KR102560436B1 - Silicon wafer evaluation method and silicon wafer manufacturing method - Google Patents

Silicon wafer evaluation method and silicon wafer manufacturing method Download PDF

Info

Publication number
KR102560436B1
KR102560436B1 KR1020207005723A KR20207005723A KR102560436B1 KR 102560436 B1 KR102560436 B1 KR 102560436B1 KR 1020207005723 A KR1020207005723 A KR 1020207005723A KR 20207005723 A KR20207005723 A KR 20207005723A KR 102560436 B1 KR102560436 B1 KR 102560436B1
Authority
KR
South Korea
Prior art keywords
silicon wafer
defects
oxide film
mirror polishing
cleaning
Prior art date
Application number
KR1020207005723A
Other languages
Korean (ko)
Other versions
KR20200051595A (en
Inventor
켄사쿠 이가라시
타츠오 아베
Original Assignee
신에쯔 한도타이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쯔 한도타이 가부시키가이샤 filed Critical 신에쯔 한도타이 가부시키가이샤
Priority claimed from PCT/JP2018/030614 external-priority patent/WO2019049641A1/en
Publication of KR20200051595A publication Critical patent/KR20200051595A/en
Application granted granted Critical
Publication of KR102560436B1 publication Critical patent/KR102560436B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/005Details of cleaning machines or methods involving the use or presence of liquid or steam the liquid being ozonated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Abstract

본 발명은, 실리콘 웨이퍼의 평가방법으로서, 상기 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전표면결함 측정공정과, 상기 실리콘 웨이퍼에 대하여,오존수에 의한 산화처리와, 상기 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과, 상기 세정공정 후의 상기 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 상기 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 가지며, 상기 세정공정과 상기 증가결함 측정공정을 번갈아 복수회 반복 행하고, 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여 상기 실리콘 웨이퍼를 평가하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법이다. 이에 따라, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한, 연마 등의 가공기인의 결함만을 평가할 수 있는 실리콘 웨이퍼의 평가방법이 제공된다.The present invention is a method for evaluating a silicon wafer, comprising a total surface defect measurement step of measuring surface defects in advance on the silicon wafer, a cleaning step of alternately repeating oxidation treatment with ozone water and oxide film removal treatment with hydrofluoric acid under conditions in which the oxide film formed on the surface of the silicon wafer is not completely removed, surface defect measurement of the silicon wafer after the cleaning step, and measuring the increased defects with respect to the defects measured in the total surface defect measurement step. A silicon wafer evaluation method characterized by having a defect measuring step, repeating the cleaning step and the increasing defect measuring step alternately a plurality of times, and evaluating the silicon wafer based on the measurement result of the increasing defect after each cleaning step. Accordingly, there is provided a silicon wafer evaluation method capable of evaluating only defects caused by processing such as polishing, excluding defects caused by crystals and particles generated by cleaning.

Description

실리콘 웨이퍼의 평가방법 및 실리콘 웨이퍼의 제조방법Silicon wafer evaluation method and silicon wafer manufacturing method

본 발명은, 실리콘 웨이퍼의 평가방법 및 실리콘 웨이퍼의 제조방법에 관한 것이다.The present invention relates to a silicon wafer evaluation method and a silicon wafer manufacturing method.

연마 후의 웨이퍼 품질은 나날이 개선되고 있으며, 연마 세정 후의 웨이퍼의 품질을 확인함에 있어, 확인된 이상(異常)이 연마기인(起因), 세정기인, 또는 결정기인인지를 분별하는 것이 어려워지고 있다. Wafer quality after polishing is improving day by day, and in checking the quality of wafers after polishing and cleaning, it is becoming difficult to discriminate whether the confirmed abnormality is a polisher, a cleaner, or a crystallizer.

현재, 연마상태의 품질을 평가하기 위해서는, 대량의 웨이퍼를 연마하여 품질의 트렌드를 따르는 것 외에 방법이 없고, 그 품질의 차이가 다양한 외적 요인에 따라 달라지므로 평가가 어렵다. 또한, 종래에는, 연마 후의 웨이퍼를 1회 측정할 뿐으로, 방대한 양의 웨이퍼를 제조하는 중에 종래와 같이 추출검사를 행해도, 연마 품질의 이상을 검출하는 것은 매우 어려웠다. 또한 이상값을 확실히 알 수 있는 단계에서는 이미 때를 놓치는 경우가 많았다. Currently, in order to evaluate the quality of the polished state, there is no method other than following the trend of quality by polishing a large number of wafers, and evaluation is difficult because the difference in quality depends on various external factors. Further, in the prior art, it was very difficult to detect an abnormality in polishing quality even if the polished wafer was only measured once, and a conventional extraction inspection was performed during manufacturing of a vast amount of wafers. In addition, in many cases, the time was already missed at the stage where the outlier was clearly known.

종래부터 있는 표면 품질의 평가방법으로서 SC1-RT법이 있는데, 이것은 실리콘 결정기인의 결함이나 금속오염의 평가를 행하기 위한 방법이며, 연마 등의 가공기인의 결함(가공결함)을 평가하는 방법은 아니었다(특허문헌 1).As a conventional surface quality evaluation method, there is the SC1-RT method, which is a method for evaluating defects and metal contamination caused by silicon crystals, and is not a method for evaluating defects (processing defects) caused by processing such as polishing (Patent Document 1).

또한, SC1-RT법은 알칼리 수용액을 사용하고 있기 때문에, 원리상 Si, SiO2 모두 에칭을 행하므로 웨이퍼 표면거칠기의 악화가 현저하다. In addition, since the SC1-RT method uses an aqueous alkali solution, in principle, since both Si and SiO 2 are etched, the wafer surface roughness is significantly deteriorated.

또한, 종래의 오존수와 HF처리에 의한 웨이퍼의 품질 평가방법은, 자연산화막을 모두 제거하는(박리하는) 공정을 포함하고 있으며(특허문헌 2), 이와 같이 산화막의 완전제거를 행하면, 결정기인의 결함의 현재화(顯在化)가 일어나, 연마 등의 가공결함을 평가할 수 없었다. In addition, the conventional wafer quality evaluation method using ozone water and HF treatment includes a step of removing (exfoliating) all of the native oxide film (Patent Document 2), and when the oxide film is completely removed in this way, defects caused by crystals become visible, and processing defects such as polishing cannot be evaluated.

일본특허공개 2002-353281호 공보Japanese Unexamined Patent Publication No. 2002-353281 일본특허공개 2013-004760호 공보Japanese Unexamined Patent Publication No. 2013-004760

본 발명은, 상기 문제점을 감안하여 이루어진 것으로서, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한, 연마 등의 가공기인의 결함만을 평가할 수 있는 실리콘 웨이퍼의 평가방법을 제공하는 것을 목적으로 한다. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for evaluating a silicon wafer capable of evaluating only defects caused by processing such as polishing, excluding defects caused by crystals and particles generated by cleaning.

상기 과제를 해결하기 위하여, 본 발명은, 실리콘 웨이퍼의 평가방법으로서,In order to solve the above problems, the present invention is a silicon wafer evaluation method,

상기 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전(前)표면결함 측정공정과,For the silicon wafer, a front surface defect measurement step of measuring surface defects in advance;

상기 실리콘 웨이퍼에 대하여, 오존수에 의한 산화처리와, 상기 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과,With respect to the silicon wafer, a cleaning step of alternately repeating an oxidation treatment with ozone water and an oxide film removal treatment with hydrofluoric acid under the condition that the oxide film formed on the surface of the silicon wafer is not completely removed;

이 세정공정 후의 상기 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 상기 표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 가지며,An increased defect measurement step of measuring surface defects on the silicon wafer after the cleaning step and measuring increased defects with respect to the defects measured in the surface defect measurement step,

상기 세정공정과 상기 증가결함 측정공정을 번갈아 복수회 반복하여 행하고, 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여 상기 실리콘 웨이퍼를 평가하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법을 제공한다.A silicon wafer evaluation method is provided, wherein the cleaning step and the increasing defect measuring step are alternately repeated a plurality of times, and the silicon wafer is evaluated based on the measurement result of the increasing defect after each cleaning step.

이러한 실리콘 웨이퍼의 평가방법이면, 세정공정에서 결정기인의 결함을 현재화시키지 않고 가공결함만을 현재화시킬 수 있으며, 각 세정공정 후에 측정되는 증가결함의 증가 경향을 봄으로써, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한 가공결함만을 평가하는 것이 가능해져, 연마 등의 가공 품질을 평가할 수 있다.With such a silicon wafer evaluation method, only processing defects can be made visible without realizing defects caused by crystallization in the cleaning process, and by looking at the trend of increasing defects measured after each cleaning process, it is possible to evaluate only processing defects excluding defects caused by crystals or particles generated by cleaning, etc., and the quality of processing such as polishing can be evaluated.

또한 이 경우, 상기 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를, 불산 농도 0.1~1.0%로 하고, 처리 시간을 2초~20초로 하여 행하는 것이 바람직하다.In this case, it is preferable to carry out the oxide film removal treatment with hydrofluoric acid under the conditions of not completely removing the oxide film, with a hydrofluoric acid concentration of 0.1 to 1.0% and a treatment time of 2 to 20 seconds.

이러한 불산에 의한 산화막 제거처리로 하면, 자연산화막 두께를 제어할 수 있으므로, 보다 확실히, 산화막을 완전히 제거하지 않고, 산화막 제거를 행할 수 있다.Since the natural oxide film thickness can be controlled by such an oxide film removal treatment using hydrofluoric acid, the oxide film can be removed more reliably without completely removing the oxide film.

또한 이 경우, 상기 세정공정을, 상기 오존수에 의한 산화처리와 상기 불산에 의한 산화막 제거처리를 번갈아(교호로) 5회 이상 반복하여 행하는 것이 바람직하다.In this case, it is preferable to alternately (alternately) repeat the oxidation treatment with the ozone water and the oxide film removal treatment with the hydrofluoric acid five or more times in the cleaning step.

이와 같이, 오존수에 의한 산화처리와 불산에 의한 산화막 제거처리를 5회 이상 반복함으로써, 확실히, 가공결함을 현재화시킬 수 있으므로, 보다 정확히 가공 품질을 평가할 수 있다.In this way, by repeating the oxidation treatment with ozone water and the oxide film removal treatment with hydrofluoric acid five or more times, processing defects can be reliably made visible, and thus processing quality can be evaluated more accurately.

또한 이 경우, 상기 실리콘 웨이퍼로서, 경면연마 후의 것을 이용하는 것이 바람직하다.In this case, it is preferable to use a silicon wafer after mirror polishing as the silicon wafer.

본 발명의 실리콘 웨이퍼의 평가방법에서는, 경면연마 후의 실리콘 웨이퍼를 이용함으로써, 연마 품질의 평가를 행할 수 있다.In the silicon wafer evaluation method of the present invention, polishing quality can be evaluated by using a silicon wafer after mirror polishing.

또한, 본 발명의 실리콘 웨이퍼의 평가방법에서는, 상기 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여, 상기 실리콘 웨이퍼의 가공기인의 결함을 평가할 수 있다.Further, in the silicon wafer evaluation method of the present invention, based on the measurement results of the increased defects after each of the cleaning steps, it is possible to evaluate defects that are processing machines of the silicon wafer.

본 발명의 실리콘 웨이퍼의 평가방법에서는, 세정공정에서 연마 등의 가공결함만을 현재화할 수 있으며, 또한 각 세정공정 후에 측정되는 증가결함의 증가 경향을 봄으로써, 가공기인의 결함만을 평가할 수 있으므로, 가공 품질의 평가를 하는 것이 가능하다.In the silicon wafer evaluation method of the present invention, only processing defects such as polishing can be made visible in the cleaning process, and only defects caused by the processing machine can be evaluated by looking at the increasing trend of increased defects measured after each cleaning process. Therefore, it is possible to evaluate the processing quality.

또한, 본 발명은, 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행하여 제품이 되는 실리콘 웨이퍼를 제조하는 방법으로서,In addition, the present invention is a method for manufacturing a silicon wafer to be a product by performing mirror polishing on a silicon wafer before mirror polishing,

경면연마 전의 실험용 실리콘 웨이퍼를 준비하는 공정과,A step of preparing a silicon wafer for experiments before mirror polishing;

상기 경면연마 전의 실험용 실리콘 웨이퍼에 대하여, 소정의 경면연마조건으로 경면연마를 행하는 공정과,a step of performing mirror polishing on the experimental silicon wafer before the mirror polishing under predetermined mirror polishing conditions;

상기 실험용 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전표면결함 측정공정과,A total surface defect measurement step of measuring surface defects in advance on the experimental silicon wafer;

상기 실험용 실리콘 웨이퍼에 대하여, 오존수에 의한 산화처리와, 상기 실험용 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과,A cleaning step of alternately repeating an oxidation treatment with ozone water and an oxide film removal treatment with hydrofluoric acid under the condition that the oxide film formed on the surface of the experimental silicon wafer is not completely removed, with respect to the experimental silicon wafer;

이 세정공정 후의 상기 실험용 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 상기 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 가지며,An incremental defect measurement step of measuring surface defects on the experimental silicon wafer after the cleaning step and measuring increased defects with respect to the defects measured in the total surface defect measurement step,

상기 세정공정과 상기 증가결함 측정공정을 번갈아 복수회 반복하여 행하고, 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여 상기 실험용 실리콘 웨이퍼를 평가하고,The cleaning process and the increasing defect measurement process are alternately repeated a plurality of times, and the experimental silicon wafer is evaluated based on the measurement result of the increasing defect after each cleaning process;

상기 실험용 실리콘 웨이퍼의 평가에 기초하여, 상기 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행한 후의 연마 품질이 원하는 연마 품질이 되도록 하는 상기 경면연마에 있어서의 상기 경면연마조건을 특정하고,Based on the evaluation of the experimental silicon wafer, specify the mirror polishing conditions in the mirror polishing such that the polishing quality after mirror polishing of the silicon wafer before mirror polishing becomes a desired polishing quality,

상기 특정한 경면연마조건으로, 상기 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행하여 상기 제품이 되는 실리콘 웨이퍼를 제조하는 것을 특징으로 하는 실리콘 웨이퍼의 제조방법을 제공한다.Provided is a silicon wafer manufacturing method characterized by manufacturing a silicon wafer to be the product by performing mirror polishing on the silicon wafer before the mirror polishing under the specific mirror polishing conditions.

이러한 실리콘 웨이퍼의 제조방법이면, 실험용 실리콘 웨이퍼에 대해서 세정공정에서 결정기인의 결함을 현재화시키지 않고 가공결함만을 현재화할 수 있으며, 각 세정공정 후에 측정되는 증가결함의 증가 경향을 봄으로써, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한 가공결함만을 평가하는 것이 가능해진다. 이 실험에 의해, 경면연마 전의 실리콘 웨이퍼에 대하여, 어떠한 경면연마조건으로 경면연마를 행하면, 원하는 연마 품질이 얻어지는지를 특정할 수 있다. 그와 같이 특정한 경면연마조건으로 실리콘 웨이퍼를 제조함으로써, 원하는 연마 품질을 갖는 경면연마 실리콘 웨이퍼를 제조할 수 있다.With this silicon wafer manufacturing method, it is possible to present only processing defects without realizing defects caused by crystallization in the cleaning process for experimental silicon wafers, and by observing the increasing trend of defects measured after each cleaning process, it is possible to evaluate only processing defects excluding defects caused by crystals or particles generated by cleaning. By this experiment, with respect to the silicon wafer before mirror polishing, under what mirror polishing conditions it is possible to specify whether a desired polishing quality is obtained. By manufacturing a silicon wafer under such specific mirror polishing conditions, a mirror polished silicon wafer having a desired polishing quality can be manufactured.

본 발명의 실리콘 웨이퍼의 평가방법에서는, 세정공정에서 결정기인의 결함을 현재화시키지 않고 가공결함만을 현재화시킬 수 있으며, 또한, 각 세정공정 후에 측정되는 증가결함의 증가 경향을 봄으로써, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한, 연마 등에 의한 가공결함만을 평가할 수 있다. 또한, 본 발명에서는 웨이퍼의 표면거칠기를 악화시키지 않고 세정을 행할 수 있어, 미소입경에서의 측정이 가능해진다. 또한, 본 발명의 실리콘 웨이퍼의 제조방법에서는, 가공결함만을 평가한 실험용 실리콘 웨이퍼의 평가에 기초하여 경면연마조건을 특정함으로써, 원하는 연마 품질을 갖는 경면연마 실리콘 웨이퍼를 제조할 수 있다.In the silicon wafer evaluation method of the present invention, only processing defects can be made visible without realizing defects caused by crystallization in the cleaning process, and by looking at the increasing trend of defects measured after each cleaning step, only processing defects due to polishing can be evaluated, excluding defects caused by crystals and particles generated by cleaning. In addition, in the present invention, cleaning can be performed without deteriorating the surface roughness of the wafer, and measurement with a very small particle diameter is possible. Further, in the silicon wafer manufacturing method of the present invention, a mirror polished silicon wafer having a desired polishing quality can be manufactured by specifying mirror polishing conditions based on evaluation of experimental silicon wafers in which only processing defects are evaluated.

도 1은 본 발명의 실리콘 웨이퍼의 평가방법의 일 실시형태를 나타내는 공정 플로우도이다.
도 2는 실시예 중의 오존수에 의한 처리→불산에 의한 처리의 합계 반복횟수와 증가결함수의 관계를 나타내는 그래프이다.
도 3은 (A)실시예에 있어서 세정 후의 웨이퍼 표면을 관찰한 SEM화상, (B)비교예에서 검출된 결함의 SEM화상이다.
1 is a process flow diagram showing one embodiment of a silicon wafer evaluation method of the present invention.
Fig. 2 is a graph showing the relationship between the total number of repetitions of treatment with ozone water → treatment with hydrofluoric acid and the number of increasing defects in Examples.
Fig. 3 shows (A) an SEM image of the wafer surface observed after cleaning in Example, and (B) a SEM image of defects detected in Comparative Example.

상기 서술한 바와 같이, 종래의 실리콘 웨이퍼의 평가방법에서는, 결정기인의 결함의 현재화가 일어나, 연마 등의 가공결함을 평가할 수 없다는 문제가 있었다.As described above, in the conventional silicon wafer evaluation method, there was a problem that defects caused by crystallization occurred and processing defects such as polishing could not be evaluated.

그리고, 본 발명자들은 상기의 문제를 해결하기 위하여 예의 검토를 거듭한 결과, 오존수에 의한 산화처리와, 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과, 상기 세정공정 후의 상기 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 번갈아 복수회 반복하고, 각 세정공정 후의 증가결함의 측정결과에 기초하여 실리콘 웨이퍼를 평가하면, 세정공정에서 결정기인의 결함을 현재화시키지 않고 가공기인의 결함만을 현재화시킬 수 있어, 연마 등의 가공기인의 결함만을 평가할 수 있음을 발견하여, 본 발명에 도달하였다.And, as a result of repeated intensive studies to solve the above problem, the inventors of the present invention alternately repeat a cleaning process in which oxidation treatment with ozone water and oxide film removal treatment with hydrofluoric acid are alternately repeated under the condition that the oxide film formed on the surface of the silicon wafer is not completely removed, and the increase defect measurement step of measuring surface defects of the silicon wafer after the cleaning step and measuring the increased defects with respect to the defects measured in the total surface defect measurement step is alternately repeated a plurality of times, and the increased defects after each cleaning step When evaluating a silicon wafer based on the measurement results, it was found that only defects caused by processing factors such as polishing could be evaluated without realizing defects caused by crystallization in the cleaning process, and only defects caused by processing factors could be evaluated, and the present invention was reached.

즉, 본 발명은, 실리콘 웨이퍼의 평가방법으로서,That is, the present invention is a silicon wafer evaluation method,

상기 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전표면결함 측정공정과,With respect to the silicon wafer, a total surface defect measurement step of measuring surface defects in advance;

상기 실리콘 웨이퍼에 대하여, 오존수에 의한 산화처리와, 상기 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과,With respect to the silicon wafer, a cleaning step of alternately repeating an oxidation treatment with ozone water and an oxide film removal treatment with hydrofluoric acid under the condition that the oxide film formed on the surface of the silicon wafer is not completely removed;

상기 세정공정 후의 상기 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 상기 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 가지며,An increased defect measurement step of measuring surface defects on the silicon wafer after the cleaning step and measuring increased defects with respect to the defects measured in the total surface defect measurement step,

상기 세정공정과 상기 증가결함 측정공정을 번갈아 복수회 반복하여 행하고, 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여 상기 실리콘 웨이퍼를 평가하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법을 제공한다.A silicon wafer evaluation method is provided, wherein the cleaning step and the increasing defect measuring step are alternately repeated a plurality of times, and the silicon wafer is evaluated based on the measurement result of the increasing defect after each cleaning step.

이하, 본 발명의 실리콘 웨이퍼의 평가방법을 설명한다. 도 1은, 본 발명의 실리콘 웨이퍼의 평가방법의 일 실시형태를 나타내는 공정 플로우도이다.Hereinafter, the evaluation method of the silicon wafer of this invention is demonstrated. 1 is a process flow diagram showing one embodiment of the silicon wafer evaluation method of the present invention.

평가대상이 되는 실리콘 웨이퍼로는, 특별히 한정되지 않으나, 경면연마 후의 실리콘 웨이퍼가 바람직하다. 경면연마 후의 실리콘 웨이퍼를 이용하면, PID(Polishing Induced Defect) 등의 연마기인의 결함을 평가할 수 있어, 연마 품질의 평가를 행할 수 있다.The silicon wafer to be evaluated is not particularly limited, but a silicon wafer after mirror polishing is preferable. If a silicon wafer after mirror polishing is used, polishing machine defects such as PID (Polishing Induced Defect) can be evaluated, and polishing quality can be evaluated.

우선, 평가하는 실리콘 웨이퍼에 대하여 미리 표면결함 측정을 하는 전표면결함 측정공정을 행한다(도 1(a)). 예를 들어, KLA-Tencor사제 Surfscan SP5를 이용하여 행할 수 있다. 가공결함은 40㎚보다 큰 입경은 거의 없으므로, 측정입경은 40㎚ 이하로 충분하다.First, a total surface defect measurement step is performed in which surface defects are measured in advance for a silicon wafer to be evaluated (Fig. 1(a)). For example, it can be performed using Surfscan SP5 manufactured by KLA-Tencor. Since processing defects rarely have a particle size larger than 40 nm, a measured particle size of 40 nm or less is sufficient.

이어서, 오존수에 의한 산화처리와, 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정을 행한다(도 1(b)). 이 세정공정은, 매엽식 세정장치로 행하는 것이 바람직하다.Subsequently, a cleaning process is performed in which oxidation treatment with ozone water and oxide film removal treatment with hydrofluoric acid are alternately repeated under the condition that the oxide film formed on the surface of the silicon wafer is not completely removed (FIG. 1(b)). It is preferable to perform this cleaning step with a single wafer type cleaning device.

세정공정(b)은, 연마 등의 가공결함을 현재화시키는 공정이다. 산화막을 완전히 제거하지 않고 불산에 의한 산화막 제거와, 오존수에 의한 웨이퍼 표면의 재산화를 행함으로써, 결정기인의 결함을 현재화시키지 않고, 연마 등의 가공결함만을 현재화시킬 수 있다.The cleaning step (b) is a step of making machining defects such as polishing visible. By removing the oxide film with hydrofluoric acid and re-oxidizing the wafer surface with ozone water without completely removing the oxide film, only processing defects such as polishing can be made visible without making crystal defects visible.

종래의 SC1-RT법(예를 들어, 일본특허공개 2000-208578호 공보)이나, 종래의 오존수와 HF처리에 의한 웨이퍼의 품질 평가방법에서는, 연마 등의 가공결함을 평가할 수 없으나, 본 발명에서는 산화막을 완전히 제거하지 않고서, 오존수와 불산을 이용한 반복에 의한 세정을 행함으로써, 결정기인의 결함을 현재화시키지 않고, 가공기인의 결함만을 현재화시켜 평가하는 것이 가능해진다. 또한, 웨이퍼의 표면거칠기를 악화시키지 않고 세정을 행할 수 있어, 미소입경에서의 측정이 가능해진다.In the conventional SC1-RT method (e.g., Japanese Unexamined Patent Publication No. 2000-208578) or in the conventional wafer quality evaluation method using ozone water and HF treatment, processing defects such as polishing cannot be evaluated. However, in the present invention, by repeatedly cleaning with ozone water and hydrofluoric acid without completely removing the oxide film, it is possible to visualize and evaluate only defects caused by processing without making defects due to crystallization. In addition, cleaning can be performed without deteriorating the surface roughness of the wafer, and measurement with a very small particle diameter is possible.

이와 같이 연마 등의 가공결함만을 현재화시킴으로써, 가공결함만을 평가하는 것이 가능해진다.In this way, by making only machining defects such as polishing visible, it becomes possible to evaluate only machining defects.

한편, 본 발명에 있어서의 세정공정(b)에서 결정기인의 결함을 현재화시키지 않고, 연마 등의 가공결함만을 현재화시킬 수 있는 이유는 이하와 같다. 가공결함은, 연마 등의 가공시에 웨이퍼에 변형이 발생하여 변질층으로 되어 있다. 불산에 의해 웨이퍼의 산화막은 제거되나, 가공변질층 부분의 산화막은 주위의 산화막과 상이한 에칭레이트가 되며, 오존수에 의한 처리와 불산에 의한 처리를 번갈아 반복하여 행함으로써 현재화되어 간다. 이것은, 불산에 의한 산화막을 남기는 에칭처리를 행함으로써, 가공변질층과 주위 개소의 산화막 두께에 차이가 생기고(가공변질층 부분의 산화막이 두껍다), 오존수에 의해 산화막을 재형성시키는(산화막 두께를 균일하게 되돌리는) 처리를 반복하여 행함으로써, 보다 차이가 현저해지기 때문이다. 산화막을 완전히 제거한 경우, 가공변질층의 산화막 부분도 제거되므로 반복 오존수처리와 불산처리를 행해도 산화막이 없기 때문에 산화막 두께에 차이가 생기지 않고 현재화가 일어나지 않게 되어, 가공기인의 결함 평가가 불가능해진다.On the other hand, in the cleaning step (b) in the present invention, the reason why only processing defects such as polishing can be made visible without making the defects that are crystal groups visible is as follows. The processing defect is an altered layer caused by deformation of the wafer during processing such as polishing. Although the oxide film on the wafer is removed by hydrofluoric acid, the oxide film in the affected layer portion has an etching rate different from that of the surrounding oxide film, and it becomes visible by alternately repeating the treatment with ozone water and the treatment with hydrofluoric acid. This is because, by performing an etching treatment using hydrofluoric acid to leave an oxide film, a difference occurs in the thickness of the oxide film between the affected layer and the surrounding area (the oxide film in the affected layer portion is thick), and the difference becomes more remarkable by repeating the process of reforming the oxide film with ozone water (returning the oxide film thickness to uniformity). When the oxide film is completely removed, since the oxide film portion of the damaged layer is also removed, there is no oxide film even after repeated ozone water treatment and hydrofluoric acid treatment, so no difference in oxide film thickness and no visible appearance occurs, making it impossible to evaluate defects caused by processing.

또한, 본 발명과 같이 산화막을 완전히 제거하지 않고, 오존수와 불산처리를 반복하여 행함으로써, 에칭량을 적게 하여 산화막을 항상 남겨서 산소 석출물 등의 결정결함이나 금속오염에 의한 피트 등의 결함을 현재화시키는 것이 없다.In addition, by repeating ozonated water and hydrofluoric acid treatment without completely removing the oxide film as in the present invention, the amount of etching is reduced and the oxide film is always left so that crystal defects such as oxygen precipitates and defects such as pits due to metal contamination do not appear.

한편, 종래의 SC1-RT법에서는, 에칭을 다량으로 행하는 것에 의한 현재화로, 가공결함 뿐만이 아니라 산소 석출물 등의 결정결함도 현재화시키게 된다.On the other hand, in the conventional SC1-RT method, not only processing defects but also crystal defects such as oxygen precipitates are made visible by performing etching in a large amount.

또한, 종래의 오존수와 HF처리에 의한 웨이퍼의 품질 평가방법은 자연산화막을 모두 제거하는(박리하는) 공정을 포함하고 있으며, 오존수와 불산을 이용하여 산화막을 완전히 제거함으로써 표면거칠기를 악화시키지 않고 평가하는 것은 가능하나, 이 수법에서는 HF에 의해 자연산화막을 제거할 때에 결정결함도 현재화된다.In addition, the conventional wafer quality evaluation method using ozone water and HF treatment includes a step of removing (exfoliating) all of the native oxide film, and it is possible to evaluate the surface roughness without deteriorating the surface roughness by completely removing the oxide film using ozone water and hydrofluoric acid. However, in this method, when the native oxide film is removed by HF, crystal defects are also present.

본 발명에 있어서의 오존수의 오존 농도는 특별히 한정되지 않으나, 5ppm~30ppm으로 하는 것이 바람직하다. 자연산화막을 생성하기 위해서는 5ppm 이상으로 하는 것이 바람직하고, 실질적 실행 농도의 관점에서는, 30ppm 이하로 하는 것이 바람직하다. 또한, 1회당의 오존수에 의한 처리 시간은, 자연산화막을 생성하기 위해서는 10초 이상의 시간으로 하는 것이 바람직하다.The ozone concentration of ozonated water in the present invention is not particularly limited, but is preferably 5 ppm to 30 ppm. In order to form a native oxide film, it is preferable to set it to 5 ppm or more, and from the viewpoint of a practical working concentration, it is preferable to set it to 30 ppm or less. In addition, the treatment time with ozone water per one time is preferably 10 seconds or more in order to form a native oxide film.

불산 농도는 특별히 한정되지 않으나, 0.1~1.0%로 하는 것이 바람직하다. 0.1% 이상이면, 농도 제어를 정확히 행할 수 있으므로 바람직하다. 또한, 자연산화막의 막두께를 제어하기 위해서는, 1.0% 이하로 하는 것이 바람직하다. 또한, 1회당의 불산처리 시간은 2초~20초 정도가 바람직하다. 2초 이상이면, 웨이퍼에 공급된 불산이 골고루 퍼지고, 20초 이하이면, 확실히 산화막을 남기고 산화막 제거처리를 행할 수 있으므로 바람직하다.The hydrofluoric acid concentration is not particularly limited, but is preferably 0.1 to 1.0%. If it is 0.1% or more, since concentration control can be performed accurately, it is preferable. Further, in order to control the film thickness of the native oxide film, it is preferable to set it to 1.0% or less. In addition, the hydrofluoric acid treatment time per one time is preferably about 2 seconds to 20 seconds. If it is 2 seconds or more, the hydrofluoric acid supplied to the wafer is evenly spread, and if it is 20 seconds or less, the oxide film removal process can be performed without leaving the oxide film, which is preferable.

오존수에 의한 산화처리와, 불산에 의한 산화막 제거처리의 반복횟수는, 5회~50회 정도가 바람직하다. 반복횟수가 5회 이상이면, 확실히 가공결함을 현재화시킬 수 있다. 또한, 50회 이하이면, 세정공정 시간을 억제할 수 있어, 스루풋이 오르기 때문에 바람직하다. 나아가, 50회 이하이면, 실리콘 웨이퍼의 표면거칠기를 악화시키는 일 없이 평가할 수 있기 때문에 바람직하다. 또한, 50회보다 많이 반복하지 않아도, 웨이퍼의 가공 품질 경향을 파악할 수 있기 때문에 충분하다.The number of repetitions of the oxidation treatment with ozone water and the oxide film removal treatment with hydrofluoric acid is preferably about 5 to 50 times. If the number of iterations is 5 or more, it is possible to reliably make machining defects visible. Moreover, if it is 50 times or less, since the cleaning process time can be suppressed and throughput goes up, it is preferable. Furthermore, if it is 50 times or less, since it can evaluate without deteriorating the surface roughness of a silicon wafer, it is preferable. In addition, it is sufficient because the process quality trend of the wafer can be grasped without repeating more than 50 times.

이어서, 세정공정(b) 후의 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 전표면결함 측정공정(a)에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정(c)을 행한다.Subsequently, surface defects are measured for the silicon wafer after the cleaning step (b), and an increased defect measurement step (c) is performed to measure the increased defects with respect to the defects measured in the total surface defect measurement step (a).

이 증가결함 측정공정(c)에서는, 전표면결함 측정공정(a)에서 측정된 결함에 대한 증가한 결함만의 수를 측정한다. 측정은, 예를 들어, 전표면결함 측정공정과 마찬가지로 KLA-Tencor사제 Surfscan SP5를 이용하여, 동점좌표 측정을 행함으로써, 증가한 결함만의 증가수를 측정할 수 있다.In this incremental defect measuring step (c), the number of only increased defects is measured for the defects measured in the total surface defect measuring step (a). The measurement can measure, for example, the number of increased defects only by performing dynamic coordinate measurement using Surfscan SP5 manufactured by KLA-Tencor, similarly to the total surface defect measurement step.

그 후, 다시 세정공정(b)과 증가결함 측정공정(c)을 행한다. 이것을 복수회 행하고, 각 세정공정 후의 증가결함의 측정결과, 예를 들어, 증가결함의 증가 경향(기울기), 또는, 증가결함의 증가량에 기초하여, 실리콘 웨이퍼를 평가한다.Thereafter, the cleaning step (b) and the incremental defect measuring step (c) are performed again. This is performed a plurality of times, and the silicon wafer is evaluated based on the measurement result of the growth defects after each cleaning step, for example, the increasing tendency (slope) of the growth defects or the increase amount of the growth defects.

이와 같이, 세정공정(b)과 증가결함 측정공정(c)을 번갈아 복수회 행하고, 증가결함의 측정결과(증가결함의 기울기 또는 증가결함수)에 기초하여 실리콘 웨이퍼를 평가함으로써, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한, 연마 등의 가공결함만을 평가할 수 있다.In this way, the cleaning step (b) and the increasing defect measuring step (c) are alternately performed a plurality of times, and the silicon wafer is evaluated based on the measurement result of the increasing defect (the slope of the increasing defect or the number of increasing defects). It is possible to evaluate only processing defects such as polishing, excluding defects caused by crystals and particles generated by cleaning.

연마 등의 가공조건이 양호한 것에서는, 가공기인의 결함은 발생하지 않으므로(적으므로) 세정공정(b)과 증가결함 측정공정(c)을 반복해도, 증가결함의 증가의 기울기는 작아, 증가결함수는 적다. 한편, 연마가공 품질이 나쁘면, 가공기인의 결함이 발생하므로 세정과 표면결함 측정을 반복하면 증가결함의 증가의 기울기가 커져 증가결함수는 많아진다. 이 기울기 또는 증가결함수에 기초하여 연마가공 품질을 평가함으로써, 그 시점에서의 가공상태를 확인할 수 있다.When processing conditions such as polishing are good, defects caused by processing machines do not occur (since there are few), so even if the cleaning step (b) and the incremental defect measurement step (c) are repeated, the slope of the incremental defect increase is small and the number of incremental defects is small. On the other hand, if the polishing quality is poor, defects caused by the processing machine occur, so if cleaning and surface defect measurement are repeated, the slope of the increase in defects increases and the number of defects increases. By evaluating the quality of polishing based on this gradient or the number of incremental defects, it is possible to confirm the state of processing at that point in time.

즉, 증가결함의 선형 근사를 취했을 때, 기울기가 큰 것, 또는 증가결함수가 큰 것일수록, 잠재적인 가공결함을 포함하고 있어, 가공 품질이 나빠지게 된다.That is, when the linear approximation of the increasing defect is taken, the larger the slope or the larger the increasing defect number, the more latent processing defects are included, and the processing quality deteriorates.

이상과 같이, 본 발명에서는, 오존수와 불산을 이용하여 산화막을 완전히 제거하지 않고 세정을 반복하여 행함으로써, 웨이퍼의 표면거칠기의 악화나 파티클 등의 부착을 억제할 뿐만 아니라, 결정기인의 결함을 현재화시키지 않고, 연마 등의 가공결함만을 현재화시킬 수 있다. 또한, 각 세정공정 후에 측정되는 증가결함의 증가 경향을 봄으로써, 결정기인의 결함이나 세정 등으로 발생하는 파티클 등을 제외한, 연마 등의 가공기인의 결함만을 평가할 수 있다. 또한 지금까지 없었던 미소영역에서의 결함평가가 가능해졌다.As described above, in the present invention, by repeatedly performing cleaning without completely removing the oxide film using ozone water and hydrofluoric acid, not only deterioration of the surface roughness of the wafer and adhesion of particles, etc. In addition, by looking at the increasing trend of defects measured after each cleaning step, only defects caused by processing devices such as polishing can be evaluated, excluding defects caused by crystals and particles generated by cleaning. In addition, it is possible to evaluate defects in a microscopic area, which has never been possible before.

또한, 상기의 실리콘 웨이퍼의 평가방법은, 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행하여 제품이 되는 실리콘 웨이퍼를 제조하는 방법에 응용할 수 있다. 이 실리콘 웨이퍼의 제조방법에서는, 제품이 되는 실리콘 웨이퍼를 제조하기 전에, 실험용 실리콘 웨이퍼에 대하여 상기 실리콘 웨이퍼의 평가방법을 따른 실험을 행하여, 경면연마에 있어서의 경면연마조건을 미리 특정하고, 특정한 경면연마조건으로 경면연마를 행하여 제품이 되는 실리콘 웨이퍼의 제조를 행한다. 구체적으로는, 이하와 같이 하여 실리콘 웨이퍼의 제조를 행한다.In addition, the silicon wafer evaluation method described above can be applied to a method for producing a silicon wafer as a product by performing mirror polishing on a silicon wafer before mirror polishing. In this silicon wafer manufacturing method, prior to manufacturing a silicon wafer to be a product, an experiment according to the silicon wafer evaluation method is performed on an experimental silicon wafer, the mirror polishing conditions in the mirror polishing are specified in advance, and the mirror polishing is performed under the specified mirror polishing conditions to manufacture the silicon wafer to be the product. Specifically, a silicon wafer is manufactured as follows.

우선, 경면연마 전의 실험용 실리콘 웨이퍼를 준비한다. 다음에, 이 경면연마 전의 실험용 실리콘 웨이퍼에 대하여, 소정의 경면연마조건으로 경면연마를 행한다. 이와 같이 하여 경면연마를 행한 실험용 실리콘 웨이퍼에 대하여, 상기의 실리콘 웨이퍼의 평가방법과 마찬가지로, 전표면결함 측정공정, 세정공정, 증가결함 측정공정을 행한다(도 1(a)~(c) 참조). 구체적으로는, 이하와 같이 각 공정을 행한다. 우선, 경면연마를 행한 실험용 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전표면결함 측정공정을 행한다. 다음에, 실험용 실리콘 웨이퍼에 대하여, 오존수에 의한 산화처리와, 실험용 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정을 행한다. 다음에, 세정공정 후의 실험용 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 행한다.First, a silicon wafer for experiments before mirror polishing is prepared. Next, mirror polishing is performed on the experimental silicon wafer before mirror polishing under predetermined mirror polishing conditions. With respect to the experimental silicon wafer subjected to mirror polishing in this way, the entire surface defect measurement step, the cleaning step, and the incremental defect measurement step are performed in the same manner as in the silicon wafer evaluation method described above (see Figs. 1(a) to (c)). Specifically, each process is performed as follows. First, a total surface defect measurement step of measuring surface defects in advance is performed on an experimental silicon wafer subjected to mirror polishing. Next, the silicon wafer for experimentation is subjected to a cleaning process in which oxidation treatment with ozone water and oxide film removal treatment with hydrofluoric acid are alternately repeated under the condition that the oxide film formed on the surface of the silicon wafer for experimentation is not completely removed. Next, a surface defect measurement is performed on the experimental silicon wafer after the cleaning process, and an incremental defect measurement process is performed to measure the incremental defects with respect to the defects measured in the total surface defect measurement process.

상기의 세정공정과 증가결함 측정공정을 번갈아 복수회 반복 행하고, 각 세정공정 후의 증가결함의 측정결과에 기초하여 실험용 실리콘 웨이퍼를 평가한다. 추가로, 이 실험용 실리콘 웨이퍼의 평가에 기초하여, 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행한 후의 연마 품질이 원하는 연마 품질이 되도록 하는 경면연마에 있어서의 경면연마조건을 특정한다. 여기서 특정한 경면연마조건으로, 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행하여 제품이 되는 실리콘 웨이퍼를 제조한다.The cleaning process and the increasing defect measurement process are alternately repeated a plurality of times, and the experimental silicon wafer is evaluated based on the measurement result of the increasing defect after each cleaning process. Additionally, based on the evaluation of the experimental silicon wafer, the mirror polishing conditions for the silicon wafer before mirror polishing are specified so that the polishing quality after mirror polishing becomes a desired polishing quality. Here, under specific mirror polishing conditions, a silicon wafer to be a product is manufactured by performing mirror polishing on a silicon wafer before mirror polishing.

경면연마 후의 가공결함이 발생하지 않는(적은) 연마조건으로 연마된 경면연마 실리콘 웨이퍼는, 세정공정(b)과 증가결함 측정공정(c)을 반복해도, 증가결함의 증가의 기울기는 작아, 증가결함수는 적다. 한편, 연마가공 품질이 나쁘면, 가공기인의 결함이 발생하므로 세정과 표면결함 측정을 반복하면 증가결함의 증가의 기울기가 커져 증가결함수는 많아진다. 이 기울기 또는 증가결함수에 기초하여 실험용 실리콘 웨이퍼에 있어서의 연마가공 품질을 평가함으로써, 경면연마 전의 실리콘 웨이퍼에 대하여, 어떠한 경면연마조건으로 경면연마를 행하면, 원하는 연마 품질이 얻어지는지를 특정할 수 있다.In a mirror-polished silicon wafer polished under polishing conditions in which processing defects do not occur (less) after mirror-polishing, even if the cleaning step (b) and the incremental defect measurement step (c) are repeated, the slope of the increase in incremental defects is small, and the number of incremental defects is small. On the other hand, if the polishing quality is poor, defects caused by the processing machine occur, so if cleaning and surface defect measurement are repeated, the slope of the increase in defects increases and the number of defects increases. By evaluating the polishing quality of the experimental silicon wafer based on this inclination or the number of incremental defects, it is possible to specify under what mirror polishing conditions the desired polishing quality is obtained for the silicon wafer before mirror polishing.

보다 구체적으로는, 증가결함의 선형 근사를 취했을 때, 기울기가 없거나 작아지는 바와 같은 경면연마조건을 선택할 수 있다. 예를 들어, 도 1에 나타내는 플로우에서 불산→오존수의 반복횟수 10회당 증가결함수가 평균적으로 10개 이하, 5개 이하, 또는 1개 이하가 되도록 하여 경면연마조건을 설정할 수 있다.More specifically, when a linear approximation of the increasing defect is taken, a mirror polishing condition such that there is no or a small slope can be selected. For example, in the flow shown in Fig. 1, mirror polishing conditions can be set such that the number of increased defects per 10 repetitions of hydrofluoric acid → ozone water is, on average, 10 or less, 5 or less, or 1 or less.

이하, 실시예 및 비교예를 나타내어 본 발명을 보다 구체적으로 설명하나, 본 발명은 이들의 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by showing examples and comparative examples, but the present invention is not limited to these examples.

(실시예)(Example)

상이한 연마조건(연마조건1~4)으로 최종 연마되고, 세정이 종료된 실리콘 웨이퍼를 이용하여, 전표면결함 측정을 행하였다(도 1(a)). 전표면결함 측정을 행한 웨이퍼에 대하여, 오존수에 의한 산화처리와 불산에 의한 산화막 제거처리를 번갈아 반복함으로써 세정을 행하였다(도 1(b)).Total surface defects were measured using silicon wafers that were finally polished and cleaned under different polishing conditions (polishing conditions 1 to 4) (Fig. 1(a)). The wafers subjected to the total surface defect measurement were cleaned by alternately repeating oxidation treatment with ozone water and oxide film removal treatment with hydrofluoric acid (FIG. 1(b)).

세정조건은, 오존수 농도 10ppm, 1회당의 오존수처리 시간을 20초, 불산 농도 0.3%, 1회당의 불산처리 시간 5초로 하고, 도 1에 나타내는 플로우로 불산→오존수의 반복횟수를 5회로 하여 세정을 행하고, 그 후 건조하였다. 한편, 모든 불산처리는, 웨이퍼 표면에 두께를 남기고 산화막 제거를 행하였다.As for the cleaning conditions, the ozone water concentration was 10 ppm, the ozonated water treatment time was 20 seconds, the hydrofluoric acid concentration was 0.3%, the hydrofluoric acid treatment time was 5 seconds, and hydrofluoric acid → ozone water was repeated 5 times in the flow shown in FIG. On the other hand, in all hydrofluoric acid treatments, the oxide film was removed leaving a thickness on the wafer surface.

이어서, 세정공정 후의 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 전표면결함 측정공정(a)에서 측정된 결함에 대하여 증가한 증가결함을 측정하였다(도 1(c)). 한편, 전표면결함 측정 및 증가결함 측정은, KLA-Tencor사제 Surfscan SP5를 이용하여 입경 19㎚ 이상으로 측정을 행하고, 동점좌표 측정을 행함으로써, 증가한 증가결함만을 측정하였다.Next, surface defects were measured for the silicon wafer after the cleaning process, and the increased defects were measured for the defects measured in the total surface defect measurement step (a) (FIG. 1(c)). On the other hand, the total surface defect measurement and the growth defect measurement were performed using Surfscan SP5 manufactured by KLA-Tencor at a particle diameter of 19 nm or more, and only the increased defect was measured by performing the same point coordinate measurement.

세정공정과 증가결함 측정공정을, 오존수에 의한 처리→불산에 의한 처리의 합계 반복횟수가 50회가 될 때까지(즉, 세정공정과 증가결함 측정공정의 반복횟수가 10회가 될 때까지), 반복하여 행하였다.The washing step and the increasing defect measurement step were repeated until the total number of repetitions of treatment with ozonated water → treatment with hydrofluoric acid reached 50 (i.e., until the number of repetitions of the washing step and the incremental defect measurement step reached 10).

각 세정공정 후의, 전표면결함 측정의 결과에 대하여 증가한 결함만의 개수를 증가결함수로 하여, 오존수에 의한 처리→불산에 의한 처리의 합계 반복횟수와 증가결함수를 정리하여 표 1에 나타냈다. 또한, 오존수에 의한 처리→불산에 의한 처리의 합계 반복횟수와 증가결함수의 관계를 그래프로 플롯한 것을 도 2에 나타낸다. 표 1 및 도 2에 기초하여, 증가결함의 증가의 기울기 또는 결함의 증가량을 평가하였다.Table 1 summarizes the total number of repetitions and the number of increasing defects of treatment with ozone water → treatment with hydrofluoric acid, with the number of defects only increased as the number of defects for the results of measurement of total surface defects after each cleaning step. In addition, FIG. 2 shows a graph plotting the relationship between the total number of repetitions of treatment with ozone water → treatment with hydrofluoric acid and the number of increasing defects. Based on Table 1 and FIG. 2, the slope of the increase in defects or the amount of increase in defects was evaluated.

또한, 세정 후의 웨이퍼 표면을 SEM으로 관찰한 결과, 웨이퍼 표면에 결정결함은 현재화되어 있지 않고, 도 3(A)에 나타내는 바와 같은 가공결함만이 현재화되어 있음을 알 수 있어, 가공 품질의 평가가 가능하다는 것을 알 수 있었다.In addition, as a result of observing the wafer surface after cleaning with SEM, it was found that no crystal defects were present on the wafer surface, and only processing defects as shown in FIG.

도 2에 나타내는 바와 같이, 연마조건1~4에서는, 연마조건마다 증가결함의 증가의 기울기가 상이하고, 연마조건1은 증가의 기울기가 거의 없으므로, 가공기인의 결함은 발생하지 않은, 즉 연마 품질이 좋다는 것을 알 수 있었다. 또한, 연마조건2~4에서는, 증가의 기울기가 클수록, 즉 연마조건4, 연마조건3, 연마조건2의 순으로, 연마 품질이 나쁜 것을 알 수 있었다.As shown in FIG. 2, in the polishing conditions 1 to 4, the slope of the increase in defects is different for each polishing condition, and in the polishing condition 1, the slope of the increase is almost zero. Further, in the polishing conditions 2 to 4, it was found that the polishing quality deteriorated as the slope of the increase increased, that is, in the order of polishing condition 4, polishing condition 3, and polishing condition 2.

[표 1][Table 1]

(비교예)(Comparative example)

일본특허공개 2000-208578호에 기재된 SC1-RT법에 의한 평가방법으로, 실리콘 웨이퍼의 평가를 행하였다. 구체적으로는, 암모니아, 과산화수소, 물로 이루어지는 처리액을 이용하고, 실리콘 웨이퍼 표면에 에칭처리를 실시하여 결함을 검출하였다. 그러나, 해당 처리에서 검출된 것은, 주로 도 3(B)에 나타내는 바와 같은 파티클이나 결정결함이었다. 또한, KLA-Tencor사제 Surfscan SP5를 이용해도, 입경 19㎚ 이상에서는 표면거칠기가 악화되어 있으므로, 측정 불가능이었다.A silicon wafer was evaluated by an evaluation method based on the SC1-RT method described in Japanese Unexamined Patent Publication No. 2000-208578. Specifically, the surface of the silicon wafer was subjected to an etching treatment using a treatment liquid composed of ammonia, hydrogen peroxide, and water to detect defects. However, what was detected in this process was mainly particles and crystal defects as shown in FIG. 3(B). In addition, even if Surfscan SP5 manufactured by KLA-Tencor was used, since the surface roughness deteriorated at a particle diameter of 19 nm or more, measurement was impossible.

한편, 본 발명은, 상기 실시형태로 한정되는 것은 아니다. 상기 실시형태는, 예시이며, 본 발명의 특허청구의 범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 가지며, 동일한 작용효과를 나타내는 것은, 어떠한 것이어도 본 발명의 기술적 범위에 포함된다.On the other hand, this invention is not limited to the said embodiment. The above embodiment is an example, and any one having substantially the same configuration and exhibiting the same operation and effect as the technical idea described in the claims of the present invention is included in the technical scope of the present invention.

Claims (8)

실리콘 웨이퍼의 평가방법으로서,
상기 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전표면결함 측정공정과,
상기 실리콘 웨이퍼에 대하여, 오존수에 의한 산화처리와, 상기 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과,
상기 세정공정 후의 상기 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 상기 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 가지며,
상기 세정공정과 상기 증가결함 측정공정을 번갈아 복수회 반복 행하고, 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여 상기 실리콘 웨이퍼를 평가하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
As a method for evaluating silicon wafers,
With respect to the silicon wafer, a total surface defect measurement step of measuring surface defects in advance;
With respect to the silicon wafer, a cleaning step of alternately repeating an oxidation treatment with ozone water and an oxide film removal treatment with hydrofluoric acid under the condition that the oxide film formed on the surface of the silicon wafer is not completely removed;
An increased defect measurement step of measuring surface defects on the silicon wafer after the cleaning step and measuring increased defects with respect to the defects measured in the total surface defect measurement step,
The silicon wafer evaluation method characterized by repeating the cleaning step and the increasing defect measuring step alternately a plurality of times, and evaluating the silicon wafer based on the measurement result of the increasing defect after each cleaning step.
제1항에 있어서,
상기 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를, 불산 농도 0.1~1.0%로 하고, 처리 시간을 2초~20초로 하여 행하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
According to claim 1,
A silicon wafer evaluation method characterized in that the oxide film removal treatment by hydrofluoric acid is performed under the condition that the oxide film is not completely removed, with a hydrofluoric acid concentration of 0.1 to 1.0% and a treatment time of 2 seconds to 20 seconds.
제1항에 있어서,
상기 세정공정을, 상기 오존수에 의한 산화처리와 상기 불산에 의한 산화막제거처리를 번갈아 5회 이상 반복하여 행하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
According to claim 1,
The silicon wafer evaluation method according to claim 1 , wherein the cleaning process is repeated five times or more by alternating the oxidation treatment with the ozone water and the oxide film removal treatment with the hydrofluoric acid.
제2항에 있어서,
상기 세정공정을, 상기 오존수에 의한 산화처리와 상기 불산에 의한 산화막제거처리를 번갈아 5회 이상 반복하여 행하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
According to claim 2,
The silicon wafer evaluation method according to claim 1 , wherein the cleaning step is repeated five times or more by alternating the oxidation treatment with the ozone water and the oxide film removal treatment with the hydrofluoric acid.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 실리콘 웨이퍼로서, 경면연마 후의 것을 이용하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
According to any one of claims 1 to 4,
A silicon wafer evaluation method characterized in that a silicon wafer after mirror polishing is used as the silicon wafer.
제1항 내지 제4항 중 어느 한 항에 있어서,
상기 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여, 상기 실리콘 웨이퍼의 가공기인의 결함을 평가하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
According to any one of claims 1 to 4,
A silicon wafer evaluation method characterized in that defects that are processing machines of the silicon wafer are evaluated based on the measurement results of the increased defects after each of the cleaning steps.
제5항에 있어서,
상기 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여, 상기 실리콘 웨이퍼의 가공기인의 결함을 평가하는 것을 특징으로 하는 실리콘 웨이퍼의 평가방법.
According to claim 5,
A silicon wafer evaluation method characterized in that defects that are processing machines of the silicon wafer are evaluated based on the measurement results of the increased defects after each of the cleaning steps.
경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행하여 제품이 되는 실리콘 웨이퍼를 제조하는 방법으로서,
경면연마 전의 실험용 실리콘 웨이퍼를 준비하는 공정과,
상기 경면연마 전의 실험용 실리콘 웨이퍼에 대하여, 소정의 경면연마조건으로 경면연마를 행하는 공정과,
상기 실험용 실리콘 웨이퍼에 대하여, 미리 표면결함 측정을 하는 전표면결함 측정공정과,
상기 실험용 실리콘 웨이퍼에 대하여, 오존수에 의한 산화처리와, 상기 실험용 실리콘 웨이퍼 표면에 형성되어 있는 산화막을 완전히 제거하지 않는 조건에서의 불산에 의한 산화막 제거처리를 번갈아 반복하는 세정공정과,
상기 세정공정 후의 상기 실험용 실리콘 웨이퍼에 대하여 표면결함 측정을 행하고, 상기 전표면결함 측정공정에서 측정된 결함에 대하여 증가한 증가결함을 측정하는 증가결함 측정공정을 가지며,
상기 세정공정과 상기 증가결함 측정공정을 번갈아 복수회 반복하여 행하고, 각 세정공정 후의 상기 증가결함의 측정결과에 기초하여 상기 실험용 실리콘 웨이퍼를 평가하고,
상기 실험용 실리콘 웨이퍼의 평가에 기초하여, 상기 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행한 후의 연마 품질이 원하는 연마 품질이 되도록 하는 상기 경면연마에 있어서의 경면연마조건을 특정하고,
상기 특정한 경면연마조건으로, 상기 경면연마 전의 실리콘 웨이퍼에 대하여 경면연마를 행하여 상기 제품이 되는 실리콘 웨이퍼를 제조하는 것을 특징으로 하는 실리콘 웨이퍼의 제조방법.
A method for manufacturing a silicon wafer to be a product by performing mirror polishing on a silicon wafer before mirror polishing, comprising:
A step of preparing a silicon wafer for experiments before mirror polishing;
a step of performing mirror polishing on the experimental silicon wafer before the mirror polishing under predetermined mirror polishing conditions;
A total surface defect measurement step of measuring surface defects in advance on the experimental silicon wafer;
A cleaning step of alternately repeating an oxidation treatment with ozone water and an oxide film removal treatment with hydrofluoric acid under the condition that the oxide film formed on the surface of the experimental silicon wafer is not completely removed, with respect to the experimental silicon wafer;
An increased defect measurement step of measuring surface defects on the experimental silicon wafer after the cleaning step and measuring increased defects with respect to the defects measured in the total surface defect measurement step,
The cleaning process and the increasing defect measurement process are alternately repeated a plurality of times, and the experimental silicon wafer is evaluated based on the measurement result of the increasing defect after each cleaning process;
Based on the evaluation of the experimental silicon wafer, specify mirror polishing conditions in the mirror polishing such that the polishing quality after mirror polishing of the silicon wafer before mirror polishing becomes a desired polishing quality,
A method for producing a silicon wafer characterized by manufacturing a silicon wafer to be the product by performing mirror polishing on the silicon wafer before the mirror polishing under the specific mirror polishing conditions.
KR1020207005723A 2017-09-06 2018-08-20 Silicon wafer evaluation method and silicon wafer manufacturing method KR102560436B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017171164 2017-09-06
JPJP-P-2017-171164 2017-09-06
JP2018079891A JP6773070B2 (en) 2017-09-06 2018-04-18 Evaluation method of silicon wafer and manufacturing method of silicon wafer
JPJP-P-2018-079891 2018-04-18
PCT/JP2018/030614 WO2019049641A1 (en) 2017-09-06 2018-08-20 Silicon wafer evaluation method and silicon wafer manufacturing method

Publications (2)

Publication Number Publication Date
KR20200051595A KR20200051595A (en) 2020-05-13
KR102560436B1 true KR102560436B1 (en) 2023-07-27

Family

ID=65812943

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207005723A KR102560436B1 (en) 2017-09-06 2018-08-20 Silicon wafer evaluation method and silicon wafer manufacturing method

Country Status (6)

Country Link
JP (1) JP6773070B2 (en)
KR (1) KR102560436B1 (en)
CN (1) CN111052330B (en)
DE (1) DE112018004122T5 (en)
SG (1) SG11202001755PA (en)
TW (1) TWI767046B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420539A (en) * 2020-11-13 2021-02-26 西安奕斯伟硅片技术有限公司 Silicon wafer processing method and silicon wafer
JP2024021852A (en) * 2022-08-04 2024-02-16 株式会社Sumco Semiconductor wafer evaluation method and semiconductor wafer manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270169A (en) 2002-01-09 2003-09-25 Toshiba Ceramics Co Ltd Method for evaluating octahedral void of silicon wafer
WO2012172724A1 (en) 2011-06-17 2012-12-20 信越半導体株式会社 Method for cleaning semiconductor wafer
WO2018021038A1 (en) 2016-07-29 2018-02-01 富士フイルム株式会社 Treatment liquid and method for washing substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439332B2 (en) * 1997-10-24 2003-08-25 Necエレクトロニクス株式会社 How to measure crystal defects
JP3717691B2 (en) * 1999-01-13 2005-11-16 信越半導体株式会社 Silicon wafer evaluation method
JP2002353281A (en) 2001-05-29 2002-12-06 Shin Etsu Handotai Co Ltd Method for evaluating silicon wafer surface-quality
US7026175B2 (en) * 2004-03-29 2006-04-11 Applied Materials, Inc. High throughput measurement of via defects in interconnects
JP5509581B2 (en) * 2008-11-27 2014-06-04 信越半導体株式会社 Semiconductor wafer evaluation method
WO2010150547A1 (en) * 2009-06-26 2010-12-29 株式会社Sumco Method of washing silicon wafer and method of producing epitaxial wafer using method of washing
JP6565624B2 (en) * 2015-11-16 2019-08-28 株式会社Sumco Silicon wafer quality evaluation method and silicon wafer manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270169A (en) 2002-01-09 2003-09-25 Toshiba Ceramics Co Ltd Method for evaluating octahedral void of silicon wafer
WO2012172724A1 (en) 2011-06-17 2012-12-20 信越半導体株式会社 Method for cleaning semiconductor wafer
WO2018021038A1 (en) 2016-07-29 2018-02-01 富士フイルム株式会社 Treatment liquid and method for washing substrate

Also Published As

Publication number Publication date
DE112018004122T5 (en) 2020-05-14
JP6773070B2 (en) 2020-10-21
SG11202001755PA (en) 2020-03-30
TWI767046B (en) 2022-06-11
KR20200051595A (en) 2020-05-13
CN111052330A (en) 2020-04-21
CN111052330B (en) 2023-03-14
TW201913129A (en) 2019-04-01
JP2019047108A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP4207976B2 (en) Method for surface treatment of compound semiconductor substrate and method for producing compound semiconductor crystal
JP5278549B2 (en) Silicon wafer cleaning method and epitaxial wafer manufacturing method using the cleaning method
KR102560436B1 (en) Silicon wafer evaluation method and silicon wafer manufacturing method
KR20060133082A (en) Alkaline etchant for controlling surface roughness of semiconductor wafer
JP6575643B2 (en) Silicon wafer manufacturing method
US20070267387A1 (en) Processing Method of Silicon Wafer
JP6347232B2 (en) Cleaning method of silicon wafer
JP6729632B2 (en) Silicon wafer cleaning method
WO2013179569A1 (en) Method for cleaning semiconductor wafer
JP6610443B2 (en) Surface defect inspection method for semiconductor silicon wafer
US11222780B2 (en) Method for evaluating silicon wafer and method for manufacturing silicon wafer
KR20110036990A (en) Method of growing uniform oxide layer and method of cleaning substrate
JP6529715B2 (en) Method of manufacturing silicon wafer
KR20110048455A (en) Silicon Wafer Processing Method
KR20230005174A (en) Semiconductor wafer cleaning method
JP7279753B2 (en) Silicon wafer cleaning method and manufacturing method
WO2022190830A1 (en) Method for cleaning silicon wafer, method for producing silicon wafer, and silicon wafer
JP2985583B2 (en) Inspection method of damaged layer on mirror-finished surface of silicon wafer and thickness measurement method
JP7484808B2 (en) Method for evaluating crystal defects in semiconductor single crystal substrate
JP7439788B2 (en) Wafer cleaning method
JP2022138089A (en) Method of cleaning silicon wafer, method of manufacturing silicon wafer, and silicon wafer
KR102509323B1 (en) Semiconductor wafer cleaning method
CN116918041A (en) Method for cleaning silicon wafer, method for manufacturing silicon wafer, and silicon wafer
JP2009182233A (en) Washing method of annealed wafer
JP2022044147A (en) Method for adjusting surface shape of wafer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant