KR102558224B1 - Manufacturing method of activated carbon with antibiosis using nanometallic powder - Google Patents

Manufacturing method of activated carbon with antibiosis using nanometallic powder Download PDF

Info

Publication number
KR102558224B1
KR102558224B1 KR1020210058940A KR20210058940A KR102558224B1 KR 102558224 B1 KR102558224 B1 KR 102558224B1 KR 1020210058940 A KR1020210058940 A KR 1020210058940A KR 20210058940 A KR20210058940 A KR 20210058940A KR 102558224 B1 KR102558224 B1 KR 102558224B1
Authority
KR
South Korea
Prior art keywords
activated carbon
nanometal
powder
antibacterial
hours
Prior art date
Application number
KR1020210058940A
Other languages
Korean (ko)
Other versions
KR20220152447A (en
KR102558224B9 (en
Inventor
박수진
이종훈
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020210058940A priority Critical patent/KR102558224B1/en
Publication of KR20220152447A publication Critical patent/KR20220152447A/en
Application granted granted Critical
Publication of KR102558224B1 publication Critical patent/KR102558224B1/en
Publication of KR102558224B9 publication Critical patent/KR102558224B9/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment

Abstract

본 발명은 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법에 관한 것으로 더욱 상세하게는 활성탄소에 은, 아연, 구리, 니켈 등을 포함하는 나노금속분말을 이용하여 간단한 교반 및 열환원과정을 거쳐 항균성 활성탄소를 제조하는 방법에 관한 것이다.
본 발명에 따르면, 간단한 제조공정을 거쳐 제조된 항균성능을 갖는 활성탄소를 제공함에 따라, 실내공기정화 및 유해인자 제거를 위한 필터여재소재 및 항균 기능성 건축재 등의 소재로 이용될 수 있다.
The present invention relates to a method for producing activated carbon having antibacterial properties using nanometal powder, and more particularly, to a method for producing antibacterial activated carbon using nanometal powder containing silver, zinc, copper, nickel, etc. in activated carbon through a simple stirring and heat reduction process.
According to the present invention, as activated carbon having antibacterial properties manufactured through a simple manufacturing process is provided, it can be used as a material for filter media and antibacterial functional building materials for purifying indoor air and removing harmful factors.

Description

나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법{MANUFACTURING METHOD OF ACTIVATED CARBON WITH ANTIBIOSIS USING NANOMETALLIC POWDER}Manufacturing method of activated carbon having antibacterial properties using nano metal powder {MANUFACTURING METHOD OF ACTIVATED CARBON WITH ANTIBIOSIS USING NANOMETALLIC POWDER}

본 발명은 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법에 관한 것으로 더욱 상세하게는 활성탄소에 은, 아연, 구리, 니켈 등을 포함하는 나노금속분말을 이용하여 간단한 교반 및 열환원과정을 거쳐 항균성 활성탄소를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing activated carbon having antibacterial properties using nanometal powder, and more particularly, to a method for producing antibacterial activated carbon using nanometal powder containing silver, zinc, copper, nickel, etc. in activated carbon through a simple stirring and heat reduction process.

실내공기질과 관련해서 생물학적 유해인자의 중요성이 강조되고 있으며 실내에 거주하는 사람들이 건물과 관련하여 감염(infection), 독성물질에 대한 질병반응(toxic syndrome), 과민질환(hypersensitivity diseases) 등의 질병을 호소하며, 실내공기질과 관련하여 알려진 Sick Building Syndrome(SBS)은 그 발생원과 원인 중 한 가지로 미생물의 오염으로 인한 생물학적 유해인자가 제시되고 있다. 생물학적 유해인자의 종류는 바이러스(Viruses), 세균(Bacteria), 곰팡이(Fungi), 진드기, 원형동물, 바퀴벌레, 식물, 동물 등으로 나눌 수 있으며, 현재 세균은 현대인의 건강을 위협하는 원인물질로써 공기 중 세균을 제거하기위한 공기청정 및 항균소재 개발에 대한 요구가 증가하고 있다. 따라서 생물학적 오염물질을 사멸시키는 소재는 병원, 공공시설 등 업무용 공기정화시스템과 식품, 의약품, 생활용품, 농축산업, 어업, 첨단바이오 산업에 이르기까지 광범위한 활용가치를 가진다. 현재 활용되고 있는 공기청정기술은 활성탄이나 유리섬유 또는 세라믹 필터를 사용하는 여과, 흡착, 전기 집진 및 음이온발생기술 등이 있다. 그러나 기존의 다공성 여재를 사용한 여과, 흡착기술은 오염물질을 기체상에서 고체상으로 이동시키는 것으로 재사용을 위한 매립 또는 소각시 2차오염을 유발시킨다는 단점이 있다.The importance of biological hazard factors in relation to indoor air quality is emphasized, and people living indoors complain of diseases such as infection, toxic syndrome, and hypersensitivity diseases related to buildings. Types of biological hazards can be divided into viruses, bacteria, fungi, mites, protozoa, cockroaches, plants, animals, etc. Currently, bacteria are a causative agent that threatens the health of modern people, and there is an increasing demand for the development of air purifying and antibacterial materials to remove bacteria in the air. Therefore, materials that kill biological contaminants have a wide range of utility values, from air purification systems for business such as hospitals and public facilities, food, medicine, household goods, agriculture and livestock, fisheries, and high-tech bio industries. Currently used air cleaning technologies include filtration using activated carbon, glass fiber, or ceramic filters, adsorption, electric dust collection, and negative ion generation technologies. However, conventional filtration and adsorption technologies using porous filter media move contaminants from the gas phase to the solid phase, and have the disadvantage of causing secondary pollution during landfill or incineration for reuse.

이에 본 발명자는 활성탄소에 은, 아연, 구리, 니켈 등을 포함하는 나노금속분말을 이용하여 간단한 교반 및 열환원하여 항균성능을 나타내는 다공성 항균성 활성탄소를 제공함에 따라, 생물학적 실내유해인자인 세균의 항균을 위한 소재 및 이의 제조방법을 제공하고자 한다.Accordingly, the present inventors provide porous antibacterial activated carbon that exhibits antibacterial performance by simple stirring and thermal reduction using nanometal powder containing silver, zinc, copper, nickel, etc. in activated carbon, thereby providing a material for antibacterial activity of bacteria, which are biological indoor harmful factors, and a manufacturing method thereof.

본 발명의 목적은, 활성탄소에 은, 아연, 구리, 니켈 등을 포함하는 나노금속분말을 이용하여 간단한 교반 및 열환원하여 항균성능을 나타내는 항균성 활성탄소를 제공함에 따라, 생물학적 실내유해인자인 세균의 항균을 위한 소재 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide an antibacterial activated carbon that exhibits antibacterial performance by simple stirring and thermal reduction using nanometal powder containing silver, zinc, copper, nickel, etc. in activated carbon, thereby providing a material for antibacterial activity of bacteria, which are biological indoor harmful factors, and a manufacturing method thereof.

상기 목적을 달성하기 위하여, 1) 활성탄소 및 나노금속분말을 교반하는 단계; 2) 상기 1)단계에서 얻어진 나노금속-탄소복합체를 열처리하는 단계; 3) 나노금속-탄소복합체를 열환원하는 단계; 4) 세척 및 건조하는 단계를 포함할 수 있다. In order to achieve the above object, 1) stirring the activated carbon and nano-metal powder; 2) heat-treating the nanometal-carbon composite obtained in step 1); 3) thermally reducing the nanometal-carbon composite; 4) washing and drying.

바람직하게, 상기 1)단계에서 교반과정은 활성탄소와 나노금속분말을 1:0.01 내지 1:10 중량비로 볼밀(ball mill) 또는 디스크밀(disc mill)을 사용하여 1초 내지 300초 동안 교반하는 것을 포함할 수 있다.Preferably, the stirring process in step 1) may include stirring the activated carbon and nanometal powder at a weight ratio of 1:0.01 to 1:10 using a ball mill or disc mill for 1 second to 300 seconds.

바람직하게, 상기 1)단계에서 나노금속분말은 은(Ag), 아연(Zn), 구리(Cu), 니켈(Ni)로 이루어진 군에서 선택된 어느 하나일 수 있다.Preferably, in step 1), the nanometal powder may be any one selected from the group consisting of silver (Ag), zinc (Zn), copper (Cu), and nickel (Ni).

바람직하게, 상기 2)단계의 열처리과정은 20℃ 내지 200℃에서 30분 내지 48시간 동안 수행할 수 있다.Preferably, the heat treatment process of step 2) may be performed at 20° C. to 200° C. for 30 minutes to 48 hours.

바람직하게, 상기 3)단계의 열환원은 수소 및 아르곤을 포함하는 혼합 환원기체 분위기에서 100℃ 내지 1000℃에서 10분 내지 5시간 동안 수행할 수 있다.Preferably, the thermal reduction in step 3) may be performed at 100° C. to 1000° C. for 10 minutes to 5 hours in a mixed reducing gas atmosphere containing hydrogen and argon.

바람직하게, 상기 4)단계의 세척은 1 내지 48시간 동안 수행하고, 상기 건조는 6 내지 48시간 동안 수행할 수 있다.Preferably, the washing in step 4) may be performed for 1 to 48 hours, and the drying may be performed for 6 to 48 hours.

상기와 같은 본 발명에 따르면, 활성탄소에 은, 아연, 구리, 니켈 등을 포함하는 나노금속분말을 이용하여 간단한 교반 및 열환원과정을 거쳐 항균성 활성탄소를 제공함에 따라, 생물학적 실내유해인자인 세균의 항균을 위한 소재로의 응용 및 관련 분야에서 다양한 활용이 가능하여 고부가가치를 창출할 수 있는 효과가 있다.According to the present invention as described above, by using nanometal powder containing silver, zinc, copper, nickel, etc. in activated carbon to provide antibacterial activated carbon through a simple stirring and heat reduction process, it is possible to create high added value by applying as a material for antibacterial activity of bacteria, which are biological indoor harmful factors, and various uses in related fields.

도 1은 본 발명에서 얻어진 나노금속분말을 이용한 항균성을 갖는 활성탄소의 주사전자현미경(scanning electron microscope, SEM) 사진이다.
도 2는 본 발명에서 얻어진 나노금속분말을 이용한 항균성을 갖는 활성탄소를 활용한 항균평가 광학이미지이다.
1 is a scanning electron microscope (SEM) picture of activated carbon having antibacterial properties using the nanometal powder obtained in the present invention.
2 is an antibacterial evaluation optical image using activated carbon having antibacterial properties using the nanometal powder obtained in the present invention.

이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for exemplifying the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. Example 1.

활성탄소 2g과 은(Ag)나노금속분말 2g을 디스크밀을 이용하여 10초간 교반한 뒤 얻어진 복합체를 튜브형 퍼니스에 넣고 비활성기체(N2) 분위기 하에서 80℃까지 승온시켜 120분간 유지하여 열처리한 후, 실온까지 냉각시켰다. 상기 합성된 나노금속-탄소복합체를 튜브형 퍼니스에 넣고 수소/아르곤(H2/Ar) 혼합환원기체 분위기 하에서 200℃까지 승온시켜 120분간 유지하여 열환원 한 후, 실온까지 냉각시켰다. 이후 합성된 시료를 증류수를 이용하여 8시간 동안 세척하고 80℃에서 24시간 동안 건조하였다.After stirring 2 g of activated carbon and 2 g of silver (Ag) nanometal powder using a disc mill for 10 seconds, the obtained composite was placed in a tubular furnace, heated to 80 ° C. under an inert gas (N 2 ) atmosphere, maintained for 120 minutes, and then cooled to room temperature. The synthesized nanometal-carbon composite was placed in a tubular furnace, heated to 200° C. under a hydrogen/argon (H 2 /Ar) mixed reducing gas atmosphere, maintained for 120 minutes, and then cooled to room temperature. Then, the synthesized sample was washed with distilled water for 8 hours and dried at 80 °C for 24 hours.

실시예 2. Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 교반단계에서 은나노금속분말을 0.2g으로 하여 교반하였다.The process was carried out in the same manner as in Example 1, but in the stirring step, 0.2 g of silver nano-metal powder was stirred.

실시예 3. Example 3.

상기 실시예 1과 동일하게 과정을 실시하되, 교반단계에서 은나노금속분말을 20g으로 하여 교반하였다.The process was carried out in the same manner as in Example 1, but in the stirring step, 20 g of silver nano-metal powder was stirred.

실시예 4. Example 4.

상기 실시예 1과 동일하게 과정을 실시하되, 교반단계에서 디스크밀 시간을 1초로 하여 교반하였다.The process was carried out in the same manner as in Example 1, but in the stirring step, the disc mill time was set to 1 second and stirred.

실시예 5. Example 5.

상기 실시예 1과 동일하게 과정을 실시하되, 교반단계에서 디스크밀 시간을 300초로 하여 교반하였다.The process was carried out in the same manner as in Example 1, but in the stirring step, the disc mill time was set to 300 seconds and stirred.

실시예 6. Example 6.

상기 실시예 1과 동일하게 과정을 실시하되, 열처리단계에서 온도를 20℃로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but heat treatment was performed at a temperature of 20 ° C in the heat treatment step.

실시예 7. Example 7.

상기 실시예 1과 동일하게 과정을 실시하되, 열처리단계에서 온도를 200℃로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but heat treatment was performed at a temperature of 200 ° C in the heat treatment step.

실시예 8. Example 8.

상기 실시예 1과 동일하게 과정을 실시하되, 열처리단계에서 열처리시간을 30분으로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but in the heat treatment step, the heat treatment time was set to 30 minutes.

실시예 9. Example 9.

상기 실시예 1과 동일하게 과정을 실시하되, 열처리단계에서 열처리시간을 24시간으로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but in the heat treatment step, the heat treatment time was set to 24 hours.

실시예 10. Example 10.

상기 실시예 1과 동일하게 과정을 실시하되, 열환원단계에서 온도를 100℃로 하여 열처리시켰다.The same process as in Example 1 was carried out, but heat treatment was performed at a temperature of 100 ° C in the heat reduction step.

실시예 11. Example 11.

상기 실시예 1과 동일하게 과정을 실시하되, 열환원단계에서 온도를 1000℃로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but heat treatment was performed at a temperature of 1000 ° C in the heat reduction step.

실시예 12. Example 12.

상기 실시예 1과 동일하게 과정을 실시하되, 열환원단계에서 시간을 10분으로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but the heat treatment was performed with a time of 10 minutes in the heat reduction step.

실시예 13. Example 13.

상기 실시예 1과 동일하게 과정을 실시하되, 열환원단계에서 시간을 5시간으로 하여 열처리시켰다.The process was carried out in the same manner as in Example 1, but the heat treatment was performed for 5 hours in the heat reduction step.

실시예 14. Example 14.

상기 실시예 1과 동일하게 과정을 실시하되, 세척단계에서 세척시간을 1시간으로 하여 세척시켰다.The process was carried out in the same manner as in Example 1, but the washing time was set to 1 hour in the washing step.

실시예 15. Example 15.

상기 실시예 1과 동일하게 과정을 실시하되, 세척단계에서 세척시간을 48시간으로 하여 세척시켰다.The process was carried out in the same manner as in Example 1, but the washing time was set to 48 hours in the washing step.

실시예 16. Example 16.

상기 실시예 1과 동일하게 과정을 실시하되, 건조단계에서 건조시간을 6시간으로 하여 건조시켰다.The process was carried out in the same manner as in Example 1, but the drying time was set to 6 hours in the drying step.

실시예 17. Example 17.

상기 실시예 1과 동일하게 과정을 실시하되, 건조단계에서 건조시간을 48시간으로 하여 건조시켰다.The process was carried out in the same manner as in Example 1, but the drying time was set to 48 hours in the drying step.

비교예 1. Comparative Example 1.

상기 실시예 1과 동일하게 과정을 실시하되, 나노금속분말 도입, 교반, 열처리 및 열환원 단계를 시행하지 않았다.The process was carried out in the same manner as in Example 1, but the steps of introducing nanometal powder, stirring, heat treatment and heat reduction were not performed.

아래 [표 1]은 본 발명에 따른 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조조건을 나타낸 것이다.[Table 1] below shows conditions for preparing activated carbon having antibacterial properties using the nanometal powder according to the present invention.

측정예 1. 나노금속분말을 이용한 항균성을 갖는 활성탄소의 형태 및 구조 관찰Measurement Example 1. Observation of shape and structure of activated carbon having antibacterial properties using nanometal powder

도 1은 본 발명에서 얻어진 나노금속분말을 이용한 항균성을 갖는 활성탄소의 주사전자현미경(scanning electron microscope, SEM) 사진이다.1 is a scanning electron microscope (SEM) picture of activated carbon having antibacterial properties using the nanometal powder obtained in the present invention.

본 발명에서는 Scanning Electron Microscopy(SEM, SU8010, Hitach Co., Ltd.)를 통해 본 발명에서 제조한 활성탄소의 형태, 표면구조 및 내부 형상을 관찰하였다.In the present invention, the shape, surface structure and internal shape of the activated carbon prepared in the present invention were observed through Scanning Electron Microscopy (SEM, SU8010, Hitach Co., Ltd.).

측정예 2. 나노금속분말을 이용한 항균성을 갖는 활성탄소의 항균성능측정Measurement Example 2. Measurement of antibacterial performance of activated carbon having antibacterial properties using nanometal powder

도 2는 본 발명에서 얻어진 나노금속분말을 이용한 항균성을 갖는 활성탄소의 항균평가 광학이미지이다. 실시예 1과 비교예 1을 비교하였을 때, 항균성이 월등히 향상되었음을 육안으로 관찰할 수 있다.2 is an antibacterial evaluation optical image of activated carbon having antibacterial properties using the nanometal powder obtained in the present invention. When comparing Example 1 and Comparative Example 1, it can be observed with the naked eye that the antibacterial property is significantly improved.

측정예 3. 나노금속분말을 이용한 항균성을 갖는 활성탄소의 항균성능측정Measurement Example 3. Measurement of antibacterial performance of activated carbon having antibacterial properties using nanometal powder

본 발명에 따른 활성탄소의 항균성능을 평가하기 위하여, 37℃에서 배양된 1.6*105 (CFU/ml) S. aureus 균이 포함된 LB(Luria-Bertani) 배지를 이용하여 본 발명에 따른 활성탄소 2g을 세균배양 배지에 배치한 후 12시간 동안 37℃조건에서 배양하였다. 이후 세균량을 측정한 결과를 [표 2]에 나타내었다.In order to evaluate the antibacterial performance of the activated carbon according to the present invention, 2 g of the activated carbon according to the present invention was placed in a bacterial culture medium using LB (Luria-Bertani) medium containing 1.6*10 5 (CFU/ml) S. aureus cultured at 37 ° C, and then cultured at 37 ° C for 12 hours. Afterwards, the results of measuring the amount of bacteria are shown in [Table 2].

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. In the above, specific parts of the present invention have been described in detail, to those skilled in the art, it will be clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

1) 활성탄소 및 나노금속분말을 교반하는 단계;
2) 상기 1)단계에서 얻어진 나노금속-탄소복합체를 열처리하는 단계;
3) 나노금속-탄소복합체를 열환원하는 단계;
4) 세척 및 건조하는 단계를 포함하고,
상기 1)단계에서 활성탄소와 나노금속분말을 1:0.01 내지 1:10 중량비로 교반하고, 상기 1)단계에서 나노금속분말은 은(Ag)인 것을 특징으로 하는 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법.
1) Stirring activated carbon and nanometal powder;
2) heat-treating the nanometal-carbon composite obtained in step 1);
3) thermally reducing the nanometal-carbon composite;
4) washing and drying;
In the step 1), the activated carbon and the nanometal powder are stirred at a weight ratio of 1:0.01 to 1:10, and the nanometal powder in the step 1) is silver (Ag).
제 1항에 있어서,
상기 1)단계에서 교반과정은 볼밀(ball mill) 또는 디스크밀(disc mill)을 사용하여 1초 내지 300초 동안 교반하는 것을 특징으로 하는 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법.
According to claim 1,
The stirring process in step 1) is a method for producing activated carbon having antibacterial properties using nanometal powder, characterized in that stirring for 1 second to 300 seconds using a ball mill or a disc mill.
삭제delete 제 1항에 있어서,
상기 2)단계의 열처리과정은 20℃ 내지 200℃에서 30분 내지 48시간 동안 수행하는 것을 특징으로 하는 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법.
According to claim 1,
The heat treatment process of step 2) is a method for producing activated carbon having antibacterial properties using nanometal powder, characterized in that carried out at 20 ℃ to 200 ℃ for 30 minutes to 48 hours.
제 1항에 있어서,
상기 3)단계의 열환원은 수소 및 아르곤을 포함하는 혼합 환원기체 분위기에서 100℃ 내지 1000℃에서 10분 내지 5시간 동안 수행하는 것을 특징으로 하는 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법.
According to claim 1,
The thermal reduction in step 3) is performed at 100 ° C to 1000 ° C for 10 minutes to 5 hours in a mixed reducing gas atmosphere containing hydrogen and argon.
제 1항에 있어서,
상기 4)단계의 세척은 1 내지 48시간 동안 수행하고, 상기 건조는 6 내지 48시간 동안 수행하는 것을 특징으로 하는 나노금속분말을 이용한 항균성을 갖는 활성탄소의 제조방법.
According to claim 1,
The method of producing activated carbon having antibacterial properties using nanometal powder, characterized in that the washing in step 4) is performed for 1 to 48 hours, and the drying is performed for 6 to 48 hours.
KR1020210058940A 2021-05-07 2021-05-07 Manufacturing method of activated carbon with antibiosis using nanometallic powder KR102558224B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210058940A KR102558224B1 (en) 2021-05-07 2021-05-07 Manufacturing method of activated carbon with antibiosis using nanometallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210058940A KR102558224B1 (en) 2021-05-07 2021-05-07 Manufacturing method of activated carbon with antibiosis using nanometallic powder

Publications (3)

Publication Number Publication Date
KR20220152447A KR20220152447A (en) 2022-11-16
KR102558224B1 true KR102558224B1 (en) 2023-07-25
KR102558224B9 KR102558224B9 (en) 2024-04-08

Family

ID=84235753

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210058940A KR102558224B1 (en) 2021-05-07 2021-05-07 Manufacturing method of activated carbon with antibiosis using nanometallic powder

Country Status (1)

Country Link
KR (1) KR102558224B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772942B1 (en) 2006-08-18 2007-11-02 재단법인서울대학교산학협력재단 Method for producing ceramic powder
KR101714574B1 (en) 2015-10-14 2017-03-09 국방과학연구소 Metal-organic carbon composites and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602649B1 (en) * 2013-12-23 2016-03-14 인하대학교 산학협력단 Manufacturing method of activated carbon for carbon dioxide adsorption
KR102181924B1 (en) * 2018-11-14 2020-11-23 (주)포스코케미칼 Method for manufacturing high-efficiency activated carbon for removal of harmful gas using nano metal powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772942B1 (en) 2006-08-18 2007-11-02 재단법인서울대학교산학협력재단 Method for producing ceramic powder
KR101714574B1 (en) 2015-10-14 2017-03-09 국방과학연구소 Metal-organic carbon composites and preparation method thereof

Also Published As

Publication number Publication date
KR20220152447A (en) 2022-11-16
KR102558224B9 (en) 2024-04-08

Similar Documents

Publication Publication Date Title
KR100811205B1 (en) Antibacterial nano-fibers containing silver nano-particles and preparation method thereof
CN101300981A (en) Nano silver-carrying concave-convex stick anti-bacteria agent and preparation thereof
JP2012513971A (en) Nanostructured calcium silver phosphate composite powder, method for producing the powder, and use for antibacterial and sterilization
CN107602101A (en) A kind of ceramic element of Efficient antibacterial and preparation method thereof
CN1376822A (en) Process for preparing antibacterial fibre of activated carbon containing nano silver particles
TW591155B (en) Method for producing product from active carbon fiber loaded with silver
CN100581636C (en) Cu-Ag antimicrobial filtering metal material and preparing method and application thereof
CN110813234A (en) Preparation method of antibacterial modified wheat straw biochar with amphiphilic characteristic
KR101239136B1 (en) Method for Preparing Nano Fiber Web Comprising Apatite with High Antibacterial Function
KR102558224B1 (en) Manufacturing method of activated carbon with antibiosis using nanometallic powder
CN113509905A (en) Surface loaded MoS2/ZrO2Coal asphalt base composite active carbon ball and preparation method thereof
Shahryari et al. A controllable procedure for removing Navicula algae from drinking water using an ultrasonic-assisted electrospun method for highly efficient synthesis of Co-MOF/PVA polymeric network
DE212010000186U1 (en) Bactericidal sorbent material
CN111733596B (en) Noble metal antibacterial disinfectant, noble metal-loaded antibacterial mask and preparation method thereof
Ye et al. Copper hydroxide nanosheets-assembled nanofibrous membranes for anti-biofouling water disinfection
CN109909513B (en) Method for biologically synthesizing nano silver particles by using glochidion pubescens and application
Shalaby et al. Antibacterial silver embedded nanofibers for water disinfection
KR102607954B1 (en) Manufacturing method of porous carbon composites for sterilization and antimicrobial including transition metals
CN103911907A (en) Multicomponent alloy nanometer oxide sterilizing air filter paper and manufacturing method thereof
Jahangir et al. Comparative analysis and antibacterial properties of thermally sintered apatites with varied processing conditions
CN114734032B (en) Method for preparing nano silver based on kapok extract
CN212818617U (en) Gas filtration structure and gas filtration article having a coating
CN107362770B (en) Silkworm cocoon biochar material for adsorbing heavy metal cadmium
CN115369654A (en) MOF modified material with antibacterial effect and preparation method thereof
Huang et al. Facile preparation and characterization of a nanofiber-coated textile with durable and rechargeable antibacterial activity

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]