KR102530433B1 - 공기 조화기 제어 방법 및 장치 - Google Patents

공기 조화기 제어 방법 및 장치 Download PDF

Info

Publication number
KR102530433B1
KR102530433B1 KR1020160178465A KR20160178465A KR102530433B1 KR 102530433 B1 KR102530433 B1 KR 102530433B1 KR 1020160178465 A KR1020160178465 A KR 1020160178465A KR 20160178465 A KR20160178465 A KR 20160178465A KR 102530433 B1 KR102530433 B1 KR 102530433B1
Authority
KR
South Korea
Prior art keywords
temperature
thermal comfort
delete delete
air conditioner
dry
Prior art date
Application number
KR1020160178465A
Other languages
English (en)
Other versions
KR20180074903A (ko
Inventor
김경재
송관우
고순흠
박건혁
송성근
이대은
조혜정
김재홍
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020160178465A priority Critical patent/KR102530433B1/ko
Priority to CN201710252926.3A priority patent/CN108240694B/zh
Priority to US16/471,401 priority patent/US20190368762A1/en
Priority to PCT/KR2017/004244 priority patent/WO2018117344A1/en
Publication of KR20180074903A publication Critical patent/KR20180074903A/ko
Application granted granted Critical
Publication of KR102530433B1 publication Critical patent/KR102530433B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/57Remote control using telephone networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/59Remote control for presetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/12Position of occupants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Abstract

공기 조화기 제어 방법 및 장치를 개시한다. 상기 방법은, 복수의 사용자 기기들로부터 수신한 피드백 메시지들을 이용하여 공간의 건구 온도 보정 맵을 생성하는 과정과, 상기 피드백 메시지들에 포함되는 측정 온도들을 이용하여 상기 공간의 열 쾌적 특성 맵을 생성하는 과정과, 상기 건구 온도 보정 맵 및 상기 열 쾌적 특성 맵을 이용하여 상기 공간 내의 상기 공기 조화기를 위한 설정 온도를 결정하는 과정과, 상기 결정된 설정 온도로 상기 공기 조화기를 제어하는 과정을 포함한다.

Description

공기 조화기 제어 방법 및 장치{METHOD AND APPARATUS FOR MANAGING AIR CONDITIONING}
본 개시의 다양한 실시예들은 공간 열 쾌적 특성(thermal comfort characteristics)에 기반한 공기 조화기 제어 장치 및 방법에 관한 것이다.
인터넷은 정보를 생성 및 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 사물 인터넷 (internet of things, IoT) 망으로 진화하고 있다. IoE (internet of everything) 기술은 클라우드 서버 등과의 연결을 통한 빅 데이터 (big data) 처리 기술 등이 IoT 기술에 결합된 하나의 예가 될 수 있다.
IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술 및 보안 기술 등의 기술 요소가 요구될 수 있다. 최근에는 사물간의 연결을 위한 센서 네트워크 (sensor network), 사물 통신 (machine to machine, M2M), MTC (machine type communication) 등의 기술이 연구되고 있다.
IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT (internet technology) 서비스가 제공될 수 있다. 이러한 IoT는 기존의 IT 기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 캐어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
호텔이나 빌딩 등과 같은 건물들은 에너지를 효과적으로 제어하기 위한 에너지 제어 시스템을 구비하고 있다. 이러한 에너지 제어 시스템은 시스템 요구사항, 에너지 절감, 관리 비용 절감과 같은 다양한 필요를 만족시킬 수 있도록 구현될 것이 요구된다. 특히 다수의 룸들을 포함하는 대형 건물에서는 공기 조화기 제어(air conditioning)를 위하여 시스템 에어컨(system air conditioner: SAC)을 이용할 수 있다. 시스템 에어컨은 하나 혹은 몇 개의 실외기(outdoor units)와 다수의 실내기들(indoor units)로 구성되며, 시스템 관리자는 중앙 제어 서버(centralized control server)에 의하여 상기 다수의 실내기들의 온도 설정들을 제어할 수 있다.
건물 내에 위치하는 사용자의 온열 쾌적감은 사용자가 실제로 감지하는 열에 관련된다. 그런데, 건물 내의 룸들은 서로 다른 공간 열 쾌적 특성을 가질 수 있다. 즉, 실내기들을 동일한 온도들로 설정한다 하더라도, 사용자들에게 실제로 영향을 미치는 작용 온도들(operative temperatures)는 기류와 평균 복사 온도(mean radiant temperature: MRT) 및 건구 온도(dry bulb temperature) 등으로 인해 공간 별로 상이할 수 있다. 더욱이 사용자들이 쾌적함을 느끼는 온도 범위들은 사용자들 간에 상이할 수 있기 때문에, 사용자들의 쾌적 유지를 위해 시스템 에어컨의 설정 온도를 보다 효율적으로 결정하고 제어하기 위한 기술이 필요하게 되었다.
본 개시의 다양한 실시예에 따르면 저전력 공기 조화기 제어 장치 및 방법을 제공할 수 있다.
본 개시의 다양한 실시예에 따르면 사용자들의 온열 쾌적감을 유지하기 위한 공기 조화기 제어 장치 및 방법을 제공할 수 있다.
본 개시의 다양한 실시예에 따르면 공간 열 쾌적 특성에 기반하여 공기 조화기 제어를 수행하기 위한 장치 및 방법을 제공할 수 있다.
본 개시의 다양한 실시예에 따르면, 실내기의 측정 온도와 사용자 위치의 건구 온도를 보정하기 위한 장치 및 방법을 제공할 수 있다.
본 개시의 다양한 실시예에 따르면, 실내의 복사 온도에 대한 공간별 차이를 나타내는 공간 열 쾌적 특성을 추출하는 장치 및 방법을 제공할 수 있다.
본 개시의 다양한 실시예에 따르면, 사용자들의 온열 쾌적감을 유지하기 위한 실내기의 설정 온도를 결정하는 장치 및 방법을 제공할 수 있다.
본 개시의 일 실시예에 따른 방법은; 공기 조화기의 제어 방법에 있어서, 복수의 사용자 기기들로부터 수신한 피드백 메시지들을 이용하여 공간의 건구 온도 보정 맵을 생성하는 과정과, 상기 피드백 메시지들에 포함되는 측정 온도들을 이용하여 상기 공간의 열 쾌적 특성 맵을 생성하는 과정과, 상기 건구 온도 보정 맵 및 상기 열 쾌적 특성 맵을 이용하여 상기 공간 내의 상기 공기 조화기를 위한 설정 온도를 결정하는 과정과, 상기 결정된 설정 온도로 상기 공기 조화기를 제어하는 과정을 포함한다.
본 개시의 일 실시예에 따른 장치는; 공기 조화기의 제어가 가능한 서버에 있어서, 복수의 사용자 기기들로부터 위치 정보, 측정 온도 및 온열 쾌적감 정보 중 적어도 하나를 포함하는 피드백 메시지들을 수신하고, 상기 공기 조화기로부터 측정 온도를 수신하며, 상기 공기 조화기를 제어하기 위한 설정 온도의 정보를 상기 공기 조화기로 송신하는 통신부와, 상기 피드백 메시지들에 포함된 상기 위치 정보 및 상기 측정 온도를 이용하여 공간의 건구 온도 보정 맵을 생성하고, 상기 피드백 메시지들에 포함된 상기 위치 정보와 상기 측정 온도 및 상기 온열 쾌적감 정보를 이용하여 상기 공간의 열 쾌적 특성 맵을 생성하고, 상기 건구 온도 보정 맵 및 상기 열 쾌적 특성 맵을 이용하여 상기 공간 내의 상기 공기 조화기를 위한 설정 온도를 결정하는 제어부와, 상기 건구 온도 보정 맵과 상기 열 쾌적 특성 맵과, 상기 공기 조화기의 측정 온도 및 설정 온도를 저장하는 저장부를 포함한다.
본 개시의 일 실시예에 따른 방법은; 사용자 기기가 공기 조화기의 제어를 요청하는 방법에 있어서, 복수의 네트워크 노드들로부터 수신한 무선 신호들의 수신 신호 세기들을 이용하여 상기 사용자 기기의 현재 위치에 대한 위치 정보를 결정하는 과정과, 온도 센서를 통해 상기 현재 위치의 측정 온도를 획득하는 과정과, 입력부를 통해서 사용자의 온열 쾌적감 정보를 입력받는 과정과, 상기 위치 정보와 상기 측정 온도 및 상기 온열 쾌적감 정보를 포함하는 피드백 메시지를 생성하는 과정과, 상기 사용자 기기가 위치하는 공간의 온도를 제어하기 위한 공기 조화기를 제어하는 서버에게, 상기 생성된 피드백 메시지를 전송하는 과정을 포함한다.
본 개시의 일 실시예에 따른 장치는; 공기 조화기의 제어를 요청하는 사용자 기기에 있어서, 현재 위치의 측정 온도를 획득하는 센서부와, 사용자의 온열 쾌적감 정보를 입력받는 입력부와, 상기 사용자 기기의 상기 현재 위치에 대한 위치 정보를 결정하고, 상기 위치 정보와 상기 측정 온도 및 상기 온열 쾌적감 정보를 포함하는 피드백 메시지를 생성하는 제어부와, 상기 사용자 기기가 위치하는 공간의 온도를 제어하기 위한 공기 조화기를 제어하는 서버에게, 상기 피드백 메시지를 전송하는 통신부를 포함한다.
본 발명의 특정한 바람직한 실시예들의 상기에서 설명한 바와 같은 또한 다른 측면들과, 특징들 및 이득들은 첨부 도면들과 함께 처리되는 하기의 설명으로부터 보다 명백하게 될 것이다.
도 1은 본 개시에서 제안하는 다양한 실시예에 따른 공기 조화기 제어가 적용될 수 있는 건물에서 수집된 피드백들의 일 예를 도시한 것이다.
도 2는 본 개시에서 제안하는 다양한 실시예에 적용될 수 있는 MRT 측정의 일 예를 도시한 것이다.
도 3은 본 개시에서 제안하는 다양한 실시예에 따른 공기 조화기 제어가 적용될 수 있는 건물에서 수집된 최대 쾌적 실내 온도들의 일 예를 나타낸 것이다.
도 4는 본 개시에서 제안되는 다양한 실시예들에 따른 공기 조화기 제어를 지원하기 위한 시스템의 일 예를 도시한 도면이다.
도 5는 본 개시에서 제안되는 다양한 실시예들에 따른 사용자 기기에 대한 블록 구성을 도시한 것이다.
도 6은 본 개시에서 제안되는 다양한 실시예들에 따른, 서버에 대한 블록 구성을 도시한 것이다.
도 7은 본 개시의 일 실시예에 따른 공기 조화기 제어 동작을 설명하는 신호 흐름도이다.
도 8은 본 개시의 일 실시예에 따른 서버에 의해 수행되는 공기 조화기 제어 동작을 도시한 흐름도이다.
도 9는 본 개시의 일 실시예에 따른 건구 온도 보정 맵의 생성 동작을 도시한 흐름도이다.
도 10a는 본 개시의 일 실시예에 따른 건구 온도 분포 테이블의 일 예를 나타낸 것이다.
도 10b는 본 개시의 일 실시예에 따른 건구 온도 보정 맵의 일 예를 나타낸 것이다.
도 11은 본 개시의 일 실시예에 따른 열 쾌적 특성 맵의 생성 동작을 도시한 흐름도이다.
도 12는 본 개시의 일 실시예에 따른 보정 온도 분포의 일 예를 나타낸 것이다.
도 13은 본 개시의 일 실시예에 따른 열 쾌적 특성 맵의 일 예를 나타낸 것이다.
도 14는 본 개시의 일 실시예에 따른 설정 온도의 결정 동작을 도시한 흐름도이다.
도 15a 및 도 15b는 본 개시의 일 실시예에 따른 서버에 의한 설정 온도의 결정 예를 도시한 것이다.
도 16은 본 개시의 일 실시예에 따른 불만족 피드백을 고려한 열 쾌적 특성 맵의 생성 동작을 도시한 흐름도이다.
도 17은 본 개시의 일 실시예에 따른 보정 온도 분포의 일 예를 나타낸 것이다.
도 18a은 이론상의 공간에서 나타나는 MRT 특성을 도시한 것이며, 도 18b는 실제 환경의 공간에서 나타나는 MRT 특성들을 도시한 것이다.
도 19a 및 도 19b는 본 개시의 일 실시예에 따른 실내 MRT의 추정 동작을 설명하기 위한 도면이다.
도 20은 본 개시의 일 실시예에 따른 기준 MRT 추정 테이블의 일 예를 나타낸 것이다.
도 21은 본 개시의 일 실시예에 따라 전자 기기들의 존재에 따른 실내 MRT의 추정 동작을 설명하기 위한 도면이다.
도 22는 본 개시의 일 실시예에 따른 전자 기기들의 정보를 포함하는 기준 MRT 추정 테이블의 일 예를 나타낸 것이다.
도 23은 본 개시의 일 실시예에 따라 MRT를 고려하여 설정 온도를 결정하는 동작을 도시한 흐름도이다.
도 24a 및 도 24b는 본 개시의 일 실시예에 따른 MRT 추정을 이용한 설정 온도의 결정 예를 도시한 것이다.
도 25는 본 개시의 일 실시예에 따라 개인별 쾌적 선호도를 이용하여 공기 조화기 제어를 수행하는 동작을 나타낸 흐름도이다.
도 26은 본 개시의 일 실시예에 따른 작용 온도에 기반한 개인 온열 선호도를 추출하는 동작을 나타낸 흐름도이다.
도 27은 본 개시의 일 실시예에 따른 사용자의 선호 작용 온도를 고려한 공기 조화기 제어 동작을 나타낸 흐름도이다.
도 28은 본 개시의 일 실시예에 따라 여러 사용자들의 선호 작용 온도들을 고려한 공기 조화기 제어 동작을 도시한 흐름도이다.
상기 도면들을 통해, 유사 참조 번호들은 동일한 혹은 유사한 엘리먼트들과, 특징들 및 구조들을 도시하기 위해 사용된다는 것에 유의해야만 한다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA(field-Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
하기에서 본 개시의 실시예들을 구체적으로 설명함에 있어서 특정 시스템 및 신호 표준을 사용하거나 언급할 수 있지만, 본 명세서에서 청구하고자 하는 주요한 요지는 유사한 기술적 배경을 가지는 여타의 시스템 및 서비스에도 본 명세서에 개시된 범위를 크게 벗어나지 아니하는 범위에서 적용 가능하며, 이는 당해 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
본 개시의 다양한 실시예들에 따른 사용자 기기는, 통신 기능을 구비한 전자 장치로써, 사용자 기기를 소지하는 사용자의 현재 위치를 인지하고, 현재 위치에서 온도(일 예로 건구 온도)를 측정할 수 있다. 상기 전자 장치는, 예를 들어, 휴대형 전자장치, 착용형(wearable) 전자장치 등으로 구분될 수 있다.
상기 휴대형 전자장치는, 예를 들면, 스마트폰(smartphone), 태블릿 PC (tablet personal computer), 이동 전화기(mobile phone), 영상 전화기, 전자책 리더기(e-book reader), PDA(personal digital assistant), PMP(portable multimedia player), MP3 플레이어, 모바일 의료기기, 전자 사전, 전자 키, 캠코더(camcorder) 또는 카메라(camera) 중 적어도 하나를 포함할 수 있으며 이에 한정되지는 않는다..
상기 착용형 전자장치는, 예를 들면, 액세서리형 (예: 시계, 반지, 팔찌, 발찌, 목걸이, 안경, 콘택트 렌즈 또는 머리 착용형 장치 (head-mounted-device(HMD)), 직물 또는 의류 일체형 (예: 전자 의복, 운동복), 신체 부착형 (예: 스킨 패드 (skin pad) 또는 문신), 또는 생체 이식형 (예: implantable circuit) 중 적어도 하나의 웨어러블 장치를 포함할 수 있으며 이에 한정되지는 않는다..
다양한 실시예에서, 전자 장치는 전술한 다양한 장치들 중 하나 또는 그 이상의 조합일 수 있다. 일 실시예에 따른 전자장치는 플렉서블 전자장치일 수 있다. 또한, 본 개시의 실시예에 따른 전자장치는 기술한 기기들에 한정되지 않으며, 기술 발전에 따른 새로운 전자장치를 포함할 수 있다.
본 개시에서 제안될 다양한 실시 예들에서 사용될 용어들은 하기와 같이 정의될 수 있다.
- 시스템 에어컨(SAC라고도 칭함): 적어도 하나의 실외기와 복수의 실내기들 및 중앙 제어 서버를 포함하며, 상기 중앙 제어 서버에 의해 상기 실내기들의 온도 설정들을 제어함으로써, 상기 시스템 에어컨이 설치되는 건물 혹은 지역의 공기를 제어한다. 상기 중앙 제어 서버는 단순히 "서버"라 칭할 수 있다.
- 공간: 시스템 에어컨의 공기 조화기 제어에 영향받는 영역으로써, 시스템 에어컨이 설치된 빌딩의 전체 공간과, 각 실내기에 의해 영향받는 단위 공간(이하 단순히 "공간"이라 칭함)으로 구별될 수 있다. 일 실시예로서 공간은 하나의 실내기와 동일한 룸으로 정의될 수 있다. 일 실시예로서 공간은 하나의 실내기로부터 소정 거리 범위 이내로 정의될 수 있다. 일 실시예로서 공간은 가장 가깝게 위치한 적어도 하나의 실내기의 위치와 상기 실내기가 배치된 룸의 형태에 따라 정의될 수 있다.
- 건구 온도: 건구 온도는 온도계의 센서부를 햇빛에 직접 닿지 않게 공기 중에 노출시켜 측정한 온도를 의미하며, 통상의 온도계가 가리키는 온도(기온)을 의미한다.
- 측정 온도: 사용자 기기 혹은 실내기에 의해 측정되는 건구 온도를 의미한다.
- 피드백: 사용자 기기로부터 서버로 전달되는 온열 쾌적감에 관련된 정보로써, 사용자 기기에 의해 측정되거나 식별된 측정 온도와 온열 쾌적감 정보 및 위치 정보 중 적어도 하나를 포함할 수 있다. 일 실시예로, 상기 피드백을 위해서, 사용자로부터 직접 입력된 온열 쾌적감에 대한 정보를 기반으로 생성된 온열 쾌적감 정보, 위치 정보, 측정 온도 정보 중 적어도 하나를 포함하는 피드백 메시지가 생성 및 서버로 전송 될 수 있다. 다른 실시예로, 사용자의 입력 없이, 주기적(예를 들어 1시간에 1~2회)으로 사용자 기기가 온도 및 위치를 측정하고, 상기 측정 온도 및 위치에 대한 정보를 포함하는 피드백 메시지를 자동으로 생성하여 서버로 전송할 수도 있다. 다른 실시예로, 사용자로부터 온열 쾌적감에 대한 입력이 일정 주기(예를 들어 1시간) 동안 없는 경우, 사용자 기기는 사용자가 현재 온도에 대해 만족하는 것으로 간주하여, 온열 쾌적감 정보(만족), 위치 정보, 측정 온도 정보를 포함하는 피드백 메시지를 자동으로 생성하여 서버로 전송할 수 있다.
- 온열 쾌적감 정보: 사용자 기기가 사용자로부터 입력받는 온열 쾌적감을 지시하는 정보로써, 일 예로, 만족, 불만족(덥다), 불만족(춥다) 중 적어도 하나를 지시할 수 있다. 각 피드백은, 포함되는 온열 쾌적감 정도에 따라, 만족 피드백, 불만족(덥다) 피드백, 불만족(춥다) 피드백으로 분류될 수 있다. 또한 일부 실시예에 따르면, 상기 온열 쾌적감 정보 중 만족 피드백은 사용자에 의해 직접 입력되지 않을 수 있으며, 일정 시간 동안 사용자의 불만족 피드백이 없는 경우, 만족으로 간주하여 사용자 기기가 자동으로 만족 피드백을 생성할 수 있다. 예를 들어, 소정의 설정 온도(예를 들어 24도)로 실내기를 운전하는 동안, 같은 공간에 위치한 적어도 하나의 사용자로부터 불만족 피드백(덥다 또는 춥다)라는 피드백이 일정 시간(예를 들어 1시간) 동안 없는 경우, 사용자 기기는 자신의 사용자가 상기 설정 온도에 만족하고 있다고 간주하여 만족 피드백을 생성할 수 있다.
- 건구 온도 분포 테이블: 하나의 공간 내에서 수집되는 측정 온도들과 해당하는 위치들을 포함한다.
- 건구 온도 보정 맵: 실내기에서 측정된 건구 온도와 사용자 기기에서 측정된 (건구) 온도의 차이를 보정하기 위해 사용되는, 실내기와의 거리에 따른 건구 온도 차이를 2차원(2D)으로 표시한 지도 형태의 그래픽 데이터를 의미한다. 예를 들어, 2D 지도 상에 하나의 실내기를 기준으로, 상기 실내기의 위치로부터 특정 반경 거리들(예를 들어 1m, 2m, 3m ...)의 구간들마다, 각 구간에 있는 사용자 기기들로부터 수신된 (건구) 온도 값들의 평균 온도 값을 산출하고, 상기 평균 온도 값을 실내기에서 측정된 건구 온도와 비교하여, 실내기와의 반경 거리 별로 상기 평균 온도 값과 실내기에서 측정된 건구 온도의 차이를 2D 지도 상에 표시하는 형태로 상기 건구 온도 보정 맵이 생성될 수 있다. 일 예로, 실내기에서 측정된 온도가 24도이고, 실내기로부터 1m 이상 2m 미만의 반경 거리를 가지는 도넛 모양의 제1 구간 내 복수의 사용자 기기들로부터 수신된 측정 온도들의 평균이 25도일 경우, 상기 제1 구간에서 건구 온도 보정값은 -1도(설정 온도를 1도 낮게 설정해야 실제 설정 온도(24도)와 동일하게 제1구간의 온도가 설정됨을 의미함)가 될 수 있고, 실내기의 위치에서 1m 이내의 구간은 0도, 상기 제1구간은 -1도을 표시하는 형태로 건구 온도 보정맵이 생성 될 수 있다.
- 보정 온도: 하나의 위치에서 소정 거리 이내의 측정 온도들에 대한 평균을 취한 온도를 의미한다. 일 실시예로, 복수의 사용자 기기들로부터 수신한 복수의 피드백들의 측정 위치들 간의 최대 거리가 소정의 임계 거리(예를 들어 3m) 미만인 경우, 상기 측정 위치들에 대한 무게 중심 좌표를 산출하고, 상기 측정 위치들에 있는 측정 온도들의 평균 값을 취하며, 상기 무게 중심 좌표를 대표 위치로 하여 상기 대표 위치에 대한 보정 온도를 상기 평균 값으로서 결정할 수 있다.
- 보정 온도 분포 맵: 하나의 공간 내에서 복수의 위치들에 대응하는 보정 온도들을 표시한 2차원 공간의 지도를 의미한다.
- 열 쾌적 특성 맵: 동일한 온열 쾌적감 정보를 가지는 피드백의 측정 온도들에 대한 보정 온도들의 상대값들과 그에 대응되는 위치들을 나타낸 것으로서, 하나의 공간 내에서 복사열 차이를 나타내는 온도 상대값들의 위치 분포를 나타낸다. 각 보정 온도는 하나의 위치에서 소정 거리 이내의 측정 온도들에 대한 평균을 의미하며, 각 상대값은 하나의 보정 온도와 동일 공간 내의 최대 보정 온도 간의 차이를 의미한다. 일 실시예로, 상기 열 쾌적 특성 맵은, 위치들에 대응하는 상대값들을 저장하는 공간 열 쾌적 특성 테이블로도 표현될 수 있다.
- 설정 온도: 서버에 의해 실내기로 설정되는 온도를 의미한다. 본 개시에서는 사용자들의 온열 쾌적감을 가능한 한 만족시키면서 에너지 소비를 절감하는 설정 온도를 결정하기 위한 다양한 실시예들을 제공한다.
- 희망 설정 온도: 관리자에 의해 정해지는, 실내기를 위한 설정 (건구) 온도를 의미한다. 실내기로 제공될 설정 온도는 상기 희망 설정 온도와 열 쾌적 특성 맵 및 건구 온도 보정 맵과 후술되는 다른 여러 파라미터들을 고려하여 정해질 수 있다.
- 희망 온도: 공간 내의 각 위치에서 달성하기를 원하는 건구 온도를 의미하며, 희망 설정 온도에 열 쾌적 특성 맵의 위치별 상대값을 적용함으로써 획득될 수 있다. 일 실시예로서 희망 설정 온도에서 열 쾌적 특성 맵 중 실내기의 위치에 대응하는 온도 상대값을 감산함으로써 정해질 수 있다.
- 설정 온도 분포 맵: 희망 온도에 건구 온도 보정 맵의 위치별 상대값들을 적용함으로써 생성되는 것으로써, 실내기의 위치를 기준으로 하는 영역별 설정 온도들을 나타낸다. 일 실시예로서 실내기로 제공될 설정 온도는 설정 온도 분포 맵의 온도 범위별 면적과 온도 값들을 기반으로 정해질 수 있다.
- 기준 MRT 추정 테이블: 공간 내 건구 온도에 대응하는 MRT 추정값들을 나타낸다. 서버는 실내기가 오프되어 있는 동안 공간 내에서 건구 온도들의 측정값들과 MRT의 측정값들을 수집하고, 건구 온도의 변화량에 대응하는 MRT 값들을 나타내는 기준 MRT 추정 테이블을 생성할 수 있다. 공간 내 전자 기기들의 종류 및 개수의 MRT에 대한 영향을 반영하기 위하여, 기준 MRT 추정 테이블은 상기 공간 내 전자 기기들의 종류 및 개수에 대한 정보를 더 포함할 수 있다. 상기 기준 MRT 추정 테이블은, 측정된 건구 온도를 기반으로 MRT를 추정하는데 사용될 수 있다.
- 온열 쾌적 영역: 사용자가 온열 쾌적감을 느끼는 온도의 상한과 하한으로 구성된 범위를 의미하는 개인 온열 쾌적 정보이다. 일부 실시예에 따라, 온열 쾌적 영역은 23도~ 25도 사이의 온도 범위로 정해질 수 있고, 상기 온도 범위에 측정 온도가 속해 있는 경우 사용자가 온열 쾌적 영역 내에 있음을 의미할 수 있다.
- 작용 온도(Operative Temperature): 건구 온도와 MRT(평균 복사온도), 기류의 영향을 종합한 열쾌적 지표로써, 실제 사용자가 특정 건구 온도의 상황에서, 다양한 기류 및 MRT의 영향을 고려하여 체감하게 되는 온열 쾌적감에 대한 객관적인 온도 지표로 사용될 수 있다.
후술될 본 개시에서 제안되는 다양한 실시예들에서는, 공간 열 쾌적 특성에 기반하여 사용자의 온열 쾌적감을 유지하기 위한 공기 조화기 제어를 제공하기 위한 내용에 대하여 기술 할 것이다.
또한, 본 개시에서 제안되는 다양한 실시예들에서는, 공간 내에서 측정되는 건구 온도에 따라 MRT를 추정하고 추정된 MRT를 이용하여 공기 조화기 제어를 제공하는 것을 다른 하나의 실시예로 제안할 것이다.
또한, 본 개시에서 제안된 다양한 실시예들에서는, 사용자들로부터 수집된 온열 쾌적감 정보를 포함하는 피드백들을 작용 온도에 매핑하여 개인 온열 쾌적감을 고려하여 설정 온도를 제어하는 것을 다른 하나의 실시예로 제안할 것이다.
이하, 첨부 도면을 참조하여, 다양한 실시예에 따른 공기 조화기 제어 시스템이 설명된다. 본 개시에서, 사용자라는 용어는 전자 기기를 사용하는 사람 또는 전자 기기(예: 인공지능 전자장치)를 지칭할 수 있다.
도 1은 본 개시에서 제안하는 다양한 실시예에 따른 공기 조화기 제어가 적용될 수 있는 건물에서 수집된 피드백들의 일 예를 도시한 것이다.
도 1을 참조하면, 도시된 건물은 다수의 룸들(102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 124, 126, 128, 130)을 포함하며, 각 룸 내에는 하나 혹은 그 이상의 실내기들(도시하지 않음)이 위치할 수 있다. 참조번호 150,152는 상기 룸들(102, 104, 106, 108, 110, 112, 114, 118, 120, 122, 124, 126, 128, 130)의 설정 온도를 모두 동일하게, 예를 들어 24도가 되도록 실내기들을 운전하는 동안, 상기 룸들(102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130) 내의 사용자들로부터 수집된 온열 쾌적감에 관련된 피드백들을 나타낸 것이다. 참조번호 150은 불만족(덥다) 피드백을 발생한 위치를 나타내며, 참조번호 152는 불만족(춥다) 피드백을 발생한 위치를 나타낸다.
도시하고 있는 바와 같이, 모든 룸들이 동일한 설정 온도로 관리되고 있는 동안에도 동일한 룸 내에서 서로 다른 피드백들, 즉 불만족(덥다) 피드백(150)과 불만족(춥다) 피드백(152)이 발생할 수 있다.
실내에서 활동하는 인간의 열에 대한 감각(즉 온열 쾌적감)은 환경적 요소(온도, 습도, 평균복사온도(MRT), 기류속도)와 주관적 요소(연령, 성별, 의복)에 영향을 받게 된다. 이러한 요소들을 조합해서 다수의 사람이 쾌적하다고 느끼는 온도 범위를 온열 쾌적 영역이라 한다.
이들 중 MRT는 제한된 공간 내에서 주위 벽 및 시설물들의 복사열들의 조건을 나타낸다. 즉 복사에 의해 인체와 열을 교환하는 주위 표면들의 평균 온도를 의미한다. 예를 들면 실내 기온이 동일하여도 여름의 뜨거운 천장 근처에서는 더 덥게 느끼고, 겨울의 차가운 창문 근처에서는 더 춥게 느끼는 것은 표면 온도에 따른 복사의 영향이다. 실내 표면은 부정형이고 위치에 따라 인체가 노출되는 표면의 정도가 매우 달라지므로 편의상 MRT는 벽면, 천정 면, 바닥 면과 같은 실내 각 표면들에 대한 평균 표면 온도로 계산한다.
도 2는 본 개시에서 제안하는 다양한 실시예에 적용될 수 있는 MRT 측정의 일 예를 도시한 것이다.
도 2를 참조하면, 참조번호 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222는 다수의 룸들(102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 124, 126, 128, 130) 내의 소정 위치들에서 한달 동안 MRT 시뮬레이션을 수행한 결과 측정된 평균 MRT 값들이다. 도시한 바와 같이, 남쪽에 위치한 룸들(116, 118, 120, 122, 124, 126, 128)과, 중앙에 위치한 룸들은 나머지 룸들에 비해 상대적으로 높은 MRT 값들을 가질 수 있다. 다시 말해서 룸들의 위치 및 방향에 따라 서로 다른 MRT 값들이 나타나고 있다.
도 3은 본 개시에서 제안하는 다양한 실시예에 따른 공기 조화기 제어가 적용될 수 있는 건물에서 수집된 최대 쾌적 실내 온도들의 일 예를 나타낸 것이다.
도 3을 참조하면, 참조번호 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322는 다수의 룸들(102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 124, 126, 128, 130) 내의 소정 위치들에서 최대의 만족도를 보이는 실내 측정 온도들이다. 도시한 바와 같이, 동일한 설정 온도로 실내기들을 운전하더라도 MRT(202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222)에 따라 각 공간의 실내 측정 온도는 서로 다르게 나타남을 알 수 있다.
건물 내에 위치하는 사용자들이 실제로 체감하게 되는 작용 온도(온열 쾌적감을 결정함)는 MRT와 건구 온도에 의하여 결정된다. MRT는 모든 기기들과 물체들로부터 발생되기 때문에 측정이 어렵다. 즉 MRT는 태양광, 벽면, 천장, 바닥뿐만 아니라, 모니터, 컴퓨터, 조명과 같은 전자 기기들에 의해서도 변경될 수 있다. 또한 MRT는 시간에 따라, 다시 말해서 해가 뜨고 질 때, 태양광의 세기 및 방향이 변경됨에 따라 변경될 수 있다.
후술되는 다양한 실시예들에서는 MRT를 포함하는 공간 열 쾌적 특성을 반영하여 사용자들의 온열 쾌적감을 유지할 수 있도록 시스템 에어컨을 위한 설정 온도를 결정할 수 있다.
도 4는 본 개시에서 제안되는 다양한 실시예들에 따른 공기 조화기 제어를 지원하기 위한 시스템의 일 예를 도시한 도면이다.
도 4를 참조하면, 공기 조화기 제어를 지원하기 위한 시스템은 서버(400)와, 적어도 하나의 실외기(422) 및 복수의 실내기들(424)로 구성되는 공기 조화기(air conditioner)(420)을 포함할 수 있다. 서버(400)는 복수의 실내기들(424)에 의해 측정 온도를 수집하며, 상기 실내기들(424)의 설정 온도를 제어한다. 실내기들(424)는 상기 설정 온도에 따라 실외기(422)에 의해 유입된 열을 집 안으로 전달(난방 방식)하거나 실내로부터의 열을 실외로 보내는(냉각 방식) 기능을 수행한다. 본 개시에서는 본 개시의 실시예들과 크게 관련되지 않는 시스템 에어컨의 다른 구성요소들, 즉 회로 차단기, 송풍기, 압축기 등에 대한 도시를 생략할 것이며, 이러한 도시가 본 개시의 청구하고자 하는 바를 한정하는 것이 아님은 자명하다.
서버(400)는 네트워크(402)를 통해 사용자 기기들(406,410,412)에 의한 접속을 허용하는 통신 기능을 구비할 수 있다. 예를 들어 사용자 기기(406)는 액세스 포인트(access point: AP)(404)를 통해 와이파이 방식으로 서버(400)와 통신할 수 있다. 예를 들어 사용자 기기들(410,412)은 기지국(base station: BS)(408)을 통해 광대역 통신 방식으로 서버(400)와 통신할 수 있다.
서버(400)는 실내기들(424)로부터 수집되는 측정 온도들 및 사용자 기기들(406,410,412)로부터의 피드백들을 고려하여 실내기들(424)의 각각을 위한 설정 온도를 결정하고 관리한다. 추가적으로 서버(400)는 실내에 위치하는 온도 센서들, 기류 센서들, 습도 센서들로부터 수집되는 센싱 데이터를 더 입력받아 상기 설정 온도를 결정하는데 사용할 수 있다. 서버(400)는 상기 결정된 설정 온도를 포함하는 온도 제어 명령을 해당하는 실내기(424)로 전송할 수 있다. 상기 온도 제어 명령은 유선으로, 혹은 WiFi, BLE(Bluetooth with low energy), Zigbee, ZigWave, Cellular (3G/4G/5G) 등과 같은 무선 통신 방식을 통해 해당하는 실내기(424)로 전달될 수 있다.
서버(400)는 실내기들(424)로부터 수집되는 측정 온도들 및 사용자 기기들(406,410,412)로부터의 피드백들과, 실내기들(424)을 위해 결정된 설정 온도들을 저장하고, 또한 디스플레이 상에 표시할 수 있도록 구성될 수 있다. 또한 서버(400)는 실내기들(424)의 위치 정보를 수집하고 저장할 수 있다.
도 5는 본 개시에서 제안되는 다양한 실시예들에 따른 사용자 기기에 대한 블록 구성을 도시한 것이다.
도 5를 참조하면, 사용자 기기(406, 410, 또는 412)는 제어부(510), 센서부(520), 사용자 인터페이스(user interface: UI)(530), 통신부(540), 및 저장부(550)를 포함할 수 있다.
통신부(540)는 사용자 기기(406, 410, 또는 412)에서 지원하는 적어도 하나의 통신 방식을 기반으로 외부 장치(일 예로 서버(400))와의 통신을 수행할 수 있다. 통신부(540)는 제어부(510)의 제어에 의해 하나 혹은 다수의 무선 신호 장치에 의해 송신되는 네트워크 신호를 수신하고, 상기 네트워크 신호의 신호 세기를 이용하여 자신의 위치를 추정할 수 있다. 통신부(540)는 제어부(510)의 제어에 의해 추정된 사용자 기기의 현재 위치를 나타내는 위치 정보 또는 입력 받은 위치 정보를 서버(400)로 제공할 수 있다.
통신부(540)는 제어부(510)의 제어에 의해 온열 쾌적감에 관련된 피드백을 서버(400)로 제공할 수 있다. 통신부(540)는 제어부(510)의 제어에 의해 측정 온도에 관련된 피드백을 서버(400)로 제공할 수 있다. 통신부(540)는 서버(400)로부터 공기 조화기 제어에 관련된 정보로서, 일 예로 사용자 기기가 위치한 공간에 관련되는 실내기를 위한 설정 온도, 상기 피드백을 기반으로 서버(400)에 의해 생성된 건구 온도 보정 맵과 열 쾌적 특성 맵 및 개인별 온열 쾌적 영역에 대한 정보를 수신할 수 있다. 통신부(540)는 제어부(510)의 제어에 의해 온도 제어 요청을 서버(400)로 송신할 수 있다.
사용자 인터페이스부(530)는 제어부(510)의 제어 하에 사용자에게 필요한 정보를 출력하거나 사용자에 의해 입력되는 정보를 제어부(510)로 제공할 수 있다. 예컨대, 사용자 인터페이스부(530)는 사용자로부터 온열 쾌적감 정보(일 예로 만족, 불만족(덥다 혹은 춥다))를 입력 받고, 상기 입력 받은 온열 쾌적감 정보를 제어부(510)로 제공할 수 있다. 사용자 인터페이스부(530)는 터치스크린으로 구현될 수 있는 디스플레이부(도시하지 않음)를 포함할 수 있다. 디스플레이부는 제어부(510)의 제어에 의해 사용자가 위치하는 공간에 대한 정보 및 공기 조화기 제어에 관련된 정보를 표시할 수 있다. 일 실시예로 디스플레이부는 상기 입력받은 온열 쾌적감 정보를 표시할 수 있다. 일 실시예로 디스플레이부는 제어부(510)의 제어에 의해 사용자의 위치가 속하는 공간 정보(일 예로 배치도)를 표시하고, 상기 표시된 공간 정보 상에 센서부(520)에 의해 수집된 측정 온도 및 서버(400)에 의해 결정된 설정 온도를 표시할 수 있다. 일 실시예로 디스플레이부는, 서버에 의해 생성되는 건구 온도 보정 맵 및 열 쾌적 특성 맵의 표시를 요청하는 사용자 인터페이스 정보(일 예로 메뉴 등)를 표시하고, 상기 사용자 인터페이스 정보를 통해 건구 온도 보정 맵, 열 쾌적 특성 맵 혹은 사용자의 온열 쾌적 영역의 표시를 요청하는 사용자 (터치) 입력을 수신하여 제어부(510)에게 통지할 수 있다. 디스플레이부는 제어부(510)의 제어에 따라 서버로부터 수신한 상기 건구 온도 보정 맵, 상기 열 쾌적 특성 맵 혹은 상기 온열 쾌적 영역에 대한 정보를 표시할 수 있다.
센서부(520)는 상황 정보를 센싱하기 위한 다양한 종류의 센서를 포함할 수 있다. 센서부(520)는, 예를 들면, 온도 센서와 기류 센서 및 습도 센서 중의 적어도 하나를 포함하고, 상기 센서에 따른 센싱 데이터를 제어부(510)로 제공할 수 있다. 센서부(520)는, 예를 들면, 사용자 기기의 현재 위치를 획득하기 위해 이용될 수 있는 GPS(global positioning system) 및/또는 자이로 센서 등을 더 포함하고, 상기 GPS 및/또는 자이로 센서 등에 의한 센싱 데이터를 제어부(510)로 제공할 수 있다.
제어부(510)는 센서부(520)를 통해 수집한 센싱 데이터와 외부(일 예로 사용자)로부터 입력된 정보 등을 기반으로 측정 온도와 현재 위치 및 사용자의 온열 쾌적감 정보 중 적어도 하나를 포함하는 피드백을 구성하고, 상기 피드백을 미리 정해지는 주기(예를 들어 1시간) 마다 통신부(540)를 통해 서버(400)로 주기적으로 전송할 수도 있으며 이에 한정되지는 않는다. 일 실시예로서, 상기 피드백을 전송할 시점에서, 이전 주기 동안 상기 사용자 인터페이스부(530)를 통해 사용자의 온열 쾌적감 정보가 입력되지 않는 경우, 제어부(510)는 상기 온열 쾌적감 정보 없이 상기 위치 정보 및 상기 측정 온도를 포함하는 피드백 메시지를 생성하여 주기적으로 전송할 수 있다. 일 실시예로서, 상기 피드백을 전송할 시점에서, 이전 주기 동안 상기 사용자 인터페이스부(530)를 통해 사용자의 온열 쾌적감 정보가 입력되지 않는 경우, 제어부(510)는 만족을 나타내는 온열 쾌적감 정보를 자동으로 생성하고, 상기 위치 정보와 상기 측정 온도 및 상기 생성된 온열 쾌적감 정보를 포함하는 피드백 메시지를 생성하여 주기적으로 전송할 수 있다.
제어부(510)는 상기 센싱 데이터 및 입력된 정보를 사용하여 온도 제어 요청을 구성할 수 있다. 상기 온도 제어 요청은, 예를 들면, 원하는 설정 온도에 대한 정보를 포함할 수 있다. 제어부(510)는 상기 구성한 피드백 및/또는 온도 제어 요청을 통신부(540)를 통해 서버(400)로 전송할 수 있다.
제어부(510)는 서버(540)에 의해 제공된 온도 제어 정보를 사용하여 사용자 인터페이스부(530)에 포함된 디스플레이부에 사용자를 위해 설정된 설정 온도를 표시하기 위한 제어를 수행할 수 있다. 제어부(510)는 서버(540)에 의해 제공된 상기 온도 제어 정보 내의 공간 정보를 기반으로 사용자가 위치하는 공간 이미지를 디스플레이부에 표시하기 위한 제어를 수행할 수 있다. 상기 공간 정보는, 인간이나 사물이 점유하고 있는 장소 또는 인간의 활동이 행해지는 공간이나 물체의 운동이 이루어지는 임의의 경계에 의해 타 공간과 구분되는 장소에 대한 정보를 의미한다. 일 실시예로, 상기 공간 정보는, 층별 설비 및/또는 가구에 대한 배치도 및/또는 실내 지도를 포함할 수 있다.
제어부(510)는 디스플레이부에 표시된 공간 이미지 상에 사용자를 위해 결정된 설정 온도가 표시되도록 디스플레이부를 제어할 수 있다. 제어부(510)는 통신부(540)를 통해 상기 피드백 및/또는 온도 제어 요청에 대한 처리 결과를 서버(400)로부터 수신하고, 상기 수신한 처리 결과를 디스플레이부에 표시하기 위한 제어를 수행할 수 있다.
저장부(550)는 사용자 인터페이스(530)를 통해 입력된 온열 쾌적감 정보와 센서부(520)로부터 전달되는 센싱 데이터 및 통신부(540)에 의해 서버(400)로부터 수신한 정보를 저장할 수 있다.
도 6은 본 개시에서 제안되는 다양한 실시예들에 따른, 서버에 대한 블록 구성을 도시한 것이다.
도 6을 참조하면, 서버(400)는 제어부(610), 통신부(620), 저장부(630), 입출력부(640)를 포함할 수 있다.
통신부(620)는 실내기들(424) 및 사용자 기기들(406,410,412)과의 통신을 수행할 수 있다. 통신부(620)는, 예를 들면, 사용자 기기들(406,410,412)로부터 측정 온도와 온열 쾌적감 정보 및 위치 정보를 포함하는 피드백을 수신하며, 실내기들(424) 및 다른 온도 센서들로부터 측정 온도에 대한 정보를 수신할 수 있고, 실내기들(424)로 온도 제어 명령을 전송할 수 있다.
제어부(610)는 통신부(620)를 통해 수집된 피드백을 기반으로 건구 온도 보정 맵 및 열 쾌적 특성 맵을 생성하며, 실내기들(424)을 위한 설정 온도를 결정할 수 있다. 제어부(610)는 상기 결정한 설정 온도를 포함하는 온도 제어 명령을 통신부(620)를 통해 실내기들(424)로 전송할 수 있다. 상기 온도 제어 명령은 실내의 각 공간에 위치한 사용자들의 온열 쾌적감을 만족할 수 있도록, 해당 공간의 공기 조화기 제어에 관련되는 적어도 하나의 실내기들로 전달될 수 있다. 제어부(610)는 키보드나 마우스와 같은 사용자 인터페이스(도시하지 않음)를 사용하여 희망 설정 온도에 대한 정보를 관리자로부터 입력받고, 상기 희망 설정 온도를 기반으로 실내기들(424)에게 실제로 적용될 설정 온도를 계산할 수 있다. 제어부(610)는 저장부(630)에 저장된 건구 온도 보정 맵 및 열 쾌적 특성 맵을 해당하는 사용자 기기로 전송하도록 통신부(620)를 제어할 수 있다. 또한 제어부(610)는 사용자 기기로부터의 피드백 메시지를 이용하여, 사용자 기기에 대응되는 온열 쾌적 영역을 결정하고, 상기 온열 쾌적 정보에 대한 정보를 상기 사용자 기기로 전송하도록 통신부(620)를 제어할 수 있다.
저장부(630)는 제어부(610)에 의한 설정 온도의 결정에 이용될 수 있는, 건구 온도 보정 맵, 열 쾌적 특성 맵, 설정 온도에 대한 정보를 저장할 수 있다. 저장부(630)는 소정 기간 동안의 건구 온도 보정 맵, 열 쾌적 특성 맵, 설정 온도에 대한 이력 정보를 저장하고, 제어부(610)의 제어에 따라 저장된 정보를 제공할 수 있다.
입출력부(640)는 제어부(610)의 제어에 따라, 설정 온도의 결정과 관련되는 정보를 표시하는 디스플레이와, 희망 온도를 입력받아 제어부(610)로 전달할 수 있는 입력부를 포함한다. 일 실시예로 디스플레이는 제어부(610)에 의해 생성된 건구 온도 보정 맵과 열 쾌적 특성 맵과 실내기별 설정 온도 및 특정 공간을 희망 온도로 제어하기 위한 희망 설정 온도를 표시할 수 있다. 이때 제어부(610)는 저장부(630)에 저장되어 있는 시간 대역 별 복수의 건구 온도 보정 맵들 중 현재 시간과 동일한 시간 대역 혹은 가장 유사한 시간 대역에 대응되는 하나의 건구 온도 보정 맵을 디스플레이에 표시할 수 있다. 상기 시간 대역은 일 예로 시간대 기준(오전, 오후, 저녁) 혹은 계절 기준(동절기, 하절기)을 포함할 수 있다. 상기 시간 대역의 간격은 예를 들어 1시간 혹은 2시간 등으로 설정될 수 있다.
도 7은 본 개시의 일 실시예에 따른 공기 조화기 제어 동작을 설명하는 신호 흐름도이다.
도 7을 참조하면, 과정 712 및 714에서 사용자 기기들(702,704)는 측정 온도와 온열 쾌적감 정보 및 위치 정보 중 적어도 하나를 포함하는 피드백을 서버(710)로 전송한다. 상기 위치 정보는 일 예로 통신부(540)에 의해 감지된 적어도 하나의 네트워크 노드의 식별 정보와, 상기 적어도 하나의 네트워크 노드에 대한 수신 신호 세기(일 예로 수신 신호 세기 지시자(received signal strength indicator: RSSI))의 리스트(이하 RSSI 리스트라 칭함)가 될 수 있다. 상기 네트워크 노드는 예를 들어 액세스 포인트(404), 기지국(408), 라우터, 혹은 게이트웨이 등이 될 수 있다. 다른 예로 상기 위치 정보는 GPS에 의해 감지된 위도/경도가 될 수 있다. 도시된 예에서 피드백은 위치 정보로서 RSSI 리스트를 포함한다.
과정 716에서 서버(710)는 실내기들(706) 및 다른 온도 센서들(도시하지 않음)로부터 측정 온도를 수집할 수 있다.
과정 718에서 서버(710)는 과정 712, 714, 716에서 수집된 정보를 기반으로 시스템 에어컨의 실내기들을 제어하기 위한 설정 온도들을 계산한다. 일 실시예로 서버는 사용자 기기 1,2(702,704)와의 최단 거리에 위치하거나 또는 해당 사용자 기기들(702,704)의 위치에 대해 다른 실내기 대비 상대적으로 우수한 온도 제어 성능을 제공할 수 있는 적어도 하나의 실내기를 선정하고, 상기 수집된 피드백 및 상기 실내기로부터 수신한 측정 온도를 이용하여 상기 실내기를 위한 설정 온도를 결정할 수 있다. 과정 720에서 상기 계산된 설정 온도들은 온도 제어 명령에 실려 해당하는 실내기들(706)로 전달된다. 과정 718에 대한 구체적인 동작은 후술되는 실시예들에서 설명될 것이다. 선택적으로 수행될 수 있는 과정 720에서 서버(710)는 상기 결정된 설정 온도와, 상기 설정 온도를 결정하기 위해 사용된 건구 온도 보정 맵, 열 쾌적 특성 맵, 및/또는 온열 쾌적 영역에 대한 정보를 사용자 기기들(702,704)에게 제공할 수 있으며, 사용자 기기들(702,704)는 사용자의 요청에 따라 혹은 자동으로 상기 제공받은 정보를 표시할 수 있다.
도 8은 본 개시의 일 실시예에 따른 서버에 의해 수행되는 공기 조화기 제어 동작을 도시한 흐름도이다.
도 8을 참조하면, 과정 805에서 서버는 제어하고자 하는 실내기들이 위치하는 공간 내에 위치한 사용자 기기들로부터 수신한 측정 온도 및 위치에 대한 정보를 기반으로 건구 온도 분포 테이블을 생성하고, 상기 건구 온도 분포 테이블과 상기 공간에 대한 지도(Map) 정보를 이용하여 건구 온도 보정 맵을 생성한다. 상기 건구 온도 분포 테이블은 실내에 위치하는 사용자 기기들(및 다른 온도 센서들)로부터 수집되는 측정 온도들과, 상기 측정 온도들이 감지된 위치들을 의미한다. 상기 건구 온도 보정 맵은 하나의 공간 내에서 수집되는 측정 온도들의 보정 값들과 그에 대응되는 위치들을 나타낸다. 건구 온도 보정 맵의 생성에 대한 구체적인 실시예는 후술될 것이다.
과정 810에서 서버는 사용자 기기들로부터 수집된 피드백들 내의 온열 쾌적감 정보와 측정 온도를 기반으로, 제어하고자 하는 공간에 대한 공간 열 쾌적 특성을 나타내는 열 쾌적 특성 맵을 생성한다. 상기 열 쾌적 특성 맵은 동일한 온열 쾌적감 정보를 가지는 피드백의 측정 온도들에 대한 보정 온도들의 상대값들과 그에 대응되는 위치들을 나타낸 것으로서, 공간 내의 복사열 차이를 정의한다. 상기 상대값들은 공간 열 쾌적 특성을 정의하는 것으로, 공간에 따른 설정 온도의 차이에 영향을 미친다. 각 보정 온도는 하나의 위치에서 소정 거리 이내의 측정 온도들에 대한 평균으로 계산될 수 있다. 각 상대값은 하나의 보정 온도와 동일 공간 내의 최대 보정 온도 간의 차이로 계산될 수 있다. 열 쾌적 특성 맵의 생성에 대한 구체적인 실시예는 후술될 것이다.
과정 815에서 서버는 상기 건구 온도 보정 맵 및 열 쾌적 특성 맵을 기반으로 시스템 에어컨의 각 실내기를 위한 설정 온도를 결정한다. 상기 설정 온도는 미리 정해지는 희망 설정 온도에 상기 열 쾌적 특성 맵을 적용함으로써 설정 온도 분포를 결정하고, 상기 설정 온도 분포에 상기 건구 온도 보정 맵을 적용함으로써 계산될 수 있다. 구체적으로, 특정 실내기를 위한 설정 온도는 상기 설정 온도 분포를 상기 건구 온도 보정 맵을 적용하여 보정하고, 상기 보정된 온도들에 대한 온도별 면적을 고려한 평균을 계산함으로써 결정된다. 설정 온도의 결정에 대한 구체적인 실시예는 후술될 것이다.
과정 820에서 서버는 상기 결정된 설정 온도를 포함하는 온도 제어 명령을 해당하는 실내기로 전송함으로써 상기 실내기를 제어한다. 여기서 시스템 에어컨을 구성하는 복수의 실내기들 중 제어가 필요한 적어도 하나의 실내기를 위한 적어도 하나의 온도 제어 명령이 전송될 수 있다.
도 9는 본 개시의 일 실시예에 따른 건구 온도 보정 맵의 생성 동작(805)을 도시한 흐름도이다.
도 9를 참조하면, 과정 905에서 서버는 사용자 기기들(및 다른 온도 센서들)로부터 수집된 측정 온도들을 식별하고, 과정 910에서 상기 측정 온도들이 검출된 위치들을 식별한다. 일 예로 사용자 기기들(및 다른 온도 센서들)은 미리 설정되는 주기에 따라 주기적으로 측정 온도 및 위치 정보를 포함하는 피드백들을 서버로 보고할 수 있다. 서버는 소정 시간 구간 동안 수집된 측정 온도들의 평균, 혹은 가장 최근에 수집된 측정 온도를 사용할 수 있다. 상기 위치들은, 사용자 기기들(및 다른 온도 센서들)에 의해 감지된 네트워크 신호의 신호 세기 및 상기 네트워크 신호를 송출하는 네트워크 노드의 식별 정보로 정의될 수 있다.
과정 915에서 서버는 제어하고자 하는 공간을 커버하는 실내기에 의해 감지된 측정 온도를 식별하고, 과정 920에서 상기 식별된 정보들을 기반으로 건구 온도 보정 맵을 생성한다. 일 실시예로서 서버는 상기 건구 온도 보정 맵을 생성하기 위해 건구 온도 분포 테이블을 사용할 수 있다. 상기 건구 온도 분포 테이블은 측정 온도들과 그에 대응되는 위치들을 포함하며, 건구 온도 보정 맵은 실내기의 위치를 중심으로 하는 복수의 반경 거리들에 따른 구간들마다, 각 구간 내 상기 측정 온도들의 상대값들과 그에 대응되는 위치들을 나타낸다. 상기 생성된 건구 온도 분포 테이블 및 건구 온도 보정 맵은 서버의 저장부에 공간 별로 저장된다. 일 실시예로서 서버는 사용자 기기들로부터 측정 온도들을 포함하는 피드백 메시지들을 수신하여, 상기 피드백 메시지들을 시간 대역 별로 분류하고, 동일한 시간 대역(예를 들어 오전 9시~12시, 오후 12~14시) 내의 수신 시간을 가지는 피드백 메시지들에 포함된 위치 정보 및 측정 온도를 이용하여, 시간 대역 별로 건구 온도 보정 맵을 독립적으로 생성할 수 있다.
도 10a는 본 개시의 일 실시예에 따른 건구 온도 분포 테이블의 일 예를 나타낸 것이다.
도 10a을 참조하면, 도시된 건구 온도 분포 테이블에서 첫번째 열은 사용자 기기의 식별 정보를 의미하고, 두번째 열은 각 사용자 기기에 의해 감지된 측정 온도를 의미하며, 세번째 이후의 열들은 각 사용자 기기에 의해 감지된 AP들로부터의 신호 세기들을 의미한다. 서버는 상기 AP들의 위치 정보를 저장하고 있으며, 상기 AP들로부터의 신호 세기들을 기반으로 해당 사용자 기기의 위치를 추정할 수도 있으며 이에 한정되지는 않는다. 따라서 상기 세번째 이후의 열들은 각 사용자 기기의 위치 정보에 대응한다. 일 예로, 도시한 건구 온도 분포 테이블에서 사용자 기기 1은 AP3에 가장 가까우며, AP1 및 AP2의 신호를 감지할 수 있는 장소에 위치함을 알 수 있다.
도시하지 않을 것이지만, 서버는 사용자 기기로부터의 피드백에 포함된 AP들로부터의 신호 세기들을 기반으로 사용자 기기의 위치를 추정하고, 상기 추정된 위치를 지시하는 정보(일 예로서 위도/경도/높이)를 상기 세번째 이후의 열들을 대신하여 상기 건구 온도 분포 테이블에 포함시킬 수 있다.
도 10b는 본 개시의 일 실시예에 따른 건구 온도 보정 맵의 일 예를 나타낸 것이다.
도 10b를 참조하면, 도시된 건구 온도 보정 맵은 도 10a에 도시된 건구 온도 분포 테이블을 기반으로 생성된 것이다. 도시한 바와 같이 특정한 실내기(1010)를 기준으로 하는 건구 온도 보정 맵은 실내기(1010)에 의해 측정된 온도(24도)를 기준으로 하여, 상기 실내기의 위치를 포함하는 제1 반경 거리(예를 들어 1m)를 가지는 제1 구간(1015)과, 상기 제1 구간(1015)을 제외한, 제2 반경 거리(예를 들어 1m~2m)를 가지는 제2 구간(1020) 및 상기 제2 구간(1020)을 제외한, 제3 반경 거리(예를 들어 2m~3m)를 가지는 제3 구간(1025)을 나타낸다. 도시하지 않을 것이나, 수집된 측정 온도의 값들에 따라 제3 구간 이후의 적어도 하나 이상의 구간이 존재할 수도 있다. 각 구간은 상기 기준 온도(즉 실내기에 의한 측정 온도)에 대한 온도 차이를 나타내는 보정값들에 따라 정의된다. 도시된 예에서 제2 구간(1020)의 평균 측정 온도는 25도이며, 따라서 제2 구간(1020)의 보정값은 +1이고, 제3 구간(1025)의 평균 측정 온도는 25.5도 이며, 따라서 제3 구간(1025)의 보정값은 +1.5도이다. 각 구간을 위한 반경 거리의 범위 및 온도 범위는 서버에 의해 미리 정해질 수 있다.
일 실시예로서, 서버는 상기 구간들(1015,1020,1025)의 면적을 고려하여 공간 전체의 평균 측정 온도를 계산할 수 있다.
예를 들어, 제1 구간(1015)의 면적이 A1이고, 제2 구간(1020)의 면적이 A2이며, 제3 구간(1025)의 면적이 A3일 때, 공간에 대한 평균 측정 온도는 아래와 같이 계산될 수 있다.
(A3×25.5 + A2×25 + A3×24) / (A1 + A2 + A3)
일 실시예로서, 서버는 상기 구간들(1015,1020,1025)의 면적을 고려하여 공간 전체의 평균 보정값을 계산할 수 있다.
예를 들어, 제1 구간(1015)의 보정값이 a1이고, 제2 구간(1020)의 보정값이 a2이며, 제3 구간(1025)의 보정값이 a3일 때, 공간에 대한 평균 보정값은 아래와 같이 계산될 수 있다.
(A3×a1 + A2×a2 + A3×a3) / (A1 + A2 + A3)
도 11은 본 개시의 일 실시예에 따른 열 쾌적 특성 맵의 생성 동작(810)을 도시한 흐름도이다.
도 11을 참조하면, 과정 1105에서 서버는 사용자 기기들(및 다른 온도 센서들)로부터 수집된 피드백들에 포함되는 측정 온도들 및 온열 쾌적감 정보를 식별하고, 과정 1110에서 하나의 동일한 온열 쾌적감 정보를 가지는 피드백들에 대응하는 사용자 기기들의 위치들을 식별한다. 일 예로서 서버는 만족 피드백에 포함되는 측정 온도들을 사용할 수 있다. 다른 예로서 서버는 불만족(춥다) 피드백에 포함되는 측정 온도들을 사용할 수 있다. 또 다른 예로 서버는 불만족(덥다) 피드백에 포함되는 측정 온도들을 사용할 수 있다.
과정 1115에서 서버는 상기 측정 온도들에 대한 보정 온도들의 상대값들을 계산한다. 각 보정 온도는 일부 실시예에 따라, 하나의 위치에서 소정 거리 (일 예로 3m) 이내의 측정 온도들에 대한 평균으로 계산될 수 있다. 이때 보정온도에 대한 대표 위치 좌표는 모든 측정 온도들에 대응하는 위치 좌표들의 무게 중심 좌표로서 정의될 수 있다. 상기 소정 거리는 일 예로서 실내기들 간 표준 간격(혹은 평균 설치 간격)의 1/2로 정의될 수 있다. 또한 일부 실시예에 따라, 서버는, 실내기와의 거리를 기준으로 일정 거리 이내의 측정 온도들의 평균을 계산하고, 실내기와의 거리에 따른 구간별로 측정 온도들의 평균을 각구간의 보정 온도로서 결정할 수 있다. 상기 보정 온도는 하나의 실내기가 커버하는 공간에 대한 온도 평균을 판단하기 위하여 사용된다. 각 상대값은 하나의 보정 온도와 동일 공간 내의 기준 온도 간의 차이로 계산될 수 있다. 일 실시예로서 상기 기준 온도는 상기 공간 내의 보정 온도들 중 최대값 혹은 최소값이 될 수 있다.
과정 1120에서 서버는 상기 상대값들과 해당하는 위치들을 나타내는 열 쾌적 특성 맵을 생성한다. 상기 생성된 열 쾌적 특성 맵은 서버의 저장부에 공간 별로 저장된다.
도 12는 본 개시의 일 실시예에 따른 보정 온도 분포의 일 예를 나타낸 것이다.
도 12를 참조하면, 도시된 보정 온도 분포 맵은 일 예로서 만족 피드백들에 포함되는 측정 온도들에 대한 보정 온도들과 그에 대응하는 위치들을 나타낸다. 도시된 예에서 각 보정 온도는 해당하는 측정 온도가 검출된 위치로부터 소정 거리, 일 예로서 3m 이내의 측정 온도들의 평균으로서 계산될 수 있다. 상기 소정 거리는 시스템 에어컨의 설치를 위해 주어진 실내기들 간 표준 간격(일 예로서 6m)의 절반이다.
도 13은 본 개시의 일 실시예에 따른 열 쾌적 특성 맵의 일 예를 나타낸 것이다.
도 13을 참조하면, 열 쾌적 특성 맵은 보정 온도들의 상대값들과 그에 대응되는 위치들을 나타낸다. 도시된 열 쾌적 특성 맵에서 중앙에 위치한 상대값(1300)은 기준 보정 온도에 대응하며, 다른 상대값(1305)은 상기 기준 보정 온도와, 해당 위치의 보정 온도 간의 차이를 의미한다. 상기 기준 보정 온도는 일 예로서 공간 내의 보정 온도들 중 최대값을 의미한다. 상기 열 쾌적 특성 맵의 상대값들(1300,1305)는 공간 내에 전체적으로 균일한 작용 온도를 제공하기 위하여 공간에 따라 실내기의 설정 온도를 차별화하기 위해 사용된다.
도 14는 본 개시의 일 실시예에 따른 설정 온도의 결정 동작(815)을 도시한 흐름도이다.
도 14를 참조하면, 과정 1405에서 서버는 미리 설정되어 있는 희망 설정 온도를 식별하거나, 관리자로부터 희망 설정 온도를 입력받고, 과정 1410에서 제어하고자 하는 대상인 실내기를 선정한다. 실내기가 선정되면, 상기 실내기를 중심으로 하는 공간을 식별할 수 있다. 일 실시예로, 상기 공간은 상기 실내기로부터 소정 거리 이내로 정의될 수 있다. 상기 소정 거리는 일 예로서 실내기들 간 표준 간격 혹은 평균 간격의 1/2로 정의될 수 있다.
과정 1415에서 서버는 상기 선정된 실내기에 대응하는 공간의 열 쾌적 특성 맵을 저장부로부터 독출하고, 과정 1420에서 상기 공간의 건구 온도 보정 맵을 마찬가지로 저장부에서 독출한다. 과정 1425에서 서버는 상기 희망 설정 온도에 상기 열 쾌적 특성 맵과 건구 온도 보정 맵을 적용하여 상기 선정된 실내기를 위한 설정 온도를 결정한다. 상기 결정된 설정 온도는 서버의 저장부에 공간 별로 저장될 수 있다.
도 15a 및 도 15b는 본 개시의 일 실시예에 따른 서버에 의한 설정 온도의 결정 예를 도시한 것이다.
도 15a를 참조하면, 서버는 희망 설정 온도(1505)로부터 열 쾌적 특성 맵의 위치별 상대값들(1510)을 감산하여 희망 온도 분포(1515)를 계산한다. 상기 희망 온도 분포(1515)는 제어하고자 하는 공간 내의 위치들에 대응하는 희망 온도들을 포함하게 된다. 서버는 상기 희망 온도 분포(1515) 내의 희망 온도들을 기반으로, 제어하고자 하는 실내기의 위치에 대응하는 희망 온도(1520)를 계산할 수 있다. 일 예로 상기 희망 온도는 상기 희망 온도 분포(1515) 내의 희망 온도들의 평균으로써 계산될 수 있다. 일 예로 서버는 상기 실내기의 위치에 가장 가까운 소정 개수의 희망 온도들을 실내기와의 거리에 따라 보간하여 상기 희망 온도를 계산할 수 있다.
도 15b를 참조하면, 서버는 상기 희망 온도(1520)에서 건구 온도 보정 맵(1525)의 구간별 보정값들을 감산하여 설정 온도 분포 맵(1530)을 결정한다. 설정 온도 분포 맵(1530)은 실내기의 위치를 기준으로 구간별 설정 온도들을 나타낸다. 도시된 예에서 실내기에 가장 가까운 제1 구간을 위한 설정 온도는 23.8도이고, 다음으로 가까운 제2 구간을 위한 설정 온도는 23.2도이며, 가장 먼 제3 구간을 위한 설정 온도는 22.3도이다.
그러면 실내기를 위한 설정 온도는 최종적으로 상기 구간별 설정 온도들에 근거하여 계산된다.
일 실시예로서, 상기 실내기를 위한 설정 온도는 상기 구간별 설정 온도들의 평균으로써 계산될 수 있다.
일 실시예로서, 서버는 설정 온도 분포 맵(1530)에 포함되는 구간들의 면적을 고려하여 실내기를 위한 설정 온도를 최종적으로 계산할 수 있다.
예를 들어, 제1 구간의 면적이 A1이고, 제2 구간의 면적이 A2이며, 제3 구간의 면적이 A3일 때, 공간에 대한 평균 측정 온도는 아래와 같이 계산될 수 있다.
(A3×23.8 + A2×23.2 + A3×22.3) / (A1 + A2 + A3)
일 실시예로서 서버는 희망 온도(1520)에 건구 온도 보정 맵(1525)의 보정값들을 개별적으로 적용하는 대신, 건구 온도 보정 맵(1525)의 평균 보정값을 적용함으로써 실내기를 위한 설정 온도를 직접적으로(설정 온도 분포 맵 없이) 계산할 수 있다.
후술되는 실시예에서 공간 열 쾌적 특성은 사용자 기기들로부터의 불만족 피드백들을 기반으로 결정될 수 있다.
도 16은 본 개시의 일 실시예에 따른 불만족 피드백을 고려한 열 쾌적 특성 맵의 생성 동작(810)을 도시한 흐름도이다.
도 16을 참조하면, 과정 1605에서 서버는 사용자 기기들(및 다른 온도 센서들)로부터 측정 온도들을 포함하는 불만족 피드백들을 수집한다. 상기 불만족 피드백들은 동일한 온열 쾌적감 정보, 예를 들어 불만족(춥다) 혹은 불만족(덥다)의 온열 쾌적감 정보를 포함할 수 있다. 일 예로서 서버는 개별적인 사용자 기기로부터 발생한 최초의 불만족 피드백을 이용할 수 있다. 예를 들어, 한 명의 사용자가 복수의 불만족 피드백을 동일(혹은 유사한) 위치에서 서버로 전송하는 경우, 상기 복수의 불만족 피드백 중 가장 처음으로 전송된 불만족 피드백 내의 측정 온도를 기준으로 열 쾌적 특성 맵이 생성될 수 있다. 또 다른 예로서, 서버는 개별적인 사용자 기기로부터 발생한 복수의 불만족 피드백들에 대한 평균 측정 온도를 이용할 수 있다. 또한 일부 실시예로, 서버는 일정 시간 대역(예를 들어 1시간) 동안 발생한 복수의 피드백들을 그 수신 시간에 따라 분류하고, 특정 시간 대역에 대한 동일한 종류의 피드백(만족, 불만족(덥다), 불만족(춥다))를 식별하여, 시간 대역 별로 열 쾌적 특성 맵을 독립적으로 생성할 수 있다. 일 실시예로 동일한 사용자 기기로부터 불만족(덥다)의 온열 쾌적감 정보를 포함하는 복수의 피드백 메시지들이 수신된 경우, 서버는 최초로 수신된 피드백 메시지를 이용하여 상기 사용자 기기를 위한 온열 쾌적 영역의 상한 온도를 결정한다. 일 실시예로 동일한 사용자 기기로부터 불만족(춥다)의 온열 쾌적감 정보를 포함하는 복수의 피드백 메시지들이 수신된 경우, 서버는 최초로 수신된 피드백 메시지를 이용하여 상기 사용자 기기를 위한 온열 쾌적 영역의 하한 온도를 결정할 수 있다.
과정 1610에서 서버는 상기 불만족 피드백들을 발생하는 사용자 기기들의 위치들을 식별한다. 상기 위치들은, 일 예로서 상기 불만족 피드백들에 포함되는 네트워크 노드 식별 정보와 RSSI를 기반으로 식별될 수 있다.
과정 1615에서 서버는 상기 불만족 피드백들에 포함된 측정 온도들에 대한 보정 온도의 상대값들을 계산한다. 과정 1620에서 서버는 상기 계산된 상대값들과 그에 해당하는 위치들을 나타내는 열 쾌적 특성 맵을 생성한다.
도 17은 본 개시의 일 실시예에 따른 보정 온도 분포의 일 예를 나타낸 것이다.
도 17을 참조하면, 도시된 보정 온도 분포는 불만족(덥다) 피드백에 대응하는 보정 온도들과 그에 대응하는 위치들을 나타낸다. 도시된 예에서 각 보정 온도는 해당하는 측정 온도가 검출된 위치로부터 소정 거리, 일 예로서 3m 이내의 측정 온도들의 평균으로서 계산되었다.
후술되는 실시예들에서는 공간 내의 MRT 특성을 고려하여 시스템 에어컨을 위한 설정 온도를 결정하는 동작을 제공한다.
도 18a은 이론상의 공간에서 나타나는 MRT 특성을 도시한 것이며, 도 18b는 실제 환경의 공간에서 나타나는 MRT 특성들을 도시한 것이다.
도 18a에 도시한 바와 같이 모든 벽면들의 표면 온도들(1805,1810,1815,1820)이 T1으로 동일한 이상적인 공간에서는 공간 내의 MRT(1800)는 벽면의 온도를 이용하여 쉽게 계산된다. (TMRT=T1)
도 18b에 도시한 바와 같이, 실제 환경의 공간에서는 벽면들의 표면 온도들(1835,1840,1845,1850,1855)이 T1, T2, T3, T4, T5로 다양하고, 또한 창문이나 전자 기기 및 문과 같은 여러 가지 인자들로 인해 공간 내의 MRT(1830)을 계산하기가 어렵다.
도 19a 및 도 19b는 본 개시의 일 실시예에 따른 실내 MRT의 추정 동작을 설명하기 위한 도면이다.
열은 높은 쪽에서 낮은 쪽으로 이동하는 특성을 가지기 때문에, 도 19a에서 도시하고 있는 바와 같이, 벽면들(1905)로 둘러싸인 공간 내의 건구 온도와 벽면 온도들은 시간이 충분히 흐르면 같아지게 된다.
따라서 도 19b에 도시하고 있는 바와 같이, 시간이 흐름에 따라 건구 온도 TDrybulb는 MRT TMRT와 동일하게 된다.
벽면들(1905)로부터 방출되는 열은 대류와 복사의 두 가지로 구분된다. 온도 센서(1910)에 의해 측정될 수 있는 건구 온도는 벽면 대류에 의하여 변화되므로 벽면 온도들에 따라 온도 변화량이 결정될 수 있다.
건구 온도의 변화량은 TDrybulb와 TMRT의 차이에 의하여 결정된다.
또한 대류에 의해 전달되는 열의 양은 기류의 세기에 따라 결정되기 때문에, 기류 센서(1915)에 의한 기류 측정값이 필요하다. 따라서 기류의 세기에 따른 건구 온도의 변화량을 기반으로 MRT가 추정될 수 있다.
서버는 실내기가 오프되어 있는 동안 공간 내에서 건구 온도들의 측정값들과 MRT의 측정값들을 수집하고, 건구 온도의 변화량에 대응하는 MRT를 나타내는 기준 MRT 추정 테이블을 생성한다. 기준 MRT 추정 테이블은, 측정된 건구 온도와 MRT 및 기류에 따라, 소정 단위 시간(일 예로 1분) 동안의 건구 온도 변화량을 저장할 수 있다.
도 20은 본 개시의 일 실시예에 따른 기준 MRT 추정 테이블의 일 예를 나타낸 것이다.
도 20을 참조하면, 도시한 기준 MRT 추정 테이블은 기류의 세기가 0.1m/sec인 공간 내에서 건구 온도의 각 측정값과 MRT의 각 측정값에 대한 건구 온도의 변화량을 저장한 것이다. 도시된 예에서 일 예로 측정된 건구 온도가 24도이고 최근 1분 간의 건구 온도의 변화량이 0.3도인 경우, 서버는 MRT를 26도로 추정할 수 있다. 일 예로 측정된 건구 온도가 26도이고, 최근 1분 간의 건구 온도의 변화량이 -0.3도인 경우, 서버는 MRT를 24도로 추정할 수 있다.
도 21은 본 개시의 일 실시예에 따라 전자 기기들의 존재에 따른 실내 MRT의 추정 동작을 설명하기 위한 도면이다.
도 21에서 도시하고 있는 바와 같이, MRT는 공간 내에 존재하는 전자 기기들의 존재와 개수에 의해서도 영향을 받는다. 서버는 관리자로부터 공간 내에 존재하는 전자 기기들에 대한 정보를 입력받거나, 건물 내의 설비에 대한 정보를 저장하는 저장부 내의 데이터베이스로부터 공간 내의 전자 기기들에 대한 정보를 독출하거나, 전자 기기들의 존재를 직접 혹은 간접적으로 감지하거나, 혹은 상기한 방식들 중 적어도 두 개를 조합하여, 제어하고자 하는 공간 내에 위치하는 전자 기기들의 존재와 개수를 식별한다. 상기 전자 기기들의 존재와 개수는 기준 MRT 추정 테이블에 저장될 수 있다.
도 22는 본 개시의 일 실시예에 따른 전자 기기들의 정보를 포함하는 기준 MRT 추정 테이블의 일 예를 나타낸 것이다.
도 22를 참조하면, 도시한 기준 MRT 추정 테이블은 기류의 세기가 0.1m/sec인 공간 내에서 건구 온도의 각 측정값과 MRT의 각 측정값에 대한 건구 온도의 변화량을 저장한 것으로서, 측정 환경의 전자 기기들에 대한 정보를 더 포함한다. 일 예로 "서버 1, 조명3", "모니터 1, 조명 4", "서버 2, 모니터 2, 조명 4"와 같은 정보들이 상기 기준 MRT 추정 테이블 내에 저장될 수 있다. 상기한 기준 MRT 추정 테이블을 기반으로, 서버는 측정된 건구 온도와 제어하고자 하는 공간 내의 설비에 대한 정보 및 최근 단위 시간 내의 건구 온도의 변화량에 따라 MRT를 추정할 수 있다.
도 23은 본 개시의 일 실시예에 따라 MRT를 고려하여 설정 온도를 결정하는 동작을 도시한 흐름도이다.
도 23을 참조하면, 과정 2305에서 서버는 제어하고자 하는 공간을 선택하고, 상기 실내기를 위한 희망 설정 온도를 입력받으며, 과정 2310에서 상기 선택된 공간 내의 실내기를 식별한다. 과정 2315에서 서버는 상기 공간 내에서 수집된 측정 온도들에 대한 정보를 저장부로부터 독출한다. 추가적으로 서버는 상기 공간 내의 전자 기기들에 대한 정보를 추가적으로 더 독출하거나, 혹은 상기 공간 내의 전자 기기들의 타입 및 개수를 식별할 수 있다.
과정 2315에서 서버는 상기 측정 온도들 및/또는 전자 기기들에 대한 정보를 이용하여 앞서 설명한 기준 MRT 추정 테이블으로부터 MRT를 추정한다. 일 예로서 서버는 상기 공간 내에서 수집된 측정 온도들 및 상기 측정 온도들의 최근 단위 시간 동안의 변화량에 따라 상기 MRT를 추정할 수 있다. 일 예로서 서버는 상기 공간 내에서 수집된 측정 온도들과, 상기 측정 온도들의 최근 단위 시간 동안의 변화량들 및 상기 공간 내에 위치하는 전자 기기들의 종류 및 개수에 따라, 상기 측정 온도들의 위치에 대응하는 MRT들을 추정하고, 상기 MRT들의 기준 MRT에 대한 상대값들을 계산할 수 있다. 여기서 상기 기준 MRT는 예를 들어 상기 MRT들 중 최대값이 될 수 있다. 서버는 상기 추정된 MRT들의 상대값들과 그에 대응하는 위치들을 나타내는 공간 MRT 분포 맵을 생성하여 저장부에 저장할 수 있다.
과정 2325에서 서버는 상기 공간의 건구 온도 보정 맵을 저장부로부터 독출한다.
과정 2330에서 서버는 상기 희망 설정 온도에 상기 건구 온도 보정 맵을 적용하여 상기 선정된 실내기를 위한 설정 온도를 결정한다. 상기 결정된 설정 온도는 서버의 저장부에 공간 별로 저장되며, 서버에 의해 해당 실내기로 전송될 수 있다.
도 24a 및 도 24b는 본 개시의 일 실시예에 따른 MRT 추정을 이용한 설정 온도의 결정 예를 도시한 것이다.
도 24a를 참조하면, 서버는 희망 설정 온도(2405)로부터 공간 MRT 분포 맵(2410)의 위치별 MRT 상대값들을 감산하여 희망 온도 분포(2415)를 계산한다. 상기 희망 온도 분포(2415)는 제어하고자 하는 공간 내의 위치들에 대응하는 희망 온도들을 포함하게 된다. 서버는 상기 희망 온도 분포(2415) 내의 희망 온도들을 기반으로, 제어하고자 하는 실내기의 위치에 대응하는 희망 온도(Tmp)(2420)를 계산할 수 있다. 일 예로 상기 희망 온도는 상기 희망 온도 분포(2415) 내의 희망 온도들의 평균으로써 계산될 수 있다. 일 예로 서버는 상기 실내기의 위치에 가장 가까운 소정 개수의 희망 온도들을 실내기와의 거리에 따라 보간하여 상기 희망 온도를 계산할 수 있다.
도 24b를 참조하면, 서버는 상기 희망 온도(Tmp)(2420)에서 건구 온도 보정 맵(2425)의 구간별 보정값들을 감산하여 설정 온도 분포 맵(2430)을 결정한다. 설정 온도 분포 맵(2430)은 실내기의 위치를 기준으로 구간별 설정 온도들을 나타낸다. 그러면 실내기를 위한 설정 온도는 최종적으로 상기 구간별 설정 온도들에 근거하여 계산된다.
일 실시예로서, 상기 실내기를 위한 설정 온도는 상기 구간별 설정 온도들의 평균으로써 계산될 수 있다. 일 실시예로서, 서버는 설정 온도 분포 맵(2430)에 포함되는 구간들의 면적을 고려하여 실내기를 위한 설정 온도를 최종적으로 계산할 수 있다. 일 실시예로서 서버는 희망 온도(2420)에 건구 온도 보정 맵(2425)의 보정값들을 개별적으로 적용하는 대신, 건구 온도 보정 맵(2425)의 평균 보정값을 적용함으로써 실내기를 위한 설정 온도를 직접적으로(설정 온도 분포 맵 없이) 계산할 수 있다.
후술되는 실시예들에서는 피드백들의 정규화(normalization) 및 개인별 온열 쾌적 영역을 결정하는 동작을 제공한다. 상기 개인별 온열 쾌적 영역이란, 단일 사용자 기기로부터 수집한 피드백들을 이용하여 생성되는, 개인별 온열 쾌적감을 느끼는 온도 범위(range)에 대한 정보를 의미하는 개인별 온열 쾌적 정보이다. 후술되는 설명은 동일한 공간에 여러 사용자가 있는 경우에 공간 내의 공기 조화기 제어를 수행하기 위한 동작을 제공한다.
도 25는 본 개시의 일 실시예에 따라 개인별 온열 쾌적 영역을 이용하여 공기 조화기 제어를 수행하는 동작을 나타낸 흐름도이다.
도 25를 참조하면, 과정 2505에서 서버는 제어하고자 하는 건물 내의 복수의 사용자 기기들로부터 피드백들을 수집한다. 상기 피드백은 측정 온도와 사용자의 온열 쾌적감 정보 및 위치 정보를 포함할 수 있다. 과정 2510에서 서버는 복수의 사용자 기기들 각각에 대해 각 사용자가 선호하는 작용 온도의 범위를 나타내는 개인별 온열 쾌적 영역을 결정하고, 상기 개인별 온열 쾌적 영역을 이용하여 선호 작용 온도를 식별한다. 실내가 무풍일 때 작용 온도는 측정 온도와 MRT의 평균과 동일하다고 간주될 수 있다. 상기 MRT는 미리 측정된 값으로 설정되거나, 혹은 앞서 설명한 바와 같은 기준 MRT 추정 테이블을 기반으로 추정될 수 있다.
일 실시예로서 서버는 동일한 사용자 기기로부터 수신한 복수의 피드백 메시지들 중 덥다의 불만족을 나타내는 온열 쾌적감 정보를 포함하는, 최초로 수신된 피드백 메시지를 이용하여 개인별 온열 쾌적 영역의 상한 온도를 결정할 수 있다. 일 실시예로서 서버는 동일한 사용자 기기로부터 수신한 복수의 피드백 메시지들 중 상기 춥다의 불만족을 나타내는 온열 쾌적감 정보를 포함하는, 최초로 수신된 피드백 메시지를 이용하여 개인별 온열 쾌적 영역의 하한 온도를 결정할 수 있다. 일 실시예로서, 서버는 만족 피드백들을 통해 수집된 측정 온도들을 기반으로 선호 작용 온도의 범위를 계산할 수 있다. 추가적으로 서버는 불만족 피드백들을 통해 수집된 측정 온도들을 기반으로 비선호 작용 온도의 범위를 계산할 수 있다.
과정 2515에서 서버는 제어하고자 하는 공간 내에 위치하는 복수의 사용자 기기들에 대한 선호/비선호 작용 온도의 범위들에 기반하여 상기 공간의 실내기를 위한 설정 온도를 결정하고, 상기 결정된 설정 온도를 온도 제어 명령에 포함하여 상기 실내기로 전송할 수 있다. 일 실시예로서, 서버는 적어도 하나의 온열 쾌적 영역의 상한 온도와 하한 온도 사이의 값으로 상기 설정 온도를 결정할 수 있다.
도 26은 본 개시의 일 실시예에 따른 작용 온도에 기반한 개인 온열 선호도를 추출하는 동작을 나타낸 흐름도이다.
도 26을 참조하면, 과정 2605에서 사용자 기기 1은 서버로 위치 정보, 측정 온도 및 온열 쾌적감 정보 중 적어도 하나를 포함하는 피드백을 전송한다. 상기 위치 정보는, 일 예로서 RSSI 리스트를 포함할 수 있다. 과정 2610에서 서버는 상기 피드백에 포함된 RSSI 리스트를 기반으로 사용자 기기 1의 위치를 식별하고, 상기 피드백에 포함된 측정 온도를 획득하고, 사용자 기기 1의 위치에 속한 공간에 대응하는 열 쾌적 특성 맵을 결정하고, 상기 피드백을 반영하여 사용자 기기 1가 선호하는 작용 온도를 계산한다. 추가적으로 서버는 사용자 기기 1의 식별 정보(ID)와, 상기 계산된 작용 온도 및 상기 온열 쾌적감 정보를 저장할 수 있다. 과정 2615에서 서버는 상기 계산된 작용 온도를 사용자 기기 1에게 통지한다.
도 27은 본 개시의 일 실시예에 따른 사용자의 선호 작용 온도를 고려한 공기 조화기 제어 동작을 나타낸 흐름도이다.
도 27을 참조하면, 과정 2705에서 사용자 1은 서버로 피드백을 전송한다. 과정 2710에서 서버는 상기 피드백에 포함된 RSSI 리스트를 기반으로 사용자 기기 1의 위치를 식별하고, 상기 피드백에 포함된 측정 온도를 획득하고, 사용자 기기 1의 위치에 속한 공간에 대응하는 열 쾌적 특성 맵과 건구 온도 보정 맵을 독출하며, 상기 측정 온도 및 열 쾌적 특성 맵과 건구 온도 보정 맵을 기반으로 상기 공간의 실내기를 위한 설정 온도를 결정하여, 상기 실내기를 제어한다. 서버는 상기 설정 온도를 결정하기 위하여 사용자 기기 1에 대해 기 저장된 선호 작용 온도를 고려할 수 있다. 선택적으로 수행될 수 있는 과정 2720에서 서버는 상기 결정된 설정 온도에 대한 정보를 사용자 기기 1에게 제공할 수 있다.
도 28은 본 개시의 일 실시예에 따라 여러 사용자들의 선호 작용 온도들을 고려한 공기 조화기 제어 동작을 도시한 흐름도이다.
도 28을 참조하면, 과정 2805 및 2810에서 사용자 기기 1 및 사용자 기기 2는 자신의 피드백들을 서버로 전송한다. 과정 2815에서 서버는 각 사용자 기기로부터의 피드백에 포함된 식별 정보 및 RSSI 리스트를 기반으로 각 사용자 기기의 위치 및 선호 작용 온도를 식별한다. 일 예로서 서버는 복수의 사용자 기기들에 대한 선호 작용 온도들 중 대표 작용 온도를 추출할 수 있다. 서버는 상기 피드백들에 포함된 측정 온도를 식별하고, 상기 공간에 대한 열 쾌적 특성 맵 및 건구 온도 보정 맵을 독출하며, 상기 측정 온도 및 열 쾌적 특성 맵과 건구 온도 보정 맵을 기반으로 상기 공간의 실내기를 위한 설정 온도를 결정하여, 상기 실내기를 제어한다. 서버는 상기 설정 온도를 결정하기 위하여 상기 선정된 대표 작용 온도를 고려할 수 있다. 선택적으로 수행될 수 있는 과정 2720에서 서버는 상기 결정된 설정 온도에 대한 정보를 사용자 기기 1에게 제공할 수 있다.
일 실시예로서, 서버는 복수의 사용자들이 존재하는 공간의 공기 조화기 제어를 위하여 사용자들의 선호 작용 온도들을 최대한 포함하고, 비선호 작용 온도들을 최소한 포함하도록, 상기 설정 온도를 결정할 수 있다. 일 실시예로서, 과정 2805 및 2810의 피드백들은 각 사용자 기기에 대한 사용자 우선순위 정보를 더 포함할 수 있다. 상기 사용자 우선순위 정보는, 사용자의 성별, 나이, 특이점(임신/질병/지위 등) 등을 포함할 수 있다. 서버는 복수의 사용자 기기들에 대한 사용자 우선순위 정보에 기반하여 우선 순위를 가지는 사용자, 일 예로서 VIP(Very Important Person), 노약자, 어린아이, 임산부의 선호 작용 온도들에 가중치들을 부여할 수 있다.
후술되는 실시예들에서 서버는 온열 쾌적 영역(thermal comfort range)을 정의하는 측정 온도들의 상한 온도 및 하한 온도에 기반하여, 냉방/난방 가동 시간을 결정할 수 있다.
일 실시예로, 서버는, 특정 공간 내의 동일한 하나의 사용자 기기로부터 덥다의 불만족을 나타내는 온열 쾌적감 정보를 포함하는 복수의 피드백 메시지들이 수신되는 경우, 상기 피드백 메시지들 중 최초로 수신된 피드백 메시지를 이용하여 온열 쾌적 영역의 상한 온도를 최초로 설정 혹은 재설정할 수 있다. 일 실시예로, 서버는, 상기 공간 내의 동일한 하나의 사용자 기기로부터 춥다의 불만족을 나타내는 온열 쾌적감 정보를 포함하는 복수의 피드백 메시지들이 수신되는 경우, 상기 피드백 메시지들 중 최초로 수신된 피드백 메시지를 이용하여 상기 온열 쾌적 영역의 하한 온도를 최초로 설정 혹은 재설정할 수 있다.
일 실시예로서 제어하고자 하는 공간 내에서 실내기에 의해 수집된 측정 온도가, 사용자들이 온열 쾌적감을 느끼도록 미리 설정되는 온도 범위를 의미하는 온열 쾌적 영역에 포함되어 있으면, 그 이후 미리 정해지는 최소 필요 시간 동안 현재 운전(냉방 혹은 난방)을 유지할 수 있다. 이는 온열 쾌적 영역의 상위 온도에서 실내기가 가동 중인 경우 과냉방 혹은 과난방이 발생할 수 있기 때문이다. 마찬가지로 온열 쾌적 영역의 하위 온도에서 실내기가 오프인 경우 사용자들의 불쾌적이 발생할 수 있다.
일 실시예로서, 서버는 측정 온도가 온열 쾌적 영역 내에 있음을 확인한 이후, 미리 정해지는 단위 시간 + 지연시간 이후의 측정 온도가 온열 쾌적 영역의 상한 온도보다 높음으로 검출되었다면, 최소 필요 시간 만큼 냉방을 가동할 수 있다. 일 실시예로서, 구체적으로 서버는 측정 온도가 온열 쾌적 영역 내에 있음을 확인한 이후, 미리 정해지는 단위 시간 + 지연시간 이후의 측정 온도가 온열 쾌적 영역의 하한 온도보다 낮음으로 검출되었다면, 최소 필요 시간 만큼 난방을 가동할 수 있다. 상기 지연 시간은 일 예로 공간마다 설치되는 실내기의 성능, 용량, 열관성, 열전달 지연 등을 고려하여 설정될 수 있다.
본 개시의 다양한 실시예들은 특정 관점에서 컴퓨터 리드 가능 기록 매체(computer readable recording medium)에서 컴퓨터 리드 가능 코드(computer readable code)로서 구현될 수 있다. 컴퓨터 리드 가능 기록 매체는 컴퓨터 시스템에 의해 리드될 수 있는 데이터를 저장할 수 있는 임의의 데이터 저장 디바이스이다. 컴퓨터 리드 가능 기록 매체의 예들은 읽기 전용 메모리(read only memory: ROM: ROM)와, 랜덤-접속 메모리(random access memory: RAM: 'RAM)와, 컴팩트 디스크- 리드 온니 메모리(compact disk-read only memory: CD-ROM)들과, 마그네틱 테이프(magnetic tape)들과, 플로피 디스크(floppy disk)들과, 광 데이터 저장 디바이스들, 및 캐리어 웨이브(carrier wave)들(인터넷을 통한 데이터 송신 등)을 포함할 수 있다. 컴퓨터 리드 가능 기록 매체는 또한 네트워크 연결된 컴퓨터 시스템들을 통해 분산될 수 있고, 따라서 컴퓨터 리드 가능 코드는 분산 방식으로 저장 및 실행된다. 또한, 본 발명의 다양한 실시예들을 성취하기 위한 기능적 프로그램들, 코드, 및 코드 세그먼트(segment)들은 본 발명이 적용되는 분야에서 숙련된 프로그래머들에 의해 쉽게 해석될 수 있다.
또한 본 개시의 다양한 실시예들에 따른 장치 및 방법은 하드웨어, 소프트웨어 또는 하드웨어 및 소프트웨어의 조합의 형태로 실현 가능하다는 것을 알 수 있을 것이다. 이러한 소프트웨어는 예를 들어, 삭제 가능 또는 재기록 가능 여부와 상관없이, ROM 등의 저장 장치와 같은 휘발성 또는 비휘발성 저장 장치, 또는 예를 들어, RAM, 메모리 칩, 장치 또는 집적 회로와 같은 메모리, 또는 예를 들어 콤팩트 디스크(compact disk: CD), DVD, 자기 디스크 또는 자기 테이프 등과 같은 광학 또는 자기적으로 기록 가능함과 동시에 기계(예를 들어, 컴퓨터)로 읽을 수 있는 저장 매체에 저장될 수 있다. 본 개시의 다양한 실시예들에 따른 방법은 제어부 및 메모리를 포함하는 컴퓨터 또는 휴대 단말에 의해 구현될 수 있고, 이러한 메모리는 본 개시의 실시예들을 구현하는 명령들을 포함하는 프로그램 또는 프로그램들을 저장하기에 적합한 기계로 읽을 수 있는 저장 매체의 한 예임을 알 수 있을 것이다.
따라서, 본 개시의 실시예들은 본 명세서의 청구항에 기재된 장치 또는 방법을 구현하기 위한 코드를 포함하는 프로그램 및 이러한 프로그램을 저장하는 기계(컴퓨터 등)로 읽을 수 있는 저장 매체를 포함한다. 또한, 이러한 프로그램은 유선 또는 무선 연결을 통해 전달되는 통신 신호와 같은 임의의 매체를 통해 전자적으로 이송될 수 있고, 본 개시의 실시예들은 이와 균등한 것을 적절하게 포함한다
또한 본 개시의 다양한 실시예들에 따른 장치는 유선 또는 무선으로 연결되는 프로그램 제공 장치로부터 프로그램을 수신하여 저장할 수 있다. 프로그램 제공 장치는 프로그램 처리 장치가 기 설정된 컨텐츠 보호 방법을 수행하도록 하는 지시들을 포함하는 프로그램, 컨텐츠 보호 방법에 필요한 정보 등을 저장하기 위한 메모리와, 그래픽 처리 장치와의 유선 또는 무선 통신을 수행하기 위한 통신부와, 그래픽 처리 장치의 요청 또는 자동으로 해당 프로그램을 송수신 장치로 전송하는 제어부를 포함할 수 있다.
본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고, 본 개시의 실시예들에 대한 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시에서 청구하고자 하는 범위를 한정하고자 하는 것은 아니다. 또한 앞서 설명된 본 개시에 따른 실시예들은 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 범위의 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 개시의 진정한 기술적 보호 범위는 다음의 특허청구범위에 의해서 정해져야 할 것이다.

Claims (37)

  1. 공기 조화기의 제어 방법에 있어서,
    복수의 사용자 기기들로부터 수신한 피드백 메시지들을 이용하여 공간의 건구 온도 보정 맵을 생성하는 과정과,
    상기 피드백 메시지들에 포함되는 측정 온도들을 이용하여 상기 공간의 열 쾌적 특성 맵을 생성하는 과정과,
    상기 건구 온도 보정 맵 및 상기 열 쾌적 특성 맵을 이용하여 상기 공간 내의 상기 공기 조화기를 위한 설정 온도를 결정하는 과정과,
    상기 결정된 설정 온도로 상기 공기 조화기를 제어하는 과정을 포함하는 것을 특징으로 하는 공기 조화기의 제어 방법.
  2. 제 1 항에 있어서, 상기 피드백 메시지들의 각각은 해당하는 사용자 기기의 위치 정보를 포함하고,
    상기 위치 정보는, 상기 해당하는 사용자 기기가 복수의 네트워크 노드들로부터 수신한 복수의 무선 신호들에 대한 수신 신호 세기들을 이용하여 획득되는 것을 특징으로 하는 공기 조화기의 제어 방법.
  3. 제 2 항에 있어서, 상기 건구 온도 보정 맵을 생성하는 과정은,
    상기 피드백 메시지들에 포함된 상기 사용자 기기들의 위치 정보 및 측정 온도들을 확인하는 과정과,
    상기 위치 정보 및 측정 온도들을 이용하여 위치별 측정 온도들을 나타내는 건구 온도 분포 테이블을 생성하는 과정과,
    상기 사용자 기기들과 최단 거리 내에 위치한 상기 공기 조화기로부터 수신된 측정 온도를 확인하는 과정과,
    상기 건구 온도 분포 테이블에 포함되는 측정 온도들과 상기 공기 조화기로부터 수신된 측정 온도 간의 차이 값들 및 해당 위치들을 이용하여 상기 건구 온도 보정 맵을 생성하는 과정을 포함함을 특징으로 하는 공기 조화기의 제어 방법.
  4. 제 3 항에 있어서, 상기 건구 온도 보정 맵을 생성하는 과정은,
    상기 공기 조화기의 위치를 중심으로 하는 소정 반경 거리들에 따라, 복수의 구간들을 구분하는 과정과,
    상기 복수의 구간들 별로 각 구간 내에 위치한 적어도 하나의 사용자 기기로부터 수신한 피드백 메시지에 포함된 측정 온도의 평균 값과, 상기 공기 조화기로부터 수신한 측정 온도 간의 차이를 나타내는 각 구간별 건구 온도 보정 값을 결정하는 과정을 포함하는 것을 특징으로 하는 공기 조화기의 제어 방법.
  5. 제 4 항에 있어서, 상기 건구 온도 보정 맵을 생성하는 과정은,
    상기 피드백 메시지들을 수신 시간에 따라 분류하는 과정과,
    동일한 시간 대역 내의 수신 시간을 가지는 피드백 메시지들에 포함된 위치정보 및 측정온도를 이용하여, 시간 대역별 건구 온도 보정 맵을 독립적으로 생성하는 과정을 포함하는 것을 특징으로 하는 공기 조화기의 제어 방법.
  6. 제 2 항에 있어서, 상기 열 쾌적 특성 맵을 생성하는 과정은,
    상기 피드백 메시지들에 포함된 온열 쾌적감 정보와 위치 정보와 측정 온도들을 이용하여 위치별 보정 온도들을 산출하는 과정과,
    상기 위치별 보정 온도들을 공간 정보와 함께 저장하는 과정을 포함하는 것을 특징으로 하는 공기 조화기의 제어 방법.
  7. 제 6 항에 있어서, 상기 위치별 보정 온도들을 산출하는 과정은,
    상기 피드백 메시지들에 포함된 위치 정보로부터 소정 거리 이내에 있는 측정 온도들의 평균을 취하여 상기 위치 정보에 대응하는 보정 온도를 산출하고, 상기 산출된 보정 온도에 대한 위치를 상기 소정 거리 이내에 있는 측정 온도들에 대응하는 위치 정보의 무게 중심 좌표로 결정하며,
    상기 소정 거리는, 상기 공기 조화기를 포함하는 시스템 내 복수의 공기 조화기들 간의 설치 간격을 근거로 결정되는 것을 특징으로 하는 공기 조화기의 제어 방법.
  8. 제 6 항에 있어서, 상기 위치별 보정 온도들은,
    동일한 온열 쾌적감 정보를 포함하는 피드백 메시지들에 포함되는 측정 온도들을 이용하여 산출되며,
    상기 동일한 온열 쾌적감 정보는, 만족, 덥다의 불만족, 춥다의 불만족 중 하나인 것을 특징으로 하는 공기 조화기의 제어 방법.
  9. 제 8 항에 있어서, 상기 위치별 보정 온도들은,
    상기 덥다의 불만족 혹은 상기 춥다의 불만족을 나타내는 온열 쾌적감 정보가 사용되는 경우, 동일한 사용자 기기로부터 수신한 복수의 피드백 메시지들 중 최초로 수신된 피드백 메시지의 온열 쾌적감 정보를 이용하여 산출되는 것을 특징으로 하는 공기 조화기의 제어 방법.
  10. 제 9 항에 있어서, 상기 동일한 사용자 기기로부터 수신한 복수의 피드백 메시지들 중 상기 덥다의 불만족을 나타내는 온열 쾌적감 정보를 포함하는, 최초로 수신된 피드백 메시지를 이용하여 온열 쾌적 영역의 상한 온도를 결정하는 과정과,
    상기 동일한 사용자 기기로부터 수신한 복수의 피드백 메시지들 중 상기 춥다의 불만족을 나타내는 온열 쾌적감 정보를 포함하는, 최초로 수신된 피드백 메시지를 이용하여 상기 온열 쾌적 영역의 하한 온도를 결정하는 과정과,
    상기 온열 쾌적 영역을 이용하여 상기 공기 조화기를 제어하는 과정을 더 포함하는 것을 특징으로 하는 공기 조화기의 제어 방법.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
KR1020160178465A 2016-12-23 2016-12-23 공기 조화기 제어 방법 및 장치 KR102530433B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160178465A KR102530433B1 (ko) 2016-12-23 2016-12-23 공기 조화기 제어 방법 및 장치
CN201710252926.3A CN108240694B (zh) 2016-12-23 2017-04-18 用于控制空调的方法和设备
US16/471,401 US20190368762A1 (en) 2016-12-23 2017-04-20 Method and apparatus for controlling air conditioner
PCT/KR2017/004244 WO2018117344A1 (en) 2016-12-23 2017-04-20 Method and apparatus for controlling air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160178465A KR102530433B1 (ko) 2016-12-23 2016-12-23 공기 조화기 제어 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20180074903A KR20180074903A (ko) 2018-07-04
KR102530433B1 true KR102530433B1 (ko) 2023-05-11

Family

ID=62626846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160178465A KR102530433B1 (ko) 2016-12-23 2016-12-23 공기 조화기 제어 방법 및 장치

Country Status (4)

Country Link
US (1) US20190368762A1 (ko)
KR (1) KR102530433B1 (ko)
CN (1) CN108240694B (ko)
WO (1) WO2018117344A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109426156B (zh) * 2017-08-22 2021-08-24 京东方科技集团股份有限公司 环境调控方法及环境调控装置
MX2020003687A (es) 2017-10-11 2020-08-03 Bechara Philippe Assouad Sistema automático de termostato de conmutación con base en temperatura aparente y método para determinar y controlar automáticamente la temperatura aparente del espacio acondicionado.
EP3822554B1 (en) * 2018-07-13 2022-08-31 Mitsubishi Electric Corporation Controller and air-conditioning system
TWI677650B (zh) * 2018-10-11 2019-11-21 陳明宗 室內溫度控制系統
CN109682043A (zh) * 2018-12-28 2019-04-26 中冶置业集团有限公司 一种基于人体热舒适机理的适温适湿环境控制系统
WO2020204221A1 (ko) * 2019-04-02 2020-10-08 엘지전자 주식회사 공기 조화기
WO2021006406A1 (ko) * 2019-07-11 2021-01-14 엘지전자 주식회사 인공지능 기반의 공기조화기
CN114008411A (zh) * 2019-08-14 2022-02-01 三星电子株式会社 电子装置以及用于控制电子装置的方法
US20230213232A1 (en) * 2021-12-30 2023-07-06 Micron Technology, Inc. Interactive temperature control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100286843A1 (en) * 2008-02-08 2010-11-11 Coolit Systems Inc. Air conditioning system control
KR101176141B1 (ko) * 2010-10-27 2012-09-07 서울대학교산학협력단 무선 신호의 신호 세기를 이용한 위치 추적 시스템 및 위치 추적 장치
US20120228393A1 (en) * 2011-03-11 2012-09-13 Trane International Inc. Systems and Methods for Controlling Humidity
US20140358291A1 (en) * 2013-05-30 2014-12-04 Honeywell International Inc. Comfort controller with user feedback

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469902B (zh) * 2007-12-27 2014-11-05 新动力(北京)建筑科技有限公司 基于无线定位的空调控制系统和方法
KR20110103235A (ko) * 2010-03-12 2011-09-20 삼성전자주식회사 공기조화기 및 그 제어방법
US8700227B2 (en) * 2011-03-11 2014-04-15 Honeywell International Inc. Room thermal comfort monitor
DE102011077522A1 (de) * 2011-06-15 2012-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Erfassung der thermischen Behaglichkeit
CN104776551B (zh) * 2014-12-22 2017-09-15 珠海格力电器股份有限公司 一种空调下睡眠状态监测方法、装置及空调
JP6502820B2 (ja) * 2015-01-08 2019-04-17 株式会社デンソー 全館温調システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100286843A1 (en) * 2008-02-08 2010-11-11 Coolit Systems Inc. Air conditioning system control
KR101176141B1 (ko) * 2010-10-27 2012-09-07 서울대학교산학협력단 무선 신호의 신호 세기를 이용한 위치 추적 시스템 및 위치 추적 장치
US20120228393A1 (en) * 2011-03-11 2012-09-13 Trane International Inc. Systems and Methods for Controlling Humidity
US20140358291A1 (en) * 2013-05-30 2014-12-04 Honeywell International Inc. Comfort controller with user feedback

Also Published As

Publication number Publication date
WO2018117344A1 (en) 2018-06-28
CN108240694B (zh) 2021-06-22
US20190368762A1 (en) 2019-12-05
KR20180074903A (ko) 2018-07-04
CN108240694A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
KR102530433B1 (ko) 공기 조화기 제어 방법 및 장치
US10708077B2 (en) Technologies for optimally individualized building automation
US10969129B2 (en) Apparatus and method for controlling air conditioner in air conditioning system
JP5755556B2 (ja) 空調制御装置、空調制御システム及び空調制御プログラム
KR102435966B1 (ko) 온도 조절 방법 및 장치
CN105487388B (zh) 使用用户干预信息动态改变组控制模式的方法和装置
KR20160027923A (ko) 실내 온습도 조절 방법 및 장치
US9715239B2 (en) Computational load distribution in an environment having multiple sensing microsystems
EP3159620B1 (en) Method and device for controlling temperature adjustment device and a wearable system
CN105571048B (zh) 群动态环境控制
US10024566B2 (en) User interface with adaptive extent of user control based on user presence information
CN106196416A (zh) 智能空调控制系统及其智能控制方法
US10890349B2 (en) Compound control apparatus and method thereof in air conditioning system
JP2019027603A (ja) 空調制御装置、空調システム、空調制御方法、及びプログラム
US20160363944A1 (en) Method and apparatus for controlling indoor device
CN106796110A (zh) 网络元件和用户设备在室内环境中的位置确定
KR20180053717A (ko) Iot 상호작용 시스템
CN107438742A (zh) 用于自适应地应用中央hvac系统和独立hvac系统的设备和方法
JP2016031220A (ja) 空調最適化装置及び空調制御システム
JP2018078428A (ja) 制御情報出力システム、機器制御システム、機器制御方法、及びプログラム
JP2015099423A (ja) 機器設定装置、機器設定システム及び機器設定方法
JP7086187B2 (ja) 監視システム及び監視方法
JP7300343B2 (ja) 情報処理装置およびプログラム
JPWO2018203375A1 (ja) 空調制御装置、空調制御システム、および、制御方法
CN112556128A (zh) 空气调节机及服务器

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right