 초과 1%이다.The content of Cu is greater than 0 and 1%.
Cu는 내식성을 향상시키는 원소로 본 발명에서는 필요에 따라 첨가한다. 다만, Cu의 함량이 1%를 초과할 경우, 열간 가공성이 열화될 수 있으므로, 본 발명에서는 Cu의 함량을 1%로 제한한다. Cu is an element that improves corrosion resistance and is added as needed in the present invention. However, when the content of Cu exceeds 1%, since hot workability may be deteriorated, the content of Cu is limited to 1% in the present invention.
합금조성 외 잔부는 Fe이다. 본 발명의 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 통상 강의 공업적 생산 과정에서 포함될 수 있는 기타의 불순물을 포함할 수 있다. 이러한 불순물들은 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 알 수 있는 내용이므로 본 발명에서 특별히 그 종류와 함량을 제한하지는 않는다.The balance other than the alloy composition is Fe. The austenitic stainless steel with improved corrosion resistance and machinability of the present invention may contain other impurities that may be included in a typical industrial production process of steel. Since these impurities can be known by anyone having ordinary knowledge in the art to which the present invention belongs, the type and content are not particularly limited in the present invention.
본 발명에 따른 오스테나이트계 스테인리스강은 임의의 단면에서 장축의 크기가 1μm 이상인 MnS 석출상이 10개 / 100x100 μm2 이하로 분포한다. 이때, MnS 석출상은 Mn과 S의 합으로 50at.% 이상을 포함할 수 있다.In the austenitic stainless steel according to the present invention, 10 MnS precipitated phases having a major axis size of 1 μm or more are distributed in an arbitrary cross section / 100×100 μm 2 or less. At this time, the MnS precipitated phase may include 50 at.% or more of the sum of Mn and S.
본 발명에서는 내식성의 열화를 초래하는 MnS의 형성이 억제되므로, 내식성을 확보할 수 있고, 본 발명에 따른 오스테나이트계 스테인리스강의 공식 전위는 300mV 이상일 수 있다. In the present invention, since the formation of MnS that causes deterioration of corrosion resistance is suppressed, corrosion resistance can be secured, and the pitting potential of the austenitic stainless steel according to the present invention can be 300 mV or more.
본 발명에 따른 오스테나이트계 스테인리스강은 임의의 단면에서 BN 석출상이 10개 / 100x100μm2 이상 분포한다. 이때, BN 석출상은 B와 N의 합으로 50at.% 이상을 포함할 수 있다. 본 발명에서는 MnS를 BN로 대체하므로 내식성의 열화를 억제하면서도 절삭성을 확보할 수 있다. In the austenitic stainless steel according to the present invention, 10/100x100μm 2 or more of BN precipitation phases are distributed in any cross section. In this case, the BN precipitated phase may include 50 at.% or more of the sum of B and N. In the present invention, since MnS is replaced with BN, it is possible to secure cutability while suppressing deterioration of corrosion resistance.
다음으로, 본 발명의 일 실시 예에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강의 제조방법에 대하여 설명한다.Next, a method for manufacturing austenitic stainless steel with improved corrosion resistance and machinability according to an embodiment of the present invention will be described.
본 발명에 따른 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강은 다양한 방법으로 제조될 수 있으며, 그 제조방법은 특별히 제한되지 않는다. 다만, 일 실시예로써 다음과 같은 방법에 의해 제조될 수 있다. The austenitic stainless steel with improved corrosion resistance and machinability according to the present invention can be manufactured by various methods, and the manufacturing method is not particularly limited. However, as an example, it may be manufactured by the following method.
예를 들어, 중량 %로, C: 0.05% 이하(0은 제외), Si: 0 초과 2%, Mn: 0 초과 2%, S: 0.01% 이하, Cr: 16 내지 22%, Ni: 9 내지 15%, Mo: 0 초과 3%, N: 0.15 내지 0.25%, B: 0.004 내지 0.06%, 나머지 Fe 및 불가피한 불순물을 포함하는 강편을 1,150 내지 1,250℃에서 1시간 30분 이상 가열하는 단계; 가열된 강편을 열간 압연하는 단계; 및 압연된 압연재를 1,100 내지 1,250℃에서 30초 이상 유지하는 단계;를 포함한다. For example, in weight percent, C: 0.05% or less (excluding 0), Si: greater than 0 2%, Mn: greater than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 9% 15%, Mo: greater than 0 3%, N: 0.15 to 0.25%, B: 0.004 to 0.06%, the remainder Fe and unavoidable impurities are heated at 1,150 to 1,250 ° C. for 1 hour and 30 minutes or longer; hot-rolling the heated slab; and holding the rolled material at 1,100 to 1,250° C. for 30 seconds or longer.
이때, 가열하는 단계는 가능한 한 많은 BN을 형성시키기 위한 공정으로, 1,150 내지 1,250℃에서 1시간 30분 이상 수행될 수 있다. At this time, the heating step is a process for forming as many BNs as possible, and may be performed at 1,150 to 1,250 ° C. for 1 hour and 30 minutes or more.
또한, 열간 압연은 두께 8mm까지 수행될 수 있으나, 그 두께는 용도에 따라 달라질 수 있으므로 이에 한정하지 않는다.In addition, hot rolling may be performed up to a thickness of 8 mm, but the thickness may vary depending on the use, so it is not limited thereto.
또한, 열간 압연 후 유지하는 단계는 BN을 재차 형성하기 위한 공정으로, 1,100 내지 1,250℃에서 30초 이상 수행될 수 있다. In addition, the maintaining step after hot rolling is a process for forming BN again, and may be performed at 1,100 to 1,250 ° C. for 30 seconds or more.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for exemplifying the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
실시 예 embodiment
하기 표 1의 합금 조성을 만족하는 합금을 용해 주조하고, 오스테나이트 스테인리스강 주편을 1,200℃에서 1시간 30분 동안 가열하였다. 이후, 가열된 주편을 두께 8mm이 되도록 열간 압연하였다. 이어서, BN 석출상을 형성하도록 열연재를 1,150℃의 온도에서 30초 이상 유지하여, 열연재 시편을 얻었다. An alloy satisfying the alloy composition of Table 1 was melt-cast, and the austenitic stainless steel cast was heated at 1,200° C. for 1 hour and 30 minutes. Thereafter, the heated cast steel was hot rolled to a thickness of 8 mm. Subsequently, the hot-rolled material was maintained at a temperature of 1,150° C. for 30 seconds or more to form a BN precipitated phase, thereby obtaining a hot-rolled material specimen.
실시예 1 내지 10과 비교예 1 내지 7의 열연재 시편에 대해 열간압연 후 판파단의 발생 여부를 관찰하고, 파단이 발생한 경우를 ○, 발생하지 않은 경우를 X로 하기 표2에 나타내었다. For the hot-rolled specimens of Examples 1 to 10 and Comparative Examples 1 to 7, whether or not plate breakage occurred after hot rolling was observed, and the case where breakage occurred was designated as ○, and the case where it did not occur was designated as X in Table 2 below.
표 2를 참조하면, 본 발명의 합금조성을 만족하는 실시예 1 내지 10은 열간압연 중 파단이 발생하지 않았다. 그러나, 비교예2는 B의 함량은 만족하였으나, N의 함량이 본 발명에서 제안하는 하한에 미치지 못하여, 열간압연 중 파단이 발생하였다.Referring to Table 2, Examples 1 to 10 satisfying the alloy composition of the present invention did not cause fracture during hot rolling. However, in Comparative Example 2, the content of B was satisfactory, but the content of N did not reach the lower limit proposed in the present invention, and thus fracture occurred during hot rolling.
도 1a 및 도 1b는 각각 실시예7 및 비교예2의 열간압연 후 외관을 나타내는 사진이다. 도 1a를 참조하면, 본 발명에 따른 실시예2는 강판의 외관이 파단 없이 양호함을 확인할 수 있다. 반면, 도 1b를 참조하면 비교예2는 B의 함량은 만족하였으나, N의 함량이 본 발명에서 제안하는 하한에 미치지 못하여, 열간압연 중 판 파단이 발생하였음을 확인할 수 있다. 1A and 1B are photographs showing appearances after hot rolling of Example 7 and Comparative Example 2, respectively. Referring to FIG. 1A , it can be confirmed that the appearance of the steel sheet in Example 2 according to the present invention is good without fracture. On the other hand, referring to FIG. 1B, it can be confirmed that Comparative Example 2 had a satisfactory content of B, but the content of N did not reach the lower limit proposed in the present invention, and thus plate breakage occurred during hot rolling.
비교예3도 B의 함량은 만족하였으나, N의 함량이 본 발명에서 제안하는 하한에 미치지 못하여, 열간압연 중 파단이 발생하였다.Although the content of B in Comparative Example 3 was satisfactory, the content of N did not reach the lower limit proposed in the present invention, and fracture occurred during hot rolling.
이어서, 열간 압연 중 파단되지 않은 비교예 1 및 4 내지 6, 실시예 1 내지 10의 열연재 시편에 대해 BN 및 MnS 석출물을 관찰하고, 내식성 및 절삭성을 평가하여 하기 표3에 나타내었다. Subsequently, BN and MnS precipitates were observed for the hot-rolled specimens of Comparative Examples 1 and 4 to 6 and Examples 1 to 10, which were not broken during hot rolling, and corrosion resistance and machinability were evaluated, and are shown in Table 3 below.
BN 및 MnS 석출물은 판재의 임의의 절단면을 경면 연마한 후, 100x100 μm2 당 1μm 이상의 MnS 석출물 개수 및 100x100μm2당 BN 석출물 개수를 에너지 분산형 분광기(Energy Dispersive Spectrometer, EDS)가 부착된 주사전자현미경(Scanning Electron Microscope, SEM)을 통해 관찰하고, 그 개수를 나타내었다. For BN and MnS precipitates, the number of MnS precipitates of 1 μm or more per 100x100 μm 2 and the number of BN precipitates per 100x100 μm 2 were measured by mirror polishing the arbitrary cut surface of the plate, and then the number of BN precipitates was measured using a scanning electron microscope equipped with an energy dispersive spectrometer (EDS). (Scanning Electron Microscope, SEM) was observed, and the number was shown.
내식성은 공식전위에 의해 평가하였다. 공식전위는 3.5wt% NaCl을 함유한 수용액에 열연재 시편을 담그고 전극을 연결한 후, 전압을 인가하여 자연전위로부터 점차 전압을 상승시켰을 때 전류가 0.1mA에 도달하는 시점에서의 전압을 측정하여 나타내었다.Corrosion resistance was evaluated by pitting potential. The pitting potential is measured by immersing a hot-rolled steel specimen in an aqueous solution containing 3.5wt% NaCl, connecting the electrodes, and applying voltage to gradually increase the voltage from the natural potential. The voltage at the point when the current reaches 0.1mA is measured showed up
절삭성은 엔드밀을 사용하여 절삭 시, 절입 깊이 2mm, 절입 두께 5mm, 엔드밀 회전속도 2,000rpm의 조건에서 절삭 부하 토크를 측정하여 평가하였다. 다만, 절삭 환경은 변화할 수 있으므로 비교예1의 토크를 기준(100%)으로 하여 나타내었다. 공식 전위는 본 발명의 실험 방법에서는 1,000mV값이 최대치로 얻어지므로, 그 이상의 값에 대해서는 1,000mV으로 표기하였다.The machinability was evaluated by measuring the cutting load torque under the conditions of cutting depth of 2 mm, cutting thickness of 5 mm, and end mill rotational speed of 2,000 rpm when cutting using an end mill. However, since the cutting environment may change, the torque of Comparative Example 1 is shown as a reference (100%). Since the maximum value of 1,000 mV is obtained in the experimental method of the present invention, the potential value above that is expressed as 1,000 mV.
1μm 이상
MnS 개수per 100x100μm 2
1μm or more
MnS count
BN 개수per 100x100μm 2
BN count
(mV)official vanguard
(mV)
(%)cutting load
(%)
표 2 및 표3을 참조하면, 본 발명의 합금조성을 만족하는 실시예 1 내지 10은 MnS 석출물을 형성하지 않으므로 공식전위가 300mV이상으로 내식성이 양호하고, BN 석출물이 100x100μm2 당 11개 이상으로 절삭 부하도 비교예1보다 낮게 나타나 절삭성도 확보하였음을 확인할 수 있다.도 2a 및 도 2b는 각각 실시예7 및 비교예1의 스테인리스강의 단면을 SEM으로 관찰한 사진이다. 도 2a를 참조하면, 본 발명에 따른 실시예7은 본 발명에서 구현하고자 하는 BN이 다량 형성되었다는 것을 확인할 수 있다. 반면, 도 2b를 참조하면, 비교예1은 BN을 형성할 수 있는 조건이 형성되지 않아 BN이 형성되지 않았다는 것을 확인할 수 있다. 일부 보이는 검은색 영역은 BN이 아닌 산화물로 보여진다. Referring to Tables 2 and 3, Examples 1 to 10 satisfying the alloy composition of the present invention do not form MnS precipitates, so the pitting potential is 300 mV or more and corrosion resistance is good, and BN precipitates are cut to 11 or more per 100x100 μm 2 It can be confirmed that the load was also lower than that of Comparative Example 1, and the cutting ability was also secured. FIGS. 2A and 2B are SEM photographs of cross sections of stainless steels of Example 7 and Comparative Example 1, respectively. Referring to FIG. 2A , it can be confirmed that in Example 7 according to the present invention, a large amount of BNs to be implemented in the present invention are formed. On the other hand, referring to FIG. 2B , it can be confirmed that Comparative Example 1 did not form BN because conditions for forming BN were not formed. Some visible black areas appear to be oxide rather than BN.
반면, 비교예1은 MnS이 형성되지 않아 공식전위가 550mV로 내식성은 양호하였으나, B가 첨가되지 않아 BN이 형성되지 않았고 절삭 부하가 실시예에 비해 열위하였다. On the other hand, Comparative Example 1 had good corrosion resistance with a pitting potential of 550 mV because MnS was not formed, but BN was not formed because B was not added, and the cutting load was inferior to that of Example.
비교예4는 MnS가 형성되어 절삭 부하는 낮았으나, N의 함량이 본 발명에서 제안하는 하한값에 미치지 못하여 충분한 BN이 형성되지 못하였고, 내식성이 열위하였다. In Comparative Example 4, MnS was formed and the cutting load was low, but the content of N did not reach the lower limit proposed in the present invention, so sufficient BN was not formed and corrosion resistance was inferior.
비교예5는 MnS가 형성되어 절삭 부하는 낮았으나, B 및 N의 함량이 본 발명에서 제안하는 하한값에 미치지 못하여 충분한 BN이 형성되지 못하였고, 내식성이 열위하였다.In Comparative Example 5, MnS was formed and the cutting load was low, but the content of B and N did not reach the lower limit proposed in the present invention, so sufficient BN was not formed and corrosion resistance was inferior.
비교예6은 MnS이 형성되지 않아 공식전위가 1000mV로 내식성은 양호하였으나, B의 함량이 본 발명에서 제안하는 하한값에 미치지 못하여 절삭 부하가 열위하였다.Comparative Example 6 had good corrosion resistance with a pitting potential of 1000 mV because MnS was not formed, but the cutting load was inferior because the content of B did not reach the lower limit proposed in the present invention.
본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.The present invention is not limited thereto, and those skilled in the art will understand that various changes and modifications are possible without departing from the concept and scope of the claims described below.
Claims (6)
BN 석출상이 10개 / 100x100μm2 이상 분포하고,
장축의 길이가 1μm 이상인 MnS 석출상이 10개 / 100x100 μm2 이하로 분포하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.In weight percent, C: 0.05% or less (excluding 0), Si: greater than 0 2%, Mn: greater than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo : more than 0 3%, N: more than 0.15% and less than 0.25%, B: 0.004 to 0.06%, including the remainder Fe and unavoidable impurities,
10 BN precipitation phases / 100x100μm 2 or more are distributed,
An austenitic stainless steel with improved corrosion resistance and machinability, with 10 MnS precipitated phases with a length of 1 μm or more in the long axis distributed less than 10 / 100x100 μm 2 .
Cu: 0 초과 1%를 더 포함하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.According to claim 1,
Cu: An austenitic stainless steel with improved corrosion resistance and machinability further containing more than 0 and 1%.
공식전위는,
300mV이상인 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강.According to claim 1,
official position,
Austenitic stainless steel with improved corrosion resistance and machinability over 300mV.
상기 가열된 강편을 열간 압연하는 단계; 및
상기 압연된 압연재를 1,100 내지 1,250℃에서 30초 이상 유지하는 단계;를 포함하는 내식성과 절삭성이 향상된 오스테나이트계 스테인리스강 제조방법.
In weight %, C: 0.05% or less (excluding 0), Si: greater than 0 2%, Mn: greater than 0 2%, S: 0.01% or less, Cr: 16 to 22%, Ni: 9 to 15%, Mo : more than 0 3%, N: more than 0.15% and not more than 0.25%, B: 0.004 to 0.06%, the remaining Fe and unavoidable impurities are heated at 1,150 to 1,250 ° C. for 1 hour and 30 minutes or more;
hot-rolling the heated slab; and
Austenitic stainless steel manufacturing method with improved corrosion resistance and machinability comprising; maintaining the rolled rolling material at 1,100 to 1,250 ° C for 30 seconds or more.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200179748A KR102570524B1 (en) | 2020-12-21 | 2020-12-21 | Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same |
PCT/KR2021/018701 WO2022139275A1 (en) | 2020-12-21 | 2021-12-10 | Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing same |
US18/268,580 US20240309500A1 (en) | 2020-12-21 | 2021-12-10 | Austenitic stainless steel with improved corrosion resistance and machinability and manufacturing method of the same |
JP2023538136A JP2024500905A (en) | 2020-12-21 | 2021-12-10 | Austenitic stainless steel with improved corrosion resistance and machinability and its manufacturing method |
EP21911342.0A EP4265799A1 (en) | 2020-12-21 | 2021-12-10 | Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing same |
CN202180090889.5A CN116848283A (en) | 2020-12-21 | 2021-12-10 | Austenitic stainless steel with improved corrosion resistance and machinability and method of making same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200179748A KR102570524B1 (en) | 2020-12-21 | 2020-12-21 | Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220089276A KR20220089276A (en) | 2022-06-28 |
KR102570524B1 true KR102570524B1 (en) | 2023-08-24 |
Family
ID=82159585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200179748A KR102570524B1 (en) | 2020-12-21 | 2020-12-21 | Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240309500A1 (en) |
EP (1) | EP4265799A1 (en) |
JP (1) | JP2024500905A (en) |
KR (1) | KR102570524B1 (en) |
CN (1) | CN116848283A (en) |
WO (1) | WO2022139275A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019130586A (en) | 2018-02-02 | 2019-08-08 | 日鉄日新製鋼株式会社 | Set of austenitic stainless steel sheet, manufacturing of conjugate, and conjugate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02209454A (en) * | 1989-02-08 | 1990-08-20 | Nkk Corp | Free cutting stainless steel |
JPH07113144A (en) * | 1993-10-18 | 1995-05-02 | Nisshin Steel Co Ltd | Nonmagnetic stainless steel excellent in surface property and production thereof |
JPH07197205A (en) * | 1993-12-29 | 1995-08-01 | Nkk Corp | Austenitic stainless steel sheet and its production |
KR102015510B1 (en) * | 2017-12-06 | 2019-08-28 | 주식회사 포스코 | Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof |
-
2020
- 2020-12-21 KR KR1020200179748A patent/KR102570524B1/en active IP Right Grant
-
2021
- 2021-12-10 EP EP21911342.0A patent/EP4265799A1/en active Pending
- 2021-12-10 JP JP2023538136A patent/JP2024500905A/en active Pending
- 2021-12-10 US US18/268,580 patent/US20240309500A1/en active Pending
- 2021-12-10 CN CN202180090889.5A patent/CN116848283A/en active Pending
- 2021-12-10 WO PCT/KR2021/018701 patent/WO2022139275A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019130586A (en) | 2018-02-02 | 2019-08-08 | 日鉄日新製鋼株式会社 | Set of austenitic stainless steel sheet, manufacturing of conjugate, and conjugate |
Also Published As
Publication number | Publication date |
---|---|
WO2022139275A1 (en) | 2022-06-30 |
JP2024500905A (en) | 2024-01-10 |
CN116848283A (en) | 2023-10-03 |
EP4265799A1 (en) | 2023-10-25 |
US20240309500A1 (en) | 2024-09-19 |
KR20220089276A (en) | 2022-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3135777B1 (en) | Steel for mold and mold | |
JP5335502B2 (en) | Martensitic stainless steel with excellent corrosion resistance | |
KR102173302B1 (en) | Non-magnetic austenitic stainless steel and manufacturing method thereof | |
JP5138991B2 (en) | Machine structural steel with excellent machinability | |
KR20190066737A (en) | Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof | |
JP2009174033A (en) | Steel for machine structure having excellent machinability | |
JP2636816B2 (en) | Alloy tool steel | |
KR20190041502A (en) | River | |
KR102570524B1 (en) | Austenitic stainless steel with improved corrosion resistance and machinability and method for manufacturing the same | |
KR20190066734A (en) | High hardness austenitic stainless steel with excellent corrosion resistance | |
KR20200075656A (en) | High-strength stainless steel | |
JP3182995B2 (en) | High Mn non-magnetic steel with excellent stress corrosion cracking resistance and mechanical properties | |
JP3966841B2 (en) | Ferritic free-cutting stainless steel | |
JPH11241145A (en) | Austenitic stainless steel excellent in high temperature setting resistance and its production | |
KR20180074322A (en) | Austenite stainless steel excellent in corrosion resistance and hot workability | |
KR20180018908A (en) | Duplex stainless steel having low content of ni and method of manufacturing the same | |
KR101454517B1 (en) | Lean duplex stainless steel and manufacturing method using the same | |
JP5151222B2 (en) | Method for producing ferritic stainless steel sheet with excellent corrosion resistance in the presence of chlorine bleach | |
KR20200071212A (en) | LOW-Cr FERRITIC STAINLESS STEEL WITH EXCELLENT FORMABILITY AND HIGH TEMPERATURE PROPERTIES AND MANUFACTURING METHOD THEREOF | |
JPH03243743A (en) | Wear-resistant steel for ordinary and medium temperature use having high hardness in medium and ordinary temperature range | |
KR20200057441A (en) | Austenitic stainless steel with excellent resistance to stress corrosion cracking and surfuric acid dew point corrosion | |
JPH0717988B2 (en) | Ferritic stainless steel with excellent toughness and corrosion resistance | |
JP4108506B2 (en) | Martensitic free-cutting stainless steel | |
KR20170075034A (en) | Lean duplex stainless steel and method of manufacturing the same | |
JP2024106474A (en) | Austenitic Stainless Steel Sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |