KR102504826B1 - Method for producing hydroxy-substituted dimethyldioxolone - Google Patents

Method for producing hydroxy-substituted dimethyldioxolone Download PDF

Info

Publication number
KR102504826B1
KR102504826B1 KR1020200175955A KR20200175955A KR102504826B1 KR 102504826 B1 KR102504826 B1 KR 102504826B1 KR 1020200175955 A KR1020200175955 A KR 1020200175955A KR 20200175955 A KR20200175955 A KR 20200175955A KR 102504826 B1 KR102504826 B1 KR 102504826B1
Authority
KR
South Korea
Prior art keywords
dimethyldioxolone
substituted
hydroxy
organic solvent
producing
Prior art date
Application number
KR1020200175955A
Other languages
Korean (ko)
Other versions
KR20220085951A (en
Inventor
김경철
신동렬
박자영
신미라
최남순
Original Assignee
주식회사 천보
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 천보 filed Critical 주식회사 천보
Priority to KR1020200175955A priority Critical patent/KR102504826B1/en
Publication of KR20220085951A publication Critical patent/KR20220085951A/en
Application granted granted Critical
Publication of KR102504826B1 publication Critical patent/KR102504826B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/40Vinylene carbonate; Substituted vinylene carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 디메틸디옥솔론을 비양성자성 용매에 비금속 산화물을 혼합한 용액에 첨가한 후 가열하는 생성단계를 포함하는 하이드록시-치환된 디메틸디옥솔론의 제조방법을 제공한다. 상기 제조방법은 디메틸디옥솔론에서 단일 공정으로 하이드록시-치환된 디메틸디옥솔론을 생성할 수 있기 때문에, 공정시간 및 비용을 획기적으로 절감할 수 있다.The present invention provides a method for producing hydroxy-substituted dimethyldioxolone comprising a step of heating after adding dimethyldioxolone to a solution in which a non-metal oxide is mixed in an aprotic solvent. Since the above production method can produce hydroxy-substituted dimethyldioxolone from dimethyldioxolone in a single process, process time and cost can be drastically reduced.

Description

하이드록시-치환된 디메틸디옥솔론의 제조방법{METHOD FOR PRODUCING HYDROXY-SUBSTITUTED DIMETHYLDIOXOLONE}Method for producing hydroxy-substituted dimethyldioxolone {METHOD FOR PRODUCING HYDROXY-SUBSTITUTED DIMETHYLDIOXOLONE}

본 발명은 하이드록시-치환된 디메틸디옥솔론의 제조방법에 관한 것이다. 구체적으로, 본 발명은 보다 단축된 공정으로 4,5-디메틸-1,3-디옥솔-2-온의 메틸기에 하이드록시기를 치환하는 방법에 관한 것이다.The present invention relates to a method for preparing hydroxy-substituted dimethyldioxolone. Specifically, the present invention relates to a method of substituting a hydroxy group for a methyl group of 4,5-dimethyl-1,3-dioxol-2-one in a shorter process.

리튬 이차전지는 높은 작동 전압, 높은 안정성, 긴 수명 등의 특성으로 휴대용 전자 제품 분야에서 널리 활용되고 있으며, 최근에는 전기 자동차의 발전에 따라, 전기 자동차 등 새로운 제품에도 다양한 활용이 기대된다.Lithium secondary batteries are widely used in portable electronic products due to their characteristics such as high operating voltage, high stability, and long lifespan. Recently, with the development of electric vehicles, various applications are expected for new products such as electric vehicles.

리튬 이차전지의 구성으로, 비수계 전해액은 기본적으로 전지의 충·방전 과정 동안 양극 및 음극에서 리튬 이온이 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)될 수 있도록, 리튬 이온을 이동시킨다. 또한, 높은 반응성 때문에, 비수계 전해액은 음극 표면에서 반응하여 Li2CO3, LiO, LiOH 등의 화합물을 생성함으로써, 음극 표면에서 고체 전해액 계면막(SEI)으로 불리는 부동태 피막을 형성한다. 초기 충전 과정에서 형성된 SEI막은 전해액이 음극에서 더 분해되는 것을 방지할 뿐만 아니라, 리튬 이온 통로 역할을 할 수 있어, 리튬 이차전지의 성능에 영향을 미친다.As a composition of a lithium secondary battery, the non-aqueous electrolyte basically moves lithium ions so that lithium ions can be intercalated and deintercalated in the positive and negative electrodes during the charging and discharging process of the battery. . In addition, because of its high reactivity, the non-aqueous electrolyte reacts on the surface of the negative electrode to form compounds such as Li 2 CO 3 , LiO, and LiOH, thereby forming a passivation film called a solid electrolyte interface film (SEI) on the surface of the negative electrode. The SEI film formed during the initial charging process not only prevents the electrolyte from further decomposing in the negative electrode, but also serves as a lithium ion passage, affecting the performance of the lithium secondary battery.

해당 기술 분야의 연구자들은 리튬 이차전지의 성능을 향상시키기 위해, 비수계 전해액의 성능을 개선하는 방법을 지속적으로 연구하였고, 비닐렌 카보네이트(Vinylene carbonate) 등과 같은 전해액 첨가제를 첨가하여 리튬 이차전지의 성능을 개선하는 방법 등을 개발하였다. 상기 비닐렌 카보네이트는 용매 분자보다 먼저 음극 표면에서 환원 분해 반응을 일으켜, 음극 표면에 부동태 피막을 형성할 수 있어, 전해액이 전극 표면에서 더 분해되는 것을 방지할 수 있고, 이에 의해 전지의 순환 기능을 향상시킬 수 있다. 그러나, 비닐렌 카보네이트 첨가 시, 고온 저장 과정에서 기체가 생성되어 전지가 팽창하거나, 형성된 부동태 막의 저항이 크다는 등의 문제점이 발생할 수 있어, 이러한 문제점을 개선하기 위해 비닐렌 카보네이트 유도체 등이 활용되기도 한다.In order to improve the performance of lithium secondary batteries, researchers in the relevant technical field have continuously studied ways to improve the performance of non-aqueous electrolytes, and added electrolyte additives such as vinylene carbonate to improve the performance of lithium secondary batteries. and developed methods to improve it. The vinylene carbonate causes a reduction and decomposition reaction on the surface of the negative electrode before solvent molecules do, thereby forming a passivation film on the surface of the negative electrode, preventing further decomposition of the electrolyte on the surface of the electrode, thereby improving the cycle function of the battery. can improve However, when vinylene carbonate is added, problems such as expansion of the battery due to gas generation during high-temperature storage or high resistance of the formed passivation film may occur. To improve these problems, vinylene carbonate derivatives are sometimes used. .

상기 비닐렌 카보네이트 유도체 중 4-하이드록시메틸-5-메틸-1,3-디옥솔-2-온(4-Hydroxymethyl-5-methyl-1,3-dioxol-2-one)은 하기 화학식 1의 구조를 갖는 화합물이다.Among the vinylene carbonate derivatives, 4-hydroxymethyl-5-methyl-1,3-dioxol-2-one (4-Hydroxymethyl-5-methyl-1,3-dioxol-2-one) is It is a compound with a structure.

[화학식 1][Formula 1]

Figure 112020136459431-pat00001
Figure 112020136459431-pat00001

상기 4-하이드록시메틸-5-메틸-1,3-디옥솔-2-온은 일반적으로 하기 화학식 2의 구조를 갖는 4,5-디메틸-1,3-디옥솔-2-온(4,5-Dimethyl-1,3-dioxol-2-one)에서 메틸기의 수소를 하이드록시기로 치환하여 제조한다. 본 명세서에서는 상기 기 4,5-디메틸-1,3-디옥솔-2-온은 디메틸디옥솔론으로도 표시하며, 4-하이드록시메틸-5-메틸-1,3-디옥솔-2-온을 하이드록시-치환된 디메틸디옥솔론(Hydroxy-substituted dimethyldioxolone)으로도 표시한다.The 4-hydroxymethyl-5-methyl-1,3-dioxol-2-one is generally 4,5-dimethyl-1,3-dioxol-2-one (4, 5-Dimethyl-1,3-dioxol-2-one) by substituting hydrogen in the methyl group with a hydroxyl group. In the present specification, the group 4,5-dimethyl-1,3-dioxol-2-one is also referred to as dimethyldioxolone, and 4-hydroxymethyl-5-methyl-1,3-dioxol-2-one is also expressed as hydroxy-substituted dimethyldioxolone.

[화학식 2][Formula 2]

Figure 112020136459431-pat00002
Figure 112020136459431-pat00002

종래에는 상기 하이드록시-치환된 디메틸디옥솔론을 디메틸디옥솔론으로부터 3단계 공정을 거쳐 제조하였다. 상기 3단계 공정은 하기 반응식 1과 같이 구성된다.Conventionally, the hydroxy-substituted dimethyldioxolone was prepared from dimethyldioxolone through a three-step process. The three-step process is configured as shown in Scheme 1 below.

[반응식 1][Scheme 1]

Figure 112020136459431-pat00003
Figure 112020136459431-pat00003

상기 3단계 공정 중 첫번째 단계는 디메틸디옥솔론에서 메틸기의 수소를 브롬(Bromine)으로 치환하는 단계이다. 상기 첫번째 단계에서는 디메틸디옥솔론을 1,2-디클로로에탄(1,2-Dichloroethane, 1,2-DCE)에 N-브로모숙신이미드(N-Bromosuccinimide, NBS) 및 아조-비스-이소부티로니트릴(Azo-bis-isobutyronitrile, AIBN)을 첨가한 용액에 첨가한 후, 100℃에서 4시간 동안 환류·교반하여, 브롬-치환된 디메틸디옥솔론(4-브로모메틸-5-메틸-1,3-디옥솔-2-온(4-Bromomethyl-5-methyl-1,3-dioxol-2-one))을 제조한다.The first step of the three-step process is a step of replacing the hydrogen of the methyl group in dimethyldioxolone with bromine. In the first step, dimethyldioxolone is mixed with N-Bromosuccinimide (NBS) and azo-bis-isobuty in 1,2-dichloroethane (1,2-DCE). After adding to the solution to which nitrile (Azo-bis-isobutyronitrile, AIBN) was added, refluxing and stirring at 100 ° C. for 4 hours, bromine-substituted dimethyldioxolone (4-bromomethyl-5-methyl-1, 3-dioxol-2-one (4-Bromomethyl-5-methyl-1,3-dioxol-2-one) is prepared.

상기 3단계 공정 중 두번째 단계는 첫번째 단계에서 생성된 브롬-치환된 디메틸디옥솔론에서 브롬을 포밀옥시기(Formyloxy group)로 치환하는 단계이다. 상기 두번째 단계에서는 브롬-치환된 디메틸디옥솔론을 포름산(Formic acid)과 아세토니트릴(Acetonitrile, MeCN)의 혼합 용액에 첨가하여 교반한 후, 트리에틸아민(Triethylamine, TEA)을 적가하고, 상온에서 2시간 동안 반응시켜, 포밀옥시-치환된 디메틸디옥솔론((5-메틸-2-옥소-1,3-디옥솔-4일)메틸 포메이트((5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl formate))을 제조한다.The second step of the three-step process is a step of substituting bromine with a formyloxy group in the bromine-substituted dimethyldioxolone produced in the first step. In the second step, after stirring by adding bromine-substituted dimethyldioxolone to a mixed solution of formic acid and acetonitrile (Acetonitrile, MeCN), triethylamine (TEA) was added dropwise, and 2 by reacting for an hour, formyloxy-substituted dimethyldioxolone ((5-methyl-2-oxo-1,3-dioxol-4yl)methyl formate ((5-Methyl-2-oxo-1,3- dioxol-4-yl)methyl formate)) is prepared.

상기 3단계 공정 중 세번째 단계는 두번째 단계에서 생성된 포밀옥시-치환된 디메틸디옥솔론에서 포밀옥시기를 하이드록시기(Hydroxy group)로 치환하는 단계이다. 상기 세번째 단계에서는 두번째 단계에서 제조된 포밀옥시-치환된 디메틸디옥솔론을 포함하는 용액에 메탄올(Methanol, MeOH)과 염산(HCl) 수용액을 첨가하여 교반한 후, 상온에서 5시간 방치하여, 하이드록시-치환된 디메틸디옥솔론을 제조한다.The third step of the three-step process is a step of replacing the formyloxy group with a hydroxy group in the formyloxy-substituted dimethyldioxolone produced in the second step. In the third step, methanol (Methanol, MeOH) and hydrochloric acid (HCl) aqueous solution were added to the solution containing the formyloxy-substituted dimethyldioxolone prepared in the second step, stirred, and left at room temperature for 5 hours to obtain hydroxyl -Preparation of substituted dimethyldioxolone.

상술한 종래의 하이드록시-치환된 디메틸디옥솔론 제조방법은 각 단계마다 공정시간 및 비용이 적지 않게 소요되기 때문에, 효율적이지 않다. 따라서, 해당 기술 분야에서는 효율적인 하이드록시-치환된 디메틸디옥솔론의 제조방법이 요구된다.The above-described conventional method for producing hydroxy-substituted dimethyldioxolone is not efficient because it requires a considerable amount of processing time and cost for each step. Therefore, there is a need for an efficient method for producing hydroxy-substituted dimethyldioxolone in the art.

Marco Alpegiani et al., On the Preparation of 4-Hydroxymethyl-5-Methyl-1,3-Dioxol-2-One, Synthetic Communications(1992), 22(9), 1277-1282Marco Alpegiani et al., On the Preparation of 4-Hydroxymethyl-5-Methyl-1,3-Dioxol-2-One, Synthetic Communications (1992), 22(9), 1277-1282

종래의 하이드록시-치환된 디메틸디옥솔론 제조방법이 갖는 공정시간 및 비용 소요 문제를 해결하기 위해, 본 발명은 디메틸디옥솔론에서 단일 공정으로 하이드록시-치환된 디메틸디옥솔론을 생성할 수 있는 하이드록시-치환된 디메틸디옥솔론의 제조방법을 제공하고자 한다.In order to solve the problems of the process time and cost of the conventional hydroxy-substituted dimethyldioxolone manufacturing method, the present invention is a hydroxy-substituted dimethyldioxolone capable of producing hydroxy-substituted dimethyldioxolone in a single process from dimethyldioxolone. -It is intended to provide a method for producing substituted dimethyldioxolone.

본 발명의 제1 측면에 따르면,According to the first aspect of the present invention,

본 발명은 디메틸디옥솔론을 비양성자성 용매에 비금속 산화물을 혼합한 용액에 첨가한 후 가열하는 생성단계를 포함하는 하이드록시-치환된 디메틸디옥솔론의 제조방법을 제공한다.The present invention provides a method for producing hydroxy-substituted dimethyldioxolone comprising a step of heating after adding dimethyldioxolone to a solution in which a non-metal oxide is mixed in an aprotic solvent.

본 발명의 일 구체예에 있어서, 상기 비양성자성 용매는 테트라하이드로퓨란 또는 1,4-디옥산이다.In one embodiment of the present invention, the aprotic solvent is tetrahydrofuran or 1,4-dioxane.

본 발명의 일 구체예에 있어서, 상기 비금속 산화물은 SeO2이다.In one embodiment of the present invention, the non-metal oxide is SeO 2 .

본 발명의 일 구체예에 있어서, 상기 생성단계에서 가열은 105℃ 내지 140℃로 수행된다.In one embodiment of the present invention, heating in the production step is performed at 105 ° C to 140 ° C.

본 발명의 일 구체예에 있어서, 상기 생성단계에서 가열과 함께 환류하고 교반하는 과정이 수행된다.In one embodiment of the present invention, a process of refluxing and stirring together with heating is performed in the production step.

본 발명의 일 구체예에 있어서, 상기 생성단계에서 디메틸디옥솔론과 비금속 산화물은 1:2 내지 1:3의 몰 비가 되도록 혼합된다.In one embodiment of the present invention, in the production step, dimethyldioxolone and non-metal oxide are mixed to a molar ratio of 1:2 to 1:3.

본 발명의 일 구체예에 있어서, 상기 생성단계에서 비양성자성 용매의 양은 디메틸디옥솔론과 비금속 산화물을 혼합한 후, 디메틸디옥솔론과 비금속 산화물의 총 몰 수를 기준으로 1.0M 내지 5.0M의 몰농도가 되도록 조절된다.In one embodiment of the present invention, the amount of the aprotic solvent in the production step is 1.0M to 5.0M based on the total number of moles of dimethyldioxolone and nonmetal oxide after mixing dimethyldioxolone and nonmetal oxide. concentration is adjusted.

본 발명의 일 구체예에 있어서, 상기 제조방법은 생성단계 후의 용액을 감압증류하여 용매를 제거하고, 남은 물질을 추출하여 하이드록시-치환된 디메틸디옥솔론을 수득하는 분리단계를 더 포함한다.In one embodiment of the present invention, the production method further comprises a separation step of distilling the solution after the production step under reduced pressure to remove the solvent, and extracting the remaining material to obtain hydroxy-substituted dimethyldioxolone.

본 발명의 일 구체예에 있어서, 상기 분리단계에서 추출은 남은 물질에 물, 및 물과 분리되는 유기용매를 투입하여 수행되며, 추출에 의해 하이드록시-치환된 디메틸디옥솔론은 유기용매 층으로 분리된다.In one embodiment of the present invention, in the separation step, the extraction is performed by adding water and an organic solvent separated from water to the remaining material, and hydroxy-substituted dimethyldioxolone is separated into an organic solvent layer by extraction do.

본 발명의 일 구체예에 있어서, 상기 추출은 물과 유기용매를 1:1.1 내지 1:3의 부피비로 투입하여 수행된다.In one embodiment of the present invention, the extraction is performed by adding water and an organic solvent at a volume ratio of 1:1.1 to 1:3.

본 발명의 일 구체예에 있어서, 상기 유기 용매는 메틸렌 클로라이드를 포함한다.In one embodiment of the present invention, the organic solvent includes methylene chloride.

본 발명의 일 구체예에 있어서, 상기 분리단계에서 추출 후 생성되는 유기용매 층을 감압증류하여 유기용매를 제거하고, 하이드록시-치환된 디메틸디옥솔론을 수득한다.In one embodiment of the present invention, the organic solvent layer produced after extraction in the separation step is distilled under reduced pressure to remove the organic solvent, and hydroxy-substituted dimethyldioxolone is obtained.

본 발명에 따른 하이드록시-치환된 디메틸디옥솔론의 제조방법은 디메틸디옥솔론에서 단일 공정으로 하이드록시-치환된 디메틸디옥솔론을 생성할 수 있기 때문에, 공정시간 및 비용을 획기적으로 절감할 수 있다.Since the method for producing hydroxy-substituted dimethyldioxolone according to the present invention can produce hydroxy-substituted dimethyldioxolone in a single process from dimethyldioxolone, process time and cost can be drastically reduced.

본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.The embodiments provided according to the present invention can all be achieved by the following description. The following description should be understood to describe preferred embodiments of the present invention, and it should be understood that the present invention is not necessarily limited thereto.

본 명세서에 기재된 물성에 대하여, 측정 조건 및 방법이 구체적으로 기재되어 있지 않은 경우, 상기 물성은 해당 기술 분야에서 통상의 기술자에 의해 일반적으로 사용되는 측정 조건 및 방법에 따라 측정된다.Regarding the physical properties described in this specification, when the measurement conditions and methods are not specifically described, the physical properties are measured according to measurement conditions and methods generally used by those skilled in the art.

본 발명은 디메틸디옥솔론을 비양성자성 용매에 비금속 산화물을 혼합한 용액에 첨가한 후 가열하는 생성단계를 포함하는 하이드록시-치환된 디메틸디옥솔론의 제조방법을 제공한다. 종래에는 디메틸디옥솔론으로부터 하이드록시-치환된 디메틸디옥솔론을 생성하기까지 총 3단계 공정을 거쳐야 하기 때문에, 공정시간 및 비용 측면에서 바람직하지 않았다. 이와 달리, 본 발명의 하이드록시-치환된 디메틸디옥솔론 제조방법에 따르면, 단일 공정으로도 디메틸디옥솔론으로부터 하이드록시-치환된 디메틸디옥솔론을 생성할 수 있기 때문에, 공정시간 및 비용을 획기적으로 절감할 수 있다. 하이드록시-치환된 디메틸디옥솔론을 생성한 후 용매 등으로부터 분리하는 과정은 일반적으로 감압증류방식을 활용한다는 점에서 종래방법과 본 발명에 따른 방법이 크게 다르지 않다.The present invention provides a method for producing hydroxy-substituted dimethyldioxolone comprising a step of heating after adding dimethyldioxolone to a solution in which a non-metal oxide is mixed in an aprotic solvent. Conventionally, since a total of three steps must be performed to produce hydroxy-substituted dimethyldioxolone from dimethyldioxolone, it is not preferable in terms of process time and cost. In contrast, according to the method for producing hydroxy-substituted dimethyldioxolone of the present invention, since hydroxy-substituted dimethyldioxolone can be produced from dimethyldioxolone in a single process, process time and cost are drastically reduced. can do. The process of producing hydroxy-substituted dimethyldioxolone and then separating it from a solvent is not significantly different from the conventional method and the method according to the present invention in that a vacuum distillation method is generally used.

본 발명에서는 하이드록시-치환된 디메틸디옥솔론을 제조하기 위해, 먼저 디메틸디옥솔론을 비양성자성 용매에 비금속 산화물을 혼합한 용매에 첨가한다. 상기 비양성자성 용매는 디메틸디옥솔론과 비금속 산화물을 효과적으로 분산시키고, 디메틸디옥솔론 또는 비금속 산화물과 부반응을 일으키지 않는 것이라면, 특별히 제한되지 않는다. 본 발명의 일 구체예에 따르면, 상기 비양성자성 용매는 테트라하이드로퓨란(Tetrahydrofuran) 또는 1,4-디옥산(1,4-Dioxane)이고, 바람직하게는 1,4-디옥산이다.In the present invention, in order to prepare hydroxy-substituted dimethyldioxolone, first, dimethyldioxolone is added to a solvent in which a non-metal oxide is mixed with an aprotic solvent. The aprotic solvent is not particularly limited as long as it effectively disperses dimethyldioxolone and non-metal oxide and does not cause a side reaction with dimethyldioxolone or non-metal oxide. According to one embodiment of the present invention, the aprotic solvent is tetrahydrofuran or 1,4-dioxane, preferably 1,4-dioxane.

상기 비금속 산화물은 디메틸디옥솔론과 반응하여 디메틸디옥솔론에 하이드록시기를 도입할 수 있는 물질이면, 특별히 제한되지 않는다. 본 발명의 일 구체예에 따르면, 상기 비금속 산화물은 SeO2이다.The non-metal oxide is not particularly limited as long as it reacts with dimethyldioxolone to introduce a hydroxyl group into dimethyldioxolone. According to one embodiment of the present invention, the non-metal oxide is SeO 2 .

비양성자성 용매에서 디메틸디옥솔론과 비금속 산화물을 혼합 시, 각 성분의 비율은 디메틸디옥솔론이 비금속 산화물과 반응하여, 디메틸디옥솔론이 높은 수율로 하이드록시기를 도입할 수 있는 범위 내에서 적절하게 조절될 수 있다. 본 발명의 일 구체예에 따르면, 상기 디메틸디옥솔론과 비금속 산화물은 1:2 내지 1:3의 몰 비로 혼합된다. 상기 비양성자성 용매는 디메틸디옥솔론과 비금속 산화물이 반응이 일어날 수 있는 적절한 거리를 유지하면서, 균일하게 분산될 수 있는 범위 내에서 적절하게 조절될 수 있다. 본 발명의 일 구체예에 따르면, 상기 비양성자성 용매의 양은 디메틸디옥솔론과 비금속 산화물을 혼합한 후, 1.0M 내지 5.0M의 몰농도가 되도록 조절된다. 상기 몰농도는 디메틸디옥솔론과 비금속 산화물의 총 몰 수를 기준으로 계산된다.When dimethyldioxolone and non-metal oxide are mixed in an aprotic solvent, the ratio of each component is appropriately adjusted within the range where dimethyldioxolone reacts with non-metal oxide and dimethyldioxolone introduces a hydroxyl group in high yield. It can be. According to one embodiment of the present invention, the dimethyldioxolone and the non-metal oxide are mixed in a molar ratio of 1:2 to 1:3. The aprotic solvent may be appropriately adjusted within a range in which dimethyldioxolone and the non-metal oxide can be uniformly dispersed while maintaining an appropriate distance for the reaction to occur. According to one embodiment of the present invention, the amount of the aprotic solvent is adjusted to a molar concentration of 1.0M to 5.0M after mixing dimethyldioxolone and a non-metal oxide. The molar concentration is calculated based on the total number of moles of dimethyldioxolone and non-metal oxide.

비양성자성 용매에 디메틸디옥솔론과 비금속 산화물을 혼합한 후, 생성된 용액을 가열하여, 디메틸디옥솔론과 비금속 산화물을 반응시킨다. 가열은 비양성자성 용매의 비점 이상의 온도로 수행하여, 상기 용액을 환류하고 교반하는 과정을 거치는 것이 디메틸디옥솔란과 비금속 산화물의 반응성을 높일 수 있다. 본 발명의 일 구체예에 따르면, 상기 가열은 105℃ 내지 140℃로 수행된다.After mixing dimethyldioxolone and non-metal oxide in an aprotic solvent, the resulting solution is heated to react dimethyldioxolone with non-metal oxide. Heating is performed at a temperature higher than the boiling point of the aprotic solvent, and the solution is refluxed and stirred to increase the reactivity of dimethyldioxolane and non-metal oxides. According to one embodiment of the present invention, the heating is performed at 105 °C to 140 °C.

본 발명에 따른 하이드록시-치환된 디메틸디옥솔론의 제조방법은 생성단계 후의 용액을 감압증류하여 용매를 제거하고, 남은 물질을 추출하여 하이드록시-치환된 디메틸디옥솔론을 수득하는 분리단계를 더 포함한다. 상기 분리단계는 상술한 생성단계에 의해 생성된 하이드록시-치환된 디메틸디옥솔란을 분리하여 수득하는 과정이다.The method for producing hydroxy-substituted dimethyldioxolone according to the present invention further comprises a separation step of distilling the solution after the production step under reduced pressure to remove the solvent and extracting the remaining material to obtain hydroxy-substituted dimethyldioxolone. do. The separation step is a process of separating and obtaining the hydroxy-substituted dimethyldioxolane produced by the above-described production step.

상기 생성단계 후의 용액을 감압증류하여 용매를 제거하고, 남은 물질은 추출을 통해, 하이드록시-치환된 디메틸디옥솔란과 기타 다른 물질로 분리된다. 상기 추출은 남은 물질에 물, 및 물과 분리되는 유기용매를 투입하여 수행된다. 상기 물은 부반응이 발생하지 않도록 탈이온수(Deionized water, DIW)를 사용할 수 있다. 상기 유기용매는 물과 분리되어 유기용매 층을 이룰 수 있는 것이면, 특별히 제한되지 않는다. 상기 유기용매는 에테르계 용매가 바람직할 수 있고, 본 발명의 일 구체예에 따르면, 석유 에테르(Petroleum ether)가 사용된다.The solution after the production step is distilled under reduced pressure to remove the solvent, and the remaining material is separated into hydroxy-substituted dimethyldioxolane and other materials through extraction. The extraction is performed by adding water and an organic solvent separated from the water to the remaining material. As the water, deionized water (DIW) may be used to prevent side reactions from occurring. The organic solvent is not particularly limited as long as it can be separated from water to form an organic solvent layer. The organic solvent may preferably be an ether-based solvent, and according to one embodiment of the present invention, petroleum ether is used.

상기 물과 유기용매의 비율은 추출 효율을 높일 수 있는 범위 내에서 적절하게 조절될 수 있다. 추출과정에서 하이드록시-치환된 디메틸디옥솔란은 유기용매 층으로 분리되기 때문에, 물보다는 유기용매를 다량 투입하는 것이 바람직할 수 있다. 본 발명의 일 구체예에 따르면, 추출과정에서 물과 유기용매는 1:1.1 내지 1:3의 부피비로 투입된다.The ratio of the water to the organic solvent may be appropriately adjusted within a range capable of increasing extraction efficiency. Since hydroxy-substituted dimethyldioxolane is separated into the organic solvent layer during the extraction process, it may be preferable to add a large amount of organic solvent rather than water. According to one embodiment of the present invention, water and organic solvent are added in a volume ratio of 1:1.1 to 1:3 in the extraction process.

추출과정에서 하이드록시-치환된 디메틸디옥솔란의 추출 효율을 높이기 위해, 상기 유기용매는 메틸렌 클로라이드(Methylene chloride, MC)를 포함할 수 있다. 상기 메틸렌 클로라이드는 하이드록시-치환된 디메틸디옥솔란과 친화도가 높아 혼합 시, 물 층에 포함된 하이드록시-치환된 디메틸디옥솔란을 보다 효과적으로 추출할 수 있고, 에테르계 유기용매 등과 혼합성이 높아 최종적으로 유기용매 층에 포함된다. 본 발명의 일 구체예에 따르면, 상기 유기용매는 유기용매 총 부피를 기준으로 10 내지 30 부피%의 메틸렌 클로라이드를 포함한다.In order to increase the extraction efficiency of hydroxy-substituted dimethyldioxolane in the extraction process, the organic solvent may include methylene chloride (MC). The methylene chloride has a high affinity with hydroxy-substituted dimethyldioxolane, so when mixed, the hydroxy-substituted dimethyldioxolane contained in the water layer can be extracted more effectively, and the miscibility is high with ether-based organic solvents. Finally, it is included in the organic solvent layer. According to one embodiment of the present invention, the organic solvent includes 10 to 30% by volume of methylene chloride based on the total volume of the organic solvent.

추출과정은 하이드록시-치환된 디메틸디옥솔란의 추출 효율을 높이기 위해, 반복적으로 수행될 수 있으며, 물 층에 메틸렌 클로라이드만 별도로 투입될 수도 있다.The extraction process may be repeatedly performed to increase the extraction efficiency of hydroxy-substituted dimethyldioxolane, and only methylene chloride may be separately added to the water layer.

상기 분리단계에서 추출 후 생성되는 유기용매 층을 감압증류하여 유기용매를 제거하고, 하이드록시-치환된 디메틸디옥솔론을 수득한다. 상기 하이드록시-치환된 디메틸디옥솔론을 수득하는 과정에서 수율을 높이기 위해, 감압여과 등의 불순물 제거 과정을 수행될 수 있다.The organic solvent layer produced after extraction in the separation step is distilled under reduced pressure to remove the organic solvent, and hydroxy-substituted dimethyldioxolone is obtained. In order to increase the yield in the process of obtaining the hydroxy-substituted dimethyldioxolone, an impurity removal process such as vacuum filtration may be performed.

이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.Hereinafter, preferred embodiments are presented to aid understanding of the present invention, but the following examples are provided to more easily understand the present invention, but the present invention is not limited thereto.

실시예Example

실시예Example 1 One

20g의 디메틸디옥솔론 및 50g의 SeO2를 200ml의 1,4-디옥산에 첨가한 후, 생성된 혼합 용액을 120℃로 가열하였다. 증발된 용매는 10℃ 이하로 냉각하여 환류시키면서 혼합 용액을 지속적으로 교반하여, 반응물을 2시간 동안 반응시켰다. 반응 후, 혼합 용액을 상온에서 충분히 냉각한 후 셀라이트 패드(Celite pad)에서 감압여과하였다. 여과 후, 여과된 용액을 감압증류하여 용매를 제거하였다. 용매 제거 후, 남은 물질에 300ml의 탈이온수 및 500ml의 유기용매(석유 에테르와 메틸렌 클로라이드의 4:1 부피비의 혼합 용매)를 넣고, 충분히 혼합하여 3회 추출하였다. 이 후, 물 층을 분리한 후, 물 층에 400ml의 메틸렌 클로라이드를 넣고, 충분히 혼합하여 4회 추출하였다. 추출한 유기물 층을 모아, MgSO4를 이용하여 건조한 후, 다시 한번 셀라이트 패드에서 감압여과하였다. 여과 후, 여과된 용액을 감압증류하여 용매를 80% 제거하였다. 용매를 80% 제거한 후, 농축된 용액을 추가적으로 감압여과하여, 붉은색 고체인 불순물을 제거하였다. 여과된 용액을 감압증류하여 용매를 완전히 제거한 후, 하이드록시-치환된 디메틸디옥솔론을 수득하였다. 실시예 1에 따른 하이드록시-치환된 디메틸디옥솔론 생성과정은 개략적으로 하기 반응식 2와 같이 표시된다.After adding 20 g of dimethyldioxolone and 50 g of SeO 2 to 200 ml of 1,4-dioxane, the resulting mixed solution was heated to 120°C. The evaporated solvent was cooled to 10° C. or less, and the mixed solution was continuously stirred while being refluxed, and the reactants were reacted for 2 hours. After the reaction, the mixed solution was sufficiently cooled at room temperature and filtered under reduced pressure on a Celite pad. After filtration, the filtered solution was distilled under reduced pressure to remove the solvent. After removing the solvent, 300 ml of deionized water and 500 ml of an organic solvent (a mixed solvent of petroleum ether and methylene chloride in a volume ratio of 4:1) were added to the remaining material, and the mixture was thoroughly mixed and extracted three times. Thereafter, after separating the water layer, 400 ml of methylene chloride was added to the water layer, thoroughly mixed, and extracted 4 times. The extracted organic layer was collected, dried using MgSO 4 , and filtered again under reduced pressure on a celite pad. After filtration, the filtered solution was distilled under reduced pressure to remove 80% of the solvent. After removing 80% of the solvent, the concentrated solution was additionally filtered under reduced pressure to remove red solid impurities. After distilling the filtered solution under reduced pressure to completely remove the solvent, hydroxy-substituted dimethyldioxolone was obtained. The production process of hydroxy-substituted dimethyldioxolone according to Example 1 is schematically shown in Scheme 2 below.

[반응식 2][Scheme 2]

Figure 112020136459431-pat00004
Figure 112020136459431-pat00004

수득된 물질은 하기의 NMR 결과(장치: JMTC-400/54/JJ/YH)를 가지며, 하기 결과를 통해 목적 물질인 하이드록시-치환된 디메틸디옥솔론이 생성되었음을 확인할 수 있다.The obtained material has the following NMR results (device: JMTC-400/54/JJ/YH), and through the results below, it can be confirmed that the target material, hydroxy-substituted dimethyldioxolone, was produced.

1H-NMR(400MHz, CDCl3): 4.41 (s, 2H, -CH2), 2.13 (s, 3H, -CH3) 1 H-NMR (400 MHz, CDCl 3 ): 4.41 (s, 2H, -CH 2 ), 2.13 (s, 3H, -CH 3 )

13C-NMR(400MHz, CDCl3): 9.17(-CH3), 52.92(-CH2-OH), 137.40(-C-CH3), 153.23 (O-C(O)-O-), 153.79(=C-CH2-OH) 13 C-NMR (400 MHz, CDCl 3 ): 9.17(-CH 3 ), 52.92(-CH 2 -OH), 137.40(-C-CH 3 ), 153.23 (OC(O)-O-), 153.79(= C-CH 2 -OH)

비교예comparative example 1 One

25g의 디메틸디옥솔론, 30g의 N-브로모숙신이미드 및 2g의 아조-비스-이소부티로니트릴을 1.5L의 1,2-디클로로에탄에 첨가한 후, 생성된 혼합 용액을 100℃로 가열하였다. 증발된 용매는 10℃ 이하로 냉각하여 환류시키면서 혼합 용액을 지속적으로 교반하여, 반응물을 4시간 동안 반응시켰다. 반응 후, 혼합 용액을 감압증류하여 용매를 50% 제거한 후, 농축된 용액을 셀라이트 패드에서 감압여과하여 불순물을 제거하였다. 여과된 용액을 벤젠과 사이클로헥산의 1:3 부피비의 혼합 용액으로 재결정하여, 브롬-치환된 디메틸디옥솔론을 수득하였다.After adding 25 g of dimethyldioxolone, 30 g of N-bromosuccinimide and 2 g of azo-bis-isobutyronitrile to 1.5 L of 1,2-dichloroethane, the resulting mixed solution was heated to 100°C. did The evaporated solvent was cooled to 10° C. or less, and the mixed solution was continuously stirred while being refluxed, and the reactants were reacted for 4 hours. After the reaction, the mixed solution was distilled under reduced pressure to remove 50% of the solvent, and the concentrated solution was filtered under reduced pressure on a celite pad to remove impurities. The filtered solution was recrystallized from a mixed solution of benzene and cyclohexane in a volume ratio of 1:3 to obtain bromine-substituted dimethyldioxolone.

수득된 브롬-치환된 디메틸디옥솔론은 다음의 NMR 결과를 가진다.The obtained bromine-substituted dimethyldioxolone has the following NMR results.

1H-NMR(400MHz, CDCl3): 4.31 (s, 2H, -CH2), 2.14 (s, 3H, -CH3) 1 H-NMR (400 MHz, CDCl 3 ): 4.31 (s, 2H, -CH 2 ), 2.14 (s, 3H, -CH 3 )

13C-NMR(400MHz, CDCl3) : 10.35(-CH3), 26.48(-CH2-Br), 156.10(-C-CH2-Br), 143.75(-C-CH3), 150.27(-C=O) 13 C-NMR (400 MHz, CDCl 3 ): 10.35 (-CH 3 ), 26.48 (-CH 2 -Br), 156.10 (-C-CH 2 -Br), 143.75 (-C-CH 3 ), 150.27 (- C = O)

25g의 브롬-치환된 디메틸디옥솔론을 15ml의 포름산과 400ml의 아세토니트릴에 넣고 교반한 후, 50ml의 트리에틸아민을 적가하여 2시간 동안 반응시켰다(여기서, 포밀옥시-치환된 디메틸디옥솔론이 생성됨).25 g of bromine-substituted dimethyldioxolone was added to 15 ml of formic acid and 400 ml of acetonitrile and stirred, and then 50 ml of triethylamine was added dropwise and reacted for 2 hours (here, formyloxy-substituted dimethyldioxolone was produced). ).

반응 혼합물에 300ml의 메탄올과 1ml의 37%의 염산 수용액을 넣고 교반한 후, 상온에서 5시간 동안 방치하였다. 유기용매 층을 추출한 후, 37%의 염산 수용액으로 2회 세척한 후, 유기용매 층의 용액을 감압증류하여 용매를 완전히 제거한 후, 하이드록시-치환된 디메틸디옥솔론을 수득하였다.300 ml of methanol and 1 ml of 37% hydrochloric acid aqueous solution were added to the reaction mixture, stirred, and allowed to stand at room temperature for 5 hours. After the organic solvent layer was extracted, washed twice with a 37% aqueous hydrochloric acid solution, and the solution of the organic solvent layer was distilled under reduced pressure to completely remove the solvent to obtain hydroxy-substituted dimethyldioxolone.

비교예 1에 따른 하이드록시-치환된 디메틸디옥솔론 생성과정은 개략적으로 하기 반응식 1와 같이 표시된다.The production process of hydroxy-substituted dimethyldioxolone according to Comparative Example 1 is schematically shown in Scheme 1 below.

[반응식 1][Scheme 1]

Figure 112020136459431-pat00005
Figure 112020136459431-pat00005

수득된 물질은 하기의 NMR 결과를 가지며, 하기 결과는 실시예 1과 동일한 결과로 목적 물질인 하이드록시-치환된 디메틸디옥솔론이 생성되었음을 확인할 수 있다.The obtained material has the following NMR results, and the following results are the same as those of Example 1, confirming that the target material, hydroxy-substituted dimethyldioxolone, was produced.

1H-NMR(400MHz, CDCl3): 4.41 (s, 2H, -CH2), 2.13 (s, 3H, -CH3) 1 H-NMR (400 MHz, CDCl 3 ): 4.41 (s, 2H, -CH 2 ), 2.13 (s, 3H, -CH 3 )

13C-NMR(400MHz, CDCl3): 9.17(-CH3), 52.92(-CH2-OH), 137.40(-C-CH3), 153.23 (O-C(O)-O-), 153.79(=C-CH2-OH) 13 C-NMR (400 MHz, CDCl 3 ): 9.17(-CH 3 ), 52.92(-CH 2 -OH), 137.40(-C-CH 3 ), 153.23 (OC(O)-O-), 153.79(= C-CH 2 -OH)

본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications or changes of the present invention belong to the scope of the present invention, and the specific protection scope of the present invention will be clarified by the appended claims.

Claims (12)

디메틸디옥솔론을 비양성자성 용매에 비금속 산화물을 혼합한 용액에 첨가한 후 가열하는 생성단계를 포함하고,
상기 비금속 산화물은 SeO2인 하이드록시-치환된 디메틸디옥솔론의 제조방법.
A production step of adding dimethyldioxolone to a solution of a mixture of a non-metal oxide in an aprotic solvent and then heating;
The non-metal oxide is SeO 2 Method for producing hydroxy-substituted dimethyldioxolone.
청구항 1에 있어서,
상기 비양성자성 용매는 테트라하이드로퓨란 또는 1,4-디옥산인 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 1,
The method for producing hydroxy-substituted dimethyldioxolone, characterized in that the aprotic solvent is tetrahydrofuran or 1,4-dioxane.
삭제delete 청구항 1에 있어서,
상기 생성단계에서 가열은 105℃ 내지 140℃로 수행되는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 1,
The method for producing hydroxy-substituted dimethyldioxolone, characterized in that the heating in the production step is carried out at 105 ℃ to 140 ℃.
청구항 1에 있어서,
상기 생성단계에서 가열과 함께 환류하고 교반하는 과정이 수행되는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 1,
Method for producing hydroxy-substituted dimethyldioxolone, characterized in that the process of refluxing and stirring with heating is performed in the production step.
청구항 1에 있어서,
상기 생성단계에서 디메틸디옥솔론과 비금속 산화물은 1:2 내지 1:3의 몰 비가 되도록 혼합되는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 1,
In the production step, dimethyldioxolone and non-metal oxide are mixed to a molar ratio of 1:2 to 1:3.
청구항 6에 있어서,
상기 생성단계에서 비양성자성 용매의 양은 디메틸디옥솔론과 비금속 산화물을 혼합한 후, 디메틸디옥솔론과 비금속 산화물의 총 몰 수를 기준으로 1.0M 내지 5.0M의 몰농도가 되도록 조절되는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 6,
In the production step, the amount of the aprotic solvent is adjusted to a molar concentration of 1.0M to 5.0M based on the total number of moles of dimethyldioxolone and nonmetal oxide after mixing dimethyldioxolone and nonmetal oxide. Method for preparing hydroxy-substituted dimethyldioxolone.
청구항 1에 있어서,
상기 제조방법은 생성단계 후의 용액을 감압증류하여 용매를 제거하고, 남은 물질을 추출하여 하이드록시-치환된 디메틸디옥솔론을 수득하는 분리단계를 더 포함하는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 1,
The manufacturing method further comprises a separation step of distilling the solution after the production step under reduced pressure to remove the solvent and extracting the remaining material to obtain hydroxy-substituted dimethyldioxolone Hydroxy-substituted dimethyldioxolone characterized in that How to make Solon.
청구항 8에 있어서,
상기 분리단계에서 추출은 남은 물질에 물, 및 물과 분리되는 유기용매를 투입하여 수행되며, 추출에 의해 하이드록시-치환된 디메틸디옥솔론은 유기용매 층으로 분리되는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 8,
In the separation step, extraction is performed by adding water and an organic solvent separated from water to the remaining material, and hydroxy-substituted dimethyldioxolone is separated into an organic solvent layer by extraction. Hydroxy-substituted Method for producing dimethyldioxolone.
청구항 9에 있어서,
상기 추출은 물과 유기용매를 1:1.1 내지 1:3의 부피비로 투입하여 수행되는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 9,
The extraction is a method for producing hydroxy-substituted dimethyldioxolone, characterized in that carried out by adding water and an organic solvent in a volume ratio of 1: 1.1 to 1: 3.
청구항 9에 있어서,
상기 유기 용매는 메틸렌 클로라이드를 포함하는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 9,
The method for producing hydroxy-substituted dimethyldioxolone, characterized in that the organic solvent comprises methylene chloride.
청구항 9에 있어서,
상기 분리단계에서 추출 후 생성되는 유기용매 층을 감압증류하여 유기용매를 제거하고, 하이드록시-치환된 디메틸디옥솔론을 수득하는 것을 특징으로 하는 하이드록시-치환된 디메틸디옥솔론의 제조방법.
The method of claim 9,
Method for producing hydroxy-substituted dimethyldioxolone, characterized in that the organic solvent layer produced after extraction in the separation step is distilled under reduced pressure to remove the organic solvent, and to obtain hydroxy-substituted dimethyldioxolone.
KR1020200175955A 2020-12-16 2020-12-16 Method for producing hydroxy-substituted dimethyldioxolone KR102504826B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200175955A KR102504826B1 (en) 2020-12-16 2020-12-16 Method for producing hydroxy-substituted dimethyldioxolone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200175955A KR102504826B1 (en) 2020-12-16 2020-12-16 Method for producing hydroxy-substituted dimethyldioxolone

Publications (2)

Publication Number Publication Date
KR20220085951A KR20220085951A (en) 2022-06-23
KR102504826B1 true KR102504826B1 (en) 2023-02-28

Family

ID=82222101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200175955A KR102504826B1 (en) 2020-12-16 2020-12-16 Method for producing hydroxy-substituted dimethyldioxolone

Country Status (1)

Country Link
KR (1) KR102504826B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149054A (en) 2010-12-27 2012-08-09 Dainippon Sumitomo Pharma Co Ltd Pharmaceutical agent comprising n-substituted-cyclic amino derivative
WO2019229384A1 (en) 2018-05-31 2019-12-05 Bostik Sa Monoethylenically unsaturated monomers and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220085952A (en) * 2020-12-16 2022-06-23 주식회사 천보 Method for producing hydroxy-substituted dimethyldioxolone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149054A (en) 2010-12-27 2012-08-09 Dainippon Sumitomo Pharma Co Ltd Pharmaceutical agent comprising n-substituted-cyclic amino derivative
WO2019229384A1 (en) 2018-05-31 2019-12-05 Bostik Sa Monoethylenically unsaturated monomers and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Molecules, Vol. 20, pp. 10205-10243(2015.06.03.)

Also Published As

Publication number Publication date
KR20220085951A (en) 2022-06-23

Similar Documents

Publication Publication Date Title
US9466431B2 (en) Ionic compound and process for production thereof, and electrolytic solution and electrical storage device each utilizing the ionic compound
KR102070647B1 (en) Synthetic Method of Lithium bisoxalatoborate
JP5695209B2 (en) Nonaqueous electrolyte containing phosphonosulfonic acid compound and lithium secondary battery
JP4650627B2 (en) Cyclic carbonate-modified siloxane, method for producing the same, non-aqueous electrolyte, secondary battery, and capacitor
EP3335265B1 (en) Cyclic dinitrile compounds as additives for electrolyte
KR20180089525A (en) Non-aqueous electrolyte for secondary battery and secondary battery having same
KR20130029397A (en) Nonaqueous electrolyte solution containing silyl ester group-containing phosphonic acid derivative, and lithium secondary battery
JP6932686B2 (en) Methods for Producing Fluorocyclic Carbonates and Their Use for Lithium Ion Batteries
US7722995B2 (en) Non-aqueous electrolytic solution, secondary battery, and electrochemical capacitor
EP2062902A1 (en) Lithium salt
WO2014043981A1 (en) Halogenosilane-functionalized carbonate electrolyte material, preparation method thereof and use in lithium ion battery electrolyte
KR20120093262A (en) Process for manufacturing phosphate esters from phosphoryl chloride and monoalkyl ethers of glycols or polyglycols
JP2007087935A (en) Nonaqueous electrolyte, secondary battery, and electrochemical capacitor
KR102212995B1 (en) Preparation method and application of high-purity and proportional-mixed lithium salt
KR102504826B1 (en) Method for producing hydroxy-substituted dimethyldioxolone
KR20220085952A (en) Method for producing hydroxy-substituted dimethyldioxolone
JP2019048792A (en) Lithium carbonate-boron trifluoride complex, electrolyte, electrolytic solution, gel electrolyte, solid electrolyte, and lithium ion secondary battery
CN111137870A (en) Lithium difluorophosphate, preparation method thereof and lithium ion battery electrolyte
KR102638391B1 (en) Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery
US20170222267A1 (en) Glycerol acetal polyethers and use thereof in lithium cells
CN105384761B (en) The preparation method of three lithium oxalate borines
CN113087600B (en) Method for synthesizing 1, 4-dimethoxy tetrafluorobenzene
KR102512772B1 (en) Method for producing active material
CN110911749B (en) High-voltage lithium ion battery electrolyte, additive and preparation method of additive
CN117384098A (en) Preparation and purification method of 4, 5-dicyano-2-trifluoromethyl imidazole lithium

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant