KR102551321B1 - Asphalt pavement structure for freezing prevention - Google Patents

Asphalt pavement structure for freezing prevention Download PDF

Info

Publication number
KR102551321B1
KR102551321B1 KR1020210178914A KR20210178914A KR102551321B1 KR 102551321 B1 KR102551321 B1 KR 102551321B1 KR 1020210178914 A KR1020210178914 A KR 1020210178914A KR 20210178914 A KR20210178914 A KR 20210178914A KR 102551321 B1 KR102551321 B1 KR 102551321B1
Authority
KR
South Korea
Prior art keywords
weight
base layer
pavement structure
road pavement
layer
Prior art date
Application number
KR1020210178914A
Other languages
Korean (ko)
Other versions
KR20230090029A (en
Inventor
우병훈
박규태
김경우
유동호
김홍기
Original Assignee
우병훈
유동호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우병훈, 유동호 filed Critical 우병훈
Priority to KR1020210178914A priority Critical patent/KR102551321B1/en
Publication of KR20230090029A publication Critical patent/KR20230090029A/en
Application granted granted Critical
Publication of KR102551321B1 publication Critical patent/KR102551321B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • E01C11/26Permanently installed heating or blowing devices ; Mounting thereof
    • E01C11/265Embedded electrical heating elements ; Mounting thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/024Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • C04B14/322Carbides
    • C04B14/324Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Road Paving Structures (AREA)

Abstract

본 발명은 보조기층(10); 상기 보조기층(10)의 상부에 열전도성 콘크리트에 의해 형성된 기층(20); 상기 기층(20)의 내부에 매설된 발열시트(100); 상기 기층(20)의 상부에 아스팔트 콘크리트에 의해 형성된 표층(30);을 포함하는 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물을 제시함으로써, 아스팔트 도로포장의 결빙을 효율적으로 방지할 수 있도록 한다.The present invention is a sub-base layer (10); A base layer 20 formed of thermally conductive concrete on top of the sub-base layer 10; Heating sheet 100 buried inside the base layer 20; By presenting an asphalt road pavement structure for preventing icing, characterized in that it includes a surface layer 30 formed of asphalt concrete on the upper part of the base layer 20, it is possible to efficiently prevent icing of the asphalt road pavement. .

Description

결빙예방을 위한 아스팔트 도로포장 구조물{ASPHALT PAVEMENT STRUCTURE FOR FREEZING PREVENTION}Asphalt pavement structure for preventing icing {ASPHALT PAVEMENT STRUCTURE FOR FREEZING PREVENTION}

본 발명은 에 관한 것으로서, 상세하게는 에 관한 것이다.The present invention relates to, and in particular to.

겨울이 되면 도로에 결빙(블랙아이스)이 발생하여 인명피해와 재산피해를 유발한다. 이를 방지하기 위해 도로 상면에 염화칼슘을 살포하여 결빙을 제거하고 있지만 염화칼슘에 의해 차량 부식이 발생되고, 콘크리트 도로가 열화되는 등의 문제가 발생한다.In winter, freezing (black ice) occurs on roads, causing human casualties and property damage. In order to prevent this, icing is removed by spraying calcium chloride on the upper surface of the road, but problems such as vehicle corrosion and deterioration of concrete roads occur due to calcium chloride.

도로 결빙이 잦은 구간에는 도로 내부에 열선을 설치하여, 결빙을 방지하도록 유도하고 있지만 열선의 절단 및 발열불량으로 인해 유지보수가 많아지는 문제가 있다.In sections where road icing is frequent, a heating wire is installed inside the road to prevent icing, but there is a problem in that maintenance is increased due to cutting of the heating wire and poor heat generation.

한편, 종래에는 시멘트 콘크리트 도로포장의 결빙예방 구조물에 관하여 다양한 기술이 개발되어 있지만, 아스팔트 도로포장의 결빙예방 구조물에 관하여는 연구가 이루어지지 않고 있다는 문제가 있다.On the other hand, conventionally, various technologies have been developed regarding anti-icing structures of cement concrete road pavements, but there is a problem that research on anti-icing structures of asphalt road pavements has not been conducted.

본 발명은 상기와 같은 문제점을 해결하기 위하여 도출된 것으로서, 아스팔트 도로포장의 결빙을 효율적으로 방지할 수 있도록 하는 결빙예방을 위한 아스팔트 도로포장 구조물을 제시하는 것을 그 목적으로 한다.The present invention has been derived to solve the above problems, and an object of the present invention is to present an asphalt road pavement structure for preventing icing that can efficiently prevent icing of asphalt road pavement.

상기 과제의 해결을 위하여, 본 발명은 보조기층(10); 상기 보조기층(10)의 상부에 열전도성 콘크리트에 의해 형성된 기층(20); 상기 기층(20)의 내부에 매설된 발열시트(100); 상기 기층(20)의 상부에 아스팔트 콘크리트에 의해 형성된 표층(30);을 포함하는 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물을 제시한다.In order to solve the above problems, the present invention is a sub-base layer (10); A base layer 20 formed of thermally conductive concrete on top of the sub-base layer 10; Heating sheet 100 buried inside the base layer 20; Suggests an asphalt road pavement structure for preventing icing, characterized in that it comprises a; surface layer (30) formed by asphalt concrete on the upper part of the base layer (20).

상기 발열시트(100)는 탄소섬유시트인 것이 바람직하다.The heating sheet 100 is preferably a carbon fiber sheet.

상기 발열시트(100)의 매설깊이는, 차량하중에 의한 파손이 방지되고, 발열된 열에 의해 상기 표층(30)의 상면의 온도가 영상이 될 정도의 깊이인 것이 바람직하다.It is preferable that the buried depth of the heating sheet 100 is such that damage caused by a vehicle load is prevented and the temperature of the upper surface of the surface layer 30 becomes zero by the generated heat.

상기 표층(30)의 두께는 3~8cm이고, 상기 발열시트(100)의 매설깊이는 7~12cm인 것이 바람직하다.It is preferable that the thickness of the surface layer 30 is 3 to 8 cm, and the buried depth of the heating sheet 100 is 7 to 12 cm.

상기 열전도성 콘크리트는,The thermally conductive concrete,

시멘트 14~17 중량%; 14-17% by weight of cement;

탄화규소(SiC) 28~32 중량%; 28-32% by weight of silicon carbide (SiC);

잔골재 1~1.75 중량%; 1 to 1.75% by weight of fine aggregate;

굵은골재 40~42 중량%: Coarse aggregate 40-42% by weight:

구리분말 2~4 중량%; 2 to 4% by weight of copper powder;

물 5~10 중량%; 5-10% by weight of water;

흑연 1.5~2 중량%; 1.5 to 2% by weight of graphite;

유동화재 0.05~0.1 중량%;를 포함하는 것이 바람직하다.It is preferable to include; fluidizing agent 0.05 ~ 0.1% by weight.

상기 탄화규소는 밀도가 3.0~3.4 g/㎤, 녹는점이 2,100~2,300℃, 열전도율이 38~42 W/mㆍK, 탄성계수가 185~200 GPa, 굴곡강도가 320~600 MPa인 것이 바람직하다.The silicon carbide preferably has a density of 3.0 to 3.4 g/cm 3 , a melting point of 2,100 to 2,300° C., a thermal conductivity of 38 to 42 W/m K, a modulus of elasticity of 185 to 200 GPa, and a flexural strength of 320 to 600 MPa. .

상기 탄화규소의 순도는 96% 이상인 것이 바람직하다.The purity of the silicon carbide is preferably 96% or more.

상기 구리분말은 밀도가 3.0~3.5 g/㎤, 입자크기가 40~150 ㎛, 열전도율이 350~390 W/mㆍK인 것이 바람직하다.The copper powder preferably has a density of 3.0 to 3.5 g/cm 3 , a particle size of 40 to 150 μm, and a thermal conductivity of 350 to 390 W/m·K.

상기 흑연은 밀도가 1.3~1.9 g/㎤, 탄성계수가 8~15 GPa, 열전도율이 450~490 W/mㆍK인 것이 바람직하다.The graphite preferably has a density of 1.3 to 1.9 g/cm 3 , an elastic modulus of 8 to 15 GPa, and a thermal conductivity of 450 to 490 W/m·K.

본 발명은 아스팔트 도로포장의 결빙을 효율적으로 방지할 수 있도록 하는 결빙예방을 위한 아스팔트 도로포장 구조물을 제시한다.The present invention proposes an asphalt road pavement structure for preventing icing that can effectively prevent icing of asphalt road pavement.

도 1 이하는 본 발명의 실시예를 도시한 것으로서,
도 1은 아스팔트 도로포장 구조물의 종단면도.
도 2는 아스팔트 도로포장 구조물의 횡단면도.
1 below shows an embodiment of the present invention,
1 is a longitudinal cross-sectional view of an asphalt road pavement structure.
Figure 2 is a cross-sectional view of an asphalt road pavement structure.

이하, 첨부도면을 참조하여 본 발명의 실시예에 관하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1 이하에 도시된 바와 같이, 본 발명에 의한 아스팔트 도로포장 구조물은 기본적으로, 보조기층(10); 보조기층(10)의 상부에 열전도성 콘크리트에 의해 형성된 기층(20); 기층(20)의 내부에 매설된 발열시트(100); 기층(20)의 상부에 아스팔트 콘크리트에 의해 형성된 표층(30);을 포함하여 구성된다.As shown in FIG. 1 and below, the asphalt road pavement structure according to the present invention basically includes a sub-base layer 10; Base layer 20 formed by thermally conductive concrete on top of the sub-base layer 10; Heating sheet 100 buried inside the base layer 20; It is configured to include; a surface layer 30 formed by asphalt concrete on top of the base layer 20.

아스팔트 도로포장은 보조기층, 기층, 표층으로 구성되는데, 이들 중 기층을 열전도성 콘크리트에 의해 형성함과 아울러, 그 내부에 발열시트(100)를 매설한 것을 특징으로 한다.Asphalt road pavement is composed of a sub-base layer, a base layer, and a surface layer. Among them, the base layer is formed of thermally conductive concrete, and a heating sheet 100 is embedded therein.

발열시트(100)가 기층(20)에 매설되므로, 차량하중에 의한 발열시트(100)의 파손을 방지하면서도, 발열된 열에 의해 표층(30)을 효율적으로 가열할 수 있다는 효과가 있다.Since the heating sheet 100 is buried in the base layer 20, there is an effect that the surface layer 30 can be efficiently heated by the generated heat while preventing damage to the heating sheet 100 due to vehicle load.

또한, 종래의 시멘트 콘크리트 도로포장에 연속적으로 열선이 배열되는 기술의 경우, 열선 절단에 따른 발열불량의 문제가 있음에 비해, 본 발명의 경우 열전도율이 높은 열전도성 콘크리트 조성물을 사용하기 때문에 위와 같은 문제가 없다.In addition, in the case of the conventional technology in which hot wires are continuously arranged on a cement concrete road pavement, there is a problem of heat generation due to cutting the hot wire, whereas in the case of the present invention, the above problems are caused because a thermally conductive concrete composition with high thermal conductivity is used. there is no

발열시트(100)는 탄소섬유시트에 의해 구현될 수 있다.The heating sheet 100 may be implemented by a carbon fiber sheet.

발열시트(100)의 매설깊이(H1)는, 차량하중에 의한 파손이 방지되고, 발열된 열에 의해 표층(30)의 상면의 온도가 영상이 될 정도의 깊이인 것이 바람직하다.The buried depth H1 of the heating sheet 100 is preferably a depth to prevent damage caused by a vehicle load and the temperature of the upper surface of the surface layer 30 to be zero by the heat generated.

구체적으로, 표층(30)의 두께(H2)는 3~8cm이고, 발열시트(100)의 매설깊이(H1)는 7~12cm 정도가 적절하다.Specifically, the thickness H2 of the surface layer 30 is 3 to 8 cm, and the embedding depth H1 of the heating sheet 100 is about 7 to 12 cm.

열전도성 콘크리트는 발열시트(100)에서 발열된 열을 표층(30)으로 전달하는 역할을 한다.The thermally conductive concrete serves to transfer heat generated from the heating sheet 100 to the surface layer 30.

이는 구체적으로, 시멘트 14~17 중량%; 탄화규소(SiC) 28~32 중량%; 잔골재 1~1.75 중량%; 굵은골재 40~42 중량%: 구리분말 2~4 중량%; 물 5~10 중량%; 흑연 1.5~2 중량%; 유동화재 0.05~0.1 중량%;를 포함하여 구성된다.Specifically, 14 to 17% by weight of cement; 28-32% by weight of silicon carbide (SiC); 1 to 1.75% by weight of fine aggregate; 40-42% by weight of coarse aggregate: 2-4% by weight of copper powder; 5-10% by weight of water; 1.5 to 2% by weight of graphite; Fluidizing agent 0.05 ~ 0.1% by weight; is configured to include.

탄화규소(SiC)는 밀도가 3.0~3.4 g/㎤, 녹는점이 2,100~2,300℃, 열전도율이 38~42 W/mㆍK, 탄성계수가 185~200 GPa, 굴곡강도가 320~600 MPa인 것을 사용하며, 순도는 96% 이상인 것이 바람직하다.Silicon carbide (SiC) has a density of 3.0 to 3.4 g/cm3, a melting point of 2,100 to 2,300 °C, a thermal conductivity of 38 to 42 W/m K, a modulus of elasticity of 185 to 200 GPa, and a flexural strength of 320 to 600 MPa. It is used, and the purity is preferably 96% or more.

구리분말은 밀도가 3.0~3.5 g/㎤, 입자크기가 40~150 ㎛, 열전도율이 350~390 W/mㆍK인 것을 사용한다.Copper powder having a density of 3.0 to 3.5 g/cm 3 , a particle size of 40 to 150 μm, and a thermal conductivity of 350 to 390 W/m·K is used.

흑연은 밀도가 1.3~1.9 g/㎤, 탄성계수가 8~15 GPa, 열전도율이 450~490 W/mㆍK인 것을 사용한다.Graphite having a density of 1.3 to 1.9 g/cm 3 , an elastic modulus of 8 to 15 GPa, and a thermal conductivity of 450 to 490 W/m·K is used.

이하, 본 발명에 의한 아스팔트 도로포장 구조물의 결빙방지구조의 효과를 입증하기 위한 시험결과에 관하여 설명한다.Hereinafter, test results for demonstrating the effect of the anti-icing structure of the asphalt road pavement structure according to the present invention will be described.

Figure 112021144920366-pat00001
Figure 112021144920366-pat00001

표 1은 본 발명의 실시예 1,2 및 비교예를 기재한 것으로서, 비교예는 본 발명의 실시예에서 탄화규소, 흑연, 구리분말이 제외된 것이다.Table 1 describes Examples 1 and 2 of the present invention and Comparative Examples, in which silicon carbide, graphite, and copper powder are excluded from the Examples of the present invention.

위 배합에 의해 열전도성 콘크리트를 제조하였고, 이는 본 발명에 의한 아스팔트 도로포장 구조물의 기층에 사용되는 것이다.Thermally conductive concrete was prepared by the above mixture, which is used for the base layer of the asphalt road pavement structure according to the present invention.

탄화규소는 밀도가 3.0 g/㎤, 녹는점이 2,200℃, 열전도율이 39 W/mㆍK, 탄성계수가 185 GPa, 굴곡강도가 350 MPa, 순도가 96%인 것을 사용하였다.Silicon carbide had a density of 3.0 g/cm 3 , a melting point of 2,200° C., a thermal conductivity of 39 W/m·K, a modulus of elasticity of 185 GPa, a flexural strength of 350 MPa, and a purity of 96%.

구리분말은 밀도가 3.1 g/㎤, 입자크기가 70 ㎛, 열전도율이 380 W/mㆍK인 것을 사용하였다.Copper powder having a density of 3.1 g/cm 3 , a particle size of 70 μm, and a thermal conductivity of 380 W/m·K was used.

흑연은 밀도가 1.8 g/㎤, 탄성계수가 8 GPa, 열전도율이 490 W/mㆍK인 것을 사용하였다.Graphite having a density of 1.8 g/cm 3 , an elastic modulus of 8 GPa, and a thermal conductivity of 490 W/m·K was used.

탄소섬유시트는 사용전압이 200~240V 50/60Hz, 정격출력이 220W/m², 최대발열온도 52℃, 두께 0.338mm, 폭이 50cm인 것을 사용하였다.The carbon fiber sheet was used with a voltage of 200~240V 50/60Hz, a rated output of 220W/m², a maximum heating temperature of 52℃, a thickness of 0.338mm, and a width of 50cm.

Figure 112021144920366-pat00002
Figure 112021144920366-pat00002

표 2는 본 발명의 실시예 1,2 및 비교예의 열전도율 시험결과의 그래프이다.Table 2 is a graph of the thermal conductivity test results of Examples 1 and 2 of the present invention and Comparative Example.

본 발명의 실시예 1,2의 열전도율이 비교예에 비해 압도적으로 우수함을 확인할 수 있고, 특히 탄화규소의 혼입량이 많은 실시예 2의 열전도율이 가장 우수함을 확인할 수 있다.It can be confirmed that the thermal conductivity of Examples 1 and 2 of the present invention is overwhelmingly superior to that of the comparative example, and in particular, it can be confirmed that the thermal conductivity of Example 2 having a large amount of silicon carbide is the most excellent.

Figure 112021144920366-pat00003
Figure 112021144920366-pat00003

Figure 112021144920366-pat00004
Figure 112021144920366-pat00004

표 3,4는 본 발명의 실시예 1,2 및 비교예의 압축강도, 휨 강도 시험결과의 그래프이다.Tables 3 and 4 are graphs of test results of compressive strength and flexural strength of Examples 1 and 2 of the present invention and Comparative Example.

본 발명의 실시예 1,2의 압축강도, 휨 강도가 비교예에 비해 동등 이상인 것으로 나타났으므로, 열전도성 콘크리트는 특수 물성을 가짐에 불구하고, 구조체로서의 역할도 충분히 수행할 수 있는 것으로 나타났다.Since the compressive strength and flexural strength of Examples 1 and 2 of the present invention were found to be equal to or higher than those of the comparative example, it was found that the thermally conductive concrete could sufficiently serve as a structure despite having special physical properties.

이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께 하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.Since the above has only been described with respect to some of the preferred embodiments that can be implemented by the present invention, as noted, the scope of the present invention should not be construed as being limited to the above embodiments, and the scope of the present invention described above It will be said that the technical idea and the technical idea together with the root are all included in the scope of the present invention.

10 : 보조기층 20 : 기층
30 : 표층 100 : 발열시트
10: subbase layer 20: base layer
30: surface layer 100: heating sheet

Claims (9)

보조기층(10);
상기 보조기층(10)의 상부에 열전도성 콘크리트에 의해 형성된 기층(20);
상기 기층(20)의 내부에 매설된 발열시트(100);
상기 기층(20)의 상부에 아스팔트 콘크리트에 의해 형성된 표층(30);을 포함하고,
상기 열전도성 콘크리트는,
시멘트 14~17 중량%;
탄화규소(SiC) 28~32 중량%;
잔골재 1~1.75 중량%;
굵은골재 40~42 중량%:
구리분말 2~4 중량%;
물 5~10 중량%;
흑연 1.5~2 중량%;
유동화재 0.05~0.1 중량%;를 포함하고,
상기 탄화규소는 밀도가 3.0~3.4 g/㎤, 녹는점이 2,100~2,300℃, 열전도율이 38~42 W/mㆍK, 탄성계수가 185~200 GPa, 굴곡강도가 320~600 MPa인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
subbase layer 10;
A base layer 20 formed of thermally conductive concrete on top of the sub-base layer 10;
Heating sheet 100 buried inside the base layer 20;
Including; surface layer 30 formed by asphalt concrete on top of the base layer 20,
The thermally conductive concrete,
14-17% by weight of cement;
28-32% by weight of silicon carbide (SiC);
1 to 1.75% by weight of fine aggregate;
Coarse aggregate 40-42% by weight:
2 to 4% by weight of copper powder;
5-10% by weight of water;
1.5 to 2% by weight of graphite;
Contains 0.05 to 0.1% by weight of fluidizing agent;
The silicon carbide has a density of 3.0 to 3.4 g / cm 3, a melting point of 2,100 to 2,300 ° C, a thermal conductivity of 38 to 42 W / m K, a modulus of elasticity of 185 to 200 GPa, and a flexural strength of 320 to 600 MPa. Asphalt road pavement structure for preventing icing.
제1항에 있어서,
상기 발열시트(100)는 탄소섬유시트인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
According to claim 1,
The asphalt road pavement structure for preventing icing, characterized in that the heating sheet 100 is a carbon fiber sheet.
제1항에 있어서,
상기 발열시트(100)의 매설깊이는,
차량하중에 의한 파손이 방지되고, 발열된 열에 의해 상기 표층(30)의 상면의 온도가 영상이 될 정도의 깊이인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
According to claim 1,
The buried depth of the heating sheet 100 is,
Asphalt road pavement structure for preventing icing, characterized in that damage due to vehicle load is prevented and the temperature of the upper surface of the surface layer 30 becomes a zero temperature by the heat generated.
제3항에 있어서,
상기 표층(30)의 두께는 3~8cm이고,
상기 발열시트(100)의 매설깊이는 7~12cm인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
According to claim 3,
The surface layer 30 has a thickness of 3 to 8 cm,
Asphalt road pavement structure for preventing icing, characterized in that the buried depth of the heating sheet 100 is 7 ~ 12cm.
삭제delete 삭제delete 제1항에 있어서,
상기 탄화규소의 순도는 96% 이상인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
According to claim 1,
Asphalt road pavement structure for preventing icing, characterized in that the purity of the silicon carbide is 96% or more.
보조기층(10);
상기 보조기층(10)의 상부에 열전도성 콘크리트에 의해 형성된 기층(20);
상기 기층(20)의 내부에 매설된 발열시트(100);
상기 기층(20)의 상부에 아스팔트 콘크리트에 의해 형성된 표층(30);을 포함하고,
상기 열전도성 콘크리트는,
시멘트 14~17 중량%;
탄화규소(SiC) 28~32 중량%;
잔골재 1~1.75 중량%;
굵은골재 40~42 중량%:
구리분말 2~4 중량%;
물 5~10 중량%;
흑연 1.5~2 중량%;
유동화재 0.05~0.1 중량%;를 포함하고,
상기 구리분말은 밀도가 3.0~3.5 g/㎤, 입자크기가 40~150 ㎛, 열전도율이 350~390 W/mㆍK인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
subbase layer 10;
A base layer 20 formed of thermally conductive concrete on top of the sub-base layer 10;
Heating sheet 100 buried inside the base layer 20;
Including; surface layer 30 formed by asphalt concrete on top of the base layer 20,
The thermally conductive concrete,
14-17% by weight of cement;
28-32% by weight of silicon carbide (SiC);
1 to 1.75% by weight of fine aggregate;
Coarse aggregate 40-42% by weight:
2 to 4% by weight of copper powder;
5-10% by weight of water;
1.5 to 2% by weight of graphite;
Contains 0.05 to 0.1% by weight of fluidizing agent;
The copper powder has a density of 3.0 to 3.5 g / cm 3, a particle size of 40 to 150 μm, and a thermal conductivity of 350 to 390 W / m K. Asphalt road pavement structure for preventing icing.
보조기층(10);
상기 보조기층(10)의 상부에 열전도성 콘크리트에 의해 형성된 기층(20);
상기 기층(20)의 내부에 매설된 발열시트(100);
상기 기층(20)의 상부에 아스팔트 콘크리트에 의해 형성된 표층(30);을 포함하고,
상기 열전도성 콘크리트는,
시멘트 14~17 중량%;
탄화규소(SiC) 28~32 중량%;
잔골재 1~1.75 중량%;
굵은골재 40~42 중량%:
구리분말 2~4 중량%;
물 5~10 중량%;
흑연 1.5~2 중량%;
유동화재 0.05~0.1 중량%;를 포함하고,
상기 흑연은 밀도가 1.3~1.9 g/㎤, 탄성계수가 8~15 GPa, 열전도율이 450~490 W/mㆍK인 것을 특징으로 하는 결빙예방을 위한 아스팔트 도로포장 구조물.
subbase layer 10;
A base layer 20 formed of thermally conductive concrete on top of the sub-base layer 10;
Heating sheet 100 buried inside the base layer 20;
Including; surface layer 30 formed by asphalt concrete on top of the base layer 20,
The thermally conductive concrete,
14-17% by weight of cement;
28-32% by weight of silicon carbide (SiC);
1 to 1.75% by weight of fine aggregate;
Coarse aggregate 40-42% by weight:
2 to 4% by weight of copper powder;
5-10% by weight of water;
1.5 to 2% by weight of graphite;
Contains 0.05 to 0.1% by weight of fluidizing agent;
The graphite has a density of 1.3 to 1.9 g / cm 3, an elastic modulus of 8 to 15 GPa, and a thermal conductivity of 450 to 490 W / m K. Asphalt road pavement structure for preventing icing.
KR1020210178914A 2021-12-14 2021-12-14 Asphalt pavement structure for freezing prevention KR102551321B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210178914A KR102551321B1 (en) 2021-12-14 2021-12-14 Asphalt pavement structure for freezing prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210178914A KR102551321B1 (en) 2021-12-14 2021-12-14 Asphalt pavement structure for freezing prevention

Publications (2)

Publication Number Publication Date
KR20230090029A KR20230090029A (en) 2023-06-21
KR102551321B1 true KR102551321B1 (en) 2023-07-04

Family

ID=86990020

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210178914A KR102551321B1 (en) 2021-12-14 2021-12-14 Asphalt pavement structure for freezing prevention

Country Status (1)

Country Link
KR (1) KR102551321B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378133B1 (en) * 2013-07-02 2014-03-28 건국대학교 산학협력단 Heating structure for road and construction method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938402A (en) * 1982-08-30 1984-03-02 有限会社ハイ・マツクス Electric heating type civil enginearing heater structure
KR20170018645A (en) * 2015-08-10 2017-02-20 한국건설기술연구원 Asphalted road with snow melting and high strength properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378133B1 (en) * 2013-07-02 2014-03-28 건국대학교 산학협력단 Heating structure for road and construction method of the same

Also Published As

Publication number Publication date
KR20230090029A (en) 2023-06-21

Similar Documents

Publication Publication Date Title
KR102292992B1 (en) Heatting emitting concrete composition and pavement structure thereof
CN102084064B (en) Method for protecting roadbeds in frozen soil area and pavement structure
US20080019098A1 (en) Diamond composite heat spreader and associated methods
KR102551321B1 (en) Asphalt pavement structure for freezing prevention
CN107489080B (en) A kind of anti-freeze road and its construction method
CN107686699B (en) Heat-conducting interface material and preparation method thereof
US11820712B2 (en) Electrically conductive binder for manufacturing heatable building parts
Bolt et al. Ceramic-fiber—polymer composites for electronic substrates
KR102611228B1 (en) Thermally conductive concrete composition for pavement
JP2019078126A (en) Snow melting functional concrete product
CA2428585C (en) Electrically conductive pavement mixture
KR100627947B1 (en) Composite electroconducting material
Zhang et al. Experimental investigation on the ice/snow melting performance of CNFP & MWCNT/cement-based deicing system
KR20150085992A (en) Self-heating Cement Composites for Deicing
CN107524066A (en) A kind of anti-freeze asphalt concrete layer and its construction method
KR102611229B1 (en) Thermally conductive mortar composition for emergency maintenance of pavement and repairing method for pavement using the same
KR102611230B1 (en) Manufacturing method for mortar composition and heating sidewalk block using the same
CN109930445A (en) Orient thermally conductive deck installation structure
KR20240069666A (en) Mortar composition and heating sidewalk block using the same
KR101378133B1 (en) Heating structure for road and construction method of the same
CN110510920B (en) Frost crack prevention pavement
KR102613467B1 (en) Warning system for heating pavement
KR20210154559A (en) Sidewalk block for heating
CN102010150A (en) High-thermal conductivity small-grain diameter asphalt mixture
KR102671602B1 (en) Current Leakage Prevention Structure of Electrically Conductive Heating Mortar Comprising Industrial Byproduct Carbon Material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant