KR102511581B1 - Method and apparatus for encoding/decoding image and recording medium for storing bitstream - Google Patents
Method and apparatus for encoding/decoding image and recording medium for storing bitstream Download PDFInfo
- Publication number
- KR102511581B1 KR102511581B1 KR1020220047699A KR20220047699A KR102511581B1 KR 102511581 B1 KR102511581 B1 KR 102511581B1 KR 1020220047699 A KR1020220047699 A KR 1020220047699A KR 20220047699 A KR20220047699 A KR 20220047699A KR 102511581 B1 KR102511581 B1 KR 102511581B1
- Authority
- KR
- South Korea
- Prior art keywords
- block
- prediction
- current
- prediction block
- current block
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 93
- 230000033001 locomotion Effects 0.000 abstract description 775
- 239000013598 vector Substances 0.000 description 351
- 230000002123 temporal effect Effects 0.000 description 78
- 238000013139 quantization Methods 0.000 description 46
- 238000010586 diagram Methods 0.000 description 38
- 230000003044 adaptive effect Effects 0.000 description 26
- 239000000523 sample Substances 0.000 description 25
- 230000002093 peripheral effect Effects 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 15
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 14
- 238000009795 derivation Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 12
- 230000009466 transformation Effects 0.000 description 12
- 230000002457 bidirectional effect Effects 0.000 description 11
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 241000023320 Luma <angiosperm> Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/11—Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/174—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
- H04N19/86—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
본 발명은 영상 부호화 및 복호화 방법에 관한 것이다. 이를 위한 영상 복호화 방법은, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계, 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함할 수 있다.The present invention relates to a video encoding and decoding method. An image decoding method for this includes generating a first prediction block of the current block using motion information of the current block, and generating at least one prediction block of the current sub-block by using motion information of at least one neighboring sub-block. Generating a second prediction block of a block and generating a final prediction block based on a weighted sum of a first prediction block of the current block and a second prediction block of the at least one current sub-block. there is.
Description
본 발명은 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체에 관한 것이다. 구체적으로, 본 발명은 중첩된 블록 움직임 보상을 이용한 영상 부호화/복호화 방법 및 장치에 관한 것이다.The present invention relates to a video encoding/decoding method, apparatus, and recording medium storing a bitstream. Specifically, the present invention relates to an image encoding/decoding method and apparatus using overlapped block motion compensation.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 더 높은 해상도 및 화질을 갖는 영상에 대한 고효율 영상 부호화(encoding)/복호화(decoding) 기술이 요구된다. Recently, demand for high-resolution and high-quality images such as high definition (HD) images and ultra high definition (UHD) images is increasing in various application fields. As image data becomes higher resolution and higher quality, the amount of data increases relatively compared to existing image data. Therefore, when image data is transmitted using a medium such as an existing wired/wireless broadband line or stored using an existing storage medium, transmission cost and Storage costs increase. In order to solve these problems caused by high-resolution and high-quality video data, high-efficiency video encoding/decoding technology for video with higher resolution and quality is required.
영상 압축 기술로 현재 픽처의 이전 또는 이후 픽처로부터 현재 픽처에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽처 내의 화소 정보를 이용하여 현재 픽처에 포함된 화소값을 예측하는 화면 내 예측 기술, 잔여 신호의 에너지를 압축하기 위한 변환 및 양자화 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.An inter-prediction technique for predicting pixel values included in the current picture from pictures before or after the current picture as an image compression technique, an intra-prediction technique for predicting pixel values included in the current picture using pixel information within the current picture, There are various technologies such as transformation and quantization technology for compressing the energy of the residual signal, and entropy encoding technology that assigns short codes to values with high frequency of occurrence and long codes to values with low frequency of occurrence. Image data can be effectively compressed and transmitted or stored.
종래의 영상 부호화/복호화 방법 및 장치는 중첩된 블록 움직임 보상시 한정된 주변 블록의 움직임 정보만 사용하므로 부호화 효율 향상에 한계가 있다.Conventional image encoding/decoding methods and apparatuses use only motion information of limited neighboring blocks when compensating overlapped block motion, so there is a limit to improving encoding efficiency.
본 발명은 영상의 부호화/복호화 효율을 향상시키기 위해 주변 블록의 움직임 정보 수를 증가하여 중첩된 블록 움직임 보상을 수행하는 방법 및 장치를 제공할 수 있다.The present invention may provide a method and apparatus for performing overlapped block motion compensation by increasing the number of motion information of neighboring blocks in order to improve encoding/decoding efficiency of an image.
본 발명에 따른, 영상 복호화 방법은, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계; 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함할 수 있다.According to the present invention, a video decoding method includes generating a first prediction block of a current block using motion information of the current block; Generating a second prediction block of at least one current sub-block using motion information of at least one neighboring sub-block of the current sub-block and the first prediction block of the current block and the at least one current sub-block It may include generating a final prediction block based on a weighted sum of second prediction blocks of .
상기 영상 복호화 방법에 있어서, 상기 주변 하위 블록은, 상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함할 수 있다.In the image decoding method, the neighboring sub-blocks may include neighboring sub-blocks of sub-blocks of the corresponding location block temporally corresponding to the current block.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video decoding method, the generating of the second prediction block may include, when the current sub-block is not included in the left boundary area and the top boundary area of the current block, at least one of the sub-blocks of the corresponding location block. At least one second prediction block may be generated using motion information of neighboring sub-blocks of .
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성할 수 있다.In the video decoding method, the generating of the second prediction block may include, when the current sub-block is not included in the left boundary region and the upper boundary region of the current block, a merge list and a motion vector list of the current block. A second prediction block may be generated using motion information included in at least one of the prediction blocks.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the image decoding method, the generating of the second prediction block may include the generation of at least one neighboring sub-block only when the current sub-block is included in at least one of a left boundary region and an upper boundary region of the current block. At least one second prediction block may be generated using motion information.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고, 상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video decoding method, the generating of the second prediction block may include, when the current sub-block is included in a left boundary region of the current block, a left neighboring sub-block, an upper-left neighboring sub-block, and At least one second prediction block is generated using motion information of at least one of the lower-left neighboring sub-blocks, and when the current sub-block is included in the upper boundary area of the current block, the upper-side neighboring lower part of the current sub-block At least one second prediction block may be generated using motion information of at least one of the block, an upper-left neighboring sub-block, and a lower-right neighboring sub-block.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video decoding method, the generating of the second prediction block may include, when the current sub-block is not included in the left boundary region and the top boundary region of the current block, a sub-block adjacent to an upper end of the current sub-block; Using motion information of at least one of a left peripheral sub-block, a lower peripheral sub-block, a right peripheral sub-block, an upper-left peripheral sub-block, a lower-left peripheral sub-block, a lower-right peripheral sub-block, and an upper-right peripheral sub-block, at least one second Prediction blocks can be created.
상기 영상 복호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video decoding method, the generating of the second prediction block may include deriving motion information of at least one neighboring sub-block of the current sub-block in a predetermined order, and deriving the derived at least one motion information. At least one second prediction block may be generated using
상기 영상 복호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행할 수 있다.In the video decoding method, the generating of the final prediction block may include setting weights for each sample of the first prediction block and the second prediction block according to positions of neighboring sub-blocks used when generating the second prediction block. A weighted sum can be performed by applying it differently.
상기 영상 복호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성할 수 있다.In the video decoding method, the generating of the final prediction block may include, when there are a plurality of second prediction blocks of the current sub-block, a gap between the first prediction block of the current block and the second prediction block of the current sub-block. The final prediction block may be generated by simultaneously summing the weighted sums.
본 발명에 따른, 영상 부호화 방법은, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계; 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함할 수 있다.According to the present invention, an image encoding method includes generating a first prediction block of a current block using motion information of the current block; Generating a second prediction block of at least one current sub-block using motion information of at least one neighboring sub-block of the current sub-block and the first prediction block of the current block and the at least one current sub-block It may include generating a final prediction block based on a weighted sum of second prediction blocks of .
상기 영상 부호화 방법에 있어서, 상기 주변 하위 블록은, 상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함할 수 있다.In the video encoding method, the neighboring sub-blocks may include neighboring sub-blocks of sub-blocks of the corresponding location block temporally corresponding to the current block.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video encoding method, the generating of the second prediction block may include, when the current sub-block is not included in the left boundary area and the top boundary area of the current block, at least one of the sub-blocks of the corresponding location block. At least one second prediction block may be generated using motion information of neighboring sub-blocks of .
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성할 수 있다.In the video encoding method, the generating of the second prediction block may include, when the current sub-block is not included in the left boundary region and the upper boundary region of the current block, a merge list and a motion vector list of the current block. A second prediction block may be generated using motion information included in at least one of the prediction blocks.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the image encoding method, the generating of the second prediction block may include the generation of at least one neighboring sub-block only when the current sub-block is included in at least one of a left boundary region and an upper boundary region of the current block. At least one second prediction block may be generated using motion information.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고, 상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video encoding method, the generating of the second prediction block may include, when the current sub-block is included in a left boundary region of the current block, a left neighboring sub-block of the current sub-block, an upper-left neighboring sub-block, and At least one second prediction block is generated using motion information of at least one of the lower-left neighboring sub-blocks, and when the current sub-block is included in the upper boundary area of the current block, the upper-side neighboring lower part of the current sub-block At least one second prediction block may be generated using motion information of at least one of the block, an upper-left neighboring sub-block, and a lower-right neighboring sub-block.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video encoding method, the generating of the second prediction block may include, when the current sub-block is not included in the left boundary area and the top boundary area of the current block, an upper end neighboring sub-block of the current sub-block; Using motion information of at least one of a left peripheral sub-block, a lower peripheral sub-block, a right peripheral sub-block, an upper-left peripheral sub-block, a lower-left peripheral sub-block, a lower-right peripheral sub-block, and an upper-right peripheral sub-block, at least one second Prediction blocks can be created.
상기 영상 부호화 방법에 있어서, 상기 제2 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.In the video encoding method, the generating of the second prediction block may include deriving motion information of at least one neighboring sub-block of the current sub-block in a predetermined order, and deriving the derived at least one motion information. At least one second prediction block may be generated using
상기 영상 부호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행할 수 있다.In the video encoding method, the generating of the final prediction block may include setting weights for each sample of the first prediction block and the second prediction block according to positions of neighboring sub-blocks used when generating the second prediction block. A weighted sum can be performed by applying it differently.
상기 영상 부호화 방법에 있어서, 상기 최종 예측 블록을 생성하는 단계는, 상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성할 수 있다.In the video encoding method, the generating of the final prediction block may include, when there are a plurality of second prediction blocks of the current sub-block, a gap between the first prediction block of the current block and the second prediction block of the current sub-block. The final prediction block may be generated by simultaneously summing the weighted sums.
본 발명의 기록 매체는 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성하는 단계; 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성하는 단계 및 상기 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성하는 단계를 포함하는 영상 부호화 방법으로 생성된 비트스트림을 저장할 수 있다.The recording medium of the present invention includes the steps of generating a first prediction block of the current block using motion information of the current block; Generating a second prediction block of at least one current sub-block using motion information of at least one neighboring sub-block of the current sub-block and the first prediction block of the current block and the at least one current sub-block A bitstream generated by an image encoding method including the step of generating a final prediction block based on a weighted sum of second prediction blocks may be stored.
본 발명에 따르면, 압축 효율이 향상된 영상 부호화/복호화 방법 및 장치가 제공될 수 있다.According to the present invention, a video encoding/decoding method and apparatus with improved compression efficiency can be provided.
본 발명에 따르면, 영상의 부호화 및 복호화 효율을 향상시킬 수 있다.According to the present invention, encoding and decoding efficiency of an image can be improved.
본 발명에 따르면, 영상의 부호화기 및 복호화기의 계산 복잡도를 감소시킬 수 있다. According to the present invention, calculation complexity of an image encoder and a decoder can be reduced.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다.
도 4는 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이다.
도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 7은 본 발명의 다른 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이다.
도 8은 본 발명의 다른 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.
도 9는 현재 블록의 공간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.
도 10은 현재 블록의 시간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.
도 11은 공간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.
도 12는 시간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.
도 13은 하위 블록 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 14는 대응 위치 블록의 하위 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 15는 참조 블록의 경계 영역에 인접한 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 16은 하위 블록 그룹 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.
도 17은 중첩된 블록 움직임 보상에 사용되는 움직임 정보의 개수의 일 예를 설명하기 위한 도면이다.
도 18 및 도 19는 제2 예측 블록 생성에 사용되는 움직임 정보의 유도 순서를 설명하기 위한 도면이다.
도 20은 현재 하위 블록의 참조 영상의 POC 및 주변 하위 블록의 참조 영상의 POC를 비교하여 제2 예측 블록 생성에 사용가능한 움직임 정보인지 여부를 결정하는 일 예를 설명하기 위한 도면이다.
도 21은 제1 예측 블록과 제2 예측 블록의 가중합 계산시 가중치 적용의 일 실시 예를 설명하기 위한 도면이다.
도 22는 제1 예측 블록과 제2 예측 블록의 가중합 계산시 블록 내 샘플 위치에 따라 서로 다른 가중치 적용되는 실시 예를 설명하기 위한 도면이다.
도 23은 중첩된 블록 움직임 보상시 소정의 순서대로 제1 예측 블록과 제2 예측 블록의 가중합이 누적 계산되는 일 실시 예를 설명하는 도면이다.
도 24는 중첩된 블록 움직임 보상시 제1 예측 블록과 제2 예측 블록의 가중합이 계산되는 일 실시 예를 설명하는 도면이다.
도 25는 본 발명의 일 실시 예에 따른 영상 복호화 방법을 설명하는 흐름도이다.1 is a block diagram showing a configuration according to an embodiment of an encoding device to which the present invention is applied.
2 is a block diagram showing a configuration according to an embodiment of a decoding device to which the present invention is applied.
3 is a diagram schematically illustrating a division structure of an image when encoding and decoding an image.
4 is a diagram for explaining an embodiment of an inter-screen prediction process.
5 is a flowchart illustrating an image encoding method according to an embodiment of the present invention.
6 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
7 is a flowchart illustrating an image encoding method according to another embodiment of the present invention.
8 is a flowchart illustrating an image decoding method according to another embodiment of the present invention.
9 is a diagram for explaining an example of deriving a spatial motion vector candidate of a current block.
10 is a diagram for explaining an example of deriving a temporal motion vector candidate of a current block.
11 is a diagram for explaining an example in which a spatial merge candidate is added to a merge candidate list.
12 is a diagram for explaining an example in which a temporal merge candidate is added to a merge candidate list.
13 is a diagram for explaining an example in which overlapped block motion compensation is performed in sub-block units.
14 is a diagram for explaining an example in which motion compensation for overlapping blocks is performed using motion information of a lower block of a corresponding block.
15 is a diagram for explaining an example in which overlapped block motion compensation is performed using motion information of a block adjacent to a boundary region of a reference block.
16 is a diagram for explaining an example in which overlapped block motion compensation is performed in units of sub-block groups.
17 is a diagram for explaining an example of the number of pieces of motion information used for overlapping block motion compensation.
18 and 19 are diagrams for explaining a sequence of deriving motion information used to generate a second prediction block.
20 is a diagram for explaining an example of determining whether motion information usable for generation of a second prediction block is determined by comparing the POC of a reference image of a current sub-block with POCs of reference images of neighboring sub-blocks.
21 is a diagram for explaining an embodiment of applying a weight when calculating a weighted sum of a first prediction block and a second prediction block.
22 is a diagram for explaining an embodiment in which different weights are applied according to sample positions within blocks when calculating a weighted sum of a first prediction block and a second prediction block.
23 is a diagram for explaining an embodiment in which a weighted sum of a first prediction block and a second prediction block is cumulatively calculated in a predetermined order when performing overlapping block motion compensation.
24 is a diagram for explaining an embodiment in which a weighted sum of a first prediction block and a second prediction block is calculated during overlapped block motion compensation.
25 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다. 후술하는 예시적 실시예들에 대한 상세한 설명은, 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 실시예를 실시할 수 있기에 충분하도록 상세히 설명된다. 다양한 실시예들은 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 실시예의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 예시적 실시예들의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. Like reference numbers in the drawings indicate the same or similar function throughout the various aspects. The shapes and sizes of elements in the drawings may be exaggerated for clarity. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS For detailed descriptions of exemplary embodiments described below, reference is made to the accompanying drawings, which illustrate specific embodiments by way of example. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments. It should be understood that the various embodiments are different, but need not be mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be implemented in one embodiment in another embodiment without departing from the spirit and scope of the invention. Additionally, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the embodiment. Accordingly, the detailed description set forth below is not to be taken in a limiting sense, and the scope of the exemplary embodiments, if properly described, is limited only by the appended claims, along with all equivalents as claimed by those claims.
본 발명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.In the present invention, terms such as first and second may be used to describe various components, but the components should not be limited by the terms. These terms are only used for the purpose of distinguishing one component from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of the present invention. The terms and/or include any combination of a plurality of related recited items or any of a plurality of related recited items.
본 발명의 어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component of the present invention is referred to as “connected” or “connected” to another component, it may be directly connected or connected to the other component, but there may be other components in the middle. It should be understood that it may be On the other hand, when an element is referred to as “directly connected” or “directly connected” to another element, it should be understood that no other element exists in the middle.
본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.Components appearing in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is composed of separate hardware or a single software component. That is, each component is listed and included as each component for convenience of explanation, and at least two components of each component can be combined to form a single component, or one component can be divided into a plurality of components to perform a function, and each of these components can be divided into a plurality of components. Integrated embodiments and separated embodiments of components are also included in the scope of the present invention as long as they do not depart from the essence of the present invention.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 즉, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다. Terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as "comprise" or "having" are intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded. That is, the description of "including" a specific configuration in the present invention does not exclude configurations other than the corresponding configuration, and means that additional configurations may be included in the practice of the present invention or the scope of the technical spirit of the present invention.
본 발명의 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.Some of the components of the present invention are not essential components that perform essential functions in the present invention, but may be optional components for improving performance. The present invention can be implemented by including only components essential to implement the essence of the present invention, excluding components used for performance improvement, and a structure including only essential components excluding optional components used for performance improvement. Also included in the scope of the present invention.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하고, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described concretely with reference to drawings. In describing the embodiments of this specification, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present specification, the detailed description will be omitted, and the same reference numerals will be used for the same components in the drawings. and duplicate descriptions of the same components are omitted.
또한, 이하에서 영상은 동영상(video)을 구성하는 하나의 픽처(picture)를 의미할 수 있으며, 동영상 자체를 나타낼 수도 있다. 예를 들면, "영상의 부호화 및/또는 복호화"는 "비디오의 부호화 및/또는 복호화"를 의미할 수 있으며, "비디오를 구성하는 영상들 중 하나의 영상의 부호화 및/또는 복호화"를 의미할 수도 있다. 여기서, 픽처는 영상과 동일한 의미를 가질 수 있다.In addition, hereinafter, an image may mean one picture constituting a video, and may also represent a video itself. For example, "encoding and/or decoding an image" may mean "encoding and/or decoding a video", and may mean "encoding and/or decoding one of images constituting a video". may be Here, a picture may have the same meaning as an image.
용어 설명Glossary of Terms
부호화기(Encoder): 부호화(Encoding)를 수행하는 장치를 의미한다.Encoder: Means a device that performs encoding.
복호화기(Decoder): 복호화(Decoding)를 수행하는 장치를 의미한다.Decoder: Means a device that performs decoding.
블록(Block): 샘플(Sample)의 MxN 배열이다. 여기서 M과 N은 양의 정수 값을 의미하며, 블록은 흔히 2차원 형태의 샘플 배열을 의미할 수 있다. 블록은 유닛을 의미할 수 있다. 현재 블록은 부호화 시 부호화의 대상이 되는 부호화 대상 블록, 복호화 시 복호화의 대상이 되는 복호화 대상 블록을 의미할 수 있다. 또한, 현재 블록은 부호화 블록, 예측 블록, 잔여 블록, 변환 블록 중 적어도 하나일 수 있다.Block: MxN array of Samples. Here, M and N denote positive integer values, and a block may denote a two-dimensional array of samples. A block may mean a unit. The current block may mean an encoding target block to be encoded during encoding and a decoding target block to be decoded during decoding. Also, the current block may be at least one of a coding block, a prediction block, a residual block, and a transform block.
샘플(Sample): 블록을 구성하는 기본 단위이다. 비트 깊이 (bit depth, Bd)에 따라 0부터 2Bd - 1까지의 값으로 표현될 수 있다. 본 발명에서 샘플은 화소 또는 픽셀과 같은 의미로 사용될 수 있다. Sample: This is the basic unit constituting a block. It can be expressed as a value from 0 to 2 Bd - 1 according to the bit depth (B d ). In the present invention, a sample may be used as the same meaning as a pixel or a pixel.
유닛(Unit): 영상 부호화 및 복호화의 단위를 의미한다. 영상의 부호화 및 복호화에 있어서, 유닛은 하나의 영상을 분할한 영역일 수 있다. 또한, 유닛은 하나의 영상을 세분화 된 유닛으로 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미할 수 있다. 영상의 부호화 및 복호화에 있어서, 유닛 별로 기정의된 처리가 수행될 수 있다. 하나의 유닛은 유닛에 비해 더 작은 크기를 갖는 하위 유닛으로 더 분할될 수 있다. 기능에 따라서, 유닛은 블록(Block), 매크로블록(Macroblock), 부호화 트리 유닛(Coding Tree Unit), 부호화 트리 블록(Coding Tree Block), 부호화 유닛(Coding Unit), 부호화 블록(Coding Block), 예측 유닛(Prediction Unit), 예측 블록(Prediction Block), 잔여 유닛(Residual Unit), 잔여 블록(Residual Block), 변환 유닛(Transform Unit), 변환 블록(Transform Block) 등을 의미할 수 있다. 또한, 유닛은 블록과 구분하여 지칭하기 위해 휘도(Luma) 성분 블록과 그에 대응하는 색차(Chroma) 성분 블록 그리고 각 블록에 대한 구문 요소를 포함한 것을 의미할 수 있다. 유닛은 다양한 크기와 형태를 가질 수 있으며, 특히 유닛의 형태는 직사각형뿐만 아니라 정사각형, 사다리꼴, 삼각형, 오각형 등 2차원으로 표현될 수 있는 기하학적 도형을 포함할 수 있다. 또한, 유닛 정보는 부호화 유닛, 예측 유닛, 잔여 유닛, 변환 유닛 등을 가리키는 유닛의 타입, 유닛의 크기, 유닛의 깊이, 유닛의 부호화 및 복호화 순서 등 중 적어도 하나 이상을 포함할 수 있다.Unit: Means a unit of video encoding and decoding. In encoding and decoding of an image, a unit may be a region obtained by dividing one image. Also, a unit may refer to a divided unit when encoding or decoding an image is divided into subdivided units. In encoding and decoding of an image, a predefined process may be performed for each unit. One unit can be further divided into sub-units having a smaller size relative to the unit. According to function, units are Block, Macroblock, Coding Tree Unit, Coding Tree Block, Coding Unit, Coding Block, and Prediction. It may mean a prediction unit, a prediction block, a residual unit, a residual block, a transform unit, a transform block, and the like. In addition, a unit may mean that it includes a Luma component block, a Chroma component block corresponding thereto, and a syntax element for each block to be referred to as a block. The unit may have various sizes and shapes, and in particular, the shape of the unit may include not only a rectangle but also a geometric figure that can be expressed in two dimensions, such as a square, a trapezoid, a triangle, and a pentagon. Also, the unit information may include at least one of a unit type indicating a coding unit, a prediction unit, a residual unit, a transform unit, and the like, a size of the unit, a depth of the unit, and an encoding and decoding order of the unit.
부호화 트리 유닛(Coding Tree Unit): 하나의 휘도 성분(Y) 부호화 트리 블록과 관련된 두 색차 성분(Cb, Cr) 부호화 트리 블록들로 구성된다. 또한, 상기 블록들과 각 블록에 대한 구문 요소를 포함한 것을 의미할 수도 있다. 각 부호화 트리 유닛은 부호화 유닛, 예측 유닛, 변환 유닛 등의 하위 유닛을 구성하기 위하여 쿼드트리(quad tree), 이진트리(binary tree) 등 하나 이상의 분할 방식을 이용하여 분할될 수 있다. 입력 영상의 분할처럼 영상의 복/부호화 과정에서 처리 단위가 되는 픽셀 블록을 지칭하기 위한 용어로 사용될 수 있다. Coding Tree Unit: It consists of two chrominance components (Cb, Cr) coding tree blocks related to one luminance component (Y) coding tree block. Also, it may mean including the above blocks and syntax elements for each block. Each coding tree unit may be split using one or more division schemes such as a quad tree or a binary tree to form subunits such as a coding unit, a prediction unit, and a transform unit. It can be used as a term to refer to a pixel block that is a processing unit in the decoding/coding process of an image, like segmentation of an input image.
부호화 트리 블록(Coding Tree Block): Y 부호화 트리 블록, Cb 부호화 트리 블록, Cr 부호화 트리 블록 중 어느 하나를 지칭하기 위한 용어로 사용될 수 있다.Coding tree block: It may be used as a term to refer to any one of a Y coding tree block, a Cb coding tree block, and a Cr coding tree block.
주변 블록(Neighbor block): 현재 블록에 인접한 블록을 의미한다. 현재 블록에 인접한 블록은 현재 블록에 경계가 맞닿은 블록 또는 현재 블록으로부터 소정의 거리 내에 위치한 블록을 의미할 수 있다. 주변 블록은 현재 블록의 꼭지점에 인접한 블록을 의미할 수 있다. 여기에서, 현재 블록의 꼭지점에 인접한 블록이란, 현재 블록에 가로로 인접한 이웃 블록에 세로로 인접한 블록 또는 현재 블록에 세로로 인접한 이웃 블록에 가로로 인접한 블록일 수 있다. 주변 블록은 복원된 주변 블록을 의미할 수도 있다.Neighbor block: A block adjacent to the current block. A block adjacent to the current block may mean a block whose boundary meets the current block or a block located within a predetermined distance from the current block. A neighboring block may refer to a block adjacent to a vertex of the current block. Here, the block adjacent to the vertex of the current block may be a block vertically adjacent to a neighboring block horizontally adjacent to the current block or a block horizontally adjacent to a neighboring block vertically adjacent to the current block. A neighboring block may mean a restored neighboring block.
복원된 주변 블록(Reconstructed Neighbor Block): 현재 블록 주변에 공간적(Spatial)/시간적(Temporal)으로 이미 부호화 혹은 복호화된 주변 블록을 의미한다. 이때, 복원된 주변 블록은 복원된 주변 유닛을 의미할 수 있다. 복원된 공간적 주변 블록은 현재 픽처 내의 블록이면서 부호화 및/또는 복호화를 통해 이미 복원된 블록일 수 있다. 복원된 시간적 주변 블록은 참조 픽처 내에서 현재 픽처의 현재 블록과 동일한 위치의 복원된 블록 또는 그 주변 블록일 수 있다.Reconstructed Neighbor Block: Refers to a neighboring block that has already been spatially/temporally encoded or decoded around the current block. In this case, the reconstructed neighboring block may mean a reconstructed neighboring unit. The reconstructed spatial neighboring block may be a block in the current picture and already reconstructed through encoding and/or decoding. The reconstructed temporal neighboring block may be a reconstructed block in the same position as the current block of the current picture within the reference picture or a neighboring block thereof.
유닛 깊이(Depth): 유닛이 분할된 정도를 의미한다. 트리 구조(Tree Structure)에서 루트 노드(Root Node)는 깊이가 가장 얕고, 리프 노드(Leaf Node)는 깊이가 가장 깊다고 할 수 있다. 또한, 유닛을 트리 구조로 표현했을 때 유닛이 존재하는 레벨(Level)이 유닛 깊이를 의미할 수 있다.Unit depth (Depth): Means the degree to which the unit is divided. In a tree structure, the root node has the shallowest depth and the leaf node has the deepest depth. Also, when a unit is expressed in a tree structure, a level at which a unit exists may mean a unit depth.
비트스트림(Bitstream): 부호화된 영상 정보를 포함하는 비트의 열을 의미한다. Bitstream: means a string of bits including coded image information.
파라미터 세트(Parameter Set): 비트스트림 내의 구조 중 헤더 정보에 해당한다. 비디오 파라미터 세트(video parameter set), 시퀀스 파라미터 세트(sequence parameter set), 픽처 파라미터 세트(picture parameter set), 적응 파라미터 세트(adaptation parameter set) 중 적어도 하나가 파라미터 세트에 포함될 수 있다. 또한, 파라미터 세트는 슬라이스(slice) 헤더 및 타일(tile) 헤더 정보를 포함할 수도 있다.Parameter Set: Corresponds to header information among structures within a bitstream. At least one of a video parameter set, a sequence parameter set, a picture parameter set, and an adaptation parameter set may be included in the parameter set. Also, the parameter set may include slice header and tile header information.
파싱(Parsing): 비트스트림을 엔트로피 복호화하여 구문 요소(Syntax Element)의 값을 결정하는 것을 의미하거나, 엔트로피 복호화 자체를 의미할 수 있다.Parsing: Determining the value of a syntax element by entropy decoding a bitstream, or entropy decoding itself.
심볼(Symbol): 부호화/복호화 대상 유닛의 구문 요소, 부호화 파라미터(coding parameter), 변환 계수(Transform Coefficient)의 값 등 중 적어도 하나를 의미할 수 있다. 또한, 심볼은 엔트로피 부호화의 대상 혹은 엔트로피 복호화의 결과를 의미할 수 있다.Symbol: It may mean at least one of a syntax element of a unit to be coded/decoded, a coding parameter, a value of a transform coefficient, and the like. Also, a symbol may mean an object of entropy encoding or a result of entropy decoding.
예측 유닛(Prediction Unit): 화면 간 예측, 화면 내 예측, 화면 간 보상, 화면 내 보상, 움직임 보상 등 예측을 수행할 때의 기본 유닛을 의미한다. 하나의 예측 유닛은 크기가 작은 복수의 파티션(Partition) 또는 하위 예측 유닛으로 분할 될 수도 있다. Prediction Unit: Refers to a basic unit when performing prediction such as inter-prediction, intra-prediction, inter-screen compensation, intra-screen compensation, and motion compensation. One prediction unit may be divided into a plurality of small-sized partitions or lower prediction units.
예측 유닛 파티션(Prediction Unit Partition): 예측 유닛이 분할된 형태를 의미한다.Prediction Unit Partition: Means a form in which a prediction unit is divided.
참조 영상 리스트(Reference Picture List): 화면 간 예측 혹은 움직임 보상에 사용되는 하나 이상의 참조 영상이 포함된 리스트를 의미한다. 참조 영상 리스트의 종류는 LC (List Combined), L0 (List 0), L1 (List 1), L2 (List 2), L3 (List 3) 등이 있을 수 있으며, 화면 간 예측에는 1개 이상의 참조 영상 리스트가 사용될 수 있다.Reference Picture List: Refers to a list including one or more reference pictures used for inter-prediction or motion compensation. The type of reference image list may include LC (List Combined), L0 (List 0), L1 (List 1), L2 (List 2), L3 (List 3), etc. A list may be used.
화면 간 예측 지시자(Inter Prediction Indicator): 현재 블록의 화면 간 예측 방향(단방향 예측, 쌍방향 예측 등)을 의미할 수 있다. 또는, 현재 블록의 예측 블록을 생성할 때 사용되는 참조 영상의 개수를 의미할 수 있다. 또는, 현재 블록에 대해 화면 간 예측 혹은 움직임 보상을 수행할 때 사용되는 예측 블록의 개수를 의미할 수 있다.Inter prediction indicator: This may indicate an inter prediction direction (unidirectional prediction, bidirectional prediction, etc.) of the current block. Alternatively, it may mean the number of reference images used when generating the prediction block of the current block. Alternatively, it may mean the number of prediction blocks used when inter-prediction or motion compensation is performed on the current block.
참조 영상 색인(Reference Picture Index): 참조 영상 리스트에서 특정 참조 영상을 지시하는 색인을 의미한다.Reference Picture Index: Indicates an index indicating a specific reference picture in a reference picture list.
참조 영상(Reference Picture): 화면 간 예측 혹은 움직임 보상을 위해서 특정 블록이 참조하는 영상을 의미할 수 있다.Reference Picture: This may refer to a picture referenced by a specific block for inter-picture prediction or motion compensation.
움직임 벡터(Motion Vector): 화면 간 예측 혹은 움직임 보상에 사용되는 2차원 벡터이며, 부호화/복호화 대상 영상과 참조 영상 사이의 오프셋을 의미할 수 있다. 예를 들어, (mvX, mvY)는 움직임 벡터를 나타낼 수 있으며, mvX는 가로(horizontal) 성분, mvY는 세로(vertical) 성분을 나타낼 수 있다.Motion Vector: A 2D vector used for inter-screen prediction or motion compensation, and may mean an offset between an encoding/decoding target image and a reference image. For example, (mvX, mvY) may represent a motion vector, mvX may represent a horizontal component, and mvY may represent a vertical component.
움직임 벡터 후보(Motion Vector Candidate): 움직임 벡터를 예측할 때 예측 후보가 되는 블록 혹은 그 블록의 움직임 벡터를 의미한다. 또한, 움직임 벡터 후보는 움직임 벡터 후보 리스트에 포함될 수 있다.Motion Vector Candidate: When a motion vector is predicted, it means a block that becomes a prediction candidate or a motion vector of the block. Also, the motion vector candidate may be included in the motion vector candidate list.
움직임 벡터 후보 리스트(Motion Vector Candidate List): 움직임 벡터 후보를 이용하여 구성된 리스트를 의미할 수 있다.Motion vector candidate list: This may mean a list constructed using motion vector candidates.
움직임 벡터 후보 색인(Motion Vector Candidate Index): 움직임 벡터 후보 리스트 내의 움직임 벡터 후보를 가리키는 지시자를 의미한다. 움직임 벡터 예측기(Motion Vector Predictor)의 색인(index)이라고도 할 수 있다.Motion vector candidate index: An indicator indicating a motion vector candidate in the motion vector candidate list. It can also be referred to as an index of a motion vector predictor.
움직임 정보(Motion Information): 움직임 벡터, 참조 영상 색인, 화면 간 예측 지시자(Inter Prediction Indicator) 뿐만 아니라 참조 영상 리스트 정보, 참조 영상, 움직임 벡터 후보, 움직임 벡터 후보 색인, 머지 후보, 머지 색인 등 중 적어도 하나를 포함하는 정보를 의미할 수 있다.Motion Information: At least among reference picture list information, reference picture, motion vector candidate, motion vector candidate index, merge candidate, merge index, etc. as well as motion vector, reference picture index, inter prediction indicator It may mean information including one.
머지 후보 리스트(Merge Candidate List): 머지 후보를 이용하여 구성된 리스트를 의미한다.Merge Candidate List: A list constructed using merge candidates.
머지 후보(Merge Candidate): 공간적 머지 후보, 시간적 머지 후보, 조합된 머지 후보, 조합 양예측 머지 후보, 제로 머지 후보 등을 의미한다. 머지 후보는 화면 간 예측 지시자, 각 리스트에 대한 참조 영상 색인, 움직임 벡터 등의 움직임 정보를 포함할 수 있다.Merge Candidate: A spatial merge candidate, a temporal merge candidate, a combined merge candidate, a combined predictive merge candidate, a zero merge candidate, and the like. A merge candidate may include motion information such as an inter-picture prediction indicator, a reference picture index for each list, and a motion vector.
머지 색인(Merge Index): 머지 후보 리스트 내 머지 후보를 지시하는 정보를 의미한다. 또한, 머지 색인은 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다. 또한, 머지 색인은 머지 후보가 가지는 움직임 정보 중 적어도 하나를 지시할 수 있다.Merge Index: Means information indicating a merge candidate in a merge candidate list. Also, the merge index may indicate a block from which a merge candidate is derived, among blocks reconstructed that are spatially/temporally adjacent to the current block. Also, the merge index may indicate at least one of motion information of merge candidates.
변환 유닛(Transform Unit): 변환, 역변환, 양자화, 역양자화, 변환 계수 부호화/복호화와 같이 잔여 신호(residual signal) 부호화/복호화를 수행할 때의 기본 유닛을 의미한다. 하나의 변환 유닛은 분할되어 크기가 작은 복수의 변환 유닛으로 분할될 수 있다. Transform Unit: Refers to a basic unit when encoding/decoding a residual signal such as transform, inverse transform, quantization, inverse quantization, and transform coefficient encoding/decoding is performed. One transform unit may be divided into a plurality of smaller transform units.
스케일링(Scaling): 변환 계수 레벨에 인수를 곱하는 과정을 의미한다. 변환 계수 레벨에 대한 스케일링의 결과로 변환 계수를 생성할 수 있다. 스케일링을 역양자화(dequantization)라고도 부를 수 있다.Scaling: A process of multiplying a transform coefficient level by a factor. Transform coefficients can be generated as a result of scaling for transform coefficient levels. Scaling can also be called dequantization.
양자화 매개변수(Quantization Parameter): 양자화에서 변환 계수에 대해 변환 계수 레벨(transform coefficient level)을 생성할 때 사용하는 값을 의미할 수 있다. 또는, 역양자화에서 변환 계수 레벨을 스케일링(scaling)하여 변환 계수를 생성할 때 사용하는 값을 의미할 수도 있다. 양자화 매개변수는 양자화 스텝 크기(step size)에 매핑된 값일 수 있다.Quantization parameter: This may mean a value used when generating a transform coefficient level for transform coefficients in quantization. Alternatively, it may mean a value used when generating a transform coefficient by scaling a transform coefficient level in inverse quantization. The quantization parameter may be a value mapped to a quantization step size.
잔여 양자화 매개변수(Delta Quantization Parameter): 예측된 양자화 매개변수와 부호화/복호화 대상 유닛의 양자화 매개변수의 차분된 값을 의미한다.Residual quantization parameter (Delta Quantization Parameter): Means a difference between a predicted quantization parameter and a quantization parameter of a unit to be encoded/decoded.
스캔(Scan): 블록 혹은 행렬 내 계수의 순서를 정렬하는 방법을 의미한다. 예를 들어, 2차원 배열을 1차원 배열 형태로 정렬하는 것을 스캔이라고 한다. 또는, 1차원 배열을 2차원 배열 형태로 정렬하는 것도 스캔 혹은 역 스캔(Inverse Scan)이라고 부를 수 있다.Scan: Refers to a method of arranging the order of coefficients in a block or matrix. For example, sorting a 2D array into a 1D array is called a scan. Alternatively, arranging a one-dimensional array into a two-dimensional array may also be called scan or inverse scan.
변환 계수(Transform Coefficient): 부호화기에서 변환을 수행하고 나서 생성된 계수 값을 의미한다. 또는, 복호화기에서 엔트로피 복호화 및 역양자화 중 적어도 하나를 수행하고 나서 생성된 계수 값을 의미할 수도 있다.변환 계수 또는 잔여 신호에 양자화를 적용한 양자화된 레벨 또는 양자화된 변환 계수 레벨도 변환 계수의 의미에 포함될 수 있다.Transform Coefficient: means a coefficient value generated after performing a transform in an encoder. Alternatively, it may mean a coefficient value generated after performing at least one of entropy decoding and inverse quantization in a decoder. A quantized level obtained by applying quantization to a transform coefficient or a residual signal or a quantized transform coefficient level also means a transform coefficient. can be included in
양자화된 레벨(Quantized Level): 부호화기에서 변환 계수 또는 잔여 신호에 양자화를 수행하여 생성된 값을 의미한다. 또는, 복호화기에서 역양자화를 수행하기 전 역양자화의 대상이 되는 값을 의미할 수도 있다. 유사하게, 변환 및 양자화의 결과인 양자화된 변환 계수 레벨도 양자화된 레벨의 의미에 포함될 수 있다.Quantized Level: means a value generated by performing quantization on transform coefficients or residual signals in an encoder. Alternatively, it may mean a value to be subjected to inverse quantization before performing inverse quantization in a decoder. Similarly, a quantized transform coefficient level resulting from transform and quantization may also be included in the meaning of the quantized level.
넌제로 변환 계수(Non-zero Transform Coefficient): 값의 크기가 0이 아닌 변환 계수 혹은 값의 크기가 0이 아닌 변환 계수 레벨을 의미한다.Non-zero transform coefficient: means a transform coefficient whose magnitude is not 0 or a transform coefficient level whose magnitude is not 0.
양자화 행렬(Quantization Matrix): 영상의 주관적 화질 혹은 객관적 화질을 향상시키기 위해서 양자화 혹은 역양자화 과정에서 이용하는 행렬을 의미한다. 양자화 행렬을 스케일링 리스트(scaling list)라고도 부를 수 있다.Quantization Matrix: Means a matrix used in a quantization or inverse quantization process to improve subjective or objective quality of an image. A quantization matrix may also be referred to as a scaling list.
양자화 행렬 계수(Quantization Matrix Coefficient): 양자화 행렬 내의 각 원소(element)를 의미한다. 양자화 행렬 계수를 행렬 계수(matrix coefficient)라고도 할 수 있다.Quantization Matrix Coefficient: Means each element in a quantization matrix. Quantization matrix coefficients may also be referred to as matrix coefficients.
기본 행렬(Default Matrix): 부호화기와 복호화기에서 미리 정의되어 있는 소정의 양자화 행렬을 의미한다.Default Matrix: Means a predetermined quantization matrix predefined in an encoder and a decoder.
비 기본 행렬(Non-default Matrix): 부호화기와 복호화기에서 미리 정의되지 않고, 사용자에 의해서 시그널링되는 양자화 행렬을 의미한다.Non-default matrix: A quantization matrix that is not predefined in an encoder and a decoder and is signaled by a user.
도 1은 본 발명이 적용되는 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.1 is a block diagram showing a configuration according to an embodiment of an encoding device to which the present invention is applied.
부호화 장치(100)는 인코더, 비디오 부호화 장치 또는 영상 부호화 장치일 수 있다. 비디오는 하나 이상의 영상들을 포함할 수 있다. 부호화 장치(100)는 하나 이상의 영상들을 순차적으로 부호화할 수 있다.The
도 1을 참조하면, 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽처 버퍼(190)를 포함할 수 있다.Referring to FIG. 1 , the
부호화 장치(100)는 입력 영상에 대해 인트라 모드 및/또는 인터 모드로 부호화를 수행할 수 있다. 또한, 부호화 장치(100)는 입력 영상에 대한 부호화를 통해 비트스트림을 생성할 수 있고, 생성된 비트스트림을 출력할 수 있다. 생성된 비트스트림은 컴퓨터 판독가능한 기록 매체에 저장되거나, 유/무선 전송 매체를 통해 스트리밍될 수 있다. 예측 모드로 인트라 모드가 사용되는 경우 스위치(115)는 인트라로 전환될 수 있고, 예측 모드로 인터 모드가 사용되는 경우 스위치(115)는 인터로 전환될 수 있다. 여기서 인트라 모드는 화면 내 예측 모드를 의미할 수 있으며, 인터 모드는 화면 간 예측 모드를 의미할 수 있다. 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성할 수 있다. 또한, 부호화 장치(100)는 예측 블록이 생성된 후, 입력 블록 및 예측 블록의 차분(residual)을 부호화할 수 있다. 입력 영상은 현재 부호화의 대상인 현재 영상으로 칭해질 수 있다. 입력 블록은 현재 부호화의 대상인 현재 블록 혹은 부호화 대상 블록으로 칭해질 수 있다.The
예측 모드가 인트라 모드인 경우, 인트라 예측부(120)는 현재 블록의 주변에 이미 부호화/복호화된 블록의 픽셀 값을 참조 화소로서 이용할 수 있다. 인트라 예측부(120)는 참조 화소를 이용하여 공간적 예측을 수행할 수 있고, 공간적 예측을 통해 입력 블록에 대한 예측 샘플들을 생성할 수 있다. 여기서 인트라 예측은 화면 내 예측을 의미할 수 있다.When the prediction mode is the intra mode, the
예측 모드가 인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 영상으로부터 입력 블록과 가장 매치가 잘 되는 영역을 검색할 수 있고, 검색된 영역을 이용하여 움직임 벡터를 도출할 수 있다. 참조 영상은 참조 픽처 버퍼(190)에 저장될 수 있다.When the prediction mode is the inter mode, the
움직임 보상부(112)는 움직임 벡터를 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 여기서 인터 예측은 화면 간 예측 혹은 움직임 보상을 의미할 수 있다.The
상기 움직임 예측부(111)과 움직임 보상부(112)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터(Interpolation Filter)를 적용하여 예측 블록을 생성할 수 있다. 화면 간 예측 혹은 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 예측 및 움직임 보상 방법이 스킵 모드(Skip Mode), 머지 모드(Merge Mode), 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP) 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 화면 간 예측 혹은 움직임 보상을 수행할 수 있다.When the motion vector value does not have an integer value, the
감산기(125)는 입력 블록 및 예측 블록의 차분을 사용하여 잔여 블록(residual block)을 생성할 수 있다. 잔여 블록은 잔여 신호로 칭해질 수도 있다. 잔여 신호는 원 신호 및 예측 신호 간의 차이(difference)를 의미할 수 있다. 또는, 잔여 신호는 원신호 및 예측 신호 간의 차이를 변환(transform)하거나 양자화하거나 또는 변환 및 양자화함으로써 생성된 신호일 수 있다. 잔여 블록은 블록 단위의 잔여 신호일 수 있다.The
변환부(130)는 잔여 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 생성할 수 있고, 변환 계수를 출력할 수 있다. 여기서, 변환 계수는 잔여 블록에 대한 변환을 수행함으로써 생성된 계수 값일 수 있다. 변환 생략(transform skip) 모드가 적용되는 경우, 변환부(130)는 잔여 블록에 대한 변환을 생략할 수도 있다.The
변환 계수 또는 잔여 신호에 양자화를 적용함으로써 양자화된 레벨(quantized level)이 생성될 수 있다. 이하, 실시예들에서는 양자화된 레벨도 변환 계수로 칭해질 수 있다.A quantized level may be created by applying quantization to the transform coefficient or residual signal. Hereinafter, in the embodiments, the quantized level may also be referred to as a transform coefficient.
양자화부(140)는 변환 계수 또는 잔여 신호를 양자화 매개변수에 따라 양자화함으로써 양자화된 레벨을 생성할 수 있고, 양자화된 레벨을 출력할 수 있다. 이때, 양자화부(140)에서는 양자화 행렬을 사용하여 변환 계수를 양자화할 수 있다.The
엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터(Coding Parameter) 값들 등에 대하여 확률 분포에 따른 엔트로피 부호화를 수행함으로써 비트스트림(bitstream)을 생성할 수 있고, 비트스트림을 출력할 수 있다. 엔트로피 부호화부(150)는 영상의 픽셀에 관한 정보 및 영상의 복호화를 위한 정보에 대한 엔트로피 부호화를 수행할 수 있다. 예를 들면, 영상의 복호화를 위한 정보는 구문 요소(syntax element) 등을 포함할 수 있다. The
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 엔트로피 부호화부(150)는 엔트로피 부호화를 위해 지수 골롬(exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법을 사용할 수 있다. 예를 들면, 엔트로피 부호화부(150)는 가변 길이 부호화(Variable Length Coding/Code; VLC) 테이블을 이용하여 엔트로피 부호화를 수행할 수 있다. 또한 엔트로피 부호화부(150)는 대상 심볼의 이진화(binarization) 방법 및 대상 심볼/빈(bin)의 확률 모델(probability model)을 도출한 후, 도출된 이진화 방법, 확률 모델, 문맥 모델(Context Model)을 사용하여 산술 부호화를 수행할 수도 있다.When entropy encoding is applied, a small number of bits are allocated to a symbol with a high probability of occurrence and a large number of bits are allocated to a symbol with a low probability of occurrence to represent the symbol, thereby reducing the number of bits for symbols to be coded. The size of the column may be reduced. The
엔트로피 부호화부(150)는 변환 계수 레벨을 부호화하기 위해 변환 계수 스캐닝(Transform Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다.The
부호화 파라미터(Coding Parameter)는 구문 요소와 같이 부호화기에서 부호화되어 복호화기로 시그널링되는 정보(플래그, 인덱스 등)뿐만 아니라, 부호화 혹은 복호화 과정에서 유도되는 정보를 포함할 수 있으며, 영상을 부호화하거나 복호화할 때 필요한 정보를 의미할 수 있다. 예를 들어, 유닛/블록 크기, 유닛/블록 깊이, 유닛/블록 분할 정보, 유닛/블록 분할 구조, 쿼드트리 형태의 분할 여부, 이진트리 형태의 분할 여부, 이진트리 형태의 분할 방향(가로 방향 혹은 세로 방향), 이진트리 형태의 분할 형태(대칭 분할 혹은 비대칭 분할), 화면 내 예측 모드/방향, 참조 샘플 필터링 방법, 예측 블록 필터링 방법, 예측 블록 필터 탭, 예측 블록 필터 계수, 화면 간 예측 모드, 움직임 정보, 움직임 벡터, 참조 영상 색인, 화면 간 예측 방향, 화면 간 예측 지시자, 참조 영상 리스트, 참조 영상, 움직임 벡터 예측 후보, 움직임 벡터 후보 리스트, 머지 모드 사용 여부, 머지 후보, 머지 후보 리스트, 스킵(skip) 모드 사용 여부, 보간 필터 종류, 보간 필터 탭, 보간 필터 계수, 움직임 벡터 크기, 움직임 벡터 표현 정확도, 변환 종류, 변환 크기, 1차 변환 사용 여부 정보, 2차 변환 사용 여부 정보, 1차 변환 인덱스, 2차 변환 인덱스, 잔여 신호 유무 정보, 부호화 블록 패턴(Coded Block Pattern), 부호화 블록 플래그(Coded Block Flag), 양자화 매개변수, 양자화 행렬, 화면 내 루프 필터 적용 여부, 화면 내 루프 필터 계수, 화면 내 루프 필터 탭, 화면 내 루프 필터 모양/형태, 디블록킹 필터 적용 여부, 디블록킹 필터 계수, 디블록킹 필터 탭, 디블록킹 필터 강도, 디블록킹 필터 모양/형태, 적응적 샘플 오프셋 적용 여부, 적응적 샘플 오프셋 값, 적응적 샘플 오프셋 카테고리, 적응적 샘플 오프셋 종류, 적응적 루프내 필터 적용 여부, 적응적 루프내 필터 계수, 적응적 루프내 필터 탭, 적응적 루프내 필터 모양/형태, 이진화/역이진화 방법, 문맥 모델 결정 방법, 문맥 모델 업데이트 방법, 레귤러 모드 수행 여부, 바이패스 모드 수행 여부, 문맥 빈, 바이패스 빈, 변환 계수, 변환 계수 레벨, 변환 계수 레벨 스캐닝 방법, 영상 디스플레이/출력 순서, 슬라이스 식별 정보, 슬라이스 타입, 슬라이스 분할 정보, 타일 식별 정보, 타일 타입, 타일 분할 정보, 픽처 타입, 비트 심도, 휘도 신호 혹은 색차 신호에 대한 정보 중 적어도 하나의 값 또는 조합된 형태가 부호화 파라미터에 포함될 수 있다.Coding parameters, such as syntax elements, may include not only information (flag, index, etc.) that is coded in the encoder and signaled to the decoder, but also information derived from the encoding or decoding process. It can mean necessary information. For example, unit/block size, unit/block depth, unit/block division information, unit/block division structure, quad tree division, binary tree division, binary tree division direction (horizontal or vertical direction), binary tree type division (symmetric division or asymmetric division), intra-prediction mode/direction, reference sample filtering method, prediction block filtering method, prediction block filter tab, prediction block filter coefficient, inter-prediction mode, Motion information, motion vector, reference image index, inter-prediction direction, inter-prediction indicator, reference image list, reference image, motion vector prediction candidate, motion vector candidate list, use of merge mode, merge candidate, merge candidate list, skip Whether to use (skip) mode, interpolation filter type, interpolation filter tab, interpolation filter coefficient, motion vector size, motion vector representation accuracy, transformation type, transformation size, information on whether to use the first-order transformation, whether to use the second-order transformation, first-order Transformation index, secondary transformation index, residual signal presence information, coded block pattern, coded block flag, quantization parameter, quantization matrix, whether to apply loop filter within a screen, loop filter coefficient within a screen , in-screen loop filter tab, in-screen loop filter shape/shape, deblocking filter applied or not, deblocking filter coefficients, deblocking filter tab, deblocking filter strength, deblocking filter shape/shape, adaptive sample offset applied or not, Adaptive Sample Offset Value, Adaptive Sample Offset Category, Adaptive Sample Offset Type, Adaptive Loop Filter Application, Adaptive Loop Filter Coefficient, Adaptive Loop Filter Tap, Adaptive Loop Filter Shape/Form, Binarization /Inverse binarization method, context model determination method, context model update method, whether regular mode is performed, whether bypass mode is performed, context bin, bypass bin, transform coefficient, transform coefficient level, transform coefficient level scanning method, image display/output order, slice identification information, A value of at least one of rice type, slice division information, tile identification information, tile type, tile division information, picture type, bit depth, and information on a luminance signal or color difference signal, or a combination thereof, may be included in the coding parameter.
여기서, 플래그 혹은 인덱스를 시그널링(signaling)한다는 것은 인코더에서는 해당 플래그 혹은 인덱스를 엔트로피 부호화(Entropy Encoding)하여 비트스트림(Bitstream)에 포함하는 것을 의미할 수 있고, 디코더에서는 비트스트림으로부터 해당 플래그 혹은 인덱스를 엔트로피 복호화(Entropy Decoding)하는 것을 의미할 수 있다.Here, signaling the flag or index may mean that the encoder entropy-encodes the corresponding flag or index and includes it in a bitstream, and the decoder converts the corresponding flag or index from the bitstream. It may mean entropy decoding.
부호화 장치(100)가 인터 예측을 통한 부호화를 수행할 경우, 부호화된 현재 영상은 이후에 처리되는 다른 영상에 대한 참조 영상으로서 사용될 수 있다. 따라서, 부호화 장치(100)는 부호화된 현재 영상을 다시 복원 또는 복호화할 수 있고, 복원 또는 복호화된 영상을 참조 영상으로 저장할 수 있다.When the
양자화된 레벨은 역양자화부(160)에서 역양자화(dequantization)될 수 있고. 역변환부(170)에서 역변환(inverse transform)될 수 있다. 역양자화 및/또는 역변환된 계수는 가산기(175)를 통해 예측 블록과 합해질 수 있다, 역양자화 및/또는 역변환된 계수 및 예측 블록을 합함으로써 복원 블록(reconstructed block)이 생성될 수 있다. 여기서, 역양자화 및/또는 역변환된 계수는 역양자화 및 역변환 중 적어도 하나 이상이 수행된 계수를 의미하며, 복원된 잔여 블록을 의미할 수 있다.The quantized level may be dequantized by the
복원 블록은 필터부(180)를 거칠 수 있다. 필터부(180)는 디블록킹 필터(deblocking filter), 샘플 적응적 오프셋(Sample Adaptive Offset; SAO), 적응적 루프 필터(Adaptive Loop Filter; ALF) 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(180)는 인루프 필터(in-loop filter)로 칭해질 수도 있다.The reconstruction block may pass through the
디블록킹 필터는 블록들 간의 경계에 생긴 블록 왜곡을 제거할 수 있다. 디블록킹 필터를 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 서로 다른 필터를 적용할 수 있다.The deblocking filter may remove block distortion generated at a boundary between blocks. In order to determine whether to perform the deblocking filter, it may be determined whether to apply the deblocking filter to the current block based on pixels included in several columns or rows included in the block. When a deblocking filter is applied to a block, different filters may be applied according to the required deblocking filtering strength.
샘플 적응적 오프셋을 이용하여 부호화 에러를 보상하기 위해 픽셀 값에 적정 오프셋(offset) 값을 더할 수 있다. 샘플 적응적 오프셋은 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.An appropriate offset value may be added to a pixel value to compensate for an encoding error using the sample adaptive offset. The sample-adaptive offset may correct an offset from an original image on a pixel-by-pixel basis for an image on which deblocking is performed. After dividing the pixels included in the image into a certain number of areas, a method of determining an area to be offset and applying the offset to the area or a method of applying the offset in consideration of edge information of each pixel may be used.
적응적 루프 필터는 복원 영상 및 원래의 영상을 비교한 값에 기반하여 필터링을 수행할 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. 적응적 루프 필터를 적용할지 여부에 관련된 정보는 부호화 유닛(Coding Unit, CU) 별로 시그널링될 수 있고, 각각의 블록에 따라 적용될 적응적 루프 필터의 모양 및 필터 계수는 달라질 수 있다.The adaptive loop filter may perform filtering based on a value obtained by comparing a reconstructed image and an original image. After dividing the pixels included in the image into predetermined groups, filtering may be performed differentially for each group by determining a filter to be applied to the corresponding group. Information related to whether to apply the adaptive loop filter may be signaled for each coding unit (CU), and the shape and filter coefficients of the adaptive loop filter to be applied may vary according to each block.
필터부(180)를 거친 복원 블록 또는 복원 영상은 참조 픽처 버퍼(190)에 저장될 수 있다. 도 2는 본 발명이 적용되는 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.A reconstructed block or a reconstructed image that has passed through the
복호화 장치(200)는 디코더, 비디오 복호화 장치 또는 영상 복호화 장치일 수 있다.The
도 2를 참조하면, 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽처 버퍼(270)를 포함할 수 있다.Referring to FIG. 2 , the
복호화 장치(200)는 부호화 장치(100)에서 출력된 비트스트림을 수신할 수 있다. 복호화 장치(200)는 컴퓨터 판독가능한 기록 매체에 저장된 비트스트림을 수신하거나, 유/무선 전송 매체를 통해 스트리밍되는 비트스트림을 수신할 수 있다. 복호화 장치(200)는 비트스트림에 대하여 인트라 모드 또는 인터 모드로 복호화를 수행할 수 있다. 또한, 복호화 장치(200)는 복호화를 통해 복원된 영상 또는 복호화된 영상을 생성할 수 있고, 복원된 영상 또는 복호화된 영상을 출력할 수 있다.The
복호화에 사용되는 예측 모드가 인트라 모드인 경우 스위치가 인트라로 전환될 수 있다. 복호화에 사용되는 예측 모드가 인터 모드인 경우 스위치가 인터로 전환될 수 있다.When the prediction mode used for decoding is the intra mode, the switch may be switched to the intra mode. When the prediction mode used for decoding is the inter mode, the switch may be switched to inter mode.
복호화 장치(200)는 입력된 비트스트림을 복호화하여 복원된 잔여 블록(reconstructed residual block)을 획득할 수 있고, 예측 블록을 생성할 수 있다. 복원된 잔여 블록 및 예측 블록이 획득되면, 복호화 장치(200)는 복원된 잔여 블록과 및 예측 블록을 더함으로써 복호화 대상이 되는 복원 블록을 생성할 수 있다. 복호화 대상 블록은 현재 블록으로 칭해질 수 있다.The
엔트로피 복호화부(210)는 비트스트림에 대한 확률 분포에 따른 엔트로피 복호화를 수행함으로써 심볼들을 생성할 수 있다. 생성된 심볼들은 양자화된 레벨 형태의 심볼을 포함할 수 있다. 여기에서, 엔트로피 복호화 방법은 상술된 엔트로피 부호화 방법의 역과정일 수 있다.The entropy decoding unit 210 may generate symbols by performing entropy decoding on a bitstream according to a probability distribution. The generated symbols may include symbols in the form of quantized levels. Here, the entropy decoding method may be a reverse process of the above-described entropy encoding method.
엔트로피 복호화부(210)는 변환 계수 레벨을 복호화하기 위해 변환 계수 스캐닝 방법을 통해 1차원의 벡터 형태 계수를 2차원의 블록 형태로 변경할 수 있다. The entropy decoding unit 210 may change a 1-dimensional vector form coefficient into a 2-dimensional block form through a transform coefficient scanning method in order to decode a transform coefficient level.
양자화된 레벨은 역양자화부(220)에서 역양자화될 수 있고, 역변환부(230)에서 역변환될 수 있다. 양자화된 레벨은 역양자화 및/또는 역변환이 수행된 결과로서, 복원된 잔여 블록으로 생성될 수 있다. 이때, 역양자화부(220)는 양자화된 레벨에 양자화 행렬을 적용할 수 있다.The quantized level may be inversely quantized in the
인트라 모드가 사용되는 경우, 인트라 예측부(240)는 복호화 대상 블록 주변의 이미 복호화된 블록의 픽셀 값을 이용하는 공간적 예측을 수행함으로써 예측 블록을 생성할 수 있다.When the intra mode is used, the
인터 모드가 사용되는 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽처 버퍼(270)에 저장되어 있는 참조 영상을 이용하는 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다. 상기 움직임 보상부(250)는 움직임 벡터의 값이 정수 값을 가지지 않을 경우에 참조 영상 내의 일부 영역에 대해 보간 필터를 적용하여 예측 블록을 생성할 수 있다. 움직임 보상을 수행하기 위해 부호화 유닛을 기준으로 해당 부호화 유닛에 포함된 예측 유닛의 움직임 보상 방법이 스킵 모드, 머지 모드, AMVP 모드, 현재 픽처 참조 모드 중 어떠한 방법인지 여부를 판단할 수 있고, 각 모드에 따라 움직임 보상을 수행할 수 있다.When the inter mode is used, the
가산기(255)는 복원된 잔여 블록 및 예측 블록을 가산하여 복원 블록을 생성할 수 있다. 필터부(260)는 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 등 적어도 하나를 복원 블록 또는 복원 영상에 적용할 수 있다. 필터부(260)는 복원 영상을 출력할 수 있다. 복원 블록 또는 복원 영상은 참조 픽처 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다.The
도 3은 영상을 부호화 및 복호화할 때의 영상의 분할 구조를 개략적으로 나타내는 도면이다. 도 3은 하나의 유닛이 복수의 하위 유닛으로 분할되는 실시예를 개략적으로 나타낸다.3 is a diagram schematically illustrating a division structure of an image when encoding and decoding an image. 3 schematically illustrates an embodiment in which one unit is divided into a plurality of sub-units.
영상을 효율적으로 분할하기 위해, 부호화 및 복호화에 있어서, 부호화 유닛(Coding Unit; CU)이 사용될 수 있다. 영상 부호화/복호화의 기본 단위로서 부호화 유닛이 사용될 수 있다. 또한, 영상 부호화/복호화 시 화면 내 모드 및 화면 간 모드가 구분되는 단위로 부호화 유닛을 사용할 수 있다. 부호화 유닛은 예측, 변환, 양자화, 역변환, 역양자화, 또는 변환 계수의 부호화/복호화의 과정을 위해 사용되는 기본 단위일 수 있다. In order to efficiently segment an image, a coding unit (CU) may be used in encoding and decoding. A coding unit may be used as a basic unit of image encoding/decoding. In addition, during video encoding/decoding, an encoding unit may be used as a unit in which an intra-screen mode and an inter-screen mode are distinguished. The coding unit may be a basic unit used for a process of prediction, transformation, quantization, inverse transformation, inverse quantization, or encoding/decoding of transform coefficients.
도 3을 참조하면, 영상(300)은 최대 부호화 유닛(Largest Coding Unit; LCU) 단위로 순차적으로 분할되고, LCU 단위로 분할 구조가 결정된다. 여기서, LCU는 부호화 트리 유닛(Coding Tree Unit; CTU)과 동일한 의미로 사용될 수 있다. 유닛의 분할은 유닛에 해당하는 블록의 분할을 의미할 수 있다. 블록 분할 정보에는 유닛의 깊이(depth)에 관한 정보가 포함될 수 있다. 깊이 정보는 유닛이 분할되는 회수 및/또는 정도를 나타낼 수 있다. 하나의 유닛은 트리 구조(tree structure)를 기초로 깊이 정보를 가지고 계층적으로 분할될 수 있다. 각각의 분할된 하위 유닛은 깊이 정보를 가질 수 있다. 깊이 정보는 CU의 크기를 나타내는 정보일 수 있고, 각 CU마다 저장될 수 있다.Referring to FIG. 3 , an
분할 구조는 LCU(310) 내에서의 부호화 유닛(Coding Unit; CU)의 분포를 의미할 수 있다. 이러한 분포는 하나의 CU를 복수(2, 4, 8, 16 등을 포함하는 2 이상의 양의 정수)의 CU들로 분할할지 여부에 따라 결정할 수 있다. 분할에 의해 생성된 CU의 가로 크기 및 세로 크기는 각각 분할 전의 CU의 가로 크기의 절반 및 세로 크기의 절반이거나, 분할된 개수에 따라 분할 전의 CU의 가로 크기보다 작은 크기 및 세로 크기보다 작은 크기를 가질 수 있다. CU는 복수의 CU로 재귀적으로 분할될 수 있다. CU의 분할은 기정의된 깊이 또는 기정의된 크기까지 재귀적으로 이루어질 수 있다. 예컨대, LCU의 깊이는 0일 수 있고, 최소 부호화 유닛(Smallest Coding Unit; SCU)의 깊이는 기정의된 최대 깊이일 수 있다. 여기서, LCU는 상술된 것과 같이 최대의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있고, SCU는 최소의 부호화 유닛 크기를 가지는 부호화 유닛일 수 있다. LCU(310)로부터 분할이 시작되고, 분할에 의해 CU의 가로 크기 및/또는 세로 크기가 줄어들 때마다 CU의 깊이는 1씩 증가한다.The division structure may refer to a distribution of Coding Units (CUs) within the
또한, CU가 분할되는지 여부에 대한 정보는 CU의 분할 정보를 통해 표현될 수 있다. 분할 정보는 1비트의 정보일 수 있다. SCU를 제외한 모든 CU는 분할 정보를 포함할 수 있다. 예를 들면, 분할 정보의 값이 제1 값이면, CU가 분할되지 않을 수 있고, 분할 정보의 값이 제2 값이면, CU가 분할될 수 있다.Also, information on whether the CU is split may be expressed through split information of the CU. The division information may be 1 bit of information. All CUs except for the SCU may include partition information. For example, if the value of the division information is a first value, the CU may not be divided, and if the value of the division information is a second value, the CU may be divided.
도 3을 참조하면, 깊이가 0인 LCU는 64x64 블록일 수 있다. 0은 최소 깊이일 수 있다. 깊이가 3인 SCU는 8x8 블록일 수 있다. 3은 최대 깊이일 수 있다. 32x32 블록 및 16x16 블록의 CU는 각각 깊이 1 및 깊이 2로 표현될 수 있다. Referring to FIG. 3, an LCU having a depth of 0 may be a 64x64 block. 0 may be the minimum depth. An SCU with a depth of 3 can be an 8x8 block. 3 may be the maximum depth. The CUs of the 32x32 block and the 16x16 block may be expressed as
예를 들어, 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛의 가로 및 세로 크기는 분할되기 전 부호화 유닛의 가로 및 세로 크기와 비교하여 각각 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 분할된 4개의 부호화 유닛은 각각 16x16의 크기를 가질 수 있다. 하나의 부호화 유닛이 4개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 쿼드트리(quad-tree) 형태로 분할되었다고 할 수 있다.For example, when one coding unit is divided into 4 coding units, the horizontal and vertical sizes of the divided 4 coding units may be halved compared to the horizontal and vertical sizes of the coding unit before division. there is. For example, when a 32x32 coding unit is divided into 4 coding units, each of the divided 4 coding units may have a size of 16x16. When one coding unit is divided into four coding units, it can be said that the coding units are divided in a quad-tree form.
예를 들어, 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 분할된 2개의 부호화 유닛의 가로 혹은 세로 크기는 분할되기 전 부호화 유닛의 가로 혹은 세로 크기와 비교하여 절반의 크기를 가질 수 있다. 일 예로, 32x32 크기의 부호화 유닛이 2개의 부호화 유닛으로 세로로 분할 될 경우, 분할된 2개의 부호화 유닛은 각각 16x32의 크기를 가질 수 있다. 하나의 부호화 유닛이 2개의 부호화 유닛으로 분할 될 경우, 부호화 유닛은 이진트리(binary-tree) 형태로 분할되었다고 할 수 있다. 도 3의 LCU(320)는 쿼드트리 형태의 분할 및 이진트리 형태의 분할이 모두 적용된 LCU의 일 예이다.For example, when one coding unit is divided into two coding units, the horizontal or vertical size of the two divided coding units may be half of the horizontal or vertical size of the coding unit before being divided. . For example, when a coding unit having a size of 32x32 is vertically divided into two coding units, each of the two divided coding units may have a size of 16x32. When one coding unit is divided into two coding units, it can be said that the coding unit is divided in the form of a binary tree. The
도 4는 화면 간 예측 과정의 실시예를 설명하기 위한 도면이다.4 is a diagram for explaining an embodiment of an inter-screen prediction process.
도 4에 도시된 사각형은 영상을 나타낼 수 있다. 또한, 도 4에서 화살표는 예측 방향을 나타낼 수 있다. 각 영상은 부호화 타입에 따라 I 픽처(Intra Picture), P 픽처(Predictive Picture), B 픽처(Bi-predictive Picture) 등으로 분류될 수 있다. The rectangle shown in FIG. 4 may represent an image. Also, arrows in FIG. 4 may indicate prediction directions. Each image may be classified into an I-picture (Intra Picture), a P-picture (Predictive Picture), a B-picture (Bi-predictive Picture), and the like according to an encoding type.
I 픽처는 화면 간 예측 없이 화면 내 예측을 통해 부호화될 수 있다. P 픽처는 단방향(예컨대, 순방향 또는 역방향)에 존재하는 참조 영상만을 이용하는 화면 간 예측을 통해 부호화될 수 있다. B 픽처는 쌍방향(예컨대, 순방향 및 역방향)에 존재하는 참조 픽처들을 이용하는 화면 간 예측을 통해 부호화될 수 있다. 여기서, 화면 간 예측이 사용되는 경우, 부호화기에서는 화면 간 예측 혹은 움직임 보상을 수행할 수 있고, 복호화기에서는 그에 대응하는 움직임 보상을 수행할 수 있다.I-pictures can be coded through intra-prediction without inter-prediction. A P picture may be coded through inter prediction using only a reference picture existing in one direction (eg, forward direction or backward direction). A B picture may be coded through inter prediction using reference pictures existing in bidirectional directions (eg, forward and backward directions). Here, when inter-prediction is used, the encoder may perform inter-prediction or motion compensation, and the decoder may perform motion compensation corresponding thereto.
아래에서, 실시예에 따른 화면 간 예측에 대해 구체적으로 설명된다.Below, inter-picture prediction according to an embodiment is described in detail.
화면 간 예측 혹은 움직임 보상은 참조 픽처 및 움직임 정보를 이용하여 수행될 수 있다.Inter-picture prediction or motion compensation may be performed using a reference picture and motion information.
현재 블록에 대한 움직임 정보는 부호화 장치(100) 및 복호화 장치(200)의 각각에 의해 화면 간 예측 중 도출될 수 있다. 움직임 정보는 복원된 주변 블록의 움직임 정보, 콜 블록(collocated block; col block)의 움직임 정보 및/또는 콜 블록에 인접한 블록을 이용하여 도출될 수 있다. 콜 블록은 이미 복원된 콜 픽처(collocated picture; col picture) 내에서 현재 블록의 공간적 위치에 대응하는 블록일 수 있다. 여기서, 콜 픽처는 참조 픽처 리스트에 포함된 적어도 하나의 참조 픽처 중에서 하나의 픽처일 수 있다.Motion information on the current block may be derived during inter prediction by each of the
움직임 정보의 도출 방식은 현재 블록의 예측 모드에 따라 다를 수 있다. 예를 들면, 화면 간 예측을 위해 적용되는 예측 모드로서, AMVP 모드, 머지 모드, 스킵 모드, 현재 픽처 참조 모드 등이 있을 수 있다. 여기서 머지 모드를 움직임 병합 모드(motion merge mode)라고 지칭할 수 있다.A method of deriving motion information may be different according to the prediction mode of the current block. For example, prediction modes applied for inter-prediction may include AMVP mode, merge mode, skip mode, current picture reference mode, and the like. Here, the merge mode may be referred to as a motion merge mode.
예를 들면, 예측 모드로서, AMVP가 적용되는 경우, 복원된 주변 블록의 움직임 벡터, 콜 블록의 움직임 벡터, 콜 블록에 인접한 블록의 움직임 벡터, (0, 0) 움직임 벡터 중 적어도 하나를 움직임 벡터 후보로 결정하여 움직임 벡터 후보 리스트(motion vector candidate list)를 생성할 수 있다. 생성된 움직임 벡터 후보 리스트를 이용하여 움직임 벡터 후보를 유도할 수 있다. 유도된 움직임 벡터 후보를 기반으로 현재 블록의 움직임 정보를 결정할 수 있다. 여기서, 콜 블록의 움직임 벡터 또는 콜 블록에 인접한 블록의 움직임 벡터를 시간적 움직임 벡터 후보(temporal motion vector candidate)라 지칭할 수 있고, 복원된 주변 블록의 움직임 벡터를 공간적 움직임 벡터 후보(spatial motion vector candidate)라 지칭할 수 있다.For example, when AMVP is applied as a prediction mode, at least one of a motion vector of a reconstructed neighboring block, a motion vector of a collocated block, a motion vector of a block adjacent to the collocated block, and a (0, 0) motion vector is used as a motion vector. A motion vector candidate list may be generated by determining a motion vector candidate list. A motion vector candidate may be derived using the generated motion vector candidate list. Motion information of the current block may be determined based on the derived motion vector candidate. Here, a motion vector of a collocated block or a motion vector of a block adjacent to the collocated block may be referred to as a temporal motion vector candidate, and a motion vector of a reconstructed neighboring block may be referred to as a spatial motion vector candidate. ) can be referred to as
부호화 장치(100)는 현재 블록의 움직임 벡터 및 움직임 벡터 후보 간의 움직임 벡터 차분(MVD: Motion Vector Difference)을 계산할 수 있고, MVD를 엔트로피 부호화할 수 있다. 또한, 부호화 장치(100)는 움직임 벡터 후보 색인을 엔트로피 부호화하여 비트스트림을 생성할 수 있다. 움직임 벡터 후보 색인은 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터 후보를 지시할 수 있다. 복호화 장치(200)는 움직임 벡터 후보 색인을 비트스트림으로부터 엔트로피 복호화하고, 엔트로피 복호화된 움직임 벡터 후보 색인을 이용하여 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서 복호화 대상 블록의 움직임 벡터 후보를 선택할 수 있다. 또한, 복호화 장치(200)는 엔트로피 복호화된 MVD 및 움직임 벡터 후보의 합을 통해 복호화 대상 블록의 움직임 벡터를 도출할 수 있다.The
비트스트림은 참조 픽처를 지시하는 참조 영상 색인 등을 포함할 수 있다. 참조 영상 색인은 엔트로피 부호화되어 비트스트림을 통해 부호화 장치(100)로부터 복호화 장치(200)로 시그널링될 수 있다. 복호화 장치(200)는 유도된 움직임 벡터와 참조 영상 색인 정보에 기반하여 복호화 대상 블록에 대한 예측 블록을 생성할 수 있다.The bitstream may include a reference picture index indicating a reference picture. The reference image index may be entropy-encoded and signaled from the
움직임 정보의 도출 방식의 다른 예로, 머지 모드가 있다. 머지 모드란 복수의 블록들에 대한 움직임의 병합을 의미할 수 있다. 머지 모드는 현재 블록의 움직임 정보를 주변 블록의 움직임 정보로부터 유도하는 모드를 의미할 수 있다. 머지 모드가 적용되는 경우, 복원된 주변 블록의 움직임 정보 및/또는 콜 블록의 움직임 정보를 이용하여 머지 후보 리스트(merge candidate list)를 생성할 수 있다. 움직임 정보는 1) 움직임 벡터, 2) 참조 영상 색인, 및 3) 화면 간 예측 지시자 중 적어도 하나를 포함할 수 있다. 예측 지시자는 단방향 (L0 예측, L1 예측) 또는 쌍방향일 수 있다.Another example of a motion information derivation method is a merge mode. Merge mode may mean merging of motions of a plurality of blocks. A merge mode may refer to a mode in which motion information of a current block is derived from motion information of neighboring blocks. When merge mode is applied, a merge candidate list may be generated using motion information of a reconstructed neighboring block and/or motion information of a collocated block. The motion information may include at least one of 1) a motion vector, 2) a reference image index, and 3) an inter-picture prediction indicator. Prediction indicators can be unidirectional (L0 prediction, L1 prediction) or bidirectional.
머지 후보 리스트는 움직임 정보들이 저장된 리스트를 나타낼 수 있다. 머지 후보 리스트에 저장되는 움직임 정보는, 현재 블록에 인접한 주변 블록의 움직임 정보(공간적 머지 후보(spatial merge candidate)) 및 참조 영상에서 현재 블록에 대응되는(collocated) 블록의 움직임 정보(시간적 머지 후보(temporal merge candidate)), 이미 머지 후보 리스트에 존재하는 움직임 정보들의 조합에 의해 생성된 새로운 움직임 정보 및 제로 머지 후보 중 적어도 하나일 수 있다. The merge candidate list may indicate a list in which motion information is stored. Motion information stored in the merge candidate list includes motion information of blocks adjacent to the current block (spatial merge candidate) and motion information of blocks collocated with the current block in the reference image (temporal merge candidate (spatial merge candidate)). temporal merge candidate)), new motion information generated by a combination of motion information already existing in the merge candidate list, and a zero merge candidate.
부호화 장치(100)는 머지 플래그(merge flag) 및 머지 인덱스(merge index) 중 적어도 하나를 엔트로피 부호화하여 비트스트림을 생성한 후 복호화 장치(200)로 시그널링할 수 있다. 머지 플래그는 블록 별로 머지 모드를 수행할지 여부를 나타내는 정보일 수 있고, 머지 인덱스는 현재 블록에 인접한 주변 블록들 중 어떤 블록과 머지를 할 것인가에 대한 정보일 수 있다. 예를 들면, 현재 블록의 주변 블록들은 현재 블록의 좌측 인접 블록, 상단 인접 블록 및 시간적 인접 블록 중 적어도 하나를 포함할 수 있다.The
스킵 모드는 주변 블록의 움직임 정보를 그대로 현재 블록에 적용하는 모드일 수 있다. 스킵 모드가 사용되는 경우, 부호화 장치(100)는 어떤 블록의 움직임 정보를 현재 블록의 움직임 정보로서 이용할 것인지에 대한 정보를 엔트로피 부호화하여 비트스트림을 통해 복호화 장치(200)에 시그널링할 수 있다. 이때, 부호화 장치(100)는 움직임 벡터 차분 정보, 부호화 블록 플래그 및 변환 계수 레벨 중 적어도 하나에 관한 구문 요소를 복호화 장치(200)에 시그널링하지 않을 수 있다.The skip mode may be a mode in which motion information of neighboring blocks is applied to the current block as it is. When the skip mode is used, the
현재 픽처 참조 모드는 현재 블록이 속한 현재 픽처 내의 기-복원된 영역을 이용한 예측 모드를 의미할 수 있다. 이때, 상기 기-복원된 영역을 특정하기 위해 벡터가 정의될 수 있다. 현재 블록이 현재 픽처 참조 모드로 부호화되는지 여부는 현재 블록의 참조 영상 색인을 이용하여 부호화될 수 있다. 현재 블록이 현재 픽처 참조 모드로 부호화된 블록인지 여부를 나타내는 플래그 혹은 인덱스가 시그널링될 수도 있고, 현재 블록의 참조 영상 색인을 통해 유추될 수도 있다. 현재 블록이 현재 픽처 참조 모드로 부호화된 경우, 현재 픽처는 현재 블록을 위한 참조 영상 리스트 내에서 고정 위치 또는 임의의 위치에 추가될 수 있다. 상기 고정 위치는 예를 들어, 참조 영상 색인이 0인 위치 또는 가장 마지막 위치일 수 있다. 현재 픽쳐가 참조 영상 리스트 내에서 임의의 위치에 추가되는 경우, 상기 임의의 위치를 나타내는 별도의 참조 영상 색인이 시그널링될 수도 있다.The current picture reference mode may mean a prediction mode using a pre-reconstructed region in the current picture to which the current block belongs. At this time, a vector may be defined to specify the pre-restored region. Whether the current block is coded in the current picture reference mode can be coded using the reference picture index of the current block. A flag or index indicating whether the current block is a block encoded in the current picture reference mode may be signaled or may be inferred through a reference picture index of the current block. When the current block is coded in the current picture reference mode, the current picture may be added at a fixed position or an arbitrary position within the reference picture list for the current block. The fixed position may be, for example, a position where the reference image index is 0 or the last position. When the current picture is added to an arbitrary position within the reference video list, a separate reference video index indicating the arbitrary position may be signaled.
상술한 사항을 바탕으로, 본 발명에 따른 영상 부호화/복호화 방법에 대해 상세히 살펴보기로 한다.Based on the above, the video encoding/decoding method according to the present invention will be described in detail.
도 5는 본 발명의 일 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이고, 도 6은 본 발명의 일 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.5 is a flowchart illustrating an image encoding method according to an embodiment of the present invention, and FIG. 6 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
도 5를 참조하면, 부호화 장치는 움직임 벡터 후보를 유도하고(S501), 유도된 움직임 벡터 후보를 기초로, 움직임 벡터 후보 리스트를 생성할 수 있다(S502). 움직임 벡터 후보 리스트가 생성되면, 생성된 움직임 벡터 후보 리스트를 이용하여, 움직임 벡터를 결정하고(S503), 움직임 벡터를 이용하여, 움직임 보상을 수행할 수 있다(S504). 이후, 부호화 장치는 움직임 보상에 관한 정보를 엔트로피 부호화할 수 있다(S505).Referring to FIG. 5 , the encoding apparatus may derive a motion vector candidate (S501) and generate a motion vector candidate list based on the derived motion vector candidate (S502). When the motion vector candidate list is generated, a motion vector may be determined using the generated motion vector candidate list (S503), and motion compensation may be performed using the motion vector (S504). After that, the encoding device may entropy-encode information about motion compensation (S505).
도 6을 참조하면, 복호화 장치는 부호화 장치로부터 수신한 움직임 보상에 관한 정보를 엔트로피 복호화 하고(S601), 움직임 벡터 후보를 유도할 수 있다(S602). 그리고, 복호화 장치는 유도된 움직임 벡터 후보를 기초로 움직임 벡터 후보 리스트를 생성하고(S603), 생성된 움직임 벡터 후보 리스트를 이용하여, 움직임 벡터를 결정할 수 있다(S604). 이후, 복호화 장치는 움직임 벡터를 이용하여, 움직임 보상을 수행할 수 있다(S605).Referring to FIG. 6 , the decoding device may entropy-decode information about motion compensation received from the encoding device (S601) and derive a motion vector candidate (S602). Then, the decoding apparatus may generate a motion vector candidate list based on the derived motion vector candidate (S603), and determine a motion vector using the generated motion vector candidate list (S604). Thereafter, the decoding apparatus may perform motion compensation using the motion vector (S605).
도 7은 본 발명의 다른 실시 예에 따른 영상 부호화 방법을 나타낸 흐름도이고, 도 8은 본 발명의 다른 실시 예에 따른 영상 복호화 방법을 나타낸 흐름도이다.7 is a flowchart illustrating a video encoding method according to another embodiment of the present invention, and FIG. 8 is a flowchart illustrating a video decoding method according to another embodiment of the present invention.
도 7을 참조하면, 부호화 장치는 머지 후보를 유도하고(S701), 유도된 머지 후보를 기초로 머지 후보 리스트를 생성할 수 있다. 머지 후보 리스트가 생성되면, 생성된 머지 후보 리스트를 이용하여 움직임 정보를 결정하고(S702), 결정된 움직임 정보를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다(S703). 이후, 부호화 장치는 움직임 보상에 관한 정보를 엔트로피 부호화할 수 있다(S704).Referring to FIG. 7 , the encoding device may derive a merge candidate (S701) and generate a merge candidate list based on the derived merge candidate. When the merge candidate list is generated, motion information may be determined using the generated merge candidate list (S702), and motion compensation of the current block may be performed using the determined motion information (S703). After that, the encoding device may entropy-encode information about motion compensation (S704).
도 8을 참조하면, 복호화 장치는 부호화 장치로부터 수신한 움직임 보상에 관한 정보를 엔트로피 복호화하여(S801), 머지 후보를 유도하고(S802), 유도된 머지 후보를 기초로 머지 후보 리스트를 생성할수 있다. 머지 후보 리스트가 생성되면, 생성된 머지 후보 리스트를 이용하여 현재 블록의 움직임 정보를 결정할 수 있다(S803). 이후, 복호화 장치는 움직임 정보를 이용하여, 움직임 보상을 수행할 수 있다(S804).Referring to FIG. 8 , the decoding device may entropy-decode information about motion compensation received from the encoding device (S801), derive a merge candidate (S802), and generate a merge candidate list based on the derived merge candidate. . When the merge candidate list is generated, motion information of the current block may be determined using the generated merge candidate list (S803). Thereafter, the decoding apparatus may perform motion compensation using the motion information (S804).
여기서, 도 5 및 도 6는 도 4에서 설명한 AMVP 모드가 적용된 일 예일 수 있으며, 도 7 및 도 8은 도 4에서 설명한 머지 모드가 적용된 일 예일 수 있다.Here, FIGS. 5 and 6 may be examples to which the AMVP mode described in FIG. 4 is applied, and FIGS. 7 and 8 may be examples to which the merge mode described in FIG. 4 is applied.
이하에서, 도 5 및 도 6에서 도시된 각 단계를 설명한 후, 도 7 및 도 8에서 도시된 각 단계에 대해 설명하도록 한다. 다만, 움직임 보상 수행 단계(S504, S605, S703, S804) 및 엔트로피 부호화/복호화 단계(S505, S601, S704, S801)에 대한 설명은 통합하여 서술하도록 한다.Hereinafter, each step shown in FIGS. 5 and 6 will be described, and then each step shown in FIGS. 7 and 8 will be described. However, descriptions of the motion compensation steps (S504, S605, S703, and S804) and the entropy encoding/decoding steps (S505, S601, S704, and S801) are integrated and described.
이하, 도 5 및 도 6에 도시된 각 단계에 대해 상세히 살펴보기로 한다.Hereinafter, each step shown in FIGS. 5 and 6 will be described in detail.
먼저, 움직임 벡터 후보를 유도하는 단계에 대해 구체적으로 설명하기로 한다(S501, S602).First, the step of deriving motion vector candidates will be described in detail (S501 and S602).
현재 블록에 대한 움직임 벡터 후보는 공간적 움직임 벡터 후보 또는 시간적 움직임 벡터 후보 중 적어도 하나를 포함할 수 있다. The motion vector candidate for the current block may include at least one of a spatial motion vector candidate and a temporal motion vector candidate.
현재 블록의 공간적 움직임 벡터는, 현재 블록 주변의 복원 블록으로부터 유도될 수 있다. 일 예로, 현재 블록 주변의 복원 블록의 움직임 벡터가 현재 블록에 대한 공간적 움직임 벡터 후보로 결정될 수 있다.A spatial motion vector of the current block may be derived from reconstruction blocks adjacent to the current block. For example, a motion vector of a reconstruction block adjacent to the current block may be determined as a spatial motion vector candidate for the current block.
도 9는 현재 블록의 공간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다. 9 is a diagram for explaining an example of deriving a spatial motion vector candidate of a current block.
도 9를 참조하면, 현재 블록의 공간적 움직임 벡터 후보는 현재 블록(X)에 인접한 주변 블록들로부터 유도될 수 있다. 여기서, 현재 블록에 인접한 주변 블록은, 현재 블록의 상단에 인접한 블록(B1), 현재 블록의 좌측에 인접한 블록(A1), 현재 블록의 우측 상단 코너에 인접한 블록(B0), 현재 블록의 좌측 상단 코너에 인접한 블록(B2) 및 현재 블록의 좌측 하단 코너에 인접한 블록(A0) 중 적어도 하나를 포함할 수 있다. 한편, 현재 블록에 인접한 주변 블록은 정방형(square) 형태 또는 비정방형(non-square) 형태일 수 있다. 현재 블록에 인접한 주변 블록에 움직임 벡터가 존재하는 경우, 주변 블록의 움직임 벡터가 현재 블록의 공간적 움직임 벡터 후보로 결정될 수 있다. 주변 블록의 움직임 벡터가 존재하는지 여부 또는 주변 블록의 움직임 벡터가 현재 블록의 공간적 움직임 벡터 후보로서 이용가능한지 여부는, 주변 블록이 존재하는지 여부 또는 주변 블록이 화면 간 예측을 통해 부호화되었는지 여부 등을 기초로 판단될 수 있다. 이때, 주변 블록의 움직임 벡터가 존재하는지 여부 또는 주변 블록의 움직임 벡터가 현재 블록의 공간적 움직임 벡터 후보로 이용가능한지 여부는 소정의 우선 순위에 따라 결정될 수 있다. 일 예로, 도 9에 도시된 예에서, A0, A1, B0, B1 및 B2 위치의 블록 순서대로 움직임 벡터의 가용성이 판단될 수 있다.Referring to FIG. 9 , a spatial motion vector candidate of a current block may be derived from neighboring blocks adjacent to the current block (X). Here, the neighboring blocks adjacent to the current block include a block adjacent to the top of the current block (B1), a block adjacent to the left side of the current block (A1), a block adjacent to the upper right corner of the current block (B0), and an upper left corner of the current block. It may include at least one of a block B2 adjacent to the corner and a block A0 adjacent to the lower left corner of the current block. Meanwhile, neighboring blocks adjacent to the current block may have a square shape or a non-square shape. When a motion vector exists in a neighboring block adjacent to the current block, the motion vector of the neighboring block may be determined as a spatial motion vector candidate of the current block. Whether the motion vector of the neighboring block exists or whether the motion vector of the neighboring block is available as a spatial motion vector candidate of the current block is based on whether the neighboring block exists or whether the neighboring block has been coded through inter prediction. can be judged as At this time, whether the motion vector of the neighboring block exists or whether the motion vector of the neighboring block is available as a spatial motion vector candidate of the current block may be determined according to a predetermined priority order. For example, in the example shown in FIG. 9 , availability of motion vectors may be determined in the order of blocks at locations A0, A1, B0, B1, and B2.
현재 블록의 참조 영상과 움직임 벡터를 갖는 주변 블록의 참조 영상이 다른 경우, 주변 블록의 움직임 벡터를 스케일링(scaling)한 것을, 현재 블록의 공간적 움직임 벡터 후보로 결정할 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 현재 영상과 주변 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 현재 영상과 주변 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 주변 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 공간적 움직임 벡터 후보가 유도될 수 있다. When the reference image of the current block and the reference image of the neighboring block having a motion vector are different, a scaling motion vector of the neighboring block may be determined as a spatial motion vector candidate of the current block. Here, scaling may be performed based on at least one of a distance between the current image and a reference image referred to by the current block and a distance between the current image and reference images referred to by neighboring blocks. For example, the spatial motion vector candidate of the current block is derived by scaling the motion vector of the neighboring block according to the ratio of the distance between the current picture and the reference picture referenced by the current block and the distance between the current picture and the reference picture referenced by the neighboring block. It can be.
한편, 현재 블록의 참조 영상 색인과 움직임 벡터를 갖는 주변 블록의 참조 영상 색인이 다른 경우, 주변 블록의 움직임 벡터를 스케일링한 것을, 현재 블록의 공간적 움직임 벡터 후보로 결정할 수 있다. 이경우에도, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 현재 영상과 주변 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다.Meanwhile, when the reference picture index of the current block is different from the reference picture index of the neighboring block having the motion vector, a scaling motion vector of the neighboring block may be determined as a spatial motion vector candidate of the current block. Even in this case, scaling may be performed based on at least one of a distance between the current image and a reference image referred to by the current block and a distance between the current image and reference images referred to by neighboring blocks.
스케일링과 관련하여, 주변 블록의 움직임 벡터를 기 정의된 값을 갖는 참조 영상 색인에 의해 지시되는 참조 영상을 기반으로 스케일링하여 공간적 움직임 벡터 후보로 결정할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다. 일 예로, 현재 영상과 기 정의된 값을 갖는 참조 영상 색인에 의해 지시되는 현재 블록의 참조 영상 간의 거리 및 현재 영상과 기 정의된 값을 갖는 주변 블록의 참조 영상 간의 거리의 비율에 따라 주변 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 공간적 움직임 벡터 후보가 유도될 수 있다.Regarding scaling, a motion vector of a neighboring block may be scaled based on a reference image indicated by a reference image index having a predefined value and determined as a spatial motion vector candidate. In this case, the predefined value may be a positive integer including 0. For example, according to the ratio of the distance between the current image and the reference image of the current block indicated by the reference image index having a predefined value, and the distance between the current image and the reference image of the neighboring block having a predefined value, a neighboring block By scaling the motion vector, a spatial motion vector candidate of the current block can be derived.
또한, 현재 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 현재 블록의 공간적 움직임 벡터 후보를 유도할 수 있다.Also, a spatial motion vector candidate of the current block may be derived based on at least one or more of the coding parameters of the current block.
현재 블록의 시간적 움직임 벡터 후보는, 현재 영상의 대응 위치 영상(Co-located picture)에 포함된 복원된 블록으로부터 유도될 수 있다. 여기서, 대응 위치 영상은, 현재 영상 이전에 부호화/복호화가 완료된 영상으로, 현재 영상과 상이한 시간적 순서를 갖는 영상일 수 있다. A temporal motion vector candidate of the current block may be derived from a reconstructed block included in a co-located picture of the current picture. Here, the corresponding position image is an image that has been encoded/decoded before the current image, and may be an image having a temporal order different from that of the current image.
도 10은 현재 블록의 시간적 움직임 벡터 후보를 유도하는 예를 설명하기 위한 도면이다.10 is a diagram for explaining an example of deriving a temporal motion vector candidate of a current block.
도 10을 참조하면, 현재 영상의 대응 위치 영상(collocated picture)에서, 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 위부 위치를 포함하는 블록 또는 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 내부 위치를 포함하는 블록으로부터 현재 블록의 시간적 움직임 벡터 후보를 유도할 수 있다. 여기서, 시간적 움직임 벡터 후보는 대응 위치 블록의 움직임 벡터를 의미할 수 있다. 일 예로, 현재 블록(X)의 시간적 움직임 벡터 후보는 현재 블록과 공간적으로 동일한 위치에 대응하는 블록(C)의 좌측 하단 코너에 인접한 블록(H) 또는 블록 C의 중심점을 포함하는 블록(C3)으로부터 유도될 수 있다. 현재 블록의 시간적 움직임 벡터 후보를 유도하기 위해 사용되는 블록 H 또는 블록 C3 등을 '대응 위치 블록(collocated block)'이라 호칭할 수 있다.Referring to FIG. 10 , in a collocated picture of a current image, a block including an upper position of a block corresponding to a position spatially identical to the current block X or a position spatially identical to the current block X A temporal motion vector candidate of the current block may be derived from the block including the internal position of the block corresponding to . Here, the temporal motion vector candidate may mean a motion vector of a corresponding position block. For example, the temporal motion vector candidate of the current block (X) is a block (H) adjacent to the lower left corner of the block (C) corresponding to the same spatial position as the current block or a block (C3) including the center point of the block C. can be derived from A block H or a block C3 used to derive a temporal motion vector candidate of the current block may be referred to as a 'collocated block'.
또한, 부호화 파라미터 중 적어도 하나 이상에 기초하여, 시간적 움직임 벡터 후보, 대응 위치 영상, 대응 위치 블록, 예측 리스트 활용 플래그 및 참조 영상 색인 중 적어도 하나를 유도할 수도 있다.In addition, at least one of a temporal motion vector candidate, a corresponding location image, a corresponding location block, a prediction list utilization flag, and a reference image index may be derived based on at least one of the encoding parameters.
현재 블록이 포함된 현재 영상과 현재 블록의 참조 영상 사이의 거리가 대응 위치 블록이 포함된 대응 위치 영상과 대응 위치 블록의 참조 영상 사이의 거리와 다를 경우, 현재 블록의 시간적 움직임 벡터 후보는 대응 위치 블록의 움직임 벡터를 스케일링함으로써 획득될 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 대응 위치 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 시간적 움직임 벡터 후보가 유도될 수 있다.If the distance between the current image including the current block and the reference image of the current block is different from the distance between the corresponding location image including the corresponding location block and the reference image of the corresponding location block, the temporal motion vector candidate of the current block is It can be obtained by scaling the motion vector of the block. Here, scaling may be performed based on at least one of a distance between a current image and a reference image referred to by the current block and a distance between a corresponding location image and a reference image referred to by the corresponding location block. For example, by scaling the motion vector of the corresponding location block according to the ratio of the distance between the current image and the reference image referred to by the current block and the distance between the corresponding location image and the reference image referred to by the corresponding location block, the temporal motion vector of the current block is scaled. Candidates can be derived.
다음으로, 유도된 움직임 벡터 후보를 기초로, 움직임 벡터 후보 리스트를 생성하는 단계에 대해 설명하기로 한다(S502, S503).Next, a step of generating a motion vector candidate list based on the derived motion vector candidates will be described (S502 and S503).
움직임 벡터 후보 리스트를 생성하는 단계는, 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가 혹은 제거하는 단계 및 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가하는 단계를 포함할 수 있다. Generating the motion vector candidate list may include adding or removing a motion vector candidate from the motion vector candidate list and adding a combined motion vector candidate to the motion vector candidate list.
유도된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가 혹은 제거하는 단계부터 살펴보면, 부호화 장치 및 복호화 장치는 움직임 벡터 후보의 유도 순서대로, 유도된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가할 수 있다. Starting from the step of adding or removing the derived motion vector candidates to the motion vector candidate list, the encoding device and the decoding device may add the derived motion vector candidates to the motion vector candidate list in the order of motion vector candidate derivation.
움직임 벡터 후보 리스트 mvpListLX는 참조 영상 리스트 L0, L1, L2 및 L3에 대응하는 움직임 벡터 후보 리스트를 의미하는 것으로 가정한다. 예컨대, 참조 영상 리스트에 L0에 대응하는 움직임 벡터 후보 리스트는 mvpListL0라 호칭할 수 있다.It is assumed that the motion vector candidate list mvpListLX means motion vector candidate lists corresponding to the reference picture lists L0, L1, L2 and L3. For example, a motion vector candidate list corresponding to L0 in the reference picture list may be called mvpListL0.
공간적 움직임 벡터 후보 및 시간적 움직임 벡터 후보 이외 소정 값을 갖는 움직임 벡터가 움직임 벡터 후보 리스트에 추가될 수도 있다. 일 예로, 움직임 벡터 리스트에 포함된 움직임 벡터 후보의 수가 최대 움직임 벡터 후보의 개수보다 작은 경우, 값이 0인 움직임 벡터를 움직임 벡터 후보 리스트에 추가할 수 있다.A motion vector having a predetermined value other than the spatial motion vector candidate and the temporal motion vector candidate may be added to the motion vector candidate list. For example, when the number of motion vector candidates included in the motion vector list is smaller than the maximum number of motion vector candidates, a motion vector having a value of 0 may be added to the motion vector candidate list.
다음으로 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가하는 단계에 대해 살펴보기로 한다.Next, a step of adding the combined motion vector candidate to the motion vector candidate list will be described.
움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보의 수가 최대 움직임 벡터 후보의 수보다 작은 경우, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중 적어도 하나 이상을 이용하여 조합된 움직임 벡터를 움직임 벡터 후보 리스트에 추가할 수 있다. 일 예로, 움직임 벡터 후보 리스트에 포함된 공간적 움직임 벡터 후보, 시간적 움직임 벡터 후보 및 제로 움직임 벡터 후보 중 적어도 하나 이상을 이용하여, 조합된 움직임 벡터 후보를 생성하고, 생성된 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 포함할 수 잇다.When the number of motion vector candidates included in the motion vector candidate list is smaller than the maximum number of motion vector candidates, a motion vector combined using at least one of the motion vector candidates included in the motion vector candidate list is added to the motion vector candidate list. can do. For example, a combined motion vector candidate is generated using at least one of a spatial motion vector candidate, a temporal motion vector candidate, and a zero motion vector candidate included in the motion vector candidate list, and the generated combined motion vector candidate is moved. Can be included in vector candidate list.
또는, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 조합된 움직임 벡터 후보를 생성하거나, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 조합된 움직임 벡터 후보를 움직임 벡터 후보 리스트에 추가할 수도 있다.Alternatively, a combined motion vector candidate may be generated based on at least one or more coding parameters, or the combined motion vector candidate may be added to a motion vector candidate list based on at least one or more coding parameters.
다음으로, 움직임 벡터 후보 리스트로부터 예측된 움직임 벡터를 결정하는 단계에 대해 살펴보기로 한다(S503, S604).Next, a step of determining a predicted motion vector from the motion vector candidate list will be described (S503 and S604).
움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중 움직임 벡터 후보 색인이 가리키는 움직임 벡터 후보를, 현재 블록에 대한 예측된 움직임 벡터로 결정할 수 있다.Among the motion vector candidates included in the motion vector candidate list, a motion vector candidate indicated by a motion vector candidate index may be determined as a predicted motion vector for the current block.
부호화 장치는 움직임 벡터와 예측된 움직임 벡터 사이의 차분을 계산하여, 움직임 벡터 차분값을 산출할 수 있다. 복호화 장치는 예측된 움직임 벡터와 움직임 벡터 차분을 합하여 움직임 벡터를 산출할 수 있다.The encoding device may calculate a motion vector difference value by calculating a difference between the motion vector and the predicted motion vector. The decoding apparatus may calculate a motion vector by adding the predicted motion vector and the motion vector difference.
한편, 도 5 및 도 6의 움직임 보상을 수행하는 단계(S504, S605) 및 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 단계(S505, S601)는 도 7 및 도 8의 움직임 보상 수행 단계(S703, S804) 및 엔트로피 부호화/복호화 단계(S704, S801)와 통합하여 후술하도록 한다.Meanwhile, the motion compensation steps of FIGS. 5 and 6 (S504 and S605) and the entropy encoding/decoding of motion compensation information (S505 and S601) are the motion compensation steps (S703 and S703) of FIGS. 7 and 8. , S804) and entropy encoding/decoding steps (S704, S801) to be described later.
이하, 도 7 및 도 8에 도시된 각 단계에 대해 상세히 살펴보기로 한다.Hereinafter, each step shown in FIGS. 7 and 8 will be described in detail.
먼저, 머지 후보를 유도하는 단계에 대해 구체적으로 설명하기로 한다(S701, 802).First, the step of deriving a merge candidate will be described in detail (S701 and 802).
현재 블록에 대한 머지 후보는 공간적 머지 후보, 시간적 머지 후보 또는 추가적인 머지 후보 중 적어도 하나를 포함할 수 있다. 여기서, 공간적 머지 후보를 유도한다는 것은 공간적 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.A merge candidate for the current block may include at least one of a spatial merge candidate, a temporal merge candidate, and an additional merge candidate. Here, deriving a spatial merge candidate may mean deriving a spatial merge candidate and adding the spatial merge candidate to the merge candidate list.
도 9를 참조하면, 현재 블록의 공간적 머지 후보는 현재 블록(X)에 인접한 주변 블록들로부터 유도될 수 있다. 현재 블록에 인접한 주변 블록은, 현재 블록의 상단에 인접한 블록(B1), 현재 블록의 좌측에 인접한 블록(A1), 현재 블록의 우측 상단 코너에 인접한 블록(B0), 현재 블록의 좌측 상단 코너에 인접한 블록(B2) 및 현재 블록의 좌측 하단 코너에 인접한 블록(A0) 중 적어도 하나를 포함할 수 있다.Referring to FIG. 9 , spatial merge candidates of the current block may be derived from neighboring blocks adjacent to the current block (X). Neighboring blocks adjacent to the current block are: the block adjacent to the top of the current block (B1), the block adjacent to the left side of the current block (A1), the block adjacent to the upper right corner of the current block (B0), and the upper left corner of the current block It may include at least one of the adjacent block B2 and the block A0 adjacent to the lower left corner of the current block.
현재 블록의 공간적 머지 후보를 유도하기 위해서, 현재 블록에 인접한 주변 블록이 현재 블록의 공간적 머지 후보 유도에 사용될 수 있는지 여부를 판단할 수 있다. 이때, 현재 블록에 인접한 주변 블록이 현재 블록의 공간적 머지 후보 유도에 사용될 수 있는 여부는 소정의 우선 순위에 따라 결정될 수 있다. 일 예로, 도 9에 도시된 예에서, A1, B1, B0, A0 및 B2 위치의 블록 순서대로 공간적 머지 후보 유도 가용성이 판단될 수 있다. 상기 가용성 여부 판단 순서를 기반으로 결정된 공간적 머지 후보를 현재 블록의 머지 후보 리스트에 순차적으로 추가할 수 있다. In order to derive a spatial merge candidate of the current block, it may be determined whether neighboring blocks adjacent to the current block can be used to derive a spatial merge candidate of the current block. In this case, whether neighboring blocks adjacent to the current block can be used for deriving a spatial merge candidate of the current block may be determined according to a predetermined priority order. For example, in the example shown in FIG. 9 , spatial merge candidate derivation availability may be determined in the order of blocks of locations A1, B1, B0, A0, and B2. Spatial merge candidates determined based on the availability determination order may be sequentially added to the merge candidate list of the current block.
도 11은 공간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.11 is a diagram for explaining an example in which a spatial merge candidate is added to a merge candidate list.
도 11을 참조하면, A1, B0, A0, B2 위치의 주변 블록으로부터 4개의 공간적 머지 후보가 유도된 경우, 머지 후보 리스트에 유도된 공간적 머지 후보가 순차적으로 추가될 수 있다. Referring to FIG. 11 , when four spatial merge candidates are derived from neighboring blocks at locations A1, B0, A0, and B2, the derived spatial merge candidates may be sequentially added to the merge candidate list.
또한, 부호화 파라미터 중 적어도 하나 이상에 기반하여 상기 공간적 머지 후보를 유도할 수 있다.In addition, the spatial merge candidate may be derived based on at least one of the coding parameters.
여기서, 공간적 머지 후보의 움직임 정보는 L0 및 L1의 움직임 정보뿐만 아니라 L2, L3 등 3개 이상의 움직임 정보를 가질 수 있다. 여기서, 참조 영상 리스트는 L0, L1, L2, L3 등 적어도 1개 이상을 포함할 수 있다.Here, the motion information of the spatial merge candidate may include three or more pieces of motion information such as L2 and L3 as well as motion information of L0 and L1. Here, the reference image list may include at least one of L0, L1, L2, and L3.
다음으로, 현재 블록의 시간적 머지 후보를 유도하는 방법에 대해 설명하도록 한다.Next, a method of deriving a temporal merge candidate of the current block will be described.
현재 블록의 시간적 머지 후보는, 현재 영상의 대응 위치 영상(Co-located picture)에 포함된 복원된 블록으로부터 유도될 수 있다. 여기서, 대응 위치 영상은, 현재 영상 이전에 부호화/복호화가 완료된 영상으로, 현재 영상과 상이한 시간적 순서를 갖는 영상일 수 있다. A temporal merge candidate of the current block may be derived from a reconstructed block included in a co-located picture of the current picture. Here, the corresponding position image is an image that has been encoded/decoded before the current image, and may be an image having a temporal order different from that of the current image.
시간적 머지 후보를 유도한다는 것은 시간적 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다.Deriving a temporal merge candidate may mean deriving a temporal merge candidate and adding it to the merge candidate list.
도 10을 참조하면, 현재 영상의 대응 위치 영상(collocated picture)에서, 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 위부 위치를 포함하는 블록 또는 현재 블록(X)과 공간적으로 동일한 위치에 대응하는 블록의 내부 위치를 포함하는 블록으로부터 현재 블록의 시간적 머지 후보를 유도할 수 있다. 여기서, 시간적 머지 후보는 대응 위치 블록의 움직임 정보를 의미할 수 있다. 일 예로, 현재 블록(X)의 시간적 머지 후보는 현재 블록과 공간적으로 동일한 위치에 대응하는 블록(C)의 좌측 하단 코너에 인접한 블록(H) 또는 블록 C의 중심점을 포함하는 블록(C3)으로부터 유도될 수 있다. 현재 블록의 시간적 머지 후보를 유도하기 위해 사용되는 블록 H 또는 블록 C3 등을 '대응 위치 블록(collocated block)'이라 호칭할 수 있다.Referring to FIG. 10 , in a collocated picture of a current image, a block including an upper position of a block corresponding to a position spatially identical to the current block X or a position spatially identical to the current block X A temporal merge candidate of the current block may be derived from the block including the internal position of the block corresponding to . Here, the temporal merge candidate may mean motion information of a corresponding location block. For example, the temporal merge candidate of the current block (X) is from a block (H) adjacent to the lower left corner of the block (C) corresponding to the same spatial position as the current block or a block (C3) including the center point of the block C. can be induced. A block H or a block C3 used to derive a temporal merge candidate of the current block may be referred to as a 'collocated block'.
블록 C의 외부 위치를 포함하는 블록 H로부터 현재 블록의 시간적 머지 후보를 유도할 수 있을 경우, 블록 H가 현재 블록의 대응 위치 블록으로 설정될 수 있다. 이 경우, 현재 블록의 시간적 머지 후보는 블록 H의 움직임 정보를 기초로 유도될 수 있다. 반면, 블록 H로부터 현재 블록의 시간적 머지 후보를 유도할 수 없을 경우, 블록 C의 내부 위치를 포함하는 블록 C3가 현재 블록의 대응 위치 블록으로 설정될 수 있다. 이 경우, 현재 블록의 시간적 머지 후보는 블록 C3의 움직임 정보를 기초로 유도될 수 있다. 만약, 블록 H 및 블록 C3로부터 현재 블록의 시간적 머지를 유도할 수 없는 경우라면(예컨대, 블록 H 및 블록 C3가 모두 화면 내 부호화된 경우), 현재 블록에 대한 시간적 머지 후보는 유도되지 않거나 또는 블록 H 및 블록 C3와는 다른 위치의 블록으로부터 유도될 수 있을 것이다.When a temporal merge candidate of the current block can be derived from block H including a location outside block C, block H may be set as a block corresponding to the current block. In this case, the temporal merge candidate of the current block may be derived based on the motion information of block H. On the other hand, when a temporal merge candidate of the current block cannot be derived from block H, block C3 including an internal location of block C may be set as a block corresponding to the current block. In this case, a temporal merge candidate of the current block may be derived based on motion information of block C3. If the temporal merge of the current block cannot be derived from block H and block C3 (eg, block H and block C3 are both intra-encoded), a temporal merge candidate for the current block is not derived or the block It may be derived from a block in a different location from H and block C3.
다른 예로, 현재 블록의 시간적 머지 후보는 대응 위치 영상 내 복수의 블록으로부터 유도될 수도 있다. 일 예로, 블록 H 및 블록 C3로부터 현재 블록에 대한 복수의 시간적 머지 후보를 유도할 수도 있다.As another example, the temporal merge candidate of the current block may be derived from a plurality of blocks in the corresponding location image. For example, a plurality of temporal merge candidates for the current block may be derived from block H and block C3.
도 12는 시간적 머지 후보가 머지 후보 리스트에 추가되는 예를 설명하기 위한 도면이다.12 is a diagram for explaining an example in which a temporal merge candidate is added to a merge candidate list.
도 12를 참조하면, H1 위치의 대응 위치 블록으로부터 1개의 시간적 머지 후보가 유도된 경우, 머지 후보 리스트에 유도된 시간적 머지 후보를 추가할 수 있다. Referring to FIG. 12 , when one temporal merge candidate is derived from the corresponding position block of the H1 position, the derived temporal merge candidate may be added to the merge candidate list.
현재 블록이 포함된 현재 영상과 현재 블록의 참조 영상 사이의 거리가 대응 위치 블록이 포함된 대응 위치 영상과 대응 위치 블록의 참조 영상 사이의 거리와 다를 경우, 현재 블록의 시간적 머지 후보의 움직임 벡터는 대응 위치 블록의 움직임 벡터를 스케일링함으로써 획득될 수 있다. 여기서, 스케일링은 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리 중 적어도 하나에 기초하여 수행될 수 있다. 일 예로, 현재 영상과 현재 블록이 참조하는 참조 영상 간의 거리 및 대응 위치 영상과 대응 위치 블록이 참조하는 참조 영상 간의 거리의 비율에 따라 대응 위치 블록의 움직임 벡터를 스케일링함으로써, 현재 블록의 시간적 머지 후보의 움직임 벡터가 유도될 수 있다.If the distance between the current image including the current block and the reference image of the current block is different from the distance between the corresponding location image including the corresponding location block and the reference image of the corresponding location block, the motion vector of the temporal merge candidate of the current block is It can be obtained by scaling the motion vector of the corresponding position block. Here, scaling may be performed based on at least one of a distance between a current image and a reference image referred to by the current block and a distance between a corresponding location image and a reference image referred to by the corresponding location block. For example, a temporal merge candidate of the current block is performed by scaling the motion vector of the corresponding location block according to the ratio of the distance between the current image and the reference image referred to by the current block and the distance between the corresponding location image and the reference image referred to by the corresponding location block. A motion vector of can be derived.
또한, 현재 블록, 주변 블록 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기초하여 시간적 머지 후보, 대응 위치 영상, 대응 위치 블록, 예측 리스트 활용 플래그 및 참조 영상 색인 중 적어도 하나를 유도할 수도 있다.In addition, at least one of a temporal merge candidate, a corresponding position image, a corresponding position block, a prediction list utilization flag, and a reference image index may be derived based on at least one of the coding parameters of the current block, the neighboring block, or the corresponding position block.
공간적 머지 후보들 및 시간적 머지 후보들 중 적어도 하나 이상을 유도한 후에 유도된 머지 후보 순서대로 머지 후보 리스트에 추가하여 머지 후보 리스트를 생성할 수 있다.After deriving at least one of the spatial merge candidates and the temporal merge candidates, the merge candidate list may be generated by adding them to the merge candidate list in the order of the derived merge candidates.
다음으로, 현재 블록의 추가적인 머지 후보를 유도하는 방법에 대해 설명하도록 한다.Next, a method of deriving an additional merge candidate of the current block will be described.
추가적인 머지 후보는 변경된 공간적 머지 후보(modified spatial merge candidate), 변경된 시간적 머지 후보(modified temporal merge candidate), 조합된 머지 후보(combined merge candidate), 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 의미할 수 있다. 여기서, 추가적인 머지 후보를 유도하는 것은 추가적인 머지 후보를 유도하여 머지 후보 리스트에 추가하는 것을 의미할 수 있다. The additional merge candidate means at least one of a modified spatial merge candidate, a modified temporal merge candidate, a combined merge candidate, and a merge candidate having a predetermined motion information value. can do. Here, deriving additional merge candidates may mean deriving additional merge candidates and adding them to the merge candidate list.
변경된 공간적 머지 후보는 유도된 공간적 머지 후보의 움직임 정보 중 적어도 하나를 변경한 머지 후보를 의미할 수 있다. The changed spatial merge candidate may refer to a merge candidate obtained by changing at least one of motion information of the derived spatial merge candidate.
변경된 시간적 머지 후보는 유도된 시간적 머지 후보의 움직임 정보 중 적어도 하나를 변경한 머지 후보를 의미할 수 있다.The changed temporal merge candidate may refer to a merge candidate obtained by changing at least one of motion information of the derived temporal merge candidate.
조합된 머지 후보는 머지 후보 리스트에 존재하는 공간적 머지 후보, 시간적 머지 후보, 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보들의 움직임 정보 중 적어도 하나의 움직임 정보를 조합하여 유도되는 머지 후보를 의미할 수 있다. The combined merge candidate is at least one of a spatial merge candidate, a temporal merge candidate, a modified spatial merge candidate, a modified temporal merge candidate, a combined merge candidate, and motion information of merge candidates having a predetermined motion information value existing in the merge candidate list. It may mean a merge candidate derived by combining motion information.
또는, 조합된 머지 후보는 머지 후보 리스트에 존재하진 않지만 공간적 머지 후보 및 시간적 머지 후보 중 적어도 하나 이상을 유도할 수 있는 블록으로부터 유도된 공간적 머지 후보 및 유도된 시간적 머지 후보와 이를 기초로 생성된 변경된 공간적 머지 후보, 변경 시간적 머지 후보, 조합된 머지 후보 및 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나의 움직임 정보를 조합하여 유도되는 머지 후보를 의미할 수 있다.Alternatively, the combined merge candidate is a spatial merge candidate derived from a block that does not exist in the merge candidate list but can derive at least one or more of a spatial merge candidate and a temporal merge candidate, and a modified temporal merge candidate generated based on the spatial merge candidate and the derived temporal merge candidate. It may refer to a merge candidate derived by combining at least one motion information among a spatial merge candidate, a modified temporal merge candidate, a combined merge candidate, and a merge candidate having a predetermined motion information value.
또는, 복호화기에서 비트스트림으로부터 엔트로피 복호화한 움직임 정보를 이용하여 조합된 머지 후보를 유도할 수 있다. 이때, 부호화기에서 조합된 머지 후보 유도에 사용된 움직임 정보는 비트스트림에 엔트로피 부호화될 수 있다.Alternatively, a combined merge candidate may be derived using motion information entropy-decoded from a bitstream in a decoder. In this case, the motion information used to derive the merge candidate combined by the encoder may be entropy-encoded into the bitstream.
조합된 머지 후보는 조합 양예측 머지 후보를 의미할 수 있다. 조합 양예측 머지 후보는 양예측(bi-prediction)을 사용하는 머지 후보로 L0 움직임 정보와 L1 움직임 정보를 가지는 머지 후보를 의미할 수 있다.The combined merge candidate may refer to a combined bi-predictive merge candidate. The combined bi-prediction merge candidate is a merge candidate using bi-prediction and may mean a merge candidate having L0 motion information and L1 motion information.
소정의 움직임 정보 값을 가지는 머지 후보는 움직임 벡터가 (0, 0)인 제로 머지 후보를 의미할 수 있다. 한편, 소정의 움직임 정보 값을 가지는 머지 후보는 부호화 장치 및 복호화 장치에서 동일한 값을 사용하도록 기 설정될 수도 있다. A merge candidate having a predetermined motion information value may mean a zero merge candidate having a motion vector of (0, 0). Meanwhile, a merge candidate having a predetermined motion information value may be preset to use the same value in an encoding device and a decoding device.
현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 유도 또는 생성할 수 있다. 또한, 변경된 공간적 머지 후보, 변경된 시간적 머지 후보, 조합된 머지 후보, 소정의 움직임 정보 값을 가지는 머지 후보 중 적어도 하나를 현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터 중 적어도 하나 이상에 기반하여 머지 후보 리스트에 추가할 수 있다.At least one of a modified spatial merge candidate, a modified temporal merge candidate, a combined merge candidate, and a merge candidate having a predetermined motion information value is derived based on at least one of the coding parameters of the current block, the neighboring block, or the corresponding block, or can create In addition, at least one of a modified spatial merge candidate, a modified temporal merge candidate, a combined merge candidate, and a merge candidate having a predetermined motion information value is selected based on at least one or more of coding parameters of a current block, a neighboring block, or a corresponding position block. It can be added to the merge candidate list.
한편, 머지 후보 리스트의 크기는 현재 블록, 주변 블록, 또는 대응 위치 블록의 부호화 파라미터에 기반하여 결정될 수 있고, 부호화 파라미터에 기반하여 크기가 변경될 수 있다.Meanwhile, the size of the merge candidate list may be determined based on encoding parameters of a current block, a neighboring block, or a corresponding block, and the size may be changed based on the encoding parameters.
다음으로는, 생성된 머지 후보 리스트를 이용하여, 현재 블록의 움직임 정보를 결정하는 단계에 대해 구체적으로 설명하기로 한다(S702, S803).Next, the step of determining the motion information of the current block using the generated merge candidate list will be described in detail (S702 and S803).
부호화기는 움직임 추정(motion estimation)을 통하여 머지 후보 리스트 내의 머지 후보 중 움직임 보상에 이용되는 머지 후보를 결정하고, 결정된 머지 후보를 지시하는 머지 후보 색인(merge_idx)을 비트스트림에 부호화할 수 있다.The encoder may determine a merge candidate used for motion compensation among merge candidates in the merge candidate list through motion estimation, and encode a merge candidate index (merge_idx) indicating the determined merge candidate in a bitstream.
한편, 부호화기는 예측 블록을 생성하기 위하여 상술한 머지 후보 색인을 기초로 머지 후보 리스트에서 머지 후보를 선택하여 현재 블록의 움직임 정보를 결정할 수 있다. 여기서, 결정된 움직임 정보를 기초로 움직임 보상(motion compensation)을 수행하여 현재 블록의 예측 블록을 생성할 수 있다.Meanwhile, the encoder may determine motion information of the current block by selecting a merge candidate from the merge candidate list based on the above-described merge candidate index to generate a prediction block. Here, a prediction block of the current block may be generated by performing motion compensation based on the determined motion information.
복호화기는 비트스트림 내의 머지 후보 색인을 복호화하여 머지 후보 색인이 지시하는 머지 후보 리스트 내의 머지 후보를 결정할 수 있다. 결정된 머지 후보는 현재 블록의 움직임 정보로 결정할 수 있다. 결정된 움직임 정보는 현재 블록의 움직임 보상에 사용된다. 이 때, 움직임 보상은 인터 예측(inter prediction)의 의미와 동일할 수 있다.The decoder may decode a merge candidate index in the bitstream to determine a merge candidate in the merge candidate list indicated by the merge candidate index. The determined merge candidate may be determined using motion information of the current block. The determined motion information is used for motion compensation of the current block. In this case, motion compensation may have the same meaning as inter prediction.
다음으로, 움직임 벡터 또는 움직임 정보를 이용하여, 움직임 보상을 수행하는 단계에 대해 살펴보기로 한다(S504, S605, S703, S804).Next, steps for performing motion compensation using motion vectors or motion information will be described (S504, S605, S703, S804).
부호화 장치 및 복호화 장치는 예측된 움직임 벡터와 움직임 벡터 차분값을 이용하여 움직임 벡터를 산출할 수 있다. 움직임 벡터가 산출되면, 산출된 움직임 벡터를 이용하여, 화면 간 예측 또는 움직임 보상을 수행할 수 있다(S504, S605). The encoding device and the decoding device may calculate a motion vector using a predicted motion vector and a motion vector difference value. When the motion vector is calculated, inter-picture prediction or motion compensation may be performed using the calculated motion vector (S504 and S605).
한편, 부호화 장치 및 복호화 장치는 결정된 움직임 정보를 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다(S703, S804). 여기서, 여기서, 현재 블록은 결정된 머지 후보의 움직임 정보를 가질 수 있다.Meanwhile, the encoding device and the decoding device may perform inter-picture prediction or motion compensation using the determined motion information (S703 and S804). Here, the current block may have motion information of the determined merge candidate.
현재 블록은 예측 방향에 따라 최소 1개부터 최대 N개의 움직임 벡터를 가질 수 있다. 움직임 벡터를 이용하여, 최소 1개부터 최대 N개의 예측 블록을 생성하여, 현재 블록의 최종 예측 블록을 유도할 수 있다.The current block may have a minimum of 1 to a maximum of N motion vectors according to prediction directions. A final prediction block of a current block may be derived by generating a minimum of 1 to a maximum of N prediction blocks using a motion vector.
일 예로, 현재 블록이 1개의 움직임 벡터를 가질 경우, 상기 움직임 벡터(또는 움직임 정보)를 이용하여 생성된 예측 블록을, 현재 블록의 최종 예측 블록으로 결정할 수 있다.For example, when the current block has one motion vector, a prediction block generated using the motion vector (or motion information) may be determined as the final prediction block of the current block.
반면, 현재 블록이 복수의 움직임 벡터(또는 움직임 정보)를 가질 경우, 복수의 움직임 벡터(또는 움직임 정보)를 이용하여 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다. 복수의 움직임 벡터(또는 움직임 정보)에 의해 지시되는 복수의 예측 블록 각각을 포함하는 참조 영상들은 서로 다른 참조 영상 리스트에 포함될 수도 있고, 동일한 참조 영상 리스트에 포함될 수도 있다. On the other hand, when the current block has a plurality of motion vectors (or motion information), a plurality of prediction blocks are generated using the plurality of motion vectors (or motion information), and based on a weighted sum of the plurality of prediction blocks, the current A final prediction block of the block may be determined. Reference images including each of a plurality of prediction blocks indicated by a plurality of motion vectors (or motion information) may be included in different reference image lists or in the same reference image list.
일 예로, 공간적 움직임 벡터 후보, 시간적 움직임 벡터 후보, 소정의 값을 갖는 움직임 벡터 또는 조합된 움직임 벡터 후보 중 적어도 하나를 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다.For example, a plurality of prediction blocks are generated based on at least one of a spatial motion vector candidate, a temporal motion vector candidate, a motion vector having a predetermined value, or a combined motion vector candidate, and based on a weighted sum of the plurality of prediction blocks , it is possible to determine the final prediction block of the current block.
다른 예로, 기 설정된 움직임 벡터 후보 색인에 의해 지시되는 움직임 벡터 후보들을 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다. 또한, 기 설정된 움직임 벡터 후보 색인 범위에 존재하는 움직임 벡터 후보들을 기초로 복수의 예측 블록을 생성하고, 복수의 예측 블록들의 가중합을 기초로, 현재 블록의 최종 예측 블록을 결정할 수 있다.As another example, a plurality of prediction blocks may be generated based on motion vector candidates indicated by preset motion vector candidate indices, and a final prediction block of the current block may be determined based on a weighted sum of the plurality of prediction blocks. Also, a plurality of prediction blocks may be generated based on motion vector candidates existing in a preset motion vector candidate index range, and a final prediction block of the current block may be determined based on a weighted sum of the plurality of prediction blocks.
각 예측 블록에 적용되는 가중치는 1/N (여기서, N은 생성된 예측 블록의 수)로 균등한 값을 가질 수 있다. 일 예로, 2개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/2 이고, 3개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/3이며, 4개의 예측 블록이 생성된 경우, 각 예측 블록에 적용되는 가중치는 1/4일 수 있다. 또는, 각 예측 블록마다 상이한 가중치를 부여하여, 현재 블록의 최종 예측 블록을 결정할 수도 있다.The weight applied to each prediction block may have an equal value of 1/N (where N is the number of generated prediction blocks). For example, when 2 prediction blocks are generated, the weight applied to each prediction block is 1/2, and when 3 prediction blocks are generated, the weight applied to each prediction block is 1/3, and 4 prediction blocks are generated. When a block is generated, a weight applied to each prediction block may be 1/4. Alternatively, a final prediction block of the current block may be determined by assigning a different weight to each prediction block.
가중치는 예측 블록별 고정된 값을 가져야 하는 것은 아니며, 예측 블록별 가변적 값을 가질 수도 있다. 이때, 각 예측 블록에 적용되는 가중치는 서로 동일할 수도 있고, 서로 상이할 수도 있다. 일 예로, 2개의 예측 블록이 생성된 경우, 2개의 예측 블록에 적용되는 가중치는 (1/2, 1/2)일뿐만 아니라, (1/3, 2/3), (1/4, 3/4), (2/5, 3/5), (3/8, 5/8) 등과 같이 블록별로 가변적이 값일 수 있다. 한편, 가중치는 양의 실수의 값 또는 음의 실수의 값일 수 있다. 일 예로, (-1/2, 3/2), (-1/3, 4/3), (-1/4, 5/4) 등과 같이 음의 실수의 값을 포함할 수 있다.The weight does not have to have a fixed value for each prediction block, and may have a variable value for each prediction block. In this case, the weights applied to each prediction block may be the same or different. For example, when two prediction blocks are generated, the weight applied to the two prediction blocks is not only (1/2, 1/2), but also (1/3, 2/3), (1/4, 3 /4), (2/5, 3/5), (3/8, 5/8) may be a variable value for each block. Meanwhile, the weight may be a positive real number value or a negative real number value. For example, negative real values such as (-1/2, 3/2), (-1/3, 4/3), and (-1/4, 5/4) may be included.
한편, 가변적 가중치를 적용하기 위해, 현재 블록을 위한 하나 또는 그 이상의 가중치 정보가 비트스트림을 통해 시그널링될 수도 있다. 가중치 정보는 예측 블록별로 각각 시그널링될 수도 있고, 참조 영상별로 시그널링될 수도 있다. 복수의 예측 블록이 하나의 가중치 정보를 공유하는 것도 가능하다.Meanwhile, in order to apply a variable weight, one or more weight information for the current block may be signaled through a bitstream. Weight information may be signaled for each prediction block or for each reference picture. It is also possible for a plurality of prediction blocks to share one weight information.
부호화 장치 및 복호화 장치는 예측 블록 리스트 활용 플래그에 기초하여 예측된 움직임 벡터(또는 움직임 정보)의 이용 여부를 판단할 수 있다. 일 예로, 각 참조 영상 리스트 별로 예측 블록 리스트 활용 플래그가 제1 값인 1을 지시하는 경우, 부호화 장치 및 복호화 장치는 화면 간 예측 또는 움직임 보상을 수행하기 위하여 현재 블록의 예측된 움직임 벡터를 이용할 수 있다는 것을 나타내고, 제2 값인 0을 지시하는 경우, 부호화 장치 및 복호화 장치는 현재 블록의 예측된 움직임 벡터를 이용하여 화면 간 예측 또는 움직임 보상을 수행하지 않는 것을 나타낼 수 있다. 한편, 예측 블록 리스트 활용 플래그의 제1의 값은 0으로, 제2의 값은 1으로 설정될 수도 있다. 하기 수학식 1 내지 수학식 3은, 각각 현재 블록의 화면 간 예측 지시자가, PRED_BI, PRED_TRI 및 PRED_QUAD이고, 각 참조 영상 리스트에 대한 예측 방향이 단방향인 경우, 현재 블록의 최종 예측 블록을 생성하는 예를 나타낸다.The encoding apparatus and the decoding apparatus may determine whether to use the predicted motion vector (or motion information) based on the prediction block list utilization flag. For example, when the prediction block list utilization flag for each reference image list indicates the first value of 1, the encoding device and the decoding device can use the predicted motion vector of the current block to perform inter-prediction or motion compensation. and when the second value of 0 is indicated, it may indicate that the encoding device and the decoding device do not perform inter-prediction or motion compensation using the predicted motion vector of the current block. Meanwhile, the first value of the prediction block list utilization flag may be set to 0 and the second value may be set to 1.
상기 수학식 1 내지 3에서, P_BI, P_TRI, P_QUAD는 현재 블록의 최종 예측 블록을 나타내고, LX(X=0, 1, 2, 3)은 참조 영상 리스트를 의미할 수 있다. WF_LX은 LX를 이용하여 생성된 예측 블록의 가중치 값을 나타내고, OFFSET_LX은 LX를 이용하여 생성된 예측 블록에 대한 오프셋 값을 나타낼 수 있다. P_LX는 현재 블록의 LX에 대한 움직임 벡터(또는 움직임 정보)를 이용하여 생성한 예측 블록을 의미한다. RF는 라운딩 팩터(Rounding factor)를 의미하고, 0, 양수 또는 음수로 설정될 수 있다. LX 참조 영상 리스트는 롱텀(long-term) 참조 영상, 디블록킹 필터(deblocking filter)를 수행하지 않은 참조 영상, 샘플 적응적 오프셋(sample adaptive offset)을 수행하지 않은 참조 영상, 적응적 루프 필터(adaptive loop filter)를 수행하지 않은 참조 영상, 디블록킹 필터 및 적응적 오프셋만 수행한 참조 영상, 디블록킹 필터 및 적응적 루프 필터만 수행한 참조 영상, 샘플 적응적 오프셋 및 적응적 루프 필터만 수행한 참조 영상, 디블록킹 필터, 샘플 적응적 오프셋 및 적응적 루프 필터 모두 수행한 참조 영상 중 적어도 하나를 포함할 수 있다. 이 경우, LX 참조 영상 리스트는 L2 참조 영상 리스트 및 L3 참조 영상 리스트 중 적어도 하나일 수 있다.In
소정 참조 영상 리스트에 대한 예측 방향이 복수 방향인 경우에도, 예측 블록들의 가중합에 기초하여, 현재 블록에 대한 최종 예측 블록을 획득할 수 있다. 이때, 동일한 참조 영상 리스트로부터 유도된 예측 블록들에 적용되는 가중치는 동일한 값을 가질 수도 있고, 상이한 값을 가질 수도 있다. Even when prediction directions for a predetermined reference image list are multi-directional, a final prediction block for a current block may be obtained based on a weighted sum of prediction blocks. In this case, weights applied to prediction blocks derived from the same reference image list may have the same value or different values.
복수의 예측 블록에 대한 가중치(WF_LX) 및 오프셋(OFFSET_LX) 중 적어도 하나는 엔트로피 부호화/복호화되는 부호화 파라미터일 수 있다. 다른 예로, 가중치 및 오프셋은 현재 블록 주변의 부호화/복호화된 주변 블록으로부터 유도될 수도 있다. 여기서, 현재 블록 주변의 주변 블록은, 현재 블록의 공간적 움직임 벡터 후보를 유도하기 위해 이용되는 블록 또는 현재 블록의 시간적 움직임 벡터 후보를 유도하기 위해 이용되는 블록 중 적어도 하나를 포함할 수 있다.At least one of a weight (WF_LX) and an offset (OFFSET_LX) for a plurality of prediction blocks may be an encoding parameter for entropy encoding/decoding. As another example, the weight and offset may be derived from encoded/decoded neighboring blocks around the current block. Here, neighboring blocks adjacent to the current block may include at least one of a block used to derive a spatial motion vector candidate of the current block and a block used to derive a temporal motion vector candidate of the current block.
다른 예로, 가중치 및 오프셋은 현재 영상과 각 참조 영상들의 디스플레이 순서(POC)에 기초하여 결정될 수도 있다. 이 경우, 현재 영상과 참조 영상 사이의 거리가 멀수록, 가중치 또는 오프셋을 작은 값으로 설정하고, 현재 영상과 참조 영상 사이의 거리가 가까울수록 가중치 또는 오프셋을 큰 값으로 설정할 수 있다. 일 예로, 현재 영상과 L0 참조 영상의 POC 차이가 2인 경우, L0 참조 영상을 참조하여 생성된 예측 블록에 적용되는 가중치 값을 1/3으로 설정하는 반면, 현재 영상과 L0 참조 영상의 POC 차이가 1인 경우, L0 참조 영상을 참조하여 생성된 예측 블록에 적용되는 가중치 값을 2/3으로 설정할 수 있다. 위에 예시한 바와 같이, 가중치 또는 오프셋 값은 현재 영상과 참조 영상 사이의 디스플레이 순서 차와 반비례 관계를 가질 수 있다. 다른 예로, 가중치 또는 오프셋 값은 현재 영상과 참조 영상 사이의 디스플레이 순서 차와 비례 관계를 갖도록 하는 것 역시 가능하다.As another example, the weight and offset may be determined based on the display order (POC) of the current image and each reference image. In this case, the weight or offset may be set to a smaller value as the distance between the current image and the reference image increases, and the weight or offset may be set to a larger value as the distance between the current image and the reference image decreases. For example, when the POC difference between the current image and the L0 reference image is 2, the weight value applied to the prediction block generated with reference to the L0 reference image is set to 1/3, whereas the POC difference between the current image and the L0 reference image is set. When is 1, a weight value applied to a prediction block generated with reference to the L0 reference picture may be set to 2/3. As exemplified above, the weight or offset value may have an inverse relationship with the display order difference between the current image and the reference image. As another example, the weight or offset value may have a proportional relationship with a difference in display order between the current image and the reference image.
다른 예로, 부호화 파라미터 중 적어도 하나 이상에 기반하여, 가중치 또는 오프셋 중 적어도 하나 이상을 엔트로피 부호화/복호화할 수도 있다. 또한 부호화 파라미터 중 적어도 하나 이상에 기반하여, 예측 블록들의 가중합을 계산할 수도 있다.As another example, entropy encoding/decoding may be performed on at least one of weights and offsets based on at least one of encoding parameters. Also, a weighted sum of prediction blocks may be calculated based on at least one of the coding parameters.
복수의 예측 블록의 가중합은 예측 블록 내의 일부 영역에서만 적용될 수 있다. 여기서, 일부 영역은 예측 블록 내의 경계에 해당하는 영역일 수 있다. 위와 같이 일부 영역에만 가중합을 적용하기 위하여, 예측 블록의 하위 블록(sub-block)단위로 가중합을 수행할 수 있다.A weighted sum of a plurality of prediction blocks may be applied only to some regions within a prediction block. Here, the partial region may be a region corresponding to a boundary within a prediction block. As above, in order to apply weighted sum only to some regions, weighted sum may be performed in units of sub-blocks of prediction blocks.
영역 정보가 지시하는 블록 크기의 블록 내부에서 더 작은 블록 크기의 하위 블록들에서는 동일한 예측 블록 또는 동일한 최종 예측 블록을 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다.Inter-prediction or motion compensation may be performed using the same prediction block or the same final prediction block in lower blocks having a smaller block size within a block having a block size indicated by the region information.
또한, 영역 정보가 지시하는 블록 깊이의 블록 내부에서 더 깊은 블록 깊이의 하위 블록들에서는 동일한 예측 블록 또는 동일한 최종 예측 블록을 이용하여 화면 간 예측 또는 움직임 보상을 수행할 수 있다.In addition, inter-prediction or motion compensation may be performed using the same prediction block or the same final prediction block in sub-blocks having a deeper block depth within a block having a block depth indicated by region information.
또한, 움직임 벡터 예측을 이용해서 예측 블록들의 가중합 계산 시, 움직임 벡터 후보 리스트 내에 존재하는 적어도 하나 이상의 움직임 벡터 후보를 이용해서 가중합을 계산하고 현재 블록의 최종 예측 블록으로 사용할 수 있다.In addition, when calculating the weighted sum of prediction blocks using motion vector prediction, the weighted sum can be calculated using at least one motion vector candidate existing in the motion vector candidate list and used as the final prediction block of the current block.
예를 들어, 공간적 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated using only spatial motion vector candidates, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as a final prediction block of the current block.
예를 들어, 공간적 움직임 벡터 후보와 시간적 움직임 벡터 후보들로 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated from spatial motion vector candidates and temporal motion vector candidates, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as a final prediction block of the current block.
예를 들어, 조합된 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated using only the combined motion vector candidates, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as a final prediction block of the current block.
예를 들어, 특정한 움직임 벡터 후보 색인들을 가지는 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated only with motion vector candidates having specific motion vector candidate indices, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as the final prediction block of the current block.
예를 들어, 특정한 움직임 벡터 후보 색인 범위 내에 존재하는 움직임 벡터 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated only with motion vector candidates existing within a specific motion vector candidate index range, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as the final prediction block of the current block.
또한, 머지 모드를 이용해서 예측 블록들의 가중합 계산 시, 머지 후보 리스트 내에 존재하는 적어도 하나 이상의 머지 후보를 이용해서 가중합을 계산하고 현재 블록의 최종 예측 블록으로 사용할 수 있다.In addition, when calculating the weighted sum of prediction blocks using the merge mode, the weighted sum can be calculated using at least one merge candidate existing in the merge candidate list and used as the final prediction block of the current block.
예를 들어, 공간적 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated using only spatial merge candidates, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as a final prediction block of the current block.
예를 들어, 공간적 머지 후보와 시간적 머지 후보들로 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated using spatial merge candidates and temporal merge candidates, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as a final prediction block of the current block.
예를 들어, 조합된 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated using only combined merge candidates, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as a final prediction block of the current block.
예를 들어, 특정한 머지 후보 색인들을 가지는 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated only with merge candidates having specific merge candidate indices, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as the final prediction block of the current block.
예를 들어, 특정한 머지 후보 색인 범위 내에 존재하는 머지 후보들로만 예측 블록들을 생성하고 예측 블록들의 가중합을 계산하고, 계산된 가중합을 현재 블록의 최종 예측 블록으로 사용할 수 있다.For example, prediction blocks may be generated only with merge candidates existing within a specific merge candidate index range, a weighted sum of the prediction blocks may be calculated, and the calculated weighted sum may be used as the final prediction block of the current block.
부호화기 및 복호화기에서는 현재 블록에서 가지는 움직임 벡터/정보를 이용하여 움직임 보상을 수행할 수 있다. 이때, 움직임 보상의 결과인 최종 예측 블록은 적어도 하나 이상의 예측 블록을 이용해서 생성될 수 있다. 여기서, 현재 블록은 현재 부호화 블록(coding block), 현재 예측 블록(prediction block) 중 적어도 하나 이상을 의미할 수 있다.The encoder and decoder may perform motion compensation using the motion vector/information of the current block. In this case, a final prediction block as a result of motion compensation may be generated using at least one or more prediction blocks. Here, the current block may mean at least one of a current coding block and a current prediction block.
현재 블록 내 경계에 해당하는 영역에 중첩된 블록 움직임 보상(Overlapped Block Motion Compensation)을 수행하여 최종 예측 블록을 생성할 수 있다. A final prediction block may be generated by performing overlapped block motion compensation on a region corresponding to a boundary within the current block.
현재 블록 내 경계에 해당하는 영역은 현재 블록의 주변 블록의 경계에 인접한 현재 블록 내의 영역일 수 있다. 여기서, 현재 블록 내 경계에 해당하는 영역은 현재 블록에서 상단 경계 영역, 좌측 경계 영역, 하단 경계 영역, 우측 경계 영역, 우측 상단 코너 영역, 우측 하단 코너 영역, 좌측 상단 코너 영역 및 좌측 하단 코너 영역 중 적어도 하나 이상을 포함할 수 있다. 또한, 현재 블록 내 경계에 해당하는 영역은 현재 블록의 예측 블록 내에서 일부분에 해당하는 영역일 수 있다. An area corresponding to a boundary within the current block may be an area within the current block adjacent to the boundary of neighboring blocks of the current block. Here, the region corresponding to the boundary within the current block is among the upper boundary region, the left boundary region, the lower boundary region, the right boundary region, the upper right corner region, the lower right corner region, the upper left corner region, and the lower left corner region in the current block. It may contain at least one or more. Also, a region corresponding to a boundary within the current block may be a region corresponding to a part within the prediction block of the current block.
상기 중첩된 블록 움직임 보상은 현재 블록 내 경계에 해당하는 예측 블록 영역과 현재 블록에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 생성된 예측 블록의 가중합을 계산하여 움직임 보상을 수행하는 것을 의미할 수 있다.The overlapped block motion compensation performs motion compensation by calculating a weighted sum of prediction blocks generated using a prediction block area corresponding to a boundary within the current block and motion information of encoded/decoded blocks adjacent to the current block. can mean
가중합은 현재 블록을 다수의 하위 블록(sub-block)으로 분할한 후 하위 블록 단위로 수행될 수 있다. 즉, 하위 블록 단위로 현재 블록에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 움직임 보상을 수행할 수 있다. 이때, 하위 블록은 서브 블록을 의미할 수도 있다.The weighted sum may be performed in units of sub-blocks after dividing the current block into a plurality of sub-blocks. That is, motion compensation may be performed using motion information of an encoded/decoded block adjacent to the current block in units of sub-blocks. In this case, a sub-block may mean a sub-block.
또한, 가중합 계산에는 현재 블록의 움직임 정보를 이용해서 하위 블록 단위로 생성된 제1 예측 블록과 현재 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보를 이용해서 생성된 제2 예측 블록이 사용될 수 있다. 이때, 움직임 정보를 이용한다는 것은 움직임 정보를 유도한다는 의미일 수 있다. 그리고, 제1 예측 블록은 현재 블록 내 부호화/복호화 대상 하위 블록의 움직임 정보를 이용하여 생성된 예측 블록을 의미할 수 있다. 또한, 여기서 제2 예측 블록은 현재 블록 내에서 부호화/복호화 대상 하위 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보를 이용하여 생성된 예측 블록을 의미할 수도 있다. In addition, in the weighted sum calculation, a first prediction block generated in units of sub-blocks using motion information of the current block and a second prediction block generated using motion information of neighboring sub-blocks spatially adjacent to the current block may be used. . At this time, using motion information may mean inducing motion information. Also, the first prediction block may refer to a prediction block generated using motion information of a sub-block to be encoded/decoded within the current block. Also, here, the second prediction block may refer to a prediction block generated using motion information of adjacent sub-blocks spatially adjacent to a sub-block to be encoded/decoded within the current block.
제1 예측 블록과 제2 예측 블록의 가중합을 이용해서 최종 예측 블록이 생성될 수 있다. 즉, 중첩된 블록 움직임 보상은 현재 블록의 움직임 정보 외에 다른 블록의 움직임 정보를 함께 사용하여 최종 예측 블록을 생성할 수 있다.A final prediction block may be generated using a weighted sum of the first prediction block and the second prediction block. That is, the overlapped block motion compensation may generate a final prediction block by using motion information of other blocks in addition to motion information of the current block.
또한, 향상된 움직임 벡터 예측(Advanced Motion Vector Prediction; AMVP), 머지 모드(merge mode), 어파인 움직임 보상 모드, 복호화기 움직임 벡터 유도 모드, 적응적 움직임 벡터 해상도 모드, 지역 조명 보상 모드, 양방향 광학 흐름 모드 중 적어도 하나 이상에 해당될 경우에 현재 예측 블록을 하위 블록으로 분할한 후 각 하위 블록 별로 중첩된 블록 움직임 보상을 수행할 수 있다. In addition, Advanced Motion Vector Prediction (AMVP), merge mode, affine motion compensation mode, decoder motion vector derivation mode, adaptive motion vector resolution mode, area illumination compensation mode, bi-directional optical flow In case of corresponding to at least one of the modes, overlapping block motion compensation may be performed for each sub-block after dividing the current prediction block into sub-blocks.
여기서, 머지 모드인 경우, 향상된 시간적 움직임 벡터 예측(ATMVP; Advanced Temporal Motion Vector Predictor) 후보 및 공간적-시간적 움직임 벡터 예측(STMVP; Spatial-Temporal Motion Vector Predictor) 후보 중 적어도 하나 이상에 중첩된 블록 움직임 보상을 수행할 수 있다.Here, in the case of the merge mode, block motion compensation superimposed on at least one of an Advanced Temporal Motion Vector Predictor (ATMVP) candidate and a Spatial-Temporal Motion Vector Predictor (STMVP) candidate. can be performed.
중첩된 블록 움직임 보상(Overlapped Block Motion Compensation)과 관련한 구체적인 설명은 도 13 내지 도 24에 기초하여 후술하도록 한다.A detailed description of overlapped block motion compensation will be described later based on FIGS. 13 to 24 .
다음으로, 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 과정에 대해 상세히 살펴보기로 한다(S505, S601, S704, S801).Next, a process of entropy encoding/decoding information related to motion compensation will be described in detail (S505, S601, S704, S801).
부호화 장치는 움직임 보상에 관한 정보를 비트스트림을 통해 엔트로피 부호화하고, 복호화 장치는 비트스트림에 포함된 움직임 보상에 관한 정보를 엔트로피 복호화할 수 있다. 여기서, 엔트로피 부호화/복호화되는 움직임 보상에 관한 정보는, 화면 간 예측 지시자(Inter Prediction Indicator)(inter_pred_idc), 참조 영상 색인(ref_idx_l0, ref_idx_l1, ref_idx_l2, ref_idx_l3), 움직임 벡터 후보 색인(mvp_l0_idx, mvp_l1_idx, mvp_l2_idx, mvp_l3_idx), 움직임 벡터 차분(motion vector difference), 스킵 모드 사용 여부 정보(cu_skip_flag), 머지 모드 사용 여부 정보(merge_flag), 머지 색인 정보(merge_index), 가중치 값(wf_l0, wf_l1, wf_l2, wf_l3) 및 오프셋 값(offset_l0, offset_l1, offset_l2, offset_l3) 중 적어도 하나를 포함할 수 있다.The encoding device may entropy-encode motion compensation information through a bitstream, and the decoding device may entropy-decode motion compensation information included in the bitstream. Here, information on motion compensation that is entropy encoded/decoded includes an inter prediction indicator (inter_pred_idc), reference picture indices (ref_idx_l0, ref_idx_l1, ref_idx_l2, ref_idx_l3), motion vector candidate indices (mvp_l0_idx, mvp_l1_idx, mvp_l2_idx , mvp_l3_idx), motion vector difference, skip mode use information (cu_skip_flag), merge mode use information (merge_flag), merge index information (merge_index), weight values (wf_l0, wf_l1, wf_l2, wf_l3) and It may include at least one of offset values (offset_l0, offset_l1, offset_l2, offset_l3).
화면 간 예측 지시자는 현재 블록의 화면 간 예측으로 부호화/복호화되는 경우, 현재 블록의 화면 간 예측 방향 또는 예측 방향의 개수 중 적어도 하나를 의미할 수 있다. 일 예로, 화면 간 예측 지시자는, 단방향 예측을 지시하거나, 쌍방향 예측, 3개 방향 예측 또는 4개 방향 예측 등 복수 방향 예측을 지시할 수 있다. 화면 간 예측 지시자는 현재 블록이 예측 블록을 생성할 때 사용하는 참조 영상의 수를 의미할 수 있다. 또는, 하나의 참조 영상이 복수개의 방향 예측을 위해 이용될 수도 있다. 이 경우, M개의 참조 영상을 이용하여 N(N>M)개 방향 예측을 수행할 수 있다. 화면 간 예측 지시자는 현재 블록에 대한 화면 간 예측 또는 움직임 보상을 수행할 때 사용되는 예측 블록의 수를 의미할 수도 있다. The inter prediction indicator may mean at least one of an inter prediction direction of the current block or the number of prediction directions when encoding/decoding is performed by inter prediction of the current block. For example, the inter-prediction indicator may indicate unidirectional prediction or multidirectional prediction such as bidirectional prediction, three-way prediction, or four-way prediction. The inter-prediction indicator may indicate the number of reference images used when the current block generates a prediction block. Alternatively, one reference image may be used for prediction of a plurality of directions. In this case, N (N>M) direction prediction may be performed using M reference images. The inter-prediction indicator may mean the number of prediction blocks used when performing inter-prediction or motion compensation for a current block.
참조 영상 지시자는 현재 블록의 예측 방향의 수에 따라, 단방향(PRED_LX), 양방향(PRED_BI), 세방향(PRED_TRI), 네방향(PRED_QUAD) 또는 그 이상의 방향성을 지시할 수 있다. The reference image indicator may indicate unidirectional (PRED_LX), bidirectional (PRED_BI), three-directional (PRED_TRI), four-directional (PRED_QUAD) or more directions according to the number of prediction directions of the current block.
예측 리스트 활용 플래그(prediction list utilization flag)는 해당 참조 영상 리스트를 이용하여 예측 블록을 생성하는지 여부를 나타낸다.A prediction list utilization flag indicates whether a prediction block is generated using a corresponding reference image list.
일 예로, 예측 리스트 활용 플래그가 제1 값인 1을 지시하는 경우, 해당 참조 영상 리스트를 이용하여 예측 블록을 생성할 수 있는 것을 나타내고, 제2 값인 0을 지시하는 경우, 해당 참조 영상 리스트를 이용하여 예측 블록을 생성하지 않는 것을 나타낼 수 있다. 여기서, 예측 리스트 활용 플래그의 제1 값은 0으로, 제2 값은 1로 설정될 수도 있다.For example, when the prediction list utilization flag indicates a first value of 1, it indicates that a prediction block can be generated using the corresponding reference image list, and when indicating a second value of 0, using the corresponding reference image list It may indicate not generating a prediction block. Here, the first value of the prediction list utilization flag may be set to 0 and the second value may be set to 1.
즉, 예측 리스트 활용 플래그가 제1 값을 지시할 때, 해당 참조 영상 리스트에 상응하는 움직임 정보를 이용하여 현재 블록의 예측 블록을 생성할 수 있다.That is, when the prediction list utilization flag indicates a first value, a prediction block of the current block may be generated using motion information corresponding to the corresponding reference image list.
참조 영상 색인은 각 참조 영상 리스트에서 현재 블록이 참조하는 참조 영상을 특정할 수 있다. 각 참조 영상 리스트에 대해 1개 이상의 참조 영상 색인이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 1개 이상의 참조 영상 색인을 이용하여 움직임 보상을 수행할 수 있다.The reference image index may specify a reference image referred to by a current block in each reference image list. For each reference picture list, one or more reference picture indices may be entropy encoded/decoded. The current block may perform motion compensation using one or more reference picture indices.
움직임 벡터 후보 색인은 참조 영상 리스트 별 또는 참조 영상 색인 별로 생성된 움직임 벡터 후보 리스트에서 현재 블록에 대한 움직임 벡터 후보를 나타낸다. 움직임 벡터 후보 리스트별로 적어도 1개 이상의 움직임 벡터 후보 색인이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 적어도 1개 이상의 움직임 벡터 후보 색인을 이용하여 움직임 보상을 수행할 수 있다.The motion vector candidate index represents a motion vector candidate for a current block in a motion vector candidate list generated for each reference picture list or for each reference picture index. At least one motion vector candidate index for each motion vector candidate list may be entropy encoded/decoded. The current block may perform motion compensation using at least one motion vector candidate index.
움직임 벡터 차분은 움직임 벡터와 예측된 움직임 벡터 사이의 차분값을 나타낸다. 현재 블록에 대해 참조 영상 리스트 또는 참조 영상 색인 별로 생성된 움직임 벡터 후보 리스트에 대해 1개 이상의 움직임 벡터 차분이 엔트로피 부호화/복호화될 수 있다. 현재 블록은 1개 이상의 움직임 벡터 차분을 이용하여, 움직임 보상을 수행할 수 있다.The motion vector difference represents a difference value between a motion vector and a predicted motion vector. One or more motion vector differences may be entropy-encoded/decoded with respect to the reference picture list for the current block or the motion vector candidate list generated for each reference picture index. The current block may perform motion compensation using one or more motion vector differentials.
스킵 모드 사용 여부 정보(cu_skip_flag)는, 제 1의 값인 1을 가질 경우 스킵 모드 사용을 지시할 수 있으며, 제 2의 값인 0을 가질 경우 스킵 모드 사용을 지시하지 않을 수 있다. 스킵 모드 사용 여부 정보를 기반으로 스킵 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.Skip mode usage availability information (cu_skip_flag) may indicate use of skip mode when it has a first value of 1, and may not indicate use of skip mode when it has a second value of 0. Motion compensation of the current block may be performed by using the skip mode based on information on whether the skip mode is used.
머지 모드 사용 여부 정보(merge_flag)는, 제 1의 값인 1을 가질 경우 머지 모드 사용을 지시할 수 있으며, 제 2의 값인 0을 가질 경우 머지 모드 사용을 지시하지 않을 수 있다. 머지 모드 사용 여부 정보를 기반으로 머지 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.Merge mode use availability information (merge_flag) may indicate use of merge mode when it has a first value of 1, and may not indicate use of merge mode when it has a second value of 0. Motion compensation of the current block may be performed using merge mode based on information on whether merge mode is used or not.
머지 색인 정보(merge_index)는 머지 후보 리스트(merge candidate list) 내 머지 후보(merge candidate)를 지시하는 정보를 의미할 수 있다. The merge index information (merge_index) may refer to information indicating a merge candidate in a merge candidate list.
또한, 머지 색인 정보는 머지 색인(merge index)에 대한 정보를 의미할 수 있다. Also, merge index information may refer to information about a merge index.
또한, 머지 색인 정보는 공간적/시간적으로 현재 블록과 인접하게 복원된 블록들 중 머지 후보를 유도한 블록을 지시할 수 있다. In addition, the merge index information may indicate a block from which a merge candidate is derived among blocks reconstructed that are spatially/temporally adjacent to the current block.
또한, 머지 색인 정보는 머지 후보가 가지는 움직임 정보 중 적어도 하나 이상을 지시할 수 있다. 예를 들어, 머지 색인 정보는 제 1의 값인 0을 가질 경우 머지 후보 리스트 내 첫번째 머지 후보를 지시할 수 있으며, 제 2의 값인 1을 가질 경우 머지 후보 리스트 내 두번째 머지 후보를 지시할 수 있으며, 제 3의 값인 2를 가질 경우 머지 후보 리스트 내 세번째 머지 후보를 지시할 수 있다. 마찬가지로 제 4 내지 제N 값을 가질 경우 머지 후보 리스트 내 순서에 따라 값에 해당하는 머지 후보를 지시할 수 있다. 여기서 N은 0을 포함한 양의 정수를 의미할 수 있다.Also, the merge index information may indicate at least one piece of motion information of a merge candidate. For example, if the merge index information has a first value of 0, it may indicate the first merge candidate in the merge candidate list, and if it has a second value of 1, it may indicate the second merge candidate in the merge candidate list, If it has the third value of 2, it may indicate the third merge candidate in the merge candidate list. Similarly, when the values have the 4th to Nth values, merge candidates corresponding to the values may be indicated according to the order in the merge candidate list. Here, N may mean a positive integer including 0.
머지 모드 색인 정보를 기반으로 머지 모드를 이용하여 현재 블록의 움직임 보상을 수행할 수 있다.Motion compensation of the current block may be performed using merge mode based on merge mode index information.
현재 블록에 대한 움직임 보상 시 2개 이상의 예측 블록이 생성된 경우, 각 예측 블록에 대한 가중합(weighted sum)을 통해 현재 블록에 대한 최종 예측 블록이 생성될 수 있다. 가중합 연산시, 각 예측 블록에 대해 가중치 및 오프셋 중 적어도 하나 이상이 적용될 수 있다. 가중치(weighting factor) 또는 오프셋(offset) 등과 같이 가중합 연산에 이용되는 가중합 인자는, 참조 영상 리스트, 참조 영상, 움직임 벡터 후보 색인, 움직임 벡터 차분, 움직임 벡터, 스킵 모드 사용 여부 정보, 머지 모드 사용 여부 정보, 머지 색인 정보 중 적어도 하나의 개수만큼 또는 적어도 하나의 개수 이상 엔트로피 부호화/복호화될 수 있다. 또한, 각 예측 블록의 가중합 인자는 화면 간 예측 지시자에 기반하여 엔트로피 부호화/복호화될 수 있다. 여기서, 가중합 인자는 가중치 및 오프셋 중 적어도 하나를 포함할 수 있다.When two or more prediction blocks are generated during motion compensation for the current block, a final prediction block for the current block may be generated through a weighted sum of each prediction block. During the weighted sum operation, at least one of a weight and an offset may be applied to each prediction block. A weighting factor used in a weighted sum operation, such as a weighting factor or an offset, includes a reference image list, a reference image, a motion vector candidate index, a motion vector difference, a motion vector, skip mode use information, merge mode Entropy encoding/decoding may be performed as much as or more than at least one of the usage information and the merge index information. In addition, the weighted sum factor of each prediction block may be entropy encoded/decoded based on an inter prediction indicator. Here, the weighted sum factor may include at least one of a weight and an offset.
움직임 보상에 관한 정보는, 블록 단위로 엔트로피 부호화/복호화될 수도 있고, 상위 레벨에서 엔트로피 부호화/복호화 될수도 있다. 일 예로, 움직임 보상에 관한 정보는, CTU, CU 또는 PU 등 블록 단위로 엔트로피 부호화/복호화되거나, 비디오 파라미터 세트(Video Parameter Set), 시퀀스 파라미터 세트(Sequence Parameter Set), 픽처 파라미터 세트(Picture Parameter Set), 적응 파라미터 세트(Adaptation Parameter Set) 또는 슬라이스 헤더(Slice Header) 등 상위 레벨에서 엔트로피 부호화/복호화될 수 있다.Information on motion compensation may be entropy-encoded/decoded on a block-by-block basis or entropy-encoded/decoded at a higher level. For example, motion compensation information is entropy encoded/decoded in units of blocks such as CTU, CU, or PU, or a video parameter set, a sequence parameter set, or a picture parameter set. ), entropy encoding/decoding may be performed at a higher level such as an Adaptation Parameter Set or a Slice Header.
움직임 보상에 관한 정보는 움직임 보상에 관한 정보와 움직임 보상에 관한 정보 예측값 사이의 차분값을 나타내는 움직임 보상에 관한 정보 차분값을 기초로 엔트로피 부호화/복호화될 수도 있다. Information on motion compensation may be entropy-encoded/decoded based on a difference value between information on motion compensation and a predicted value of information on motion compensation.
현재 블록의 움직임 보상에 관한 정보를 엔트로피 부호화/복호화하는 대신, 현재 블록 주변에 부호화/복호화된 블록의 움직임 보상에 관한 정보를 현재 블록의 움직임 보상에 관한 정보로 이용하는 것도 가능하다.Instead of entropy encoding/decoding information on motion compensation of the current block, information on motion compensation of blocks encoded/decoded around the current block may be used as information on motion compensation of the current block.
또한, 부호화 파라미터 중 적어도 하나 이상에 기반하여 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 유도할 수 있다.In addition, at least one or more of the motion compensation-related information may be derived based on at least one or more of the coding parameters.
또한, 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 부호화 파라미터 중 적어도 하나 이상에 기반하여 비트스트림으로부터 엔트로피 복호화할 수 있다. 상기 움직임 보상에 관한 정보 중 적어도 하나 이상을 부호화 파라미터 중 적어도 하나 이상에 기반하여 비트스트림에 엔트로피 부호화할 수 있다.In addition, at least one or more of the motion compensation information may be entropy-decoded from a bitstream based on at least one or more encoding parameters. At least one or more of the motion compensation information may be entropy-encoded into a bitstream based on at least one or more encoding parameters.
움직임 보상에 관한 정보는 움직임 벡터, 움직임 벡터 후보, 움직임 벡터 후보 색인, 움직임 벡터 차분값, 움직임 벡터 예측값, 스킵 모드 사용 여부 정보(skip_flag), 머지 모드 사용 여부 정보(merge_flag), 머지 색인 정보(merge_index), 움직임 벡터 해상도(motion vector resolution) 정보, 중첩된 블록 움직임 보상(overlapped block motion compensation) 정보, 지역 조명 보상(local illumination compensation) 정보, 어파인 움직임 보상(affine motion compensation) 정보, 복호화기 움직임 벡터 유도(decoder-side motion vector derivation) 정보, 양방향 광학 흐름(bi-directional optical flow) 정보 중 적어도 하나를 더 포함할 수 있다. 여기서, 복호화기 움직임 벡터 유도는 패턴 정합 움직임 벡터 유도(pattern matched motion vector derivation)을 의미할 수 있다.Motion compensation information includes a motion vector, a motion vector candidate, a motion vector candidate index, a motion vector difference value, a motion vector prediction value, skip mode use information (skip_flag), merge mode use information (merge_flag), merge index information (merge_index) ), motion vector resolution information, overlapped block motion compensation information, local illumination compensation information, affine motion compensation information, decoder motion vector It may further include at least one of decoder-side motion vector derivation information and bi-directional optical flow information. Here, decoder motion vector derivation may mean pattern matched motion vector derivation.
움직임 벡터 해상도 정보는 움직임 벡터 및 움직임 벡터 차분값 중 적어도 하나 이상에 대해 특정 해상도를 사용하는지 여부를 나타내는 정보일 수 있다. 여기서, 해상도는 정밀도(precision)를 의미할 수 있다. 또한, 특정 해상도는 16-화소(16-pel) 단위, 8-화소(8-pel) 단위, 4-화소(4-pel) 단위, 정수-화소(integer-pel) 단위, 1/2-화소(1/2-pel) 단위, 1/4-화소(1/4-pel) 단위, 1/8-화소(1/8-pel) 단위, 1/16-화소(1/16-pel) 단위, 1/32-화소(1/32-pel) 단위, 1/64-화소(1/64-pel) 단위 중 적어도 하나로 설정될 수 있다.The motion vector resolution information may be information indicating whether a specific resolution is used for at least one of the motion vector and the motion vector difference value. Here, resolution may mean precision. In addition, the specific resolution is 16-pixel (16-pel) unit, 8-pixel (8-pel) unit, 4-pixel (4-pel) unit, integer-pixel unit, 1/2-pixel unit (1/2-pel) unit, 1/4-pixel (1/4-pel) unit, 1/8-pixel (1/8-pel) unit, 1/16-pixel (1/16-pel) unit , 1/32-pixel (1/32-pel) unit, and 1/64-pixel (1/64-pel) unit.
중첩된 블록 움직임 보상 정보는 현재 블록의 움직임 보상 시 현재 블록 블록에 공간적으로 인접한 주변 블록의 움직임 벡터를 추가로 사용하여 현재 블록의 예측 블록의 가중합을 계산하는지 여부를 나타내는 정보일 수 있다.The overlapped block motion compensation information may be information indicating whether a weighted sum of prediction blocks of the current block is calculated by additionally using motion vectors of neighboring blocks spatially adjacent to the current block during motion compensation of the current block.
지역 조명 보상 정보는 현재 블록의 예측 블록 생성 시 가중치 값 및 오프셋 값 중 적어도 하나를 적용하는지 여부를 나타내는 정보일 수 있다. 여기서, 가중치 값 및 오프셋 값 중 적어도 하나는 참조 블록을 기반으로 산출된 값일 수 있다.Area illumination compensation information may be information indicating whether at least one of a weight value and an offset value is applied when generating a prediction block of a current block. Here, at least one of the weight value and the offset value may be a value calculated based on the reference block.
어파인 움직임 보상 정보는 현재 블록에 대한 움직임 보상 시 어파인 움직임 모델(affine motion model)을 사용하는지 여부를 나타내는 정보일 수 있다. 여기서, 어파인 움직임 모델은 복수의 파라미터를 이용하여 하나의 블록을 다수의 하위 블록으로 분할하고, 대표 움직임 벡터들을 이용하여 분할된 하위 블록의 움직임 벡터를 산출하는 모델일 수 있다.The affine motion compensation information may be information indicating whether an affine motion model is used when motion compensation for the current block is performed. Here, the affine motion model may be a model that divides one block into multiple sub-blocks using a plurality of parameters and calculates motion vectors of the divided sub-blocks using representative motion vectors.
복호화기 움직임 벡터 유도 정보는 움직임 보상에 필요한 움직임 벡터를 복호화기에서 유도하여 사용하는지 여부를 나타내는 정보일 수 있다. 복호화기 움직임 벡터 유도 정보에 기초하여 움직임 벡터에 관한 정보는 엔트로피 부호화/복호화되지 않을 수 있다. 그리고, 복호화기 움직임 벡터 유도 정보가 복호화기에서 움직임 벡터를 유도하여 사용하는 것을 나타내는 경우, 머지 모드에 관한 정보가 엔트로피 부호화/복호화될 수 있다. 즉, 복호화기 움직임 벡터 유도 정보는 복호화기에서 머지 모드를 이용 여부를 나타낼 수 있다.The decoder motion vector derivation information may be information indicating whether the decoder derives and uses a motion vector necessary for motion compensation. Based on the decoder motion vector derivation information, motion vector information may not be entropy encoded/decoded. And, when the decoder motion vector derivation information indicates that the decoder derives and uses the motion vector, information on the merge mode may be entropy encoded/decoded. That is, the decoder motion vector derivation information may indicate whether the decoder uses merge mode.
양방향 광학 흐름 정보는 픽셀 단위 혹은 하위 블록 단위로 움직임 벡터를 교정하여 움직임 보상을 수행하는지 여부에 나타내는 정보일 수 있다. 양방향 광학 흐름 정보에 기초하여 픽셀 단위 혹은 하위 블록 단위의 움직임 벡터는 엔트로피 부호화/복호화되지 않을 수 있다. 여기서, 움직임 벡터 교정은 블록 단위의 움직임 벡터를 픽셀 단위 혹은 하위 블록 단위로 움직임 벡터 값을 변경하는 것일 수 있다.The bidirectional optical flow information may be information indicating whether motion compensation is performed by calibrating a motion vector in units of pixels or units of sub-blocks. Based on the bidirectional optical flow information, a motion vector in units of pixels or units of sub-blocks may not be entropy-encoded/decoded. Here, the motion vector correction may be to change a motion vector value of a motion vector in units of blocks or in units of pixels or sub-blocks.
현재 블록은 움직임 보상에 관한 정보 중 적어도 하나를 이용하여 움직임 보상을 수행하고, 움직임 보상에 관한 정보 중 적어도 하나를 엔트로피 부호화/복호화할 수 있다.The current block may perform motion compensation using at least one piece of motion compensation information, and entropy-encode/decode at least one piece of motion compensation information.
움직임 보상과 관련한 정보를 엔트로피 부호화/복호화하는 경우, 절삭된 라이스(Truncated Rice) 이진화 방법, K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법, 제한된 K차수 지수-골롬(K-th order Exp_Golomb) 이진화 방법, 고정 길이(Fixed-length) 이진화 방법, 단항(Unary) 이진화 방법 또는 절삭된 단항(Truncated Unary) 이진화 방법 등의 이진화(Binarization) 방법이 이용될 수 있다. In the case of entropy encoding/decoding information related to motion compensation, a truncated rice binarization method, a K-th order Exp_Golomb binarization method, and a restricted K-th order Exp_Golomb binarization method ) Binarization method, such as a fixed-length binarization method, a unary binarization method, or a truncated unary binarization method, may be used.
움직임 보상에 관한 정보를 엔트로피 부호화/복호화할 때, 현재 블록 주변의 주변 블록의 움직임 보상에 관한 정보 또는 주변 블록의 영역 정보, 이전에 부호화/복호화된 움직임 보상에 관한 정보 또는 이전에 부호화/복호화된 영역 정보, 현재 블록의 깊이에 관한 정보 및 현재 블록의 크기에 관한 정보 중 적어도 하나 이상을 이용하여 문맥 모델(context model)을 결정할 수 있다.When entropy encoding/decoding information about motion compensation, information about motion compensation of neighboring blocks around the current block or area information of neighboring blocks, information about previously encoded/decoded motion compensation, or information about previously encoded/decoded motion compensation A context model may be determined using at least one of region information, information about the depth of the current block, and information about the size of the current block.
또한, 움직임 보상에 관한 정보를 엔트로피 부호화/복호화할 때, 주변 블록의 움직임 보상에 관한 정보, 이전에 부호화/복호화된 움직임 보상에 관한 정보, 현재 블록의 깊이에 관한 정보 및 현재 블록의 크기에 관한 정보 중 적어도 하나 이상을 현재 블록의 움직임 보상에 관한 정보에 대한 예측값으로 사용하여 엔트로피 부호화/복호화를 수행할 수도 있다. In addition, when entropy encoding/decoding information about motion compensation, information about motion compensation of neighboring blocks, information about previously encoded/decoded motion compensation, information about the depth of the current block, and information about the size of the current block Entropy encoding/decoding may be performed by using at least one of the pieces of information as a predicted value for motion compensation information of the current block.
이하에서는, 중첩된 블록 움직임 보상(Overlapped Block Motion Compensation)과 관련한 구체적인 설명을 도 13 내지 도 24에 참고하여 설명하도록 한다.Hereinafter, detailed descriptions related to overlapped block motion compensation will be described with reference to FIGS. 13 to 24 .
*도 13은 하위 블록 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다.* FIG. 13 is a diagram for explaining an example in which overlapped block motion compensation is performed in sub-block units.
도 13을 참고하면, 빗금 친 블록은 중첩된 블록 움직임 보상이 적용되는 영역으로 현재 블록 내 경계에 해당하는 하위 블록 혹은 현재 블록 내 하위 블록일 수 있다. 또한, 굵은 선으로 표시된 블록은 현재 블록일 수 있다.Referring to FIG. 13 , a hatched block is an area to which overlapped block motion compensation is applied, and may be a sub-block corresponding to a boundary within the current block or a sub-block within the current block. Also, a block marked with a thick line may be a current block.
또한, 화살표는 인접한 주변 하위 블록의 움직임 정보를 현재 하위 블록의 움직임 보상에 사용한다는 의미일 수 있다. 여기서, 화살표 꼬리에 해당하는 위치는 1) 현재 블록에 인접한 주변 하위 블록 혹은 2) 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록을 의미할 수 있다. 또한, 화살표의 머리에 해당하는 위치는 현재 블록 내 현재 하위 블록을 의미할 수 있다.Also, an arrow may mean that motion information of an adjacent neighboring sub-block is used for motion compensation of the current sub-block. Here, the position corresponding to the tail of the arrow may mean 1) a neighboring sub-block adjacent to the current block or 2) a neighboring sub-block within the current block adjacent to the current sub-block. Also, a position corresponding to the head of the arrow may mean a current sub-block within the current block.
빗금 친 블록에서는 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 제1 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록 내 현재 하위 블록에 대한 움직임 정보가 사용될 수 있다. 제2 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록에 인접한 주변 하위 블록의 움직임 정보 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보 중 적어도 하나 이상이 사용될 수 있다.In the shaded block, a weighted sum of the first prediction block and the second prediction block may be calculated. As motion information used when generating the first prediction block, motion information on a current sub-block within the current block may be used. Motion information used when generating the second prediction block may use at least one of motion information of neighboring subblocks adjacent to the current block and motion information of neighboring subblocks within the current block.
또한, 부호화 효율 향상을 위하여, 제2 예측 블록 생성에 사용되는 움직임 정보는 현재 블록 내 현재 하위 블록의 위치를 기준으로 상단 블록, 좌측 블록, 하단 블록, 우측 블록, 우상단 블록, 우하단 블록, 좌상단 블록 및 좌하단 블록 중 적어도 하나 이상의 블록의 움직임 정보일 수 있다. 현재 하위 블록의 위치에 따라 이용 가능한 주변 하위 블록의 위치가 결정될 수 있다. 예를 들어, 현재 하위 블록이 상단 경계에 위치한 경우, 현재 하위 블록의 상단, 우상단 및 좌상단에 위치한 적어도 하나의 주변 하위 블록이 이용될 수 있다. 현재 하위 블록이 좌측 경계에 위치한 경우, 현재 하위 블록의 좌측, 좌상단 및 좌하단에 위치한 적어도 하나의 주변 하위 블록이 이용될 수 있다.In addition, in order to improve encoding efficiency, the motion information used for generating the second prediction block is the upper block, the left block, the lower block, the right block, the upper right block, the lower right block, and the upper left block based on the position of the current lower block in the current block. It may be motion information of at least one block among the block and the lower left block. Locations of available neighboring sub-blocks may be determined according to the location of the current sub-block. For example, when the current sub-block is located at the top boundary, at least one neighboring sub-block located at the top, top right, and top left of the current sub-block may be used. When the current sub-block is located at the left boundary, at least one neighboring sub-block located at the left, top-left, and bottom-left of the current sub-block may be used.
여기서, 현재 하위 블록의 위치를 기준으로 상단 블록, 좌측 블록, 하단 블록, 우측 블록, 우상단 블록, 우하단 블록, 좌상단 블록 및 좌하단 블록은 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 우상단 주변 하위 블록, 우하단 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록으로 명명될 수 있다.Here, based on the location of the current sub-block, the upper block, left block, lower block, right block, upper right block, lower right block, upper left block, and lower left block are the upper peripheral subblock, the left peripheral subblock, and the lower peripheral subblock. .
한편, 계산 복잡도 감소를 위하여, 현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 벡터 크기에 따라 제2 예측 블록 생성에 사용하는 움직임 정보가 달라질 수 있다. Meanwhile, in order to reduce computational complexity, motion information used to generate the second prediction block may be changed according to the size of a motion vector of a neighboring subblock adjacent to the current block or a neighboring subblock within the current block.
일 예로, 주변 하위 블록이 양방향으로 예측된 경우, L0와 L1 방향의 움직임 벡터들의 크기를 비교하여 크기가 큰 한쪽 방향의 움직임 정보만을 이용하여 제2 예측 블록을 생성할 수 있다.For example, when neighboring sub-blocks are bi-directionally predicted, magnitudes of motion vectors in directions L0 and L1 may be compared and a second prediction block may be generated using only motion information in one direction having a large magnitude.
다른 예로, 주변 하위 블록의 L0 및 L1 방향 움직임 벡터 중 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 큰 움직임 벡터만을 사용하여 제2 예측 블록을 생성할 수 있다. 여기서, 기 정의된 값은 0을 포함한 양의 정수일 수 있으며, 부호화기에서 복호화기로 시그널링되는 정보에 의하여 결정되거나 부호화기 및 복호화기에 동일하게 설정된 값일 수 있다.As another example, the second prediction block may be generated using only motion vectors in which the sum of the absolute values of the x component and the y component of the motion vector is greater than or equal to a predefined value among the L0 and L1 direction motion vectors of neighboring subblocks. . Here, the predefined value may be a positive integer including 0, determined by information signaled from an encoder to a decoder, or may be a value set identically to the encoder and decoder.
또한, 계산 복잡도 감소를 위하여, 현재 하위 블록의 움직임 벡터 크기 및 방향에 따라 제2 예측 블록 생성에 사용하는 움직임 정보가 달라질 수 있다. In addition, in order to reduce computational complexity, motion information used to generate the second prediction block may be changed according to the magnitude and direction of the motion vector of the current sub-block.
일 예로, 현재 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 크기를 비교한 후 x 성분의 절대값이 클 경우, 좌측 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다.For example, if the absolute value of the x component and the absolute value of the y component of the current sub-block are compared and the absolute value of the x component is large, second prediction is performed using at least one of the motion information of the left block and the right block. blocks can be created.
다른 예로, 현재 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 크기를 비교한 후 y 성분의 절대값이 클 경우, 상단 블록, 하단 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다.As another example, after comparing the magnitudes of the absolute values of the motion vector x and y components of the current sub-block, if the absolute value of the y-component is large, second prediction using at least one of the motion information of the upper block and the lower block blocks can be created.
또 다른 예로, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 크거나 같을 경우, 좌측 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다. 여기서, 기 정의된 값은 0을 포함한 양의 정수일 수 있으며, 부호화기에서 복호화기로 시그널링되는 정보에 의하여 결정되거나 부호화기 및 복호화기에 동일하게 설정된 값일 수 있다.As another example, when the absolute value of the motion vector x component of the current sub-block is greater than or equal to a predefined value, the second prediction block may be generated using at least one of the motion information of the left block and the right block. . Here, the predefined value may be a positive integer including 0, determined by information signaled from an encoder to a decoder, or may be a value set identically to the encoder and decoder.
또 다른 예로, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 크거나 같을 경우, 상단 블록, 하단 블록의 움직임 정보 중 적어도 하나 이상을 이용하여 제2 예측 블록을 생성할 수 있다. 여기서, 기 정의된 값은 0을 포함한 양의 정수일 수 있으며, 부호화기에서 복호화기로 시그널링되는 정보에 의하여 결정되거나 부호화기 및 복호화기에 동일하게 설정된 값일 수 있다.As another example, when the absolute value of the motion vector y component of the current lower block is greater than or equal to a predefined value, the second prediction block may be generated using at least one of the motion information of the upper block and the lower block. . Here, the predefined value may be a positive integer including 0, determined by information signaled from an encoder to a decoder, or may be a value set identically to the encoder and decoder.
한편, 하위 블록의 크기는 NxM을 가질 수 있고, 여기서 N과 M은 양의 정수일 수 있다. N과 M은 서로 동일하거나 상이할 수 있다. 예를 들어, 하위 블록 크기는 4x4 혹은 8x8일 수 있고, 하위 블록 크기 정보는 시퀀스 단위에서 엔트로피 부호화/복호화될 수 있다. Meanwhile, the size of the sub-block may have NxM, where N and M may be positive integers. N and M may be the same as or different from each other. For example, the sub-block size may be 4x4 or 8x8, and sub-block size information may be entropy-encoded/decoded in sequence units.
또한, 하위 블록의 크기는 현재 블록의 크기에 따라 결정될 수 있다. 예를 들어, 현재 블록의 크기가 K개의 샘플 이하인 경우, 4x4 하위 블록을 사용하고, 현재 블록의 크기가 K개의 샘플 보다 큰 경우, 8x8 하위 블록을 사용할 수 있다. 여기서 K는 양의 정수이며, 예를 들어 256일 수 있다.Also, the size of the lower block may be determined according to the size of the current block. For example, if the size of the current block is K samples or less, a 4x4 sub-block may be used, and if the size of the current block is greater than K samples, an 8x8 sub-block may be used. Here, K is a positive integer and may be, for example, 256.
여기서, 하위 블록의 크기에 대한 정보는 시퀀스 단위, 픽처 단위, 슬라이스 단위, 타일 단위, CTU 단위, CU 단위, PU 단위 중 적어도 하나 이상에서 엔트로피 부호화/복호화되어 사용될 수 있다. 또한, 하위 블록의 크기는 부호화기 및 복호화기에서 미리 정의된 크기를 사용할 수 있다.Here, the information on the size of the sub-block may be entropy-encoded/decoded in at least one of a sequence unit, a picture unit, a slice unit, a tile unit, a CTU unit, a CU unit, and a PU unit. In addition, the size of the sub-block may use a size predefined in the encoder and decoder.
하위 블록은 정사각형 형태 및 직사각형 형태 중 적어도 하나 이상일 수 있다. 예를 들어, 현재 블록이 정사각형 형태 혹은 직사각형 형태일 경우, 하위 블록은 정사각형 형태일 수 있다.The sub-block may have at least one of a square shape and a rectangular shape. For example, when the current block has a square or rectangular shape, the lower block may have a square shape.
예를 들어 현재 블록이 직사각형 형태일 경우, 하위 블록은 직사각형 형태일 수 있다.For example, when the current block has a rectangular shape, sub-blocks may have a rectangular shape.
여기서, 하위 블록의 형태에 대한 정보는 시퀀스 단위, 픽처 단위, 슬라이스 단위, 타일 단위, CTU 단위, CU 단위, PU 단위 중 적어도 하나 이상에서 엔트로피 부호화/복호화되어 사용될 수 있다. 또한, 하위 블록의 형태는 부호화기 및 복호화기에서 미리 정의된 형태를 사용할 수 있다.Here, the information on the shape of the sub-block may be entropy encoded/decoded in at least one of a sequence unit, a picture unit, a slice unit, a tile unit, a CTU unit, a CU unit, and a PU unit. In addition, the form of a sub-block may use a form predefined in an encoder and a decoder.
도 14는 대응 위치 블록의 하위 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다. 부호화 효율 향상을 위하여, 대응 위치 영상 혹은 참조 영상 내에서 현재 블록과 공간적으로 동일한 위치에 대응되는 대응 위치 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.14 is a diagram for explaining an example in which motion compensation for overlapping blocks is performed using motion information of a lower block of a corresponding block. In order to improve encoding efficiency, motion information of a corresponding-position sub-block corresponding to a spatially identical position to a current block in a corresponding-position image or reference image may be used as motion information used to generate a second prediction block.
도 14를 참고하면, 대응 위치 블록 내에서 현재 블록과 시간적으로 인접한 하위 블록의 움직임 정보를 현재 하위 블록의 중첩된 블록 움직임 보상에 사용할 수 있다. 여기서, 화살표 꼬리에 해당하는 위치는 대응 위치 블록 내 하위 블록을 의미할 수 있다. 또한, 화살표의 머리에 해당하는 위치는 현재 블록 내 현재 하위 블록을 의미할 수 있다.Referring to FIG. 14 , motion information of a sub-block temporally adjacent to a current block within a corresponding location block may be used for overlapped block motion compensation of the current sub-block. Here, a position corresponding to the tail of an arrow may mean a lower block within a corresponding position block. Also, a position corresponding to the head of the arrow may mean a current sub-block within the current block.
또한, 상기와 같이 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보, 현재 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보, 현재 블록 내에서 현재 하위 블록에 공간적으로 인접한 주변 하위 블록 중 적어도 하나 이상의 움직임 정보를 제2 예측 블록 생성에 사용할 수 있다.Further, as described above, motion information of at least one of the motion information of the corresponding position sub-block in the corresponding position image, motion information of neighboring sub-blocks spatially adjacent to the current block, and neighboring sub-blocks spatially adjacent to the current sub-block within the current block. Can be used to generate the second prediction block.
도 15는 참조 블록의 경계 영역에 인접한 블록의 움직임 정보를 이용하여 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다. 부호화 효율 향상을 위하여, 현재 블록의 움직임 벡터 및 참조 영상 색인 중 적어도 하나 이상을 이용하여 참조 영상 내 참조 블록을 식별하고, 식별된 참조 블록의 경계에 인접한 이웃 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다. 여기서, 이웃 블록은 참조 블록의 하단 경계 영역 또는 우측 경계 영역에 위치하는 하위 블록에 인접하게 부호화/복호화된 블록을 포함할 수 있다.15 is a diagram for explaining an example in which overlapped block motion compensation is performed using motion information of a block adjacent to a boundary region of a reference block. To improve encoding efficiency, a reference block in a reference image is identified using at least one of the motion vector of the current block and the reference image index, and motion information of neighboring blocks adjacent to the boundary of the identified reference block is generated as a second prediction block. It can be used as motion information used for Here, the neighboring block may include an encoded/decoded block adjacent to a lower block located in a lower boundary region or a right boundary region of the reference block.
도 15를 참고하면, 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보를 현재 하위 블록의 중첩된 블록 움직임 보상에 사용할 수 있다.Referring to FIG. 15 , motion information of a block encoded/decoded adjacent to a lower boundary region and a right boundary region of a reference block may be used for overlapped block motion compensation of a current lower block.
또한, 상기와 같이 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보, 현재 블록에 공간적으로 인접한 주변 하위 블록의 움직임 정보, 현재 블록 내에서 현재 하위 블록에 공간적으로 인접한 주변 하위 블록 중 적어도 하나 이상의 움직임 정보를 제2 예측 블록 생성에 사용할 수 있다.In addition, as described above, motion information of blocks encoded/decoded adjacent to the lower boundary region and right boundary region of the reference block, motion information of neighboring sub-blocks spatially adjacent to the current block, and spatially related to the current sub-block within the current block Motion information of at least one of adjacent neighboring sub-blocks may be used to generate the second prediction block.
한편, 부호화 효율 향상을 위하여, 머지 후보 리스트에 포함된 머지 후보들 중 적어도 하나 이상의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다. 여기서, 머지 후보 리스트는 화면 간 예측 모드 중 머지 모드에서 이용되는 리스트일 수 있다.Meanwhile, in order to improve encoding efficiency, motion information of at least one of merge candidates included in the merge candidate list may be used as motion information used to generate the second prediction block. Here, the merge candidate list may be a list used in a merge mode among inter prediction modes.
일 예로, 머지 후보 리스트 내 공간적 머지 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.For example, a spatial merge candidate in the merge candidate list may be used as motion information used to generate the second prediction block.
다른 예로, 머지 후보 리스트 내 시간적 머지 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.As another example, a temporal merge candidate in the merge candidate list may be used as motion information used to generate the second prediction block.
또 다른 예로, 머지 후보 리스트 내 조합된 머지 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.As another example, a merge candidate combined in the merge candidate list may be used as motion information used to generate the second prediction block.
또는, 부호화 효율 향상을 위하여, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보들 중 적어도 하나 이상의 움직임 벡터를 제2 예측 블록 생성에 사용되는 움직임 벡터로 사용할 수 있다. 여기서, 움직임 벡터 후보 리스트는 화면 간 예측 모드 중 AMVP 모드에서 이용되는 리스트일 수 있다.Alternatively, in order to improve coding efficiency, at least one motion vector among motion vector candidates included in the motion vector candidate list may be used as a motion vector used to generate the second prediction block. Here, the motion vector candidate list may be a list used in the AMVP mode among inter prediction modes.
일 예로, 움직임 벡터 후보 리스트 내 공간적 움직임 벡터 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.For example, a spatial motion vector candidate in the motion vector candidate list may be used as motion information used to generate the second prediction block.
다른 예로, 움직임 벡터 후보 리스트 내 시간적 움직임 벡터 후보를 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 수 있다.As another example, a temporal motion vector candidate in the motion vector candidate list may be used as motion information used to generate the second prediction block.
상술한 머지 후보 및 움직임 벡터 후보 중 적어도 하나 이상을 제2 예측 블록 생성에 사용되는 움직임 정보로 사용할 때, 중첩된 블록 움직임 보상이 적용되는 영역을 달리할 수 있다. 중첩된 블록 움직임 보상이 적용되는 영역은 블록의 일측 경계에 인접한 영역(즉, 블록 경계에 위치한 하위 블록) 또는 블록 경계에 인접하지 않는 영역(즉, 블록 경계에 위치하지 않은 하위 블록) 등으로 설정될 수 있다. When at least one of the above-described merge candidate and motion vector candidate is used as motion information used to generate the second prediction block, regions to which overlapped block motion compensation is applied may be different. The area to which overlapped block motion compensation is applied is set to an area adjacent to one boundary of a block (ie, a sub-block located on a block boundary) or an area not adjacent to a block boundary (ie, a sub-block not located on a block boundary), etc. It can be.
이 경우, 블록 경계에 인접하지 않은 영역에 중첩된 블록 움직임 보상은 머지 후보 및 움직임 벡터 후보 중 적어도 하나를 제2 예측 블록에 사용되는 움직임 정보로 이용할 수 있다.In this case, for block motion compensation overlapped in an area not adjacent to a block boundary, at least one of a merge candidate and a motion vector candidate may be used as motion information used in the second prediction block.
일 예로, 공간적 머지 후보 혹은 공간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록 경계에 인접하지 않은 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.For example, using motion information of a spatial merge candidate or a spatial motion vector candidate, motion compensation for overlapped blocks in a region not adjacent to a block boundary may be performed.
다른 예로, 시간적 머지 후보 혹은 시간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록 경계에 인접하지 않은 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.As another example, motion compensation for overlapped blocks in a region not adjacent to a block boundary may be performed using motion information of a temporal merge candidate or a temporal motion vector candidate.
또 다른 예로, 공간적 머지 후보 혹은 공간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록의 하단 경계 영역 및 우측 경계 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.As another example, motion compensation for blocks overlapping the lower boundary region and the right boundary region of a block may be performed using motion information of a spatial merge candidate or a spatial motion vector candidate.
또 다른 예로, 시간적 머지 후보 혹은 시간적 움직임 벡터 후보의 움직임 정보를 이용하여, 블록의 하단 경계 영역 및 우측 경계 영역에 중첩된 블록 움직임 보상을 수행할 수 있다.As another example, motion compensation for blocks overlapping the lower boundary region and the right boundary region of a block may be performed using motion information of a temporal merge candidate or a temporal motion vector candidate.
또한, 부호화 효율 향상을 위하여, 머지 후보 리스트 혹은 움직임 벡터 후보 리스트 내 특정 위치 블록으로부터 유도된 움직임 정보는 특정 영역에 대한 중첩된 블록 움직임 보상시 사용될 수 있다.In addition, to improve coding efficiency, motion information derived from a block at a specific position in a merge candidate list or a motion vector candidate list may be used when compensating for overlapping block motion in a specific region.
일 예로, 상기 머지 후보 리스트 혹은 움직임 벡터 후보 리스트 내에 현재 블록을 기준으로 우상단 블록에서 유도된 움직임 정보가 포함된 경우, 해당 움직임 정보를 블록의 우측 경계 영역의 중첩된 블록 움직임 보상 시 사용할 수 있다.For example, when motion information derived from an upper right block based on a current block is included in the merge candidate list or the motion vector candidate list, the corresponding motion information can be used when compensating for overlapped block motion of the right boundary region of the block.
다른 예로, 상기 머지 후보 리스트 혹은 움직임 벡터 후보 리스트 내에 현재 블록을 기준으로 좌하단 블록에서 유도된 움직임 정보가 포함된 경우, 해당 움직임 정보를 블록의 하단 경계 영역의 중첩된 블록 움직임 보상 시 사용할 수 있다.As another example, if motion information derived from the lower left block based on the current block is included in the merge candidate list or the motion vector candidate list, the corresponding motion information can be used when compensating for overlapped block motion in the lower boundary region of the blocks. .
도 16은 하위 블록 그룹 단위로 중첩된 블록 움직임 보상이 수행되는 일 예를 설명한 도면이다. 계산 복잡도 감소를 위하여, 하위 블록 기반 중첩된 블록 움직임 보상은 여러 하위 블록을 합한 하나 이상의 블록 단위에서 수행될 수 있다. 이때, 여러 하위 블록을 합한 블록 단위는 하위 블록 그룹 단위를 의미할 수 있다.16 is a diagram for explaining an example in which overlapped block motion compensation is performed in units of sub-block groups. In order to reduce computational complexity, sub-block-based overlapped block motion compensation may be performed in units of one or more blocks in which several sub-blocks are combined. In this case, a block unit in which several sub-blocks are combined may mean a sub-block group unit.
도 16를 참고하면, 빗금 친 영역에서 각각 구분되는 영역은 하위 블록 그룹을 의미할 수 있다. 또한, 화살표는 인접한 주변 하위 블록의 움직임 정보를 현재 하위 블록 그룹의 움직임 보상에 사용한다는 의미일 수 있다. 여기서, 화살표 꼬리에 해당하는 위치는 1) 현재 블록에 인접한 주변 하위 블록, 2) 현재 블록에 인접한 주변 하위 블록 그룹 혹은 3) 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록을 의미할 수 있다. 또한, 화살표의 머리에 해당하는 위치는 현재 블록 내 현재 하위 블록 그룹을 의미할 수 있다.Referring to FIG. 16 , each segmented area in the hatched area may mean a sub-block group. Also, an arrow may indicate that motion information of an adjacent neighboring sub-block is used for motion compensation of a current sub-block group. Here, the position corresponding to the tail of the arrow may mean 1) a neighboring sub-block adjacent to the current block, 2) a neighboring sub-block group adjacent to the current block, or 3) a neighboring sub-block within the current block adjacent to the current sub-block. Also, a position corresponding to the head of the arrow may mean a current sub-block group within the current block.
하위 블록 그룹에서는 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 제1 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록 내 현재 하위 블록 그룹에 대한 움직임 정보가 사용될 수 있다. 여기서, 현재 블록 내 현재 하위 블록 그룹에 대한 움직임 정보는 하위 블록 그룹에 포함되는 하위 블록에 대한 움직임 정보의 평균값, 중간값, 최소값, 최대값, 혹은 가중합 중 어느 하나일 수 있다. 그리고, 제2 예측 블록을 생성할 때 사용되는 움직임 정보는 현재 블록에 인접한 주변 하위 블록의 움직임 정보, 현재 블록에 인접한 주변 하위 블록 그룹의 움직임 정보 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보 중 적어도 하나 이상이 사용될 수 있다. 여기서, 현재 블록에 인접한 주변 하위 블록 그룹의 움직임 정보는 주변 하위 블록 그룹에 포함되는 하위 블록에 대한 움직임 정보의 평균값, 중간값, 최소값, 최대값, 혹은 가중합 중 어느 하나일 수 있다.In the lower block group, a weighted sum of the first prediction block and the second prediction block may be calculated. As motion information used when generating the first prediction block, motion information on a current sub-block group within the current block may be used. Here, the motion information on the current sub-block group within the current block may be any one of an average value, a median value, a minimum value, a maximum value, or a weighted sum of motion information on the sub-blocks included in the sub-block group. Further, the motion information used when generating the second prediction block includes motion information of neighboring subblocks adjacent to the current block, motion information of neighboring subblock groups adjacent to the current block, and neighboring subblocks adjacent to the current subblock within the current block. At least one of the motion information of may be used. Here, motion information of neighboring sub-block groups adjacent to the current block may be any one of an average value, a median value, a minimum value, a maximum value, or a weighted sum of motion information on sub-blocks included in the neighboring sub-block group.
여기서, 하위 블록 그룹 단위는 현재 블록 내에 적어도 하나 이상 존재할 수 있으며, 하위 블록 그룹 단위의 가로 크기는 현재 하위 블록의 가로 크기와 동일하거나 작을 수 있다. 또한, 하위 블록 그룹 단위의 세로 크기는 현재 하위 블록의 세로 크기와 동일하거나 작을 수 있다. 또한, 현재 블록 내 상단 경계에 위치한 하위 블록들 및 현재 블록 내 좌측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행될 수 있다.Here, at least one sub-block group unit may exist in the current block, and the horizontal size of the sub-block group unit may be equal to or smaller than the horizontal size of the current sub-block. Also, the vertical size of each sub-block group may be equal to or smaller than the vertical size of the current sub-block. Also, block motion compensation may be performed overlapped with at least one of sub-blocks positioned at an upper boundary within the current block and sub-blocks positioned at a left boundary within the current block.
한편, 현재 블록의 하단 경계 및 우측 경계에 인접한 블록은 부호화/복호화되지 않았으므로, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행되지 않을 수 있다. 또는, 현재 블록의 하단 경계 및 우측 경계에 인접한 블록은 부호화/복호화되지 않았으므로, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 현재 하위 블록의 상단 블록, 좌측 블록, 좌상단 블록, 좌하단 블록, 우상단 블록 중 적어도 하나 이상의 움직임 정보를 이용하여 중첩된 블록 움직임 보상을 수행할 수 있다.Meanwhile, since the blocks adjacent to the lower boundary and the right boundary of the current block are not encoded/decoded, blocks overlapping at least one of sub-blocks located on the lower boundary of the current block and sub-blocks located on the right boundary of the current block Motion compensation may not be performed. Alternatively, since the blocks adjacent to the lower boundary and the right boundary of the current block are not encoded/decoded, at least one of the subblocks located at the lower boundary within the current block and the subblocks located at the right boundary within the current block is included in the current subblock. Overlapped block motion compensation may be performed using motion information of at least one of an upper block, a left block, an upper left block, a lower left block, and an upper right block of .
또한, 현재 블록이 머지 모드이고, 향상된 시간적 움직임 벡터 예측 후보 및 공간적-시간적 움직임 벡터 예측 후보 중 적어도 하나 이상인 경우, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행되지 않을 수 있다.In addition, when the current block is a merge mode and is at least one of an enhanced temporal motion vector prediction candidate and a spatio-temporal motion vector prediction candidate, sub-blocks positioned at a lower boundary within the current block and sub-blocks located at a right boundary within the current block Block motion compensation overlapped with at least one of the blocks may not be performed.
또한, 현재 블록이 복호화기 움직임 벡터 유도 모드 또는 어파인 움직임 보상 모드인 경우, 현재 블록 내 하단 경계에 위치한 하위 블록들 및 현재 블록 내 우측 경계에 위치한 하위 블록들 중 적어도 하나 이상에 중첩된 블록 움직임 보상이 수행되지 않을 수 있다.In addition, when the current block is in the decoder motion vector derivation mode or the affine motion compensation mode, block motion superimposed on at least one of sub-blocks located at the lower boundary within the current block and sub-blocks located at the right boundary within the current block. Compensation may not be performed.
한편, 중첩된 블록 움직임 보상은 현재 블록의 각 색 성분(color component)들 중 적어도 하나 이상에 대해 수행될 수 있다. 이때, 색 성분은 휘도 성분과 색차 성분 등 중 적어도 하나 이상을 포함할 수 있다.Meanwhile, overlapped block motion compensation may be performed on at least one or more of each color component of the current block. In this case, the color component may include at least one of a luminance component and a color difference component.
또한, 중첩된 블록 움직임 보상은 현재 블록의 화면 간 예측 지시자에 따라 수행될 수 있다. 즉, 현재 블록이 단방향 예측, 쌍방향 예측, 3개 방향 예측, 4개 방향 예측 등 중 적어도 하나 이상일 경우에 수행될 수 있다. 또한, 현재 블록이 단방향 예측일 경우에만 수행될 수 있다. 또한, 현재 블록이 쌍방향 예측일 경우에만 수행될 수 있다.In addition, overlapping block motion compensation may be performed according to an inter prediction indicator of the current block. That is, it can be performed when the current block is at least one of unidirectional prediction, bidirectional prediction, 3-way prediction, and 4-way prediction. Also, it can be performed only when the current block is unidirectional prediction. Also, it can be performed only when the current block is bidirectional prediction.
도 17은 중첩된 블록 움직임 보상에 사용되는 움직임 정보의 개수의 일 예를 설명하기 위한 도면이다. 17 is a diagram for explaining an example of the number of pieces of motion information used for overlapping block motion compensation.
제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개일 수 있다. 즉, 최대 K개의 제2 예측 블록이 생성되어 중첩된 블록 움직임 보상에 사용될 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 1, 2, 3, 4일 수 있다.Motion information used to generate the second prediction block may be up to K pieces. That is, up to K second prediction blocks may be generated and used for overlapping block motion compensation. Here, K may be a positive integer including 0, and may be, for example, 1, 2, 3, or 4.
예를 들어, 현재 블록에 인접한 주변 하위 블록의 움직임 정보를 이용해서 제2 예측 블록들을 생성할 때, 상단 블록과 좌측 블록 중 적어도 하나 이상을 이용하여 최대 2개의 움직임 정보를 유도할 수 있다. 또한, 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보를 이용해서 제2 예측 블록들을 생성할 때, 상단 블록, 좌측 블록, 하단 블록, 우측 블록, 좌상단 블록, 우상단 블록, 좌하단 블록 및 우하단 블록 중 적어도 하나 이상을 이용하여 최대 4개의 움직임 정보를 유도할 수 있다. 이때, 움직임 정보를 유도한다는 의미는 유도된 움직임 정보를 이용하여 제2 예측 블록을 생성한 후 중첩된 블록 움직임 보상에 사용하는 것을 의미할 수 있다.For example, when the second prediction blocks are generated using motion information of neighboring sub-blocks adjacent to the current block, up to two pieces of motion information can be derived using at least one of the upper block and the left block. In addition, when generating second prediction blocks using motion information of neighboring sub-blocks adjacent to the current sub-block within the current block, the upper block, the left block, the lower block, the right block, the upper left block, the upper right block, and the lower left block and at least one of the lower right blocks may be used to derive up to four pieces of motion information. At this time, the meaning of deriving the motion information may mean that the second prediction block is generated using the derived motion information and then used for motion compensation of overlapped blocks.
도 17를 참고하면, 부호화 효율 향상을 위하여, 현재 블록 내 상단 경계에 위치한 하위 블록들 및 현재 블록 내 좌측 경계에 위치한 하위 블록들 중 적어도 하나에 해당하는 경우 제2 예측 블록 생성에 사용되는 움직임 정보를 최대 3개까지 유도할 수 있다. 즉, 3-연결성(3-connectivity)를 사용하여 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다.Referring to FIG. 17, in order to improve coding efficiency, motion information used to generate a second prediction block corresponding to at least one of sub-blocks located at the upper boundary of the current block and sub-blocks located at the left boundary of the current block can induce up to three. That is, motion information used to generate the second prediction block may be derived using 3-connectivity.
일 예로, 현재 블록 내에서 상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌상단 블록, 주변 우상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다. For example, blocks corresponding to the upper boundary area within the current block may derive motion information from at least one of a neighboring upper block, a neighboring upper left block, and a neighboring upper right block, which are neighboring lower blocks adjacent to the current block.
또한, 현재 블록 내에서 좌측 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 좌측 블록, 주변 좌상단 블록, 주변 좌하단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다. In addition, blocks corresponding to the left boundary area within the current block may derive motion information from at least one of a neighboring left block, a neighboring upper left block, and a neighboring lower left block, which are neighboring lower blocks adjacent to the current block.
또한, 현재 블록 내에서 좌상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌측 블록, 주변 좌상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다. In addition, blocks corresponding to the upper left boundary area within the current block may derive motion information from at least one of a neighboring upper block, a neighboring left block, and a neighboring upper left block, which are neighboring lower blocks adjacent to the current block.
또한, 현재 블록 내에서 우상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌상단 블록, 주변 우상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.In addition, blocks corresponding to the upper right boundary area within the current block may derive motion information from at least one of a neighboring upper block, an upper left neighboring block, and an upper right neighboring block, which are neighboring lower blocks adjacent to the current block.
또한, 현재 블록 내에서 좌하단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 주변 좌측 블록, 주변 좌상단 블록, 주변 좌하단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다.Also, blocks corresponding to the lower left boundary area within the current block may derive motion information from at least one of a neighboring left block, a neighboring upper left block, and a neighboring lower left block, which are neighboring subblocks adjacent to the current block.
한편, 부호화 효율 향상을 위하여, 현재 블록 내 상단 경계에 위치한 하위 블록들 및 현재 블록 내 좌측 경계에 위치한 하위 블록들 중 적어도 하나에 해당하지 않는 경우, 제2 예측 블록 생성에 사용되는 움직임 정보를 최대 8개까지 유도할 수 있다. 즉, 8-연결성(8-connectivity)를 사용하여 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다.Meanwhile, in order to improve coding efficiency, motion information used for generation of the second prediction block is reduced to the maximum when it does not correspond to at least one of sub-blocks located at the upper boundary within the current block and sub-blocks located at the left boundary within the current block. Up to 8 can be induced. That is, motion information used to generate the second prediction block may be derived using 8-connectivity.
예를 들어, 현재 블록 내 현재 하위 블록들은 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록인 주변 상단 블록, 주변 좌측 블록, 주변 하단 블록, 주변 우측 블록, 주변 좌상단 블록, 주변 좌하단 블록, 주변 우하단 블록, 주변 우상단 블록 중 적어도 하나 이상에서 움직임 정보를 유도할 수 있다. For example, the current sub-blocks in the current block are neighboring upper blocks, neighboring left blocks, neighboring lower blocks, neighboring right blocks, neighboring upper left blocks, neighboring lower left blocks, and neighboring subblocks adjacent to the current subblock within the current block. Motion information may be derived from at least one of a lower right block and a neighboring upper right block.
한편, 대응 위치 영상 내 대응 위치 하위 블록에서도 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다. 또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록에서도 제2 예측 블록 생성에 사용되는 움직임 정보를 유도할 수 있다.Meanwhile, motion information used to generate the second prediction block may be derived from the corresponding-position lower block in the corresponding-position image. In addition, motion information used to generate the second prediction block may be derived from an encoded/decoded block adjacent to the lower boundary region and the right boundary region of the reference block in the reference image.
또한, 부호화 효율 향상을 위하여, 움직임 벡터의 크기 혹은 방향에 따라 제2 예측 블록 생성에 사용되는 움직임 정보의 개수를 결정할 수 있다.In addition, in order to improve coding efficiency, the number of motion information used to generate the second prediction block may be determined according to the magnitude or direction of the motion vector.
예를 들어, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 J 보다 같거나 클 경우, 움직임 정보의 개수로 최대 L개를 사용할 수 있다. 반대로, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 J보다 작을 경우, 움직임 정보의 개수로 최대 P개를 사용할 수 있다. 이때, J, L, P는 0을 포함한 양의 정수일 수 있다. L과 P는 다른 값인 것이 바람직하나, 같은 값을 가질 수도 있다.For example, when the sum of the absolute values of the x component and the y component of the motion vector is equal to or greater than J, a maximum of L may be used as the number of motion information. Conversely, if the sum of the absolute values of the x and y components of the motion vector is smaller than J, a maximum of P may be used as the number of motion information. In this case, J, L, and P may be positive integers including 0. L and P are preferably different values, but may have the same value.
또한, 현재 블록이 머지 모드이며, 향상된 시간적 움직임 벡터 예측 후보 및 공간적-시간적 움직임 벡터 예측 후보 중 적어도 하나 이상인 경우, 제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개 일 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 4일 수 있다.In addition, when the current block is a merge mode and is at least one of an enhanced temporal motion vector prediction candidate and a spatial-temporal motion vector prediction candidate, a maximum of K pieces of motion information may be used to generate the second prediction block. Here, K may be a positive integer including 0, and may be, for example, 4.
또한, 현재 블록이 복호화기 움직임 벡터 유도 모드인 경우, 제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개 일 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 4일 수 있다.In addition, when the current block is in the decoder motion vector derivation mode, motion information used to generate the second prediction block may be up to K pieces. Here, K may be a positive integer including 0, and may be, for example, 4.
또한, 현재 블록이 어파인 움직임 보상 모드인 경우, 제2 예측 블록 생성에 사용되는 움직임 정보는 최대 K개 일 수 있다. 여기서 K개는 0을 포함한 양의 정수일 수 있으며, 예를 들어, 4일 수 있다.Also, when the current block is in the affine motion compensation mode, the maximum number of motion information used to generate the second prediction block may be K. Here, K may be a positive integer including 0, and may be, for example, 4.
도 18 및 도 19는 제2 예측 블록 생성에 사용되는 움직임 정보의 유도 순서를 설명하기 위한 도면이다. 제2 예측 블록 생성에 사용되는 움직임 정보는 부호화기 및 복호화기에서 미리 정해진 소정의 순서대로 유도될 수 있다. 18 and 19 are diagrams for explaining a sequence of deriving motion information used to generate a second prediction block. Motion information used to generate the second prediction block may be derived in a predetermined order in the encoder and decoder.
도 18를 참고하면, 현재 하위 블록의 위치를 기준으로 상단 블록, 좌측 블록, 하단 블록, 우측 블록 순서대로 움직임 정보가 유도될 수 있다.Referring to FIG. 18 , motion information may be derived in the order of an upper block, a left block, a lower block, and a right block based on the position of the current lower block.
도 19를 참고하면, 부호화 효율 향상을 위하여, 현재 하위 블록의 위치에 기반하여 제2 예측 블록 생성에 사용되는 움직임 정보 유도 순서가 결정될 수 있다.Referring to FIG. 19 , in order to improve encoding efficiency, an order of deriving motion information used to generate a second prediction block may be determined based on a position of a current sub-block.
일 예로, 현재 블록 내에서 상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌상단 블록, 3) 주변 우상단 블록 순서대로 움직임 정보를 유도할 수 있다.For example, blocks corresponding to the upper boundary area within the current block may derive motion information in the order of neighboring lower blocks adjacent to the current block: 1) neighboring upper blocks, 2) neighboring upper left blocks, and 3) neighboring upper right blocks.
또한, 현재 블록 내에서 좌측 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 좌측 블록, 2) 주변 좌상단 블록, 3) 주변 좌하단 블록 순서대로 움직임 정보를 유도할 수 있다.In addition, blocks corresponding to the left boundary area within the current block may derive motion information in the order of 1) neighboring left blocks, 2) neighboring upper left blocks, and 3) neighboring lower left blocks adjacent to the current block.
또한, 현재 블록 내에서 좌상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌측 블록, 3) 주변 좌상단 블록 순서대로 움직임 정보를 유도할 수 있다.In addition, blocks corresponding to the upper left boundary area within the current block may derive motion information in the order of neighboring lower blocks adjacent to the current block: 1) neighboring upper block, 2) neighboring left block, and 3) neighboring upper left block.
또한, 현재 블록 내에서 우상단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌상단 블록, 3) 주변 우상단 블록 순서대로 움직임 정보를 유도할 수 있다.In addition, blocks corresponding to the upper right boundary area within the current block may derive motion information in the order of neighboring lower blocks adjacent to the current block: 1) upper neighboring block, 2) upper left neighboring block, and 3) upper right neighboring block.
또한, 현재 블록 내에서 우하단 경계 영역에 해당하는 블록들은 현재 블록에 인접한 주변 하위 블록인 1) 주변 좌측 블록, 2) 주변 좌상단 블록, 3) 주변 좌하단 블록 순서대로 움직임 정보를 유도할 수 있다.In addition, blocks corresponding to the lower right boundary area within the current block can derive motion information in the order of 1) neighboring left blocks, 2) neighboring upper left blocks, and 3) neighboring lower left blocks, which are neighboring subblocks adjacent to the current block. .
도 19의 예와 같이, 현재 블록 내 현재 하위 블록들은 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록인 1) 주변 상단 블록, 2) 주변 좌측 블록, 3) 주변 하단 블록, 4) 주변 우측 블록, 5) 주변 좌상단 블록, 6) 주변 좌하단 블록, 7) 주변 우하단 블록, 8) 주변 우상단 블록 순서대로 움직임 정보를 유도할 수 있다. 한편, 도 19에 도시된 것과 다른 순서로 움직임 정보가 유도될 수도 있다.As in the example of FIG. 19, the current sub-blocks within the current block are neighboring sub-blocks adjacent to the current sub-block within the current block: 1) neighboring upper block, 2) neighboring left block, 3) neighboring lower block, and 4) neighboring right block. , 5) the upper left block, 6) the lower left block, 7) the lower right block, and 8) the upper right block. Meanwhile, motion information may be derived in an order different from that shown in FIG. 19 .
한편, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 낮은 순위로 유도될 수 있다. 또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 높은 순위로 유도될 수도 있다. Meanwhile, the motion information of the corresponding-position sub-block in the corresponding-position image may be derived in a lower order than neighboring sub-blocks spatially adjacent to the current sub-block. In addition, the motion information of the corresponding position sub-block in the corresponding position image may be derived in a higher order than neighboring sub-blocks spatially adjacent to the current sub-block.
또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 낮은 순위로 유도될 수 있다. 또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보는 현재 하위 블록에 공간적으로 인접한 주변 하위 블록보다 높은 순위로 유도될 수 있다.In addition, motion information of a block encoded/decoded adjacent to the lower boundary region and the right boundary region of the reference block in the reference image may be derived at a lower order than neighboring subblocks spatially adjacent to the current subblock. In addition, motion information of a block encoded/decoded adjacent to the lower boundary region and the right boundary region of the reference block in the reference image may be derived in a higher order than neighboring subblocks spatially adjacent to the current subblock.
현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내의 현재 하위 블록에 인접한 주변 하위 블록의 움직임 정보는 특정 조건을 만족할 경우에만 제2 예측 블록 생성에 사용되는 움직임 정보로 유도할 수 있다.Motion information of neighboring sub-blocks adjacent to the current block or neighboring sub-blocks within the current block may be derived as motion information used to generate the second prediction block only when a specific condition is satisfied.
일 예로, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상이 존재할 경우, 존재하는 주변 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 유도할 수 있다.For example, when at least one of the neighboring sub-blocks adjacent to the current block and the neighboring sub-blocks within the current block exist, the motion information of the existing neighboring sub-blocks is converted into motion information used to generate the second prediction block. can be induced by
다른 예로, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상이 화면 간 예측 모드인 경우, 화면 간 예측 모드인 적어도 하나의 주변 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 유도할 수 있다. 반면, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상이 화면 내 예측 모드인 경우, 해당 블록에 움직임 정보가 존재하지 않으므로, 화면 내 예측 모드인 적어도 하나의 주변 하위 블록의 움직임 정보를 제2 예측 블록 생성에 사용되는 움직임 정보로 유도하지 않을 수 있다.As another example, when at least one of the neighboring sub-blocks adjacent to the current block and the neighboring sub-blocks within the current block is in the inter prediction mode, motion information of at least one neighboring sub-block in the inter-prediction mode is obtained. It can be derived from motion information used to generate the second prediction block. On the other hand, if at least one of the neighboring sub-blocks adjacent to the current block and the neighboring sub-blocks within the current block is in the intra-prediction mode, motion information does not exist in the corresponding block, and thus the intra-prediction mode, at least Motion information of one neighboring sub-block may not be derived as motion information used to generate the second prediction block.
한편, 현재 블록에 인접한 주변 하위 블록 및 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록 중 적어도 하나 이상의 화면 간 예측 지시자가 L0 예측, L1 예측, L2 예측, L3 예측, 단방향 예측, 양방향 예측, 3개 방향 예측, 4개 방향 예측 중 적어도 하나 이상을 지시하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도되지 않을 수 있다.Meanwhile, at least one inter-prediction indicator among neighboring subblocks adjacent to the current block and neighboring subblocks within the current block is L0 prediction, L1 prediction, L2 prediction, L3 prediction, unidirectional prediction, bidirectional prediction, 3 When at least one of the four-directional prediction and the four-directional prediction is not indicated, motion information used to generate the second prediction block may not be derived.
한편, 제2 예측 블록 생성에 사용되는 화면 간 예측 지시자가 제1 예측 블록 생성에 사용되는 화면 간 예측 지시자와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.Meanwhile, when the inter prediction indicator used to generate the second prediction block is not the same as the inter prediction indicator used to generate the first prediction block, motion information used to generate the second prediction block can be derived.
또한, 제2 예측 블록 생성에 사용되는 움직임 벡터가 제1 예측 블록 생성에 사용되는 움직임 벡터와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.Also, when the motion vector used for generating the second prediction block is not the same as the motion vector used for generating the first prediction block, motion information used for generating the second prediction block may be derived.
또한, 제2 예측 블록 생성에 사용되는 참조 영상 색인이 제1 예측 블록 생성에 사용되는 참조 영상 색인과 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.In addition, when the reference image index used to generate the second prediction block is not the same as the reference image index used to generate the first prediction block, motion information used to generate the second prediction block may be derived.
또한, 제2 예측 블록 생성에 사용되는 움직임 벡터 및 참조 영상 색인 중 적어도 하나가 제1 예측 블록 생성에 사용되는 움직임 벡터 및 참조 영상 색인 중 적어도 하나와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.In addition, when at least one of the motion vector and reference image index used for generating the second prediction block is not identical to at least one of the motion vector and reference image index used for generating the first prediction block, it is used for generating the second prediction block. Motion information to be can be derived.
또한, 복잡도 감소를 위하여, 제1 예측 블록 생성에 사용되는 화면 간 예측 지시자가 단방향 예측을 지시하는 경우, 제2 예측 블록 생성에 사용되는 L0 및 L1 예측 방향에 대한 움직임 벡터 및 참조 영상 색인 중 적어도 하나가 제1 예측 블록 생성에 사용되는 움직임 벡터 및 참조 영상 색인 중 적어도 하나와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.In addition, in order to reduce complexity, when the inter-prediction indicator used to generate the first prediction block indicates unidirectional prediction, at least among motion vectors and reference image indices for L0 and L1 prediction directions used to generate the second prediction block When one is not identical to at least one of the motion vector and the reference picture index used for generating the first prediction block, motion information used for generating the second prediction block may be derived.
또한, 복잡도 감소를 위하여, 제1 예측 블록 생성에 사용되는 화면 간 예측 지시자를 기반으로, 화면 간 예측 지시자가 양방향 예측을 지시하는 경우, 제2 예측 블록 생성에 사용되는 L0 및 L1 예측 방향에 대한 움직임 벡터 및 참조 영상 색인의 조합 중 적어도 하나가 제1 예측 블록 생성에 사용되는 L0 및 L1 예측 방향에 대한 움직임 벡터 및 참조 영상 색인의 조합 중 적어도 하나와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.In addition, for complexity reduction, based on the inter prediction indicator used to generate the first prediction block, when the inter prediction indicator indicates bi-directional prediction, the L0 and L1 prediction directions used to generate the second prediction block When at least one of the combinations of the motion vector and the reference image index is not equal to at least one of the combinations of the motion vector and the reference image index for the L0 and L1 prediction directions used for generating the first prediction block, in generating the second prediction block Motion information to be used may be derived.
또한, 복잡도 감소를 위하여, 제2 예측 블록 생성에 사용되는 움직임 정보 중 적어도 하나 이상이 제1 예측 블록 생성에 사용되는 움직임 정보 중 적어도 하나 이상과 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다.In addition, in order to reduce complexity, when at least one piece of motion information used for generating the second prediction block is not identical to at least one piece of motion information used for generating the first prediction block, the Motion information may be derived.
도 20은 현재 하위 블록의 참조 영상의 POC 및 주변 하위 블록의 참조 영상의 POC를 비교하여 제2 예측 블록 생성에 사용가능한 움직임 정보인지 여부를 결정하는 일 예를 설명하기 위한 도면이다.20 is a diagram for explaining an example of determining whether motion information usable for generation of a second prediction block is determined by comparing the POC of a reference image of a current sub-block with POCs of reference images of neighboring sub-blocks.
도 20을 참고하면, 복잡도 감소를 위하여, 현재 하위 블록의 참조 영상의 POC 및 주변 하위 블록의 참조 영상의 POC가 동일한 경우, 현재 하위 블록의 움직임 정보는 현재 하위 블록의 제2 예측 블록 생성에 사용될 수 있다.Referring to FIG. 20 , in order to reduce complexity, when the POC of the reference image of the current sub-block is the same as that of the reference images of neighboring sub-blocks, the motion information of the current sub-block is used to generate the second prediction block of the current sub-block. can
한편, 복잡도 감소를 위하여, 도 20의 예와 같이, 제2 예측 블록 생성에 사용되는 참조 영상의 POC가 제1 예측 블록 생성에 사용되는 참조 영상의 POC와 동일하지 않은 경우, 제2 예측 블록 생성에 사용되는 움직임 정보가 유도될 수 있다. Meanwhile, in order to reduce complexity, as in the example of FIG. 20 , when the POC of the reference image used to generate the second prediction block is not the same as the POC of the reference image used to generate the first prediction block, the second prediction block is generated. Motion information used for may be derived.
구체적으로, 제2 예측 블록 생성에 사용되는 참조 영상의 POC가 제1 예측 블록 생성에 사용되는 참조 영상의 POC와 동일하지 않을 경우, 제2 예측 블록 생성에 사용되는 움직임 벡터를 제1 예측 블록 생성에 사용되는 참조 영상 혹은 참조 영상의 POC를 기반으로 움직임 벡터 스케일링을 하여, 제2 예측 블록 생성에 사용되는 움직임 벡터로 유도할 수 있다. Specifically, when the POC of the reference image used to generate the second prediction block is not the same as the POC of the reference image used to generate the first prediction block, the motion vector used to generate the second prediction block is used to generate the first prediction block. A motion vector used for generation of the second prediction block may be derived by performing motion vector scaling based on the reference image used in the reference image or the POC of the reference image.
도 21은 제1 예측 블록과 제2 예측 블록의 가중합 계산시 가중치 적용의 일 실시 예를 설명하기 위한 도면이다.21 is a diagram for explaining an embodiment of applying a weight when calculating a weighted sum of a first prediction block and a second prediction block.
제1 예측 블록과 제2 예측 블록의 가중합 계산 시에 블록 내 샘플 위치에 따라 행 별 혹은 열 별로 서로 다른 가중치가 사용될 수 있다. 그리고, 제1 예측 블록과 제2 예측 블록 내에서 서로 동일한 위치에 해당하는 샘플들 간의 가중합이 계산될 수 있다. 이때, 최종 예측 블록의 생성을 위한 가중합 계산 시, 가중치 및 오프셋 중 적어도 하나 이상을 이용할 수 있다. When calculating the weighted sum of the first prediction block and the second prediction block, different weights may be used for each row or column according to the position of the sample in the block. In addition, a weighted sum between samples corresponding to the same positions in the first prediction block and the second prediction block may be calculated. In this case, when calculating the weighted sum for generating the final prediction block, at least one of a weight and an offset may be used.
여기서, 가중치는 0보다 작은 음수 및 0보다 큰 양수일 수 있다. 그리고, 오프셋은 0, 0보다 작은 음수 및 0보다 큰 양수일 수 있다.Here, the weight may be a negative number less than 0 and a positive number greater than 0. And, the offset may be 0, a negative number less than 0, and a positive number greater than 0.
한편, 제1 예측 블록과 제2 예측 블록의 가중합 계산 시에 각 예측 블록 별로 모든 샘플 위치에서 동일한 가중치가 사용될 수 있다.Meanwhile, when calculating the weighted sum of the first prediction block and the second prediction block, the same weight may be used at all sample locations for each prediction block.
도 21을 참고하면, 제1 예측 블록에는 각 행 별 혹은 각 열 별로 {3/4, 7/8, 15/16, 31/32} 등의 가중치가 사용될 수 있고 제2 예측 블록에는 각 행 별 혹은 열 별로 {1/4, 1/8, 1/16, 1/32} 등의 가중치가 사용될 수 있다. 이때, 상기 가중치는 동일한 행에 속하는 샘플 위치 혹은 동일한 열에 속하는 샘플 위치에서 서로 동일한 가중치를 사용할 수 있다. Referring to FIG. 21, weights such as {3/4, 7/8, 15/16, 31/32} may be used for each row or each column for the first prediction block, and for each row for the second prediction block. Alternatively, weights such as {1/4, 1/8, 1/16, 1/32} may be used for each column. In this case, the same weight may be used for sample positions belonging to the same row or sample positions belonging to the same column.
각 가중치는 현재 하위 블록의 경계에 인접할수록 큰 값의 가중치가 사용될 수 있다. 또한, 각 가중치는 하위 블록 내 모든 샘플에 적용될 수 있다.As each weight is closer to the boundary of the current sub-block, a weight having a larger value may be used. Also, each weight may be applied to all samples in a sub-block.
도 21의 (a), (b), (c) 및 (d)는 주변 상단 블록의 움직임 정보, 주변 하단 블록의 움직임 정보, 주변 좌측 블록의 움직임 정보 및 주변 우측 블록의 움직임 정보를 이용하여 제2 예측 블록을 생성한 예시를 각각 나타낼 수 있다. 여기서, 상단 제2 예측 블록, 하단 제2 예측 블록, 좌측 제2 예측 블록 및 우측 제2 예측 블록은 주변 상단 블록의 움직임 정보, 주변 하단 블록의 움직임 정보, 주변 좌측 블록의 움직임 정보 및 주변 우측 블록의 움직임 정보에 기초하여 생성된 제2 예측 블록을 의미할 수 있다.21 (a), (b), (c), and (d) are generated using motion information of a neighboring upper block, motion information of a neighboring lower block, motion information of a neighboring left block, and motion information of a neighboring right block. 2 Each example of generating a prediction block may be shown. Here, the upper second prediction block, the lower second prediction block, the left second prediction block, and the right second prediction block are the motion information of the neighboring upper block, the motion information of the neighboring lower block, the motion information of the neighboring left block, and the neighboring right block. It may mean a second prediction block generated based on motion information of .
도 22는 제1 예측 블록과 제2 예측 블록의 가중합 계산시 블록 내 샘플 위치에 따라 서로 다른 가중치 적용되는 실시 예를 설명하기 위한 도면이다. 부호화 효율 향상을 위하여, 제1 예측 블록과 제2 예측 블록의 가중합 계산 시에 블록 내 샘플 위치에 따라 서로 다른 가중치가 사용될 수 있다. 즉, 현재 하위 블록에 공간적으로 인접한 블록들의 위치에 따라 서로 다른 가중치로 가중합을 계산할 수 있다. 또한, 제1 예측 블록과 제2 예측 블록 내에서 서로 동일한 위치에 해당하는 샘플들 간의 가중합이 계산될 수 있다.22 is a diagram for explaining an embodiment in which different weights are applied according to sample positions within blocks when calculating a weighted sum of a first prediction block and a second prediction block. In order to improve encoding efficiency, different weights may be used according to sample positions within blocks when calculating the weighted sum of the first prediction block and the second prediction block. That is, a weighted sum may be calculated with different weights according to positions of blocks spatially adjacent to the current sub-block. In addition, a weighted sum between samples corresponding to the same positions in the first prediction block and the second prediction block may be calculated.
도 22를 참고하면, 제1 예측 블록에는 각 샘플 위치 별로 {1/2, 3/4, 7/8, 15/16, 31/32, 63/64, 127/128, 255/256, 511/512, 1023/1024} 등의 가중치가 사용될 수 있고, 제2 예측 블록에는 각 샘플 위치 별로 {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024} 등의 가중치가 사용될 수 있다. 여기서, 상단 제2 예측 블록, 좌측 제2 예측 블록, 하단 제2 예측 블록 및 우측 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값은 좌상단 제2 예측 블록, 좌하단 제2 예측 블록, 우하단 제2 예측 블록, 우상단 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값보다 클 수 있다.Referring to FIG. 22, in the first prediction block, {1/2, 3/4, 7/8, 15/16, 31/32, 63/64, 127/128, 255/256, 511/ 512, 1023/1024} may be used, and in the second prediction block, {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/ 128, 1/256, 1/512, 1/1024} and the like may be used. Here, the weight values used in at least one or more of the upper second prediction block, the left second prediction block, the lower second prediction block, and the right second prediction block are the upper left second prediction block, the lower left second prediction block, and the lower right second prediction block. It may be greater than a weight value used in at least one of the second prediction block and the top-right second prediction block.
한편, 상단 제2 예측 블록, 좌측 제2 예측 블록, 하단 제2 예측 블록, 우측 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값은 좌상단 제2 예측 블록, 좌하단 제2 예측 블록, 우하단 제2 예측 블록, 우상단 제2 예측 블록 중 적어도 하나 이상에서 사용되는 가중치 값과 동일할 수 있다.Meanwhile, weight values used in at least one or more of the upper second prediction block, the left second prediction block, the lower second prediction block, and the right second prediction block are the upper left second prediction block, the lower left second prediction block, and the lower right second prediction block. It may be the same as the weight value used in at least one of the second prediction block and the upper right second prediction block.
또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록에 대한 가중치는 모든 샘플 위치에서 동일할 수 있다.In addition, the weight of the second prediction block generated using the motion information of the corresponding-position sub-block in the corresponding-position image may be the same at all sample positions.
또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록의 가중치는 제1 예측 블록의 가중치와 동일할 수 있다.Also, the weight of the second prediction block generated using the motion information of the corresponding position sub-block in the corresponding position image may be the same as that of the first prediction block.
또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록에 대한 가중치는 모든 샘플 위치에서 동일할 수 있다.In addition, the weight of the second prediction block generated using motion information of an encoded/decoded block adjacent to the lower boundary region and the right boundary region of the reference block in the reference image may be the same at all sample positions.
또한, 참조 영상 내 참조 블록의 하단 경계 영역 및 우측 경계 영역에 인접하게 부호화/복호화된 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록의 가중치는 제1 예측 블록의 가중치와 동일할 수 있다.In addition, the weight of the second prediction block generated using motion information of an encoded/decoded block adjacent to the lower boundary region and the right boundary region of the reference block in the reference image may be the same as that of the first prediction block.
한편, 계산 복잡도 감소를 위하여, 상기 가중치는 현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 벡터 크기에 따라 가중치 값이 달라질 수 있다. Meanwhile, in order to reduce computational complexity, the weight value may vary according to the size of a motion vector of a neighboring sub-block adjacent to the current block or a neighboring sub-block within the current block.
예를 들어, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 현재 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 현재 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, if the sum of the absolute values of the x-component and the y-component of motion vectors of neighboring sub-blocks is equal to or greater than a predefined value, {1/2, 3/4, 7/8, 15/16} can be used. On the other hand, if the sum of the absolute values of the x- and y-component motion vectors of neighboring sub-blocks is smaller than the predefined value, {7/8, 15/16, 31/32, 63/64} as the weight of the current sub-block can be used. In this case, the predefined value may be a positive integer including 0.
또한, 계산 복잡도 감소를 위하여, 상기 가중치는 현재 하위 블록의 움직임 벡터 크기 혹은 움직임 벡터 방향에 따라 가중치 값이 달라질 수 있다. In addition, in order to reduce computational complexity, the weight value may vary according to the motion vector magnitude or motion vector direction of the current sub-block.
예를 들어, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 좌측 및 우측 주변 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 작을 경우, 좌측 및 우측 주변 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, if the absolute value of the motion vector x component of the current sub-block is equal to or greater than a predefined value, {1/2, 3/4, 7/8, 15/ 16} can be used. On the other hand, if the absolute value of the motion vector x component of the current sub-block is smaller than the predefined value, {7/8, 15/16, 31/32, 63/64} can be used as the weight of the left and right neighboring sub-blocks. can In this case, the predefined value may be a positive integer including 0.
예를 들어, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 상단 및 하단 주변 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 작을 경우, 상단 및 하단 주변 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, if the absolute value of the motion vector y component of the current sub-block is equal to or greater than a predefined value, {1/2, 3/4, 7/8, 15/ 16} can be used. On the other hand, if the absolute value of the motion vector y component of the current sub-block is smaller than the predefined value, {7/8, 15/16, 31/32, 63/64} is used as the weight of the upper and lower sub-blocks. can In this case, the predefined value may be a positive integer including 0.
예를 들어, 현재 하위 블록의 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 현재 하위 블록의 가중치로 {1/2, 3/4, 7/8, 15/16}을 사용할 수 있다. 반면, 현재 하위 블록의 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 현재 하위 블록의 가중치로 {7/8, 15/16, 31/32, 63/64}을 사용할 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, if the sum of the absolute values of the x component and the y component of the motion vector of the current sub-block is equal to or greater than a predefined value, {1/2, 3/4, 7/8 as the weight of the current sub-block , 15/16} can be used. On the other hand, if the sum of the absolute values of the x and y components of the motion vector of the current sub-block is smaller than the predefined value, {7/8, 15/16, 31/32, 63/64 as the weight of the current sub-block } can be used. In this case, the predefined value may be a positive integer including 0.
한편, 가중합 계산은 하위 블록 내 모든 샘플 위치에서 수행되지 않고, 각 블록 경계에 인접한 K개의 행(row)/열(column)에 위치한 샘플에 수행될 수 있다. 이때, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다.Meanwhile, the weighted sum calculation may not be performed at all sample locations within a sub-block, but may be performed on samples located in K rows/columns adjacent to each block boundary. In this case, K may be a positive integer including 0, and may be, for example, 1 or 2.
또한, 현재 블록의 크기가 NxM 미만일 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록이 하위 블록으로 분할되어 움직임 보상이 수행될 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다. 또한, N과 M은 양의 정수일 수 있으며, 예를 들어 N과 M은 4 또는 8 이상일 수 있다. N과 M은 서로 동일하거나 상이할 수도 있다.In addition, when the size of the current block is less than NxM, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary. In addition, when the current block is divided into sub-blocks and motion compensation is performed, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary. Here, K may be a positive integer including 0, and may be, for example, 1 or 2. Also, N and M may be positive integers, and for example, N and M may be 4 or 8 or more. N and M may be the same as or different from each other.
또한, 현재 블록의 색 성분에 기반하여, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다. 또한, 현재 블록이 휘도 성분인 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록이 색차 성분인 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.Also, based on the color components of the current block, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary. In this case, K may be a positive integer including 0, and may be, for example, 1 or 2. Also, when the current block is a luminance component, a weighted sum may be calculated for samples located in two rows/columns adjacent to each block boundary. Also, when the current block is a color difference component, a weighted sum may be calculated for samples located in one row/column adjacent to each block boundary.
또한, 현재 블록이 머지 모드이며, 향상된 시간적 움직임 벡터 예측 후보 및 공간적-시간적 움직임 벡터 예측 후보 중 적어도 하나 이상인 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.In addition, when the current block is a merge mode and is at least one of an enhanced temporal motion vector prediction candidate and a spatial-temporal motion vector prediction candidate, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary. .
또한, 현재 블록이 복호화기 움직임 벡터 유도 모드인 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록이 어파인 움직임 보상 모드인 경우, 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, K는 0을 포함한 양의 정수일 수 있으며, 예를 들어 1 혹은 2일 수 있다. In addition, when the current block is in the decoder motion vector derivation mode, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary. Also, when the current block is in the affine motion compensation mode, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary. In this case, K may be a positive integer including 0, and may be, for example, 1 or 2.
한편, 계산 복잡도 감소를 위하여, 현재 블록의 하위 블록의 크기에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.Meanwhile, in order to reduce computational complexity, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary according to the size of a sub-block of the current block.
예를 들어, 현재 블록의 하위 블록의 크기가 4x4인 경우, 각 블록 경계에 인접한 1개, 2개, 3개, 혹은 4개의 행/열에 위치한 샘플들에 대해서 가중합이 계산될 수 있다. 또한, 현재 블록의 하위 블록의 크기가 8x8인 경우, 각 블록 경계에 인접한 1개, 2개, 3개, 4개, 5개, 6개, 7개, 혹은 8개의 행/열에 위치한 샘플들에 대해서 가중합이 계산될 수 있다. 이때, K는 0을 포함한 양의 정수이며, 최대 값으로 하위 블록의 행/열 개수만큼 가질 수 있다.For example, when the size of a sub-block of the current block is 4x4, a weighted sum may be calculated for samples located in one, two, three, or four rows/columns adjacent to each block boundary. In addition, if the size of the sub-block of the current block is 8x8, samples located in 1, 2, 3, 4, 5, 6, 7, or 8 rows/columns adjacent to each block boundary A weighted sum can be calculated for At this time, K is a positive integer including 0, and can have as many rows/columns as the maximum value.
또한, 계산 복잡도 감소를 위하여, 하위 블록 내에서 각 블록 경계에 인접한 고정된 1개 혹은 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.In addition, in order to reduce computational complexity, a weighted sum may be calculated for samples located in one or two fixed rows/columns adjacent to each block boundary within a sub-block.
또한, 계산 복잡도 감소를 위하여, 제2 예측 블록 생성에 사용되는 움직임 정보 개수에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.In addition, in order to reduce computational complexity, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary according to the number of motion information used to generate the second prediction block. Here, K may be a positive integer including 0.
예를 들어, 움직임 정보 개수가 기 정의된 값보다 작을 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. For example, when the number of motion information is less than a predefined value, a weighted sum may be calculated for samples located in two rows/columns adjacent to each block boundary.
또한, 움직임 정보 개수가 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. In addition, when the number of motion information is equal to or greater than a predefined value, a weighted sum may be calculated for samples located in one row/column adjacent to each block boundary.
또한, 계산 복잡도 감소를 위하여, 현재 블록의 화면 간 예측 지시자에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. K는 0을 포함한 양의 정수일 수 있다.In addition, in order to reduce computational complexity, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary according to an inter-prediction indicator of the current block. K may be a positive integer including 0.
예를 들어, 화면 간 예측 지시자가 단방향 예측인 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 또한, 화면 간 예측 지시자가 양방향 예측인 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.For example, when the inter-prediction indicator is unidirectional prediction, a weighted sum may be calculated for samples located in two rows/columns adjacent to each block boundary. In addition, when the inter-prediction indicator is bidirectional prediction, a weighted sum may be calculated for samples located in one row/column adjacent to each block boundary.
또한, 계산 복잡도 감소를 위하여, 현재 블록의 참조 영상의 POC에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.In addition, in order to reduce computational complexity, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary according to the POC of the reference image of the current block. Here, K may be a positive integer including 0.
예를 들어, 현재 영상의 POC와 참조 영상의 POC의 차분이 기 정의된 값보다 작은 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 현재 영상의 POC와 참조 영상의 POC의 차분이 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다.For example, when the difference between the POC of the current image and the POC of the reference image is less than a predefined value, a weighted sum may be calculated for samples located in two rows/columns adjacent to each block boundary. On the other hand, when the difference between the POC of the current image and the POC of the reference image is equal to or greater than a predefined value, a weighted sum may be calculated for samples located in one row/column adjacent to each block boundary.
또한, 계산 복잡도 감소를 위하여, 현재 블록에 인접한 주변 하위 블록 또는 현재 블록 내에서 현재 하위 블록에 인접한 주변 하위 블록의 움직임 벡터 크기에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.In addition, in order to reduce computational complexity, a weighted sum of samples located in K rows/columns adjacent to each block boundary according to the size of the motion vector of the neighboring subblock adjacent to the current block or the neighboring subblock within the current block this can be calculated. Here, K may be a positive integer including 0.
예를 들어, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 주변 하위 블록의 움직임 벡터 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, if the sum of the absolute values of the motion vectors x and y components of the neighboring sub-blocks is equal to or greater than a predefined value, a weighted sum is calculated for samples located in two rows/columns adjacent to each block boundary. can On the other hand, when the sum of absolute values of motion vectors x and y components of neighboring sub-blocks is smaller than a predefined value, a weighted sum may be calculated for samples located in one row/column adjacent to each block boundary. In this case, the predefined value may be a positive integer including 0.
또한, 계산 복잡도 감소를 위하여, 현재 하위 블록의 움직임 벡터 크기 혹은 움직임 벡터 방향에 따라 각 블록 경계에 인접한 K개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 여기서, K는 0을 포함한 양의 정수일 수 있다.In addition, in order to reduce computational complexity, a weighted sum may be calculated for samples located in K rows/columns adjacent to each block boundary according to the magnitude or direction of the motion vector of the current sub-block. Here, K may be a positive integer including 0.
예를 들어, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 좌측 및 우측 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 현재 하위 블록의 움직임 벡터 x 성분의 절대값이 기 정의된 값보다 작을 경우, 좌측 및 우측 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, when the absolute value of the motion vector x component of the current sub-block is equal to or greater than a predefined value, a weighted sum may be calculated for samples located in two rows/columns adjacent to the left and right boundaries. On the other hand, when the absolute value of the motion vector x component of the current sub-block is smaller than a predefined value, a weighted sum may be calculated for samples located in one row/column adjacent to the left and right boundaries. In this case, the predefined value may be a positive integer including 0.
예를 들어, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 같거나 클 경우, 상단 및 하단 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 현재 하위 블록의 움직임 벡터 y 성분의 절대값이 기 정의된 값보다 작을 경우, 상단 및 하단 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, when the absolute value of the motion vector y component of the current sub-block is equal to or greater than a predefined value, a weighted sum may be calculated for samples located in two rows/columns adjacent to the upper and lower boundaries. On the other hand, when the absolute value of the motion vector y component of the current sub-block is smaller than a predefined value, a weighted sum may be calculated for samples located in one row/column adjacent to the upper and lower boundaries. In this case, the predefined value may be a positive integer including 0.
예를 들어, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 같거나 클 경우, 각 블록 경계에 인접한 2개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 반면, 움직임 벡터의 x 성분과 y 성분의 절대값의 합이 기 정의된 값보다 작을 경우, 각 블록 경계에 인접한 1개의 행/열에 위치한 샘플에 대해서 가중합이 계산될 수 있다. 이때, 기 정의된 값은 0을 포함한 양의 정수일 수 있다.For example, when the sum of the absolute values of the x and y components of the motion vector is equal to or greater than a predefined value, a weighted sum may be calculated for samples located in two rows/columns adjacent to each block boundary. On the other hand, when the sum of the absolute values of the x and y components of the motion vector is smaller than a predefined value, a weighted sum may be calculated for samples located in one row/column adjacent to each block boundary. In this case, the predefined value may be a positive integer including 0.
도 23은 중첩된 블록 움직임 보상시 소정의 순서대로 제1 예측 블록과 제2 예측 블록의 가중합이 누적 계산되는 일 실시 예를 설명하는 도면이다. 부호화기 및 복호화기에서 미리 정해진 소정의 순서대로 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 23 is a diagram for explaining an embodiment in which a weighted sum of a first prediction block and a second prediction block is cumulatively calculated in a predetermined order when performing overlapping block motion compensation. The weighted sum of the first prediction block and the second prediction block may be calculated in a predetermined order in the encoder and decoder.
도 23을 참고하면, 현재 하위 블록에 인접한 상단 블록, 좌측 블록, 하단 블록, 우측 블록 순서대로 움직임 정보가 유도될 수 있고, 유도된 움직임 정보를 이용해서 제2 예측 블록이 생성되어, 제1 예측 블록과 제2 예측 블록의 가중합이 계산될 수 있다. 상기 소정의 순서대로 가중합 계산 시, 가중합은 상기 순서대로 누적되어 최종 예측 블록을 생성할 수 있다. Referring to FIG. 23 , motion information may be derived in the order of an upper block, a left block, a lower block, and a right block adjacent to the current sub-block, and a second prediction block is generated using the derived motion information to generate the first prediction block. A weighted sum of the block and the second prediction block may be calculated. When calculating the weighted sum in the predetermined order, the weighted sum may be accumulated in the order to generate a final prediction block.
도 23과의 예와 같이, 제1 예측 블록과 1) 상단 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 제1 가중합 결과 블록이 생성될 수 있고, 상기 생성된 제1 가중합 결과 블록과 2) 좌측 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 제2 가중합 결과 블록이 생성될 수 있고, 상기 생성된 제2 가중합 결과 블록과 3) 하단 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 제3 가중합 결과 블록이 생성될 수 있고, 상기 생성된 제3 가중합 결과 블록과 4) 우측 블록의 움직임 정보를 이용해 생성된 제2 예측 블록의 가중합이 계산되어 최종 예측 블록을 생성할 수 있다.As in the example of FIG. 23, the weighted sum of the first prediction block and 1) the second prediction block generated using the motion information of the upper block may be calculated to generate the first weighted sum result block, and the generated second A weighted sum of 1 weighted sum result block and 2) a second prediction block generated using the motion information of the left block may be calculated to generate a second weighted sum result block, and the generated second weighted sum result block and 3 ) The weighted sum of the second prediction block generated using the motion information of the lower block may be calculated to generate a third weighted sum result block, and the generated third weighted sum result block and 4) the motion information of the right block A weighted sum of the generated second prediction blocks may be calculated to generate a final prediction block.
한편, 제2 예측 블록 생성에 사용되는 움직임 정보 유도 순서와 제1 예측 블록과 제2 예측 블록의 가중합 계산 시의 제2 예측 블록의 가중합 계산 순서는 서로 다를 수도 있다.Meanwhile, an order of deriving motion information used in generating a second prediction block may be different from an order of calculating a weighted sum of the second prediction block when calculating a weighted sum of the first prediction block and the second prediction block.
도 24는 중첩된 블록 움직임 보상시 제1 예측 블록과 제2 예측 블록의 가중합이 계산되는 일 실시 예를 설명하는 도면이다. 부호화 효율 향상을 위하여, 가중합 계산 시, 가중합이 누적되지 않고 제1 예측 블록과 상단 블록, 좌측 블록, 하단 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용해 생성된 제2 예측 블록들의 가중합이 순서에 상관없이 계산될 수 있다. 24 is a diagram for explaining an embodiment in which a weighted sum of a first prediction block and a second prediction block is calculated during overlapped block motion compensation. In order to improve encoding efficiency, when calculating the weighted sum, the weighted sum is not accumulated and the motion information of the first prediction block and the upper block, the left block, the lower block, and the right block Weight of second prediction blocks generated using at least one or more The sum can be computed in any order.
이때, 상단 블록, 좌측 블록, 하단 블록, 우측 블록의 움직임 정보 중 적어도 하나 이상을 이용해 생성된 제2 예측 블록들은 서로 동일한 가중치를 가질 수 있다. 또한, 상기 제2 예측 블록에 사용되는 가중치와 제1 예측 블록에 사용되는 가중치는 서로 동일할 수 있다.In this case, second prediction blocks generated using at least one of motion information of the upper block, the left block, the lower block, and the right block may have the same weight. Also, the weight used for the second prediction block and the weight used for the first prediction block may be the same.
도 24를 참고하면, 제1 예측 블록과 제2 예측 블록들의 개수만큼 저장 공간을 할당하고, 최종 예측 블록 생성 시 제2 예측 블록들 간에 서로 동일한 가중치로 제1 예측 블록과 가중합을 계산할 수 있다.Referring to FIG. 24, a storage space equal to the number of first prediction blocks and second prediction blocks may be allocated, and when a final prediction block is generated, a weighted sum with the first prediction block may be calculated with the same weight between the second prediction blocks. .
*또한, 대응 위치 영상 내 대응 위치 하위 블록의 움직임 정보를 이용하여 생성한 제2 예측 블록도 제1 예측 블록과 가중합이 계산될 수 있다.*In addition, a weighted sum of the second prediction block generated using the motion information of the corresponding location sub-block in the corresponding location image may also be calculated with the first prediction block.
현재 블록의 크기가 K개 샘플 이하인 경우에 해당 현재 블록에 대한 중첩된 블록 움직임 보상 수행 여부 정보를 엔트로피 부호화/복호화할 수 있다. 이때, K는 양의 정수일 수 있고, 예를 들어 256일 수 있다.When the size of the current block is K samples or less, entropy encoding/decoding may be performed on information on whether overlapping block motion compensation is performed for the corresponding current block. In this case, K may be a positive integer, for example, 256.
또한, 현재 블록의 크기가 K개 샘플보다 클 경우 혹은 특정 화면 간 예측 모드 (예를 들어, 머지 모드 혹은 향상된 움직임 벡터 예측 모드)에 해당 현재 블록에 대한 중첩된 블록 움직임 보상 수행 여부 정보를 엔트로피 부호화/복호화하지 않고 기본적으로 중첩된 블록 움직임 보상을 수행할 수 있다.In addition, when the size of the current block is larger than K samples or in a specific inter-prediction mode (eg, merge mode or enhanced motion vector prediction mode), entropy encoding information on whether overlapping block motion compensation is performed for the corresponding current block is performed. /Basically perform overlapped block motion compensation without decoding.
부호화기에서는 움직임 예측 단계에서 현재 블록의 경계에 해당하는 영역의 원본 신호에 제2 예측 블록을 감산한 후 움직임 예측을 수행할 수 있다. 이때, 제2 예측 블록 감산 시, 제2 예측 블록과 원본 신호에 가중합을 계산할 수 있다.The encoder may perform motion prediction after subtracting the second prediction block from the original signal of the region corresponding to the boundary of the current block in the motion prediction step. In this case, when subtracting the second prediction block, a weighted sum of the second prediction block and the original signal may be calculated.
중첩된 블록 움직임 보상이 사용되지 않는 현재 블록에 대해서는 DCT(Discrete Cosine Transform) 기반 변환들과 DST(Discrete Sine Transform) 기반 변환들을 수직/수평 변환에 적용하는 향상된 다중 변환(Enhanced Multiple Transform)을 적용하지 않을 수 있다. 즉, 중첩된 블록 움직임 보상이 사용되는 현재 블록에 대해서만 향상된 다중 변환을 적용할 수 있다.For the current block for which overlapped block motion compensation is not used, Enhanced Multiple Transform, which applies DCT (Discrete Cosine Transform)-based transforms and DST (Discrete Sine Transform)-based transforms to vertical/horizontal transforms, is not applied. may not be That is, the enhanced multi-transform can be applied only to the current block for which overlapped block motion compensation is used.
도 25는 본 발명의 일 실시 예에 따른 영상 복호화 방법을 설명하는 흐름도이다.25 is a flowchart illustrating an image decoding method according to an embodiment of the present invention.
도 25를 참고하면, 현재 블록의 움직임 정보를 이용하여 상기 현재 블록의 제1 예측 블록을 생성할 수 있다(S2510).Referring to FIG. 25 , a first prediction block of the current block may be generated using motion information of the current block (S2510).
그리고, 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록을 생성할 수 있다(S2520). 여기서, 상기 주변 하위 블록은, 상기 현재 블록에 시간적으로 대응되는 대응 위치 블록의 하위 블록의 주변 하위 블록을 포함할 수 있다. In addition, a second prediction block of at least one current sub-block may be generated using motion information of at least one neighboring sub-block of the current sub-block (S2520). Here, the neighboring sub-blocks may include neighboring sub-blocks of the sub-blocks of the corresponding location block temporally corresponding to the current block.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 대응 위치 블록의 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.Meanwhile, when the current sub-block is not included in the left boundary area and the top boundary area of the current block, at least one second prediction is performed using motion information of at least one neighboring sub-block of the corresponding location block sub-block. blocks can be created.
또한, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 블록의 머지 리스트 및 움직임 벡터 리스트 중 적어도 하나에 포함된 움직임 정보를 이용하여 제2 예측 블록을 생성할 수 있다.In addition, when the current sub-block is not included in the left boundary region and the upper boundary region of the current block, a second prediction block is generated using motion information included in at least one of the merge list and the motion vector list of the current block. can create
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역 중 적어도 하나에 포함되는 경우에만, 적어도 하나의 주변 하위 블록의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.Meanwhile, only when the current sub-block is included in at least one of the left boundary region and the upper boundary region of the current block, at least one second prediction block may be generated using motion information of at least one neighboring sub-block. there is.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 좌측 주변 하위 블록, 좌상단 주변 하위 블록 및 좌하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성하고, 상기 현재 하위 블록이 상기 현재 블록의 상단 경계 영역에 포함되는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌상단 주변 하위 블록 및 우하단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.Meanwhile, when the current sub-block is included in the left boundary region of the current block, at least one of the left neighboring sub-block, the upper-left neighboring sub-block, and the lower-left neighboring sub-block of the current sub-block is used. generates a second prediction block of, and when the current sub-block is included in an upper boundary region of the current block, at least one of an upper neighboring sub-block, an upper-left neighboring sub-block, and a lower-right neighboring sub-block of the current sub-block At least one second prediction block may be generated using motion information.
한편, 상기 현재 하위 블록이 상기 현재 블록의 좌측 경계 영역 및 상단 경계 영역에 포함되지 않는 경우, 상기 현재 하위 블록의 상단 주변 하위 블록, 좌측 주변 하위 블록, 하단 주변 하위 블록, 우측 주변 하위 블록, 좌상단 주변 하위 블록, 좌하단 주변 하위 블록, 우하단 주변 하위 블록 및 우상단 주변 하위 블록 중 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.On the other hand, when the current sub-block is not included in the left boundary area and the top boundary area of the current block, the upper neighboring sub-block, the left neighboring sub-block, the lower neighboring sub-block, the right neighboring sub-block, and the upper-left corner of the current sub-block At least one second prediction block may be generated using motion information of at least one of a neighboring sub-block, a lower-left neighboring sub-block, a lower-right neighboring sub-block, and an upper-right neighboring sub-block.
한편, 상기 현재 하위 블록의 적어도 하나의 주변 하위 블록의 움직임 정보를 소정의 순서에 기초하여 유도하고, 상기 유도된 적어도 하나의 움직임 정보를 이용하여 적어도 하나의 제2 예측 블록을 생성할 수 있다.Meanwhile, motion information of at least one neighboring subblock of the current subblock may be derived based on a predetermined order, and at least one second prediction block may be generated using the derived at least one motion information.
그리고, 현재 블록의 제1 예측 블록 및 상기 적어도 하나의 상기 현재 하위 블록의 제2 예측 블록의 가중합에 기초하여 최종 예측 블록을 생성할 수 있다(S2530).And, a final prediction block may be generated based on a weighted sum of the first prediction block of the current block and the second prediction block of the at least one current sub-block (S2530).
이 경우, 상기 제2 예측 블록을 생성시 사용된 주변 하위 블록의 위치에 따라 상기 제1 예측 블록 및 상기 제2 예측 블록의 샘플별 가중치를 다르게 적용하여 가중합을 수행할 수 있다.In this case, the weighted sum may be performed by applying different weights for each sample of the first prediction block and the second prediction block according to positions of neighboring sub-blocks used when generating the second prediction block.
한편, 최종 예측 블록을 생성하는 단계(S2530)는, 상기 현재 하위 블록의 제2 예측 블록이 복수 개인 경우, 상기 현재 블록의 제1 예측 블록과 상기 현재 하위 블록의 제2 예측 블록간의 가중합을 동시에 합산하여 상기 최종 예측 블록을 생성할 수 있다.Meanwhile, in the step of generating the final prediction block (S2530), when there are a plurality of second prediction blocks of the current sub-block, a weighted sum between the first prediction block of the current block and the second prediction block of the current sub-block is calculated. The final prediction block may be generated by summing at the same time.
도 25의 영상 복호화 방법의 각 단계는 본 발명에 따른 영상 부호화 방법에도 동일하게 적용될 수 있다.Each step of the video decoding method of FIG. 25 can be equally applied to the video encoding method according to the present invention.
한편, 본 발명에 따른 영상 부호화 방법에 의해 생성된 비트스트림은 기록매체에 저장될 수 있다.Meanwhile, the bitstream generated by the video encoding method according to the present invention may be stored in a recording medium.
상기의 실시예들은 부호화기 및 복호화기에서 같은 방법으로 수행될 수 있다.The above embodiments can be performed in the same way in the encoder and decoder.
상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 상이할 수 있고, 상기 실시예를 적용하는 순서는 부호화기와 복호화기에서 동일할 수 있다.The order of applying the embodiment may be different in the encoder and decoder, and the order of applying the embodiment may be the same in the encoder and decoder.
휘도 및 색차 신호 각각에 대하여 상기 실시예를 수행할 수 있고, 휘도 및 색차 신호에 대한 상기 실시예를 동일하게 수행할 수 있다.The above embodiment may be performed for each of the luminance and color difference signals, and the above embodiment for the luminance and color difference signals may be equally performed.
본 발명의 상기 실시예들이 적용되는 블록의 형태는 정방형(square) 형태 혹은 비정방형(non-square) 형태를 가질 수 있다.The shape of a block to which the above embodiments of the present invention are applied may have a square shape or a non-square shape.
본 발명의 상기 실시예들은 부호화 블록, 예측 블록, 변환 블록, 블록, 현재 블록, 부호화 유닛, 예측 유닛, 변환 유닛, 유닛, 현재 유닛 중 적어도 하나의 크기에 따라 적용될 수 있다. 여기서의 크기는 상기 실시예들이 적용되기 위해 최소 크기 및/또는 최대 크기로 정의될 수도 있고, 상기 실시예가 적용되는 고정 크기로 정의될 수도 있다. 또한, 상기 실시예들은 제1 크기에서는 제1의 실시예가 적용될 수도 있고, 제2 크기에서는 제2의 실시예가 적용될 수도 있다. 즉, 상시 실시예들은 크기에 따라 복합적으로 적용될 수 있다. 또한, 본 발명의 상기 실시예들은 최소 크기 이상 및 최대 크기 이하일 경우에만 적용될 수도 있다. 즉, 상기 실시예들을 블록 크기가 일정한 범위 내에 포함될 경우에만 적용될 수도 있다.The above embodiments of the present invention may be applied according to the size of at least one of a coding block, a prediction block, a transform block, a block, a current block, a coding unit, a prediction unit, a transform unit, a unit, and a current unit. The size herein may be defined as a minimum size and/or a maximum size for the above embodiments to be applied, or may be defined as a fixed size to which the above embodiments are applied. Also, in the above embodiments, the first embodiment may be applied to the first size, and the second embodiment may be applied to the second size. That is, the above embodiments may be applied in a complex manner according to the size. Also, the above embodiments of the present invention may be applied only when the size is greater than or equal to the minimum size and less than or equal to the maximum size. That is, the above embodiments may be applied only when the block size is included within a certain range.
예를 들어, 현재 블록의 크기가 8x8 이상일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 4x4일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이하일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 블록의 크기가 16x16 이상이고 64x64 이하일 경우에만 상기 실시예들이 적용될 수 있다.For example, the above embodiments can be applied only when the size of the current block is greater than or equal to 8x8. For example, the above embodiments can be applied only when the size of the current block is 4x4. For example, the above embodiments may be applied only when the size of the current block is 16x16 or less. For example, the above embodiments can be applied only when the size of the current block is greater than or equal to 16x16 and less than or equal to 64x64.
본 발명의 상기 실시예들은 시간적 계층(temporal layer)에 따라 적용될 수 있다. 상기 실시예들이 적용 가능한 시간적 계층을 식별하기 위해 별도의 식별자(identifier)가 시그널링되고, 해당 식별자에 의해 특정된 시간적 계층에 대해서 상기 실시예들이 적용될 수 있다. 여기서의 식별자는 상기 실시예가 적용 가능한 최하위 계층 및/또는 최상위 계층으로 정의될 수도 있고, 상기 실시예가 적용되는 특정 계층을 지시하는 것으로 정의될 수도 있다. 또한, 상기 실시예가 적용되는 고정된 시간적 계층이 정의될 수도 있다.The above embodiments of the present invention may be applied according to a temporal layer. A separate identifier is signaled to identify a temporal layer to which the above embodiments are applicable, and the above embodiments can be applied to the temporal layer specified by the identifier. The identifier herein may be defined as the lowest layer and/or the highest layer to which the above embodiment is applicable, or may be defined as indicating a specific layer to which the above embodiment is applied. In addition, a fixed temporal layer to which the above embodiment is applied may be defined.
예를 들어, 현재 영상의 시간적 계층이 최하위 계층일 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층 식별자가 1 이상인 경우에만 상기 실시예들이 적용될 수 있다. 예를 들어, 현재 영상의 시간적 계층이 최상위 계층일 경우에만 상기 실시예들이 적용될 수 있다.For example, the above embodiments may be applied only when the temporal layer of the current video is the lowest layer. For example, the above embodiments can be applied only when the temporal layer identifier of the current video is 1 or more. For example, the above embodiments may be applied only when the temporal layer of the current video is the highest layer.
본 발명의 상기 실시예들이 적용되는 슬라이스 종류(slice type)이 정의되고, 해당 슬라이스 종류에 따라 본 발명의 상기 실시예들이 적용될 수 있다.A slice type to which the above embodiments of the present invention are applied is defined, and the above embodiments of the present invention can be applied according to the corresponding slice type.
상술한 실시예들에서, 방법들은 일련의 단계 또는 유닛으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다. In the foregoing embodiments, the methods are described on the basis of a flow chart as a series of steps or units, but the present invention is not limited to the order of steps, and some steps may occur in a different order or concurrently with other steps as described above. can In addition, those skilled in the art will understand that the steps shown in the flow chart are not exclusive, that other steps may be included, or that one or more steps of the flow chart may be deleted without affecting the scope of the present invention. You will understand.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.The foregoing embodiment includes examples of various aspects. It is not possible to describe all possible combinations to represent the various aspects, but those skilled in the art will recognize that other combinations are possible. Accordingly, it is intended that the present invention cover all other substitutions, modifications and variations falling within the scope of the following claims.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.Embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded on a computer-readable recording medium. The computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination. Program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention, or may be known and usable to those skilled in the art of computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks. media), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like as well as machine language codes such as those produced by a compiler. The hardware device may be configured to act as one or more software modules to perform processing according to the present invention and vice versa.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.In the above, the present invention has been described by specific details such as specific components and limited embodiments and drawings, but these are provided to help a more general understanding of the present invention, and the present invention is not limited to the above embodiments. , Those skilled in the art to which the present invention pertains may seek various modifications and variations from these descriptions.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the above-described embodiments, and not only the claims described later, but also all modifications equivalent or equivalent to these claims belong to the scope of the spirit of the present invention. will do it
Claims (19)
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록을 생성하는 단계를 포함하고,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록 및 상기 제2 예측 블록은 상기 현재 블록에 대한 하나의 머지 후보 리스트 내에 존재하는 하나 이상의 머지 후보들을 이용하여 생성되는 영상 복호화 방법.generating a first prediction block and a second prediction block for the current block; and
Generating a final prediction block for the current block using the first prediction block and the second prediction block;
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The first prediction block and the second prediction block are generated using one or more merge candidates existing in one merge candidate list for the current block.
상기 머지 후보 리스트에 대한 제1 머지 인덱스 및 제2 머지 인덱스를 획득하는 단계를 더 포함하되,
상기 제1 예측 블록은 상기 머지 후보 리스트 내의 후보들 중 상기 제1 머지 인덱스가 지시하는 머지 후보를 이용하여 생성되고,
상기 제2 예측 블록은 상기 머지 후보 리스트 내의 후보들 중 상기 제2 머지 인덱스가 지시하는 머지 후보를 이용하여 생성되는 영상 복호화 방법.According to claim 2,
Further comprising obtaining a first merge index and a second merge index for the merge candidate list,
The first prediction block is generated using a merge candidate indicated by the first merge index among candidates in the merge candidate list;
The second prediction block is generated using a merge candidate indicated by the second merge index among candidates in the merge candidate list.
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록을 생성하는 단계를 포함하고,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 샘플 및 상기 제2 예측 블록의 샘플의 가중합을 이용하여 상기 현재 블록에 대한 상기 최종 예측 블록이 생성되는 영상 복호화 방법.generating a first prediction block and a second prediction block for the current block; and
Generating a final prediction block for the current block using the first prediction block and the second prediction block;
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The video decoding method of generating the final prediction block for the current block using a weighted sum of samples of the first prediction block and samples of the second prediction block.
상기 가중합을 위한 가중치에 대한 가중치 정보가 비트스트림을 통해 수신되는 영상 복호화 방법.According to claim 4,
An image decoding method in which weight information on weights for the weighted sum is received through a bitstream.
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록을 생성하는 단계를 포함하고,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 샘플 및 상기 제2 예측 블록의 샘플의 가중합을 이용하여 상기 현재 블록에 대한 상기 최종 예측 블록이 생성되고,
상기 가중합에 대하여 복수의 가중치-쌍들 중 하나의 가중치-쌍이 선택되고,
상기 선택된 가중치-쌍의 제1 가중치는 상기 제1 예측 블록의 각 샘플에 대해 적용되고,
상기 선택된 가중치-쌍의 제2 가중치는 상기 제2 예측 블록의 각 샘플에 대해 적용되는 영상 복호화 방법.generating a first prediction block and a second prediction block for the current block; and
Generating a final prediction block for the current block using the first prediction block and the second prediction block;
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The final prediction block for the current block is generated using a weighted sum of samples of the first prediction block and samples of the second prediction block,
For the weighted sum, one weight-pair is selected from among a plurality of weight-pairs;
A first weight of the selected weight-pair is applied to each sample of the first prediction block,
The second weight of the selected weight-pair is applied to each sample of the second prediction block.
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록을 생성하는 단계를 포함하되,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 생성을 위한 정보 및 상기 제2 예측 블록의 생성을 위한 정보는 상기 현재 블록에 대한 하나의 머지 후보 리스트 내에 존재하는 하나 이상의 머지 후보들에 대응하는 영상 부호화 방법.generating a first prediction block and a second prediction block for the current block; and
Generating a final prediction block for the current block using the first prediction block and the second prediction block,
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The information for generating the first prediction block and the information for generating the second prediction block correspond to one or more merge candidates existing in one merge candidate list for the current block.
상기 머지 후보 리스트에 대한 제1 머지 인덱스 및 제2 머지 인덱스를 생성하는 단계를 더 포함하되,
상기 제1 예측 블록의 생성을 위한 정보는 상기 머지 후보 리스트 내의 후보들 중 상기 제1 머지 인덱스가 지시하는 머지 후보에 대응하고,
상기 제2 예측 블록의 생성을 위한 정보는 상기 머지 후보 리스트 내의 후보들 중 상기 제2 머지 인덱스가 지시하는 머지 후보에 대응하는 영상 부호화 방법.According to claim 8,
Further comprising generating a first merge index and a second merge index for the merge candidate list,
The information for generating the first prediction block corresponds to a merge candidate indicated by the first merge index among candidates in the merge candidate list,
The information for generating the second prediction block corresponds to a merge candidate indicated by the second merge index among candidates in the merge candidate list.
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록을 생성하는 단계를 포함하되,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 샘플 및 상기 제2 예측 블록의 샘플의 가중합을 이용하여 상기 현재 블록에 대한 상기 최종 예측 블록이 생성되는 영상 부호화 방법.generating a first prediction block and a second prediction block for the current block; and
Generating a final prediction block for the current block using the first prediction block and the second prediction block,
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The video encoding method of generating the final prediction block for the current block using a weighted sum of samples of the first prediction block and samples of the second prediction block.
상기 가중합을 위한 가중치에 대한 가중치 정보를 포함하는 비트스트림이 생성되는 영상 부호화 방법.According to claim 10,
An image encoding method in which a bitstream including weight information about weights for the weighted sum is generated.
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록을 생성하는 단계를 포함하되,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 샘플 및 상기 제2 예측 블록의 샘플의 가중합을 이용하여 상기 현재 블록에 대한 상기 최종 예측 블록이 생성되고,
상기 가중합에 대하여 복수의 가중치-쌍들 중 하나의 가중치-쌍이 선택되고,
상기 선택된 가중치-쌍의 제1 가중치는 상기 제1 예측 블록의 각 샘플에 대해 적용되고,
상기 선택된 가중치-쌍의 제2 가중치는 상기 제2 예측 블록의 각 샘플에 대해 적용되는 영상 부호화 방법.generating a first prediction block and a second prediction block for the current block; and
Generating a final prediction block for the current block using the first prediction block and the second prediction block,
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The final prediction block for the current block is generated using a weighted sum of samples of the first prediction block and samples of the second prediction block,
For the weighted sum, one weight-pair is selected from among a plurality of weight-pairs;
A first weight of the selected weight-pair is applied to each sample of the first prediction block,
The second weight of the selected weight-pair is applied to each sample of the second prediction block.
상기 비트스트림은,
현재 블록의 예측에 대한 정보
를 포함하고,
상기 현재 블록의 예측에 대한 정보를 사용하여 상기 현재 블록에 대한 제1 예측 블록 및 제2 예측 블록이 생성되고,
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록이 생성되고,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록 및 상기 제2 예측 블록은 상기 현재 블록에 대한 하나의 머지 후보 리스트 내에 존재하는 하나 이상의 머지 후보들을 이용하여 생성되는 컴퓨터 판독가능한 기록 매체.In the computer readable recording medium containing a bit stream,
The bitstream is
Information about the prediction of the current block
including,
A first prediction block and a second prediction block for the current block are generated using information about the prediction of the current block;
A final prediction block for the current block is generated using the first prediction block and the second prediction block;
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The first prediction block and the second prediction block are generated using one or more merge candidates existing in one merge candidate list for the current block.
상기 머지 후보 리스트에 대한 제1 머지 인덱스 및 제2 머지 인덱스가 획득되고,
상기 제1 예측 블록은 상기 머지 후보 리스트 내의 후보들 중 상기 제1 머지 인덱스가 지시하는 머지 후보를 이용하여 생성되고,
상기 제2 예측 블록은 상기 머지 후보 리스트 내의 후보들 중 상기 제2 머지 인덱스가 지시하는 머지 후보를 이용하여 생성되는 컴퓨터 판독가능한 기록 매체.According to claim 15,
A first merge index and a second merge index for the merge candidate list are obtained;
The first prediction block is generated using a merge candidate indicated by the first merge index among candidates in the merge candidate list;
The second prediction block is generated using a merge candidate indicated by the second merge index among candidates in the merge candidate list.
상기 비트스트림은,
현재 블록의 예측에 대한 정보
를 포함하고,
상기 현재 블록의 예측에 대한 정보를 사용하여 상기 현재 블록에 대한 제1 예측 블록 및 제2 예측 블록이 생성되고,
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록이 생성되고,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 샘플 및 상기 제2 예측 블록의 샘플의 가중합을 이용하여 상기 현재 블록에 대한 상기 최종 예측 블록이 생성되는 컴퓨터 판독가능한 기록 매체.In the computer readable recording medium containing a bit stream,
The bitstream is
Information about the prediction of the current block
including,
A first prediction block and a second prediction block for the current block are generated using information about the prediction of the current block;
A final prediction block for the current block is generated using the first prediction block and the second prediction block;
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
Wherein the final prediction block for the current block is generated using a weighted sum of samples of the first prediction block and samples of the second prediction block.
상기 가중합을 위한 가중치에 대한 가중치 정보가 비트스트림을 통해 수신되는 컴퓨터 판독 가능한 기록 매체.According to claim 17,
A computer-readable recording medium in which weight information on weights for the weighted sum is received through a bitstream.
상기 비트스트림은,
현재 블록의 예측에 대한 정보
를 포함하고,
상기 현재 블록의 예측에 대한 정보를 사용하여 상기 현재 블록에 대한 제1 예측 블록 및 제2 예측 블록이 생성되고,
상기 제1 예측 블록 및 상기 제2 예측 블록을 이용하여 상기 현재 블록에 대한 최종 예측 블록이 생성되고,
상기 제1 예측 블록은 상기 현재 블록에 대한 제1 예측을 수행함으로써 생성되고,
상기 제2 예측 블록은 상기 현재 블록에 대한 제2 예측을 수행함으로써 생성되고,
상기 제1 예측 블록의 샘플 및 상기 제2 예측 블록의 샘플의 가중합을 이용하여 상기 현재 블록에 대한 상기 최종 예측 블록이 생성되고,
상기 가중합에 대하여 복수의 가중치-쌍들 중 하나의 가중치-쌍이 선택되고,
상기 선택된 가중치-쌍의 제1 가중치는 상기 제1 예측 블록의 각 샘플에 대해 적용되고,
상기 선택된 가중치-쌍의 제2 가중치는 상기 제2 예측 블록의 각 샘플에 대해 적용되는 컴퓨터 판독 가능한 기록 매체.In the computer readable recording medium containing a bit stream,
The bitstream is
Information about the prediction of the current block
including,
A first prediction block and a second prediction block for the current block are generated using information about the prediction of the current block;
A final prediction block for the current block is generated using the first prediction block and the second prediction block;
The first prediction block is generated by performing first prediction on the current block,
The second prediction block is generated by performing second prediction on the current block;
The final prediction block for the current block is generated using a weighted sum of samples of the first prediction block and samples of the second prediction block,
For the weighted sum, one weight-pair is selected from among a plurality of weight-pairs;
A first weight of the selected weight-pair is applied to each sample of the first prediction block,
A second weight of the selected weight-pair is applied to each sample of the second prediction block.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230033436A KR102619133B1 (en) | 2016-11-29 | 2023-03-14 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160159903 | 2016-11-29 | ||
KR1020160159903 | 2016-11-29 | ||
KR1020210083433A KR102390452B1 (en) | 2016-11-29 | 2021-06-25 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210083433A Division KR102390452B1 (en) | 2016-11-29 | 2021-06-25 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230033436A Division KR102619133B1 (en) | 2016-11-29 | 2023-03-14 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220050871A KR20220050871A (en) | 2022-04-25 |
KR102511581B1 true KR102511581B1 (en) | 2023-03-21 |
Family
ID=62241587
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170160141A KR20180061042A (en) | 2016-11-29 | 2017-11-28 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
KR1020210083433A KR102390452B1 (en) | 2016-11-29 | 2021-06-25 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
KR1020220047699A KR102511581B1 (en) | 2016-11-29 | 2022-04-18 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
KR1020230033436A KR102619133B1 (en) | 2016-11-29 | 2023-03-14 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
KR1020230190100A KR20240005637A (en) | 2016-11-29 | 2023-12-22 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170160141A KR20180061042A (en) | 2016-11-29 | 2017-11-28 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
KR1020210083433A KR102390452B1 (en) | 2016-11-29 | 2021-06-25 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230033436A KR102619133B1 (en) | 2016-11-29 | 2023-03-14 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
KR1020230190100A KR20240005637A (en) | 2016-11-29 | 2023-12-22 | Method and apparatus for encoding/decoding image and recording medium for storing bitstream |
Country Status (3)
Country | Link |
---|---|
KR (5) | KR20180061042A (en) |
CN (6) | CN116896631A (en) |
WO (1) | WO2018101700A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020039408A1 (en) * | 2018-08-24 | 2020-02-27 | Beijing Bytedance Network Technology Co., Ltd. | Overlapped block motion compensation using temporal neighbors |
CN110944203A (en) * | 2018-09-23 | 2020-03-31 | 北京字节跳动网络技术有限公司 | Motion vector plane mode at block level |
CN113794883B (en) * | 2019-08-23 | 2022-12-23 | 杭州海康威视数字技术股份有限公司 | Encoding and decoding method, device and equipment |
JP6960969B2 (en) * | 2019-09-20 | 2021-11-05 | Kddi株式会社 | Image decoding device, image decoding method and program |
CN112004096B (en) * | 2020-07-20 | 2024-07-12 | 浙江大华技术股份有限公司 | Angular mode inter prediction method, encoder, and storage medium |
WO2023200228A1 (en) * | 2022-04-12 | 2023-10-19 | 한국전자통신연구원 | Method, device and recording medium for image encoding/decoding |
KR20230147901A (en) * | 2022-04-15 | 2023-10-24 | 삼성전자주식회사 | Video encoding/decoding method and apparatus |
CN115049674B (en) * | 2022-08-17 | 2022-12-13 | 南通万格环境科技有限公司 | Industrial sewage treatment method and system based on big data |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101491107B (en) * | 2006-07-07 | 2012-07-18 | 艾利森电话股份有限公司 | Method for decoding image element group, related encoder and decoder |
EP2136564A1 (en) * | 2007-01-09 | 2009-12-23 | Kabushiki Kaisha Toshiba | Image encoding and decoding method and device |
KR101408698B1 (en) * | 2007-07-31 | 2014-06-18 | 삼성전자주식회사 | Method and apparatus for encoding/decoding image using weighted prediction |
KR101043758B1 (en) * | 2009-03-24 | 2011-06-22 | 중앙대학교 산학협력단 | Apparatus and method for encoding image, apparatus for decoding image and recording medium storing program for executing method for decoding image in computer |
US9106910B2 (en) * | 2009-06-23 | 2015-08-11 | Orange | Method of coding and decoding images, corresponding device for coding and decoding and computer program |
WO2011096770A2 (en) * | 2010-02-02 | 2011-08-11 | (주)휴맥스 | Image encoding/decoding apparatus and method |
KR20110135471A (en) * | 2010-06-11 | 2011-12-19 | (주)휴맥스 | Apparatuses and methods for encoding/decoding of video using block merging |
KR101791242B1 (en) * | 2010-04-16 | 2017-10-30 | 에스케이텔레콤 주식회사 | Video Coding and Decoding Method and Apparatus |
PT3457689T (en) * | 2010-05-25 | 2020-10-15 | Lg Electronics Inc | New planar prediction mode |
KR101263090B1 (en) * | 2010-11-08 | 2013-05-09 | 성균관대학교산학협력단 | Methods of encoding and decoding using multi-level prediction and apparatuses for using the same |
KR102086145B1 (en) * | 2010-12-13 | 2020-03-09 | 한국전자통신연구원 | Method for intra prediction and apparatus thereof |
KR101934277B1 (en) * | 2011-11-28 | 2019-01-04 | 에스케이텔레콤 주식회사 | Video Coding Method and Apparatus using Improved Merge |
CN110650336B (en) * | 2012-01-18 | 2022-11-29 | 韩国电子通信研究院 | Video decoding apparatus, video encoding apparatus, and method of transmitting bit stream |
KR101638875B1 (en) * | 2012-11-27 | 2016-07-22 | 경희대학교 산학협력단 | Method and apparatus for encoding and decoding based on merge |
EP3089452A4 (en) * | 2013-12-26 | 2017-10-25 | Samsung Electronics Co., Ltd. | Inter-layer video decoding method for performing subblock-based prediction and apparatus therefor, and inter-layer video encoding method for performing subblock-based prediction and apparatus therefor |
-
2017
- 2017-11-28 CN CN202310974535.8A patent/CN116896631A/en active Pending
- 2017-11-28 CN CN202310977570.5A patent/CN116915980A/en active Pending
- 2017-11-28 CN CN201780073915.7A patent/CN110024402B/en active Active
- 2017-11-28 CN CN202310973482.8A patent/CN116896630A/en active Pending
- 2017-11-28 CN CN202310971657.1A patent/CN116781894A/en active Pending
- 2017-11-28 CN CN202310977671.2A patent/CN116915981A/en active Pending
- 2017-11-28 KR KR1020170160141A patent/KR20180061042A/en not_active Application Discontinuation
- 2017-11-28 WO PCT/KR2017/013678 patent/WO2018101700A1/en active Application Filing
-
2021
- 2021-06-25 KR KR1020210083433A patent/KR102390452B1/en active IP Right Grant
-
2022
- 2022-04-18 KR KR1020220047699A patent/KR102511581B1/en active IP Right Grant
-
2023
- 2023-03-14 KR KR1020230033436A patent/KR102619133B1/en active IP Right Grant
- 2023-12-22 KR KR1020230190100A patent/KR20240005637A/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR102390452B1 (en) | 2022-04-22 |
CN116896631A (en) | 2023-10-17 |
CN116896630A (en) | 2023-10-17 |
KR20210082421A (en) | 2021-07-05 |
CN116915980A (en) | 2023-10-20 |
KR102619133B1 (en) | 2023-12-29 |
KR20240005637A (en) | 2024-01-12 |
CN116781894A (en) | 2023-09-19 |
CN110024402A (en) | 2019-07-16 |
KR20180061042A (en) | 2018-06-07 |
KR20220050871A (en) | 2022-04-25 |
KR20230038691A (en) | 2023-03-21 |
CN110024402B (en) | 2023-08-22 |
WO2018101700A1 (en) | 2018-06-07 |
CN116915981A (en) | 2023-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102509513B1 (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR102480907B1 (en) | A method for encoding/decoding a video and a readable medium therefor | |
KR102531738B1 (en) | Method for encoding/decoding video and apparatus thereof | |
KR102549022B1 (en) | A method for encoding/decoding a video | |
KR102533727B1 (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR102400160B1 (en) | A method for encoding/decoding a video and a readable medium therefor | |
KR102492816B1 (en) | A method for encoding/decoding a video and a readable medium therefor | |
KR102472399B1 (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR102328179B1 (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR102511581B1 (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR20230074452A (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR20230117072A (en) | Method and apparatus for encoding/decoding image and recording medium for storing bitstream | |
KR102722396B1 (en) | A method for encoding/decoding a video and a readable medium therefor | |
KR102720468B1 (en) | Method for encoding/decoding video and apparatus thereof | |
KR20230074682A (en) | Method for encoding/decoding video and apparatus thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |