KR102510170B1 - 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용 - Google Patents

활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용 Download PDF

Info

Publication number
KR102510170B1
KR102510170B1 KR1020200129318A KR20200129318A KR102510170B1 KR 102510170 B1 KR102510170 B1 KR 102510170B1 KR 1020200129318 A KR1020200129318 A KR 1020200129318A KR 20200129318 A KR20200129318 A KR 20200129318A KR 102510170 B1 KR102510170 B1 KR 102510170B1
Authority
KR
South Korea
Prior art keywords
aptamer
atp
ppba
nanostructure
oxygen species
Prior art date
Application number
KR1020200129318A
Other languages
English (en)
Other versions
KR20220046187A (ko
Inventor
김원종
김진성
박형목
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020200129318A priority Critical patent/KR102510170B1/ko
Priority to US18/020,145 priority patent/US20240301431A1/en
Priority to PCT/KR2021/013605 priority patent/WO2022075693A1/ko
Publication of KR20220046187A publication Critical patent/KR20220046187A/ko
Application granted granted Critical
Publication of KR102510170B1 publication Critical patent/KR102510170B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 활성산소종 감응성을 가지고, 활성산소종 포집 및 TNF-α 포집을 통해 염증성 질환을 치료할 수 있는, 고분자가 코팅된 금 나노입자-압타머 나노구조체에 관한 것이다.

Description

활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용{Development and application of polymer coated gold nanoparticle-aptamer nanoconstruct containing reactive oxygen species responsibility}
본 발명은 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용에 관한 것으로, 보다 상세하게는 금 나노입자에 개질화된 압타머를 통해 질환의 진행과 관련된 사이토카인 등의 질병관련인자의 포집이 가능하고 염증성 질환에서 발생이 증가한다고 알려진 활성산소종에 의해 조절 가능한 고분자 코팅을 통해 염증성 질환 등 다양한 질환에 활용할 수 있는 나노구조체에 관한 것이다.
압타머는 특정 타겟에 대해 항체와 마찬가지로 높은 친화성과 특이성을 가지고 결합할 수 있는 특이적인 3차원적 구조를 가지는 단일가닥 DNA 또는 RNA 올리고뉴클레오티드이다. 압타머에 대한 타겟은 소분자 화합물, 펩타이드, 단백질 등 다양하게 존재한다. 이러한 압타머는 항체에 비하여, 더 작은 사이즈, 더 우수한 조직 침투성, 화학적 변형의 용이성 및 체내에서 면역반응을 야기하지 않는다는 등의 장점을 가진다.
그러나 압타머를 체내에서 활용하고자 할 경우 체내에서의 안정성이 떨어지는 문제점을 가지고 있어 PEG (polyethylene glycol)과 결합시키는 등 하이브리드 물질을 개발하여 활용하는 것이 일반적이다. 특히, 금 나노입자-압타머 하이브리드 물질은 합성 및 응용이 용이하고 높은 안정성으로 인해 진단 및 치료 목적으로 활발하게 연구되고 있다.
그러나 기존의 금 나노입자-압타머 하이브리드 물질들은 압타머의 기능성을 충분히 활용하고 있지 않으며, 압타머의 타겟 물질 포획 능력을 활용해 나노구조체를 형성한 사례는 크게 알려진 바가 없다.
활성산소종(Reactive Oxygen Species; ROS)과 TNF-α는 대표적인 염증인자로서, 염증성 질환 등에서 과다하게 발현되어 질환을 악화시키는 것으로 알려져 있고, 활성산소종 및 VEGF는 암, 황반변성 등의 신생혈관 관련 질환에서 과다하게 발현되어 질환을 악화시키는 것으로 알려져 있다. 따라서, 이러한 질환들은 TNF-α 또는 VEGF를 억제함으로써 치료 효과를 얻을 수 있고 실제 TNF-α 저해제 또는 VEGF 저해제를 치료에 사용하고 있다.
본 발명에서는 압타머의 기능성을 확장시켜 타겟 물질 포획을 통한 치료 및 타겟 물질 포획을 통한 나노구조체 형성을 모두 달성하고자 하였으며, 기존에 존재하지 않던 특이한 나노구조체를 고안하였다.
본 발명의 고분자가 코팅된 금 나노입자-압타머 나노구조체는 활성산소종을 포집할 수 있는 고분자 코팅을 통해 활성산소종을 억제하고, 압타머를 통해 TNF-α 또는 VEGF를 억제하여 해당 질환을 치료할 수 있다.
특허문헌 1. 한국 공개특허 제 10-2018-0064585호 (항균용 나노 구조체 및 이의 용도) 특허문헌 2. 한국 등록특허 제 10-2023839호 (분지된 DNA, 압타머를 포함하는 고효율 압타머 복합체 및 이의 용도)
본 발명은 단순한 과정으로 고분자가 코팅된 금 나노입자-압타머 나노구조체를 제조하며, 상기 고분자 코팅은 활성산소종 존재 시에만 활성산소종을 포집하여 제거되고, 상기 압타머는 고분자 코팅이 제거된 후에 질병관련인자를 포집하는 지능적인 나노구조체를 구현하는 것을 그 목적으로 한다.
상기 목적 달성을 위해, 본 발명은 금 나노입자, 상기 금 나노입자의 표면에 결합되는 압타머, 및 상기 압타머에 ATP를 중심으로 결합되는 고분자로 이루어진 나노구조체의 제조 및 활용을 제공한다.
상기 금 나노입자는 구형으로 10~200 nm의 크기를 가질 수 있다.
상기 압타머는 두 종류의 압타머가 단일 가닥에 함께 존재하며, 그 중 한 압타머는 타겟이 되는 질병관련인자와 결합하는 압타머로 타겟을 포획할 수 있으며, 다른 압타머는 ATP에 결합하는 압타머로 ATP와 상호작용하여 나노구조체 형성을 돕는다.
상기 타겟은 특정 질환에서 과발현되는 사이토카인일 수 있고, VEGF, TNF-α일 수 있다.
상기 고분자는 고분자화된 페닐보론산으로, 말레산 무수물 중합체에 페닐보론산이 결합된 공중합체일 수 있고, ATP와 결합하여 고분자가 코팅된 나노구조체를 형성한다.
상기 고분자는 활성산소종을 포집하여 압타머와 타겟의 결합을 조절할 수 있다.
본 발명은 금 나노입자, 상기 금 나노입자의 표면에 결합하는 압타머, 및 상기 압타머에 ATP를 중심으로 결합하는 고분자를 포함하는 나노구조체의 제조 및 응용에 관한 것으로, 상기 나노 구조체는 단순한 방법으로 합성될 수 있으며, 활성산소종을 효과적으로 제거하면서 고분자화된 페닐보론산으로 코팅(블로킹)된 타겟 물질 포획 압타머가 노출될 수 있고, 이에 노출된 압타머가 TNF-α, VEGF와 같은 타겟 물질을 포획할 수 있으므로 활성산소종과 TNF-α, VEGF 등이 과발현되는 염증성 질환, 암, 황반변성 등의 질환에 대한 치료용도로 활용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 고분자가 코팅된 금 나노입자-압타머 나노구조체의 형성 및 염증 질환에서의 항염증 작용을 모사한 도면이다.
도 2는 본 발명의 일 실시예에 따른 금 나노입자의 합성 방법 및 투과 전자 현미경(Transmission Electron Microscope: TEM) 분석 결과를 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 압타머가 개질화된 금 나노입자의 합성 방법 및 동적 산란광(Dynamic Light Scattering: DLS) 분석 결과, 금 나노입자에 개질화된 압타머의 수를 나타낸 도면이다.
도 4는 Au-Apt 와 Au-Ctrl의 투과 전자 현미경 분석 결과 및 전자 에너지 손실 분광법(Electron Energy Loss Spectrometry) 분석 결과를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 고분자화된 페닐보론산의 합성 방법 및 1H 핵자기공명(Nuclear Magnetic Resonance) 분석 결과를 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 고분자가 코팅된 금 나노입자-압타머 나노구조체의 합성 방법 및 ATP 유무에 따른 압타머가 개질화된 금 나노입자-고분자 간 상호작용 분석 결과를 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 Au-Apt-ATP-pPBA와 Au-Ctrl-ATP-pPBA의 활성산소종 유무에 따른 투과 전자 현미경 분석 결과 및 전자 에너지 손실 분광법 분석 결과를 나타낸 도면이다.
도 8은 본 발명의 일 실시예에 따른 Au-Apt-ATP-pPBA와 Au-Ctrl-ATP-pPBA의 활성산소종 유무에 따른 동적 산란광 분석 결과를 나타낸 도면이다.
도 9는 본 발명의 일 실시예에 따른 Au-Apt-ATP-pPBA를 포함한 다양한 시료의 활성산소종 포집 능력 평가 결과를 나타낸 도면이다.
도 10은 본 발명의 일 실시예에 따른 Au-Apt-ATP-pPBA를 포함한 다양한 시료의 TNF-α 포집 능력 평가 결과를 나타낸 도면이다.
도 11은 본 발명의 일 실시예에 따른 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 세포 독성 평가 결과를 나타낸 도면이다.
도 12는 본 발명의 일 실시예에 따른 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 용혈도 시험 결과를 나타낸 도면이다.
도 13은 본 발명의 일 실시예에 따른 PMA에 의해 활성화된 세포에 대한 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 항염증 효과를 세포 내 활성산소종 형광 이미지로 확인한 결과를 나타낸 도면이다.
도 14는 본 발명의 일 실시예에 따른 PMA에 의해 활성화된 세포에 대한 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 항염증 효과를 세포 외 활성산소종 농도, TNF-α 농도, IL-6 농도로 확인한 결과를 나타낸 도면이다.
도 15는 본 발명의 일 실시예에 따른 hydrogen peroxide(H2O2)에 의해 활성화된 세포에 대한 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 항염증 효과를 세포 내 활성산소종 형광 이미지로 확인한 결과를 나타낸 도면이다.
도 16은 본 발명의 일 실시예에 따른 H2O2에 의해 활성화된 세포에 대한 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 항염증 효과를 세포 외 활성산소종 농도, TNF-α 농도, IL-6 농도로 확인한 결과를 나타낸 도면이다.
도 17은 본 발명의 일 실시예에 따른 H2O2의 농도에 따른 세포 독성과, Au-Apt-ATP-pPBA를 포함한 시료를 H2O2와 함께 처리하였을 때의 세포 독성 평가 결과를 나타낸 도면이다.
도 18은 본 발명의 일 실시예에 따른 마우스 복막염 모델에 대한 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 항염증 효과를 복막액 내 TNF-α 및 IL-6 농도로 평가한 결과를 나타낸 도면이다.
도 19는 본 발명의 일 실시예에 따른 마우스 복막염 모델에 대한 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA의 항염증 효과를 혈액 내 TNF-α 및 IL-6 농도로 평가한 결과를 나타낸 도면이다.
이하에서 본 발명에 대하여 구체적으로 설명한다. 본 발명에 대한 설명 및 도면에서는 발명의 요지를 흐릴 수 있는 공지의 내용은 기재를 생략할 수 있고, 본 발명을 이해를 돕기 위해 도면 구성의 일부는 과장 또는 생략될 수 있으며, 본 명세서에서 따로 정의하지 않는 용어에 대하여는 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 일반적으로 이해할 수 있는 의미로 해석되어야 할 것이다.
본 명세서에 있어서 “압타머(aptamer)”란, 특이적인 3차원적 구조를 형성하는 15-40개의 단일가닥 올리고뉴클레오티드로서, 스템 루프(stem loop) 구조를 가지며, 상기 3차원적 구조를 기반으로 특정 물질에 특이적으로 결합하는 성질이 있다. 압타머는 화학적으로 합성이 용이하며, 화학적 변형이 쉽고 열에 안정적이면서 타겟에 대한 특이도가 매우 높은 화합물이다. 압타머의 서열은 SELEX(selective evolution of ligands by exponential enrichment)법으로 발굴할 수 있으며, 이미 수백 종의 압타머 서열이 공개되어 있다. 압타머는 높은 친화성으로 표적 분자와 결합한다는 점에서 흔히 항체와 비교되기도 하지만, 생체 내 면역반응이 없다는 장점이 있다.
항체는 단백질 분자로 크기가 비교적 크기 때문에(~150kDa) 생산하는데 비용이 많이 들고, 변형(modification) 또한 용이하지 못한 반면, 압타머는 약 20~60mer 정도 길이의 핵산으로 구성되어 있는 작은 분자 구조이고, 변형이 용이한 장점을 가지고 있다. 압타머는 핵산으로 이루어져 있기 때문에, 항체에 비해 안정성이 매우 높다. 단백질이나 항체 의약품의 경우 실온에서 보관이나 운반이 불가능하지만 압타머는 가능하고, 심지어 멸균 후에도 기능을 유지할 수 있으며, 만약 변성(denaturation)이 되더라도 다시 짧은 시간에 재생(regeneration)이 가능하기 때문에 특히 장시간 또 반복사용이 요구되는 진단용으로의 응용이 매우 용이하다.
다만, 압타머는 사이즈가 작고, 혈청 내 다양한 종류의 핵산 분해효소가 존재하여 체내 안정성이 낮다는 단점이 존재하지만, 압타머를 폴리에틸렌글리콜(polyethylene glycol, PEG)과 같은 고분자나 디아실글리세롤(diacylglycerol) 혹은 콜레스테롤(cholesterol)을 접합시켜 혈액 내에서 빠르게 소멸되는 것을 줄일 수 있다. 그리고 압타머의 5'말단이나 3'말단에 비오틴(biotin)을 결합시켜 스트렙타아비딘 지지체(streptavidin support)에 부착시켜 바이오 센서/칩 분야에서 사용할 있다(Dausse E. et al., Aptamers: a new class of oligonucleotides in the drug discovery pipeline, Curr. Opin. Pharmacol, 2009).
본 발명은 염증 질환 등 다양한 분야에 활용될 수 있는 고분자가 코팅된 금 나노입자-압타머 나노구조체를 제조하고 응용하는 것에 관한 것이다.
상기 금 나노입자는 구형으로 10~100 nm, 10~50 nm 또는 10~20 nm의 크기를 가질 수 있으나, 금 나노입자는 그 합성 방법에 따른 크기 조절이 잘 알려져 있어 사용 목적에 맞추어 크기를 변화시킬 수 있으므로, 나노입자의 크기는 제한되지 않는다. 상기 크기는 금 나노입자의 직경 또는 지름을 의미한다. 금 나노입자의 크기는 투과 전자현미경 또는 동적산란광 분석 등의 방법으로 분석할 수 있다.
금 나노입자에는 압타머가 결합되는데, 상기 압타머는 포집하고자 하는 질병관련인자에 대한 압타머 및 ATP와의 결합을 위한 ATP에 대한 DNA 압타머를 포함한다. 따라서, 상기 압타머는 두가지 종류의 압타머의 융합(fusion)에 의해 생성된다. 즉 상기 압타머는 두 가지 종류의 압타머를 동시에 보유하여 두 가지 종류의 타겟 분자와 결합할 수 있는 단일가닥 DNA 서열이다.
ATP는 페닐보론산과 결합할 수 있는 특징을 가지고 있으므로, 도 1에 도시된 바와 같이 금 나노입자는 ATP를 매개로 금 나노입자에 부착된 ATP에 대한 압타머와 고분자화된 페닐보론산과 결합하여, 압타머가 결합된 금 나노입자의 바깥으로 고분자화된 페닐보론산 케이지가 코팅된 금 나노입자-압타머 나노구조체가 형성될 수 있다. 따라서, 본 발명의 금 나노입자-압타머 나노구조체 제조에 있어, ATP에 대한 압타머는 ATP와의 결합을 위해 필수적이나, 질병관련인자에 대한 압타머는 본 발명에서 예시로 보여준 TNF-α, 또는 VEGF에 대한 압타머 뿐 아니라, 특정 타겟 물질을 포집할 수 있는 압타머라면 용도에 따라 제한되지 않고 변경될 수 있다.
질병관련인자는 질환에 따라 발현이 증가된다고 알려진 바이오마커일 수 있다. 구체적으로는 염증 반응에 의해 발현이 증가된다고 알려져 있는 사이토카인인 IL-6, TNF-α, IL-1β, MCP-1, MIP-1α에서 선택되는 하나일 수 있으나, 이에 제한되지 않는다
또한, 질병관련인자는 VEGF일 수 있다. VEGF는 혈관형성인자로서, VEGF의 발현이 높아지면 비정상적인 혈관생성이 늘어난다. 구체적으로는 암, 황반변성 등의 질환에서 VEGF의 과발현을 관찰할 수 있다.
또한, 질병관련인자는 트롬빈(thrombin)일 수 있다. 트롬빈은 혈액응고에 직접적으로 관여하는 인자로서, 혈전 생성 및 혈관 수축에 관여한다. 구체적으로는 혈액 응고 관련 질환에서 트롬빈의 과발현을 관찰할 수 있다.
본 발명의 일 실시예에서는 금 나노입자와 결합하는 압타머는 TNF-α에 대한 압타머 및 ATP에 대한 압타머가 융합된 형태(서열번호 1: ACCTGGGGGAGTATTGCGGAGGAAGGTTTTTTTTGGTGGATGGCGCAGTCGGCGACAATTTTTTT)이다. 또한, 본 발명의 일 실시예에서는 VEGF에 대한 압타머 및 ATP에 대한 압타머가 융합된 형태(서열번호 2: ACCTGGGGGAGTATTGCGGAGGAAGGTTTTTTTCCCGTCTTCCAGACAAGAGTGCAGGGTTTTTTT-Thiol)가 사용될 수 있다. 상기 압타머의 3' 말단은 금 나노입자와의 결합을 위해 Thiol(-SH)기로 수식되어 있다.
본 발명의 금 나노입자-압타머는 페닐보론산이 결합된 말레산 무수물 중합체인 고분자화된 페닐보론산 [폴리(메틸비닐에테르-말레산 무수물)]과 ATP를 매개로 결합하여 최종적으로 고분자화된 페닐보론산이 코팅된 금 나노입자-압타머 나노구조체가 생성된다. 상기 고분자화된 페닐보론산은 페닐보론산을 다수 포함하고 있는 수용성 고분자라면 제한되지 않고 사용될 수 있다.
고분자화된 페닐보론산에서 페닐보론산의 비율은 페닐보론산 단량체인 3-아미노페닐보론산의 양을 조절함으로써 적절하게 조절할 수 있다. 본 발명에서 제조한 고분자화된 페닐보론산 [폴리(메틸비닐에테르-말레산 무수물)]에서의 페닐보론산의 함량은 28%이다.
페닐보론산은 ATP의 다이올(diol)과 쉽게 결합할 수 있으며, 이때 형성되는 결합인 페닐보론에스테르 결합은 활성산소종에 민감하게 분리되는 성질이 있으므로, 본 발명의 나노구조체는 활성산소종 감응성 및 활성산소종 포집 능력을 가질 수 있다.
즉, ATP를 매개로 금 나노입자에 케이지 형태로 코팅된 고분자화된 페닐보론산은 질병관련인자에 대한 압타머를 블로킹하고 있으므로, 일반적인 상태에서는 질병관련인자는 압타머에 결합하지 못하지만, 활성산소종의 농도가 높은 경우, 페닐보론산은 활성산소종를 포집함으로써, 질병관련인자에 대한 압타머가 노출되면서, 압타머는 목적하는 질병관련인자를 포집하게 된다.
따라서, 본 발명의 나노구조체는 체내에서 활성산소종의 농도가 높은 병변 부위에 타겟팅되어, 활성산소종을 포집한 후 압타머의 종류에 따라 병변에서 과발현하는 사이토카인 등을 포집할 수 있다는 이중 기능을 가진다.
활성산소종은 산소가 지닌 화학적 특성으로 인해 생산되는 산소 유리기 (oxygen free radical) 및 이들로부터 유래된 산소화합물로 superoxide anion (O2-·), 과산화수소 (Hydogenperoxide: H2O2), 수산기 (OH·), alkoxyl기 (RO·), peroxyl기 (ROO·) 등을 총칭한다.
이러한 활성산소종은 화학적으로 매우 불안하고 반응성이 크기 때문에 생체 내에서 효소 촉매 반응, 전사인자의 활성화 및 생체 분자, 세포, 조직 등에 광범위한 산화적 손상을 줌으로써 주위에 염증을 유발하고 조직섬유화의 주요인자로 관여한다. 이러한 산화적 손상은 인체 전 조직에서 각종 질병을 유발하게 된다. 구체적으로는 피부, 신장 등 다양한 조직에서의 암 발생 및 발생된 암의 진행에 관여한다는 것이 알려져 있을 뿐 아니라, 심혈관 질환, 염증, 섬유화 질환, 당뇨병 등 거의 모든 질병에서 중요하게 작용하는 것으로 알려지고 있다.
본 발명의 일실시예에 따른 나노구조체는 복잡한 합성 과정 없이 제조가 가능하며, 활성산소종 감응성 및 활성산소종 포집 능력, 그리고 TNF-α 포집 능력을 보유한다는 것을 확인했을 뿐 아니라, 세포 및 혈액 독성을 나타내지 않고 세포 및 마우스의 염증 모델에서 높은 치료 효과를 나타냄을 확인하였다. 따라서, 본 발명의 나노구조체는 항염증 치료제로 활용될 수 있다.
본 발명의 일실시예에 따르면, 상기 염증성 질환은 췌장염, 만성간염, 식도염, 위염, 대장염, 폐렴, 기관지염, 인후염, 복막염, 심근경색, 심부전, 알츠하이머, 관절염, 신부전, 건선, 빈혈, 당뇨 및 섬유화증으로 이루어 진 군에서 선택되는 어느 하나 이상인 것일 수 있지만, 이에 제한되지 않는다.
본 발명의 일실시예에 따르면, 상기 관절염은 골관절염, 퇴행성 관절염, 염증성 관절염, 류마티스 관절염, 박리성 골연골염, 관절 인대손상, 반월상 연골판 손상, 관절의 부정정렬, 무혈성 괴사증 및 소아 특발성 관절염으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것일 수 있지만, 이에 제한되지 않는다.
또한, 본 발명의 일실시예에 따른 나노구조체는 VEGF 포집 능력이 있으므로, VEGF 과발현과 관련된 질환, 구체적으로는 각종 암 질환, 류마티스 관절염, 당뇨병성 망막증, 허혈성 망막병증, 건선, 증식성 당뇨 망막증, 황반 변성 등의 질환에 대한 치료제로 사용될 수 있다.
본 발명의 일 실시예에서는 염증 모델을 통해 상기 나노구조체의 효능을 검증하였으나, 상기 나노구조체의 항염증 원리를 고려하면 염증과 관련된 다양한 질환에서도 효능을 나타낼 것으로 기대할 수 있으며, 변경가능한 구성성분인 질병관련 인자에 대한 압타머를 변경함으로써 대상 질병에 대한 효능을 나타낼 수 있다.
본 발명에 있어서 “치료제”란, 특정한 목적을 위해 투여되는 조성물을 의미한다. 본 발명의 목적상, 본 발명의 치료제는 암, 염증, 또는 황반변성의 치료를 위해 사용되는 것을 목적으로 하고, 금 나노입자-압타머 나노 구조체를 유효성분으로 포함하는 조성물이고, 이에 관여하는 단백질 및 약학적으로 허용 가능한 담체, 부형제 또는 희석제를 포함할 수 있다.
상기의 "약학적 허용될 가능한" 담체 또는 부형제는 정부의 규제부에 의해 승인된 것이나, 또는 척추 동물, 그리고 보다 특별하게는 인간에게 사용을 위한 정부 또는 기타 일반적으로 승인된 약전에서 리스트된 것을 의미한다.
비경구적인 투여를 위해 본 발명의 약학조성물은 유성 또는 수성 담체에 있는 현탁액, 용액 또는 에멀젼의 형태로 될 수 있고, 고체 또는 반고체의 형태로 제조될 수 있다. 또한, 본 발명의 약학조성물은 현탁제, 안정화제, 용해제 및/또는 분산제와 같은 제형화제를 포함할 수 있고, 멸균될 수 있다. 상기 약학조성물은 제조 및 저장의 조건 하에서 안정할 수 있고, 세균이나 곰팡이와 같은 미생물의 오염 작용에 대해 보존될 수 있다. 대안적으로, 본 발명의 약학조성물은 사용 전에 적절한 담체와 재구성을 위해 멸균 분말 형태일 수 있다. 약학조성물은 단위-복용량 형태로, 마이크로니들 패치에, 앰플에, 또는 기타 단위-복용량 용기에, 또는 다-복용량 용기에 존재할 수 있다. 대안적으로, 약학적 조성물은 단지 멸균 액체 담체, 예를 들어 사용 바로 전에 주사용 물의 부가함을 요하는 동결-건조된(냉동건조) 상태로 보관될 수 있다. 즉시 주사용액 및 현탁액은 멸균 분말, 그래뉼 또는 타블렛으로 제조될 수 있다.
몇몇 비 제한적인 실시형태에 있어서, 본 발명의 약학조성물은 제형화되어 질 수 있고, 또는 액체 속에 미립구의 형태로 포함될 수 있다. 어떤 비 제한적인 실시형태에 있어서, 본 발명의 약학조성물은 이들의 약학적으로 허용될 수 있는 화합물 및/또는 혼합물을 0.001 내지 100,000 U/kg 사이의 농도로 포함할 수 있다. 또한 어떤 비 제한적인 실시형태에 있어서, 본 발명의 약학조성물은 적절한 부형제는 보존제, 현탁제, 추가적인 안정화제, 염료, 완충제, 항균제, 항진균제, 및 등장화제, 예를 들어, 설탕 또는 염화나트륨을 포함할 수 있다. 여기서 사용된 것으로, 용어 "안정화제"는 보존 수명을 증가하기 위해 본 발명의 약학조성물에 선택적으로 사용된 화합물을 언급한다. 비-제한적인 실시에 있어서, 안정화제는 당, 아미노산, 또는 폴리머일 수 있다. 또한 본 발명의 약학조성물은 하나 또는 그 이상의 약학적으로 허용될 수 있는 담체를 포함할 수 있고, 상기 담체는 용매 또는 분산 배지일 수 있다. 약학적으로 허용될 수 있는 담체의 비-제한적인 예는 물, 식염수, 에탄올, 폴리올 (예, 글리세롤, 프로필렌 글리콜 및 액체 폴리에틸렌 글리콜), 오일, 및 이들의 적절한 혼합물을 포함한다. 본 발명의 약학조성물에 적용되는 멸균 기술의 비-제한적인 예는 세균-억제 필터를 통한 여과, 멸균 제제의 합체, 방사선 조사, 멸균 가스 조사, 가열, 진공 건조 및 동결 건조를 포함한다.
본 명세서에 있어서 “투여”란, 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 본 발명의 조성물의 투여경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 경구 투여, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 비강 내 투여, 직장 내 투여, 경막 내 투여가 이루어질 수 있고, 본 발명의 목적상 주사의 형태로 투여되는 것이 바람직하며, 이에 제한되는 것은 아니다.
본 발명의 치료 방법은 상기 약학조성물을 약제학적 유효량으로 투여하는 것을 포함할 수 있다. 본 발명에서 유효량은 질환의 종류, 질환의 중증도, 부형제의 종류 및 함량, 제형의 종류 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로, 치료 기간, 병용 약물을 비롯한 다양한 인자에 따라 조절될 수 있다.
이하에서 본 발명을 실시하기 위한 실시예에 대하여 상세히 설명하며, 하기의 실시예는 본 발명을 실시하기 위한 바람직한 예시에 해당하는 것으로 본 발명이 실시예에 의하여 한정되는 것은 아니다.
실시예 1. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 제조 및 물리화학적 분석
실시예 1-1. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 제조
금 나노입자는 증류수에 녹인 1.47 mM gold chloride hydrate를 20 ㎖ 100℃ 로 준비하고, 여기에 0.34 M sodium citrate 400 ㎕를 넣어 15분간 반응시켜 합성한다. 투과 전자 현미경으로 15 nm 정도의 크기를 가지는 금 나노입자가 확인되었다 (도 2).
금 나노입자에 결합하여 금 나노입자를 개질하는 압타머는 두 가지로, 아래 표 1에 구체적인 서열이 기재되어 있다(서열번호 1 및 서열번호 3). 각각의 압타머는 금 나노입자에 결합하기 위해 3'-말단이 Thiol(-SH) 기로 수식(modification)되어 있다.
명칭
및 서열번호
본 발명에 사용된 압타머의 염기서열 (5'-3')
Apt(서열번호 1) ACCTGGGGGAGTATTGCGGAGGAAGGTTTTTTTTGGTGGATGGCGCAGTCGGCGACAATTTTTTT-Thiol
Ctrl(서열번호 3) ACCTGGGGGAGTATTGCGGAGGAAGGTTTTTTTTGACTTGGTGCAGACGATGGCAGGGTTTTTTT-Thiol
Apt 염기서열은 ATP에 대한 압타머와 TNF-α에 대한 압타머를 포함하는 서열이며, Ctrl 염기서열은 ATP에 대한 압타머만 포함하고 TNF-α에 대한 압타머는 포함하지 않지만, Apt 서열과 길이가 같은 TNF-α에 비 특이적인 서열이다.
압타머를 금 나노입자에 개질화하기 위해서는 각각의 압타머 서열 (25 nmol)를 250 nmol tris(2-carboxyethyl)phosphine hydrochloride (TCEP·HCl)로 환원시켜 활성화시킨 후, 앞서 제조된 15 nM의 금 나노입자 5 ㎖에 넣고 52시간 동안 혼합하였다. 혼합하는 동안 16시간째부터 총 3번 4시간 간격으로 5 M NaCl를 넣어주어 용액 내의 NaCl 농도를 0.1 M씩, 최종적으로 0.3 M가 되도록 높여주었다. 합성 후 100 kDa Amicon tube를 이용하여 4,000 rpm에서 5분간 3번 원심분리하여 반응하지 않은 물질들을 제거하였다.
도 3(a)의 모식도에 나타난 바와 같이 압타머의 Thiol기가 금 나노입자에 결합하여 금 나노입자를 개질화하고, 개질화된 금 나노입자는 압타머 서열에 따라 Au-Apt (TNF에 결합하는 압타머+ATP에 결합하는 압타머), Au-Ctrl (TNF에 결합하는 압타머+비특이적인 압타머)로 명명하였다.
Au-Apt 와 Au-Ctrl 각각을 동적 산란광으로 분석한 결과 크기가 약 20 nm 정도임을 확인하였다 (도 3(b)). 또한, 금 나노입자 당 개질화된 압타머의 수를 계산하고자 1 nM의 Au-Apt 및 Au-Ctrl 각각을 50 mM potassium cyanide를 사용하여 금 나노입자만 녹인 후, SYBR Gold 형광염색으로 DNA의 양을 정량한 결과 Au-Apt 및 Au-Ctrl 각각에 대해 금 나노입자 1개당 53개와 44개의 압타머로 개질화되었음을 확인하였다 (도 3(c), 도 3(d)). 또한, 투과 전자 현미경 분석 및 전자 에너지 손실 분광법 분석을 통해 금 나노입자의 형태와 구성 원소(Au, P)의 존재여부 확인하였다 (도 4).
고분자화된 페닐보론산(poly(phenyl boronic acid); pPBA)을 합성하기 위해 DMSO에 분자량 80 kDa인 폴리(메틸비닐에테르-말레산 무수물)[Poly(methyl vinyl ether-alt-maleic anhydride; PMVEMA)을 녹이고, 말레산: 페닐보론산(PBA)의 몰 비율이 30%가 되도록 3-아미노페닐보론산(3-aminophenyl boronic acid)을 넣어 실온에서 24시간 반응을 진행하였다(도 5(a)). 잔여 무수산을 분해하기 위해 1 N NaOH를 이용하여 가수분해한 후 10 kDa dialysis membrane을 이용하여 투석 및 동결 건조를 통해 페닐보론산이 결합된 말레산 무수물 중합체인 최종 생성물(고분자화된 페닐보론산(poly(phenyl boronic acid); pPBA)을 얻었다. 최종 생성물인 pPBA 내 PBA의 양을 정량하기 위해 1H 핵자기공명 분석을 이용하여 분석한 결과 28% PBA 당량을 확인하였다 (도 5). 압타머가 개질화된 금 나노입자와의 상호작용 분석을 위해 Cy5.5-amine를 말레산 무수물 대비 1% 당량을 추가한 pPBA (Cy5.5-pPBA) 또한 제조하였으며, 합성 과정은 상기와 동일하다.
pPBA 고분자가 코팅된 금 나노입자-압타머 나노구조체를 합성하기 위해 400 nM의 Au-Apt 또는 Au-Ctrl과 2 mM의 ATP를 5 mM Mg2+가 함유된 PBS (pH 8.2)에서 혼합한 후, 13,200 rpm에서 30분간 원심분리 하여 수득하였다. 수득한 물질을 다시 5 mM Mg2+ 가 함유된 PBS (pH 8.2)에 녹이고 2 μM pPBA를 혼합한 후 13,200 rpm에서 30분간 원심분리하여 수득하였다. 고분자가 코팅된 금 나노입자-압타머 나노구조체는 압타머 서열에 따라 Au-Apt-ATP-pPBA와 Au-Ctrl-ATP-pPBA 로 명명되었다 (도 6(a) 참조). 상기 나노구조체의 형성에 ATP가 미치는 영향을 확인하고자 50 nM의 Au-Apt 또는 Au-Ctrl과 250 nM Cy5.5-pPBA를 5 mM Mg2+가 함유된 PBS (pH 8.2)에서 ATP 없이 또는 250 μM의 ATP 존재 하에 혼합하였다. 다음 단계로 13,200 rpm에서 30분간 원심분리 하여 상층액의 Cy5.5-pPBA 형광을 관찰하였으며, 그 결과 ATP가 존재할 때만 형광이 감소하여 나노구조체 형성에 ATP가 크게 관여함을 확인할 수 있었다 (도 6(b), 도 6(c)).
실시예 1-2. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 활성산소종 감응성 확인
고분자가 코팅된 금 나노입자-압타머 나노구조체 (Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA)의 활성산소종 감응성을 확인하기 위해, 40 nM의 Au-Apt-ATP-pPBA 또는 Au-Ctrl-ATP-pPBA에 100 μM hydrogen peroxide (H2O2)를 5 mM Mg2+ 가 함유된 PBS (pH 8.2)에서 혼합하고 상온에서 2시간 동안 방치한 후, 투과 전자 현미경 분석 및 전자 에너지 손실 분광법 분석 (도 7), 동적 산란광 분석 (도 8)을 진행하였다.
그 결과 전자 에너지 손실 분광법 분석에서 활성산소종이 없을 때는 나노구조체에서 pPBA의 붕소 신호가 검출되지만, 활성산소종과 감응하면 pPBA의 붕소 신호가 검출되지 않는 것을 통해 활성산소종에 의해 pPBA가 제거됨을 확인할 수 있었다. 또한, 동적 산란광 분석에서 Au-Apt와 Au-Ctrl에 비해 크기가 커졌던 Au-Apt-ATP-pPBA와 Au-Ctrl-ATP-pPBA의 크기가 활성산소종 감응 후 다시 원상복귀되는 것을 통해 본 발명의 나노구조체는 활성산소종에 감응하여 pPBA가 제거됨을 확인할 수 있었다(도 8).
실시예 1-3. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 활성산소종 포집 능력 확인
고분자가 코팅된 금 나노입자-압타머 나노구조체(Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA)의 활성산소종 포집 능력을 확인하기 위해 금 나노입자 기준으로 20 nM의 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA, Au-Apt+pPBA, Au-Ctrl+pPBA, 20 nM pPBA, 1.15 μM ATP를 각각 5 mM Mg2+가 함유된 PBS (pH 8.2)에서 100 μM의 H2O2와 상온에서 2시간 동안 혼합한 후, 13,200 rpm 30분의 원심분리를 한 후, 상층액의 활성산소종 농도를 Amplex Red assay를 통해 확인하였다.
그 결과 pPBA나 ATP는 활성산소종 포집 능력을 가지고 있지 않았고, 단순히 Au-Apt나 Au-Ctrl에 ATP 없이 pPBA를 혼합해주는 것만으로는 활성산소종 포집 능력이 생기지 않았고, 고분자가 코팅된 금 나노입자-압타머 나노구조체 형태인 Au-Apt-ATP-pPBA와 Au-Ctrl-ATP-pPBA만이 유의미하게 높은 활성산소종 포집 능력을 가지고 있음을 확인할 수 있었다 (도 9). 즉 Au-Apt-ATP-pPBA와 Au-Ctrl-ATP-pPBA는 활성산소종에 감응한다는 것을 다시 한번 확인할 수 있었다.
실시예 1-4. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 TNF-α 포집 능력 확인
고분자가 코팅된 금 나노입자-압타머 나노구조체(Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA)의 TNF-α 포집 능력을 확인하기 위해 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA, Au-Apt+pPBA, Au-Ctrl+pPBA 와 250 pg/mL TNF-α가 압타머:TNF-α 몰비 10000:1로 5 mM Mg2+가 함유된 PBS (pH 8.2)에서 37°C 에서 4시간 동안 혼합하고 13,200 rpm에서 30분간 원심분리한 후 상층액의 TNF-α 농도를 효소면역분석법으로 확인하였다. H2O2를 처리군은 각 성분 혼합 시 100 μM H2O2를 같이 혼합하였다. 그 결과 Au-Apt-ATP-pPBA는 pPBA에 의해 TNF-α에 대한 압타머가 코팅(블로킹: blocking)되어 있으므로, 상기 압타머가 노출된 Au-Apt에 비해 현저히 감소된 TNF-α 포집 능력을 보여주었으며, 이는 H2O2 처리 시에 회복된 TNF-α 포집능력을 보인다. 이는 압타머를 블로킹하던 pPBA가 H2O2의 활성산소종으로 제거되었기 때문이다(도 10(a)). 하지만, Au-Apt와 Au-Apt+pPBA는 TNF-α에 대한 압타머가 pPBA로 블로킹되어 있지 않으므로, TNF-α를 포집 능력이 감소하지 않았고, TNF-α 압타머가 존재하지 않는 Au-Ctrl, Au-Ctrl-ATP-pPBA 등의 시료는 H2O2 처리와 관계없이 TNF-α를 전혀 포집하지 못함을 확인할 수 있었다 (도 10(a) 및 (b)).
이를 통해 Au-Apt-ATP-pPBA는 활성산소종 감응에 따라 TNF-α 포집 비활성에서 활성으로 전환이 가능함을 확인할 수 있다.
실시예 2. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 항염증 효과 확인
실시예 2-1. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 독성 확인
본 발명의 고분자가 코팅된 나노입자-압타머 나노구조체의 항염증 효과 확인에 앞서 나노구조체 자체 독성을 확인하고자, 세포 독성 및 용혈도를 분석하였다.
세포 독성은 RAW 264.7 세포를 96-well 배양 플레이트에 10,000 cells/well로 분주하고 24시간 배양한 후, 배지를 교체하고 Au-Apt, Au-Apt-ATP-pPBA, Au-Ctrl, Au-Ctrl-ATP-pPBA를 금 나노입자 기준의 다양한 농도(1.25, 2.5, 5, 10, 20, 40 nM)로 처리하고 24시간 후의 생존율을 확인하였다. 그 결과 실험에 사용한 모든 시료에서 유의미한 세포독성이 관찰되지 않았다 (도 11).
동물 모델에 적용하기 전 용혈도 확인을 위해서는 마우스 전혈을 채취한 후 적혈구를 분리하고 이를 다시 PBS에 10배 희석해 적혈구 용액을 확보하였다. 여기에 금 나노입자 기준 20 nM인 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA를 각각 6시간 동안 혼합한 후 13,200 rpm에서 30분 원심분리하여 상층액에 용해된 헤모글로빈을 542 nm 흡광으로 정량하였다. 기준으로 상기 적혈구 용액에 PBS를 처리한 것이 0% 용혈, 최종농도 0.1% Triton X-100를 처리한 것을 100% 용혈로 설정하였으며 결과적으로 실험에 사용한 모든 나노구조체에서 유의미한 용혈이 관찰되지 않았다 (도 12).
실시예 2-2. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 세포 내 항염증 효과 확인
고분자가 코팅된 금 나노입자-압타머 나노구조체(Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA)의 세포 내 항염증 효과를 확인하기 위해 RAW 264.7 세포를 phorbol 12-myristate 13-acetate (PMA) 또는 H2O2로 활성화(염증 유도)시킨 후 실험을 진행하였다.
먼저 PMA에 의해 활성화된 세포의 경우 세포 내 활성산소종 형광을 확인하고자 다음과 같은 실험이 수행되었다. RAW 264.7 세포를 12-well 배양 플레이트에 150,000 cells/well로 분주하고 24시간 배양한 후, 배지를 교체하고 200 ng/mL PMA와 함께 금 나노입자 기준 20 nM의 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA을 처리해주었다. 6시간 후 배지를 제거하고 세포를 세척해준 후 20 μM 2',7'-dichlorofluoresin diacetate를 처리한 후 45분 후에 형광현미경으로 세포 내 활성산소종 형광이 관찰되었다. 그 결과 활성산소종 포집 능력이 있는 Au-Ctrl-ATP-pPBA에서 유의미한 활성산소종 감소가 관찰되었고, TNF-α 포집 능력이 있는 Au-Apt에서도 활성산소종-TNF-α 간 상호작용을 통한 활성산소종 감소가 관찰되었다. 하지만 활성산소종 포집 능력과 TNF-α 포집 능력을 모두 가진 Au-Apt-ATP-pPBA에서 두 경우에 비해 유의미하게 높은 활성산소종 감소가 관찰되었다 (도 13).
추가적으로 염증반응에 의해 분비되어 염증성 인자라고 알려져 있는 활성산소종, TNF-α, IL-6가 본 발명의 고분자가 코팅된 금 나노입자-압타머 나노구조체 처리에 의해 조절되는지를 확인하기 위해, RAW 264.7 세포를 12-well 배양 플레이트에 200,000 cells/well로 분주하고 24시간 배양 후에 배지를 교체하고 200 ng/mL PMA와 함께 금 나노입자 기준 20 nM의 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA을 처리해주었다. 24시간 후 배지를 13200 rpm에서 30분간 원심분리한 후 상층액의 활성산소종, TNF-α, IL-6 농도를 Amplex red assay와 효소면역분석법을 통해 확인하였다.
그 결과 Au-Ctrl-ATP-pPBA와 Au-Apt가 각각 활성산소종 포집 능력과 TNF-α 포집 능력으로 인해 염증을 감소시키며, 두 가지 능력을 모두 가진 Au-Apt-ATP-pPBA가 유의미하게 뛰어난 항염증 효과를 가진다는 것을 확인하였다 (도 14).
H2O2로 활성화시킨 세포에 대한 실험의 경우 상기 PMA로 활성화시킨 세포의 실험 방법에서 200 ng/㎖ PMA만 100 μM H2O2로 변경하여 진행되었으며, 결과에서는 유사한 경향성을 확인하였다 (도 15, 도 16).
추가적으로 H2O2에 의한 세포 독성이 항염증효과에 의해 감소하는지 확인하기 위해 먼저 H2O2 처리농도를 100 μM로 결정하였다(도 17(a)).
RAW 264.7 세포를 96-well 배양 플레이트에 10,000 cells/well로 분주하고 24시간 후 배지를 교체하고 100 μM H2O2와 금 나노입자 기준 20 nM의 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA을 함께 처리하였다. 24시간 후 세포의 생존율을 세포독성 및 생존률 시험방법으로 확인해본 결과 시료별로 보여주었던 항염증 효과와 유사하게 세포의 생존율이 증가함을 확인할 수 있었다 (도 17(b)).
실시예 2-3. 고분자가 코팅된 금 나노입자-압타머 나노구조체의 마우스 내 항염증 효과 확인
고분자가 코팅된 금 나노입자-압타머 나노구조체(Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA)의 마우스 내 항염증 효과를 확인하기 위해 마우스의 복강에 1 ㎎/㎖ zymosan 800 ㎕를 주입해 복막염을 만들었다. 1시간 후 금 나노입자 기준 100 nM의 Au-Apt, Au-Ctrl, Au-Apt-ATP-pPBA, Au-Ctrl-ATP-pPBA 200 ㎕를 복강 주사하고, 추가적으로 5시간이 지난 후 마우스에 복막 세척을 수행하여 복막액을 채취하고, 심장 채혈을 통해 전혈을 채취하였다. 복막액과 전혈 내의 TNF-α 농도와 IL-6 농도를 효소면역분석법을 통해 확인하였다. 그 결과 세포에서의 결과와 비슷한 경향성으로, Au-Ctrl-ATP-pPBA와 Au-Apt가 각각 활성산소종 포집 능력과 TNF-α 포집 능력으로 인해 염증을 감소시키며, 두 가지 능력을 모두 가진 Au-Apt-ATP-pPBA가 유의미하게 뛰어난 항염증 효과를 가진다는 것을 확인하였다 (도 18, 도 19).
<110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> Development and application of polymer coated gold nanoparticle-aptamer nanoconstruct containing reactive oxygen species responsibility <130> P2020-0185 <160> 3 <170> KoPatentIn 3.0 <210> 1 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> aptamer <400> 1 acctggggga gtattgcgga ggaaggtttt ttttggtgga tggcgcagtc ggcgacaatt 60 ttttt 65 <210> 2 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> fused aptamer (VEGF apatamer and ATP aptamer) <400> 2 acctggggga gtattgcgga ggaaggtttt tttcccgtct tccagacaag agtgcagggt 60 tttttt 66 <210> 3 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> aptamer <400> 3 acctggggga gtattgcgga ggaaggtttt ttttgacttg gtgcagacga tggcagggtt 60 ttttt 65

Claims (14)

  1. 금 나노입자,
    상기 금 나노입자의 표면에 개질화된 압타머, 및
    상기 압타머에 ATP를 매개체로 코팅되는 고분자화된 페닐보론산으로 이루어지는 나노 구조체로서,
    상기 금 나노입자는 10~50 nm의 크기를 가지며,
    상기 압타머는 서열번호 1 또는 2의 서열을 가지고,
    상기 고분자화된 페닐보론산은 말레산 무수물 중합체에 페닐보론산이 결합된 공중합체인 활성산소종 감응성을 가지는 고분자가 코팅된 금 나노입자-압타머 나노구조체.
  2. 삭제
  3. 제1항에 있어서,
    상기 압타머는 질병관련인자에 대한 압타머와 ATP에 대한 압타머를 동시에 보유하는 단일 가닥 DNA 서열인, 나노 구조체.
  4. 제3항에 있어서,
    상기 질병관련인자는 TNF-α, VEGF, IL-6, IL-1, MCP-1, 트롬빈(thrombin)에서 선택되는 하나인 것인, 나노 구조체.
  5. 제4항에 있어서,
    상기 질병관련인자는 TNF-α, VEGF에서 선택되는 하나인 것인, 나노 구조체.
  6. 제5항에 있어서,
    상기 질병관련인자는 TNF-α인, 나노 구조체.
  7. 제5항에 있어서,
    상기 질병관련인자는 VEGF인, 나노 구조체.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 제1항에 있어서,
    상기 고분자화된 페닐보론산은 친수성이면서 페닐보론산을 포함하는 고분자인, 나노 구조체.
  12. 제1항, 제3항 내지 제7항 및 제11항 중 어느 한 항의 나노 구조체를 유효성분으로 포함하는, 항염증 치료제.
  13. 제1항, 제3항 내지 제7항 및 제11항 중 어느 한 항의 나노 구조체를 유효성분으로 포함하는, 항암 치료제.
  14. 제1항, 제3항 내지 제7항 및 제11항 중 어느 한 항의 나노 구조체를 유효성분으로 포함하는, 황반변성 치료제.
KR1020200129318A 2020-10-07 2020-10-07 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용 KR102510170B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200129318A KR102510170B1 (ko) 2020-10-07 2020-10-07 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용
US18/020,145 US20240301431A1 (en) 2020-10-07 2021-10-05 Development and application of polymer-coated gold nanoparticle-aptamer nanoconstruct having sensitivity to reactive oxygen species
PCT/KR2021/013605 WO2022075693A1 (ko) 2020-10-07 2021-10-05 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200129318A KR102510170B1 (ko) 2020-10-07 2020-10-07 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용

Publications (2)

Publication Number Publication Date
KR20220046187A KR20220046187A (ko) 2022-04-14
KR102510170B1 true KR102510170B1 (ko) 2023-03-14

Family

ID=81126657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200129318A KR102510170B1 (ko) 2020-10-07 2020-10-07 활성산소종 감응성을 가지는, 고분자가 코팅된 금 나노입자-압타머 나노구조체의 개발 및 응용

Country Status (3)

Country Link
US (1) US20240301431A1 (ko)
KR (1) KR102510170B1 (ko)
WO (1) WO2022075693A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891655B1 (ko) * 2016-05-17 2018-08-24 기초과학연구원 페닐보론산이 결합된 고분자를 포함하는 약물 전달체
KR102019407B1 (ko) * 2016-11-01 2019-09-11 기초과학연구원 타겟분자를 선택적으로 포획하는 덱스트란 고분자 기반의 증폭된 핵산 압타머 나노구조체의 제조방법
KR101966505B1 (ko) 2016-12-05 2019-04-05 중앙대학교 산학협력단 항균용 나노 구조체 및 이의 용도
CN109001165B (zh) * 2017-06-07 2020-11-20 天津师范大学 一种免标记磷光探针定量检测三磷酸腺苷的方法
KR102023839B1 (ko) 2018-03-28 2019-09-20 포항공과대학교 산학협력단 분지된 dna, 압타머를 포함하는 고효율 압타머 복합체 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. Odeh et al., Molecules, 2020, vol. 25, pp.1-51(2019.12.18. 온라인 공개)
Jiwon Yeo et al., Biomaterials Science, 2020, vol. 8, pp.1148-1159(2019.10.26. 온라인 공개)

Also Published As

Publication number Publication date
WO2022075693A1 (ko) 2022-04-14
US20240301431A1 (en) 2024-09-12
KR20220046187A (ko) 2022-04-14

Similar Documents

Publication Publication Date Title
Chen et al. Advances in the development of aptamer drug conjugates for targeted drug delivery
Jia et al. Shape transformable strategies for drug delivery
Hosseinpour et al. Biomedical application of mesoporous silica nanoparticles as delivery systems: A biological safety perspective
Ferrer et al. Structure-dependent biodistribution of liposomal spherical nucleic acids
Jain et al. Comparison of avidin, neutravidin, and streptavidin as nanocarriers for efficient siRNA delivery
Fan et al. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine
Zhang et al. Tumor acidic microenvironment targeted drug delivery based on pHLIP-modified mesoporous organosilica nanoparticles
Wang et al. Aptamer-based erythrocyte-derived mimic vesicles loaded with siRNA and doxorubicin for the targeted treatment of multidrug-resistant tumors
Li et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury
Liu et al. Supramolecular modular approach toward conveniently constructing and multifunctioning a pH/redox dual-responsive drug delivery nanoplatform for improved cancer chemotherapy
US9795688B2 (en) Cell-specific targeting using nanostructured delivery systems
CN101346131A (zh) 用于克服肿瘤细胞耐药性的基于蛋白质的载体系统
KR102023839B1 (ko) 분지된 dna, 압타머를 포함하는 고효율 압타머 복합체 및 이의 용도
Dong et al. Engineered Design of a mesoporous silica nanoparticle-based nanocarrier for efficient mRNA delivery in vivo
Wu et al. Engineered EGCG‐Containing Biomimetic Nanoassemblies as Effective Delivery Platform for Enhanced Cancer Therapy
Crooke et al. Lung tissue delivery of virus-like particles mediated by macrolide antibiotics
Ge et al. Rational construction of protein-mimetic nano-switch systems based on secondary structure transitions of synthetic polypeptides
Wang et al. Facile synthesis of peptide cross-linked nanogels for tumor metastasis inhibition
Allemailem et al. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents
Jia et al. Bottlebrush polymer-conjugated melittin exhibits enhanced antitumor activity and better safety profile
Zhang et al. Programmable bispecific nano-immunoengager that captures T cells and reprograms tumor microenvironment
Yu et al. Glutathione-sensitive nanoglue platform with effective nucleic acids gluing onto liposomes for photo-gene therapy
Wei et al. Hepatocyte-targeted delivery using oleanolic acid-loaded liposomes for enhanced hepatocellular carcinoma therapy
Rabiee et al. Aptamer-engineered (nano) materials for theranostic applications
Yan et al. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant