KR102638391B1 - Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery - Google Patents

Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
KR102638391B1
KR102638391B1 KR1020230069305A KR20230069305A KR102638391B1 KR 102638391 B1 KR102638391 B1 KR 102638391B1 KR 1020230069305 A KR1020230069305 A KR 1020230069305A KR 20230069305 A KR20230069305 A KR 20230069305A KR 102638391 B1 KR102638391 B1 KR 102638391B1
Authority
KR
South Korea
Prior art keywords
lithium secondary
isosorbide
dialkanesulfonyl
secondary battery
electrolyte
Prior art date
Application number
KR1020230069305A
Other languages
Korean (ko)
Inventor
고성현
윤대봉
정유리
노진영
Original Assignee
삼화페인트공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화페인트공업주식회사 filed Critical 삼화페인트공업주식회사
Priority to KR1020230069305A priority Critical patent/KR102638391B1/en
Application granted granted Critical
Publication of KR102638391B1 publication Critical patent/KR102638391B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 다이알칸설포닐 아이소소바이드 화합물의 신규한 제조 방법, 상기 제조 방법으로 제조한, 염소 농도가 낮은 고순도의 다이알칸설포닐 아이소소바이드 화합물로 이루어지는 리튬이차전지 전해액 첨가제, 이를 포함하는 리튬이차전지 전해액 및 리튬이차전지를 제공한다.
본 발명의 다이알칸설포닐 아이소소바이드 화합물의 제조 방법에 의하면, 종래의 기술에서 산과 염기의 직접적 반응, 장시간 소요에 대한 문제점을 해결하고, 염소 함유량이 저감된 고순도의 다이알칸설포닐 아이소소바이드 화합물을 간단하게 제조할 수 있다.
본 발명의 리튬이차전지용 전해액 첨가제, 리튬이차전지용 전해액, 리튬이차전지에 의하면, 리튬이차전지, 특히 하이니켈 양극재를 포함하는 리튬이차전지의 전기화학적 특성을 향상시킬 수 있다.
The present invention relates to a novel production method of a dialkanesulfonyl isosorbide compound, a lithium secondary battery electrolyte additive consisting of a high-purity dialkanesulfonyl isosorbide compound with a low chlorine concentration prepared by the above production method, and a lithium secondary battery containing the same. Provides electrolyte and lithium secondary batteries.
According to the method for producing dialkanesulfonyl isosorbide compounds of the present invention, the problems of direct reaction between acid and base and long time required in the conventional technology are solved, and high purity dialkanesulfonyl isosorbide compounds with reduced chlorine content are produced. It can be manufactured simply.
According to the electrolyte solution additive for lithium secondary batteries, the electrolyte solution for lithium secondary batteries, and the lithium secondary battery of the present invention, the electrochemical properties of lithium secondary batteries, especially lithium secondary batteries containing a high nickel cathode material, can be improved.

Description

다이알칸설포닐 아이소소바이드 화합물의 제조 방법, 리튬이차전지용 전해액 첨가제, 리튬이차전지용 전해액 및 리튬이차전지{Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery}Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery }

본 발명은 다이알칸설포닐 아이소소바이드 화합물을 안정적이면서 고순도로 제조할 수 있는 신규한 제조 방법에 관한 것이다.The present invention relates to a novel production method that can produce dialkanesulfonyl isosorbide compounds stably and with high purity.

또한 본 발명은, 상기 제조 방법으로 제조된, 염소 불순물이 저감된 다이알칸설포닐 아이소소바이드 화합물로 이루어지는 리튬이차전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 리튬이차전지용 전해액, 및 상기 전해액을 포함하는 리튬이차전지에 관한 것이다.In addition, the present invention relates to an electrolyte solution additive for lithium secondary batteries made of a dialkanesulfonyl isosorbide compound with reduced chlorine impurities prepared by the above production method, an electrolyte solution for lithium secondary batteries containing the electrolyte solution additive, and lithium containing the electrolyte solution. It is about secondary batteries.

리튬이차전지는 크게 양극, 음극, 전해액, 분리막으로 구성된다. 양극과 음극에서는 리튬이온의 인터칼레이션과 디인터칼레이션이 반복되면서 에너지를 발생시키며, 전해액은 리튬이온이 이동하는 통로가 되고, 분리막은 양극과 음극이 만나 전지 내 쇼트가 일어나는 것을 방지하는 역할을 수행한다. 특히 양극은 전지의 용량과 밀접한 관련이 있으며, 음극은 고속충방전 등과 같은 전지의 성능과 밀접한 관련이 있다. Lithium secondary batteries are largely composed of an anode, a cathode, an electrolyte, and a separator. The anode and cathode generate energy by repeating intercalation and deintercalation of lithium ions, the electrolyte becomes a passage through which lithium ions move, and the separator serves to prevent short circuits within the battery when the anode and cathode meet. Perform. In particular, the positive electrode is closely related to the capacity of the battery, and the negative electrode is closely related to battery performance such as fast charging and discharging.

전지의 생산 과정에서 진행되는 화성(formation) 공정에서, 음극 표면에는 SEI(Solid Electrolyte Interphase), 양극 표면에는 CEI(cathod electrolyte interphase)라고 불리는 얇은 피막이 형성된다. In the formation process that occurs during the production of a battery, a thin film called SEI (Solid Electrolyte Interphase) is formed on the cathode surface and a thin film called CEI (cathode electrolyte interphase) is formed on the anode surface.

리튬이차전지의 비수계 전해액에 함유시켜 전극 표면에 피막을 형성하는 작용을 하는 첨가제 물질로서, 아이소소바이드 골격과 술폰산기를 갖는 화합물이 특허문헌 1에 개시되어 있다. 특허문헌 1에서는 다이메탄설포닐 아이소소바이드 화합물을 첨가제로서 함유하는 전해액을 사용하여, 제조된 전지의 수명 평가를 진행하였으나, 상기 화합물의 제조 방법이나 정제 방법은 제시하지 않으며, 상기 화합물 중에 제조 과정에 유래하여 포함되어 있는 염소 및 그에 따른 문제점에 대한 인식은 나타나 있지 않다.Patent Document 1 discloses a compound having an isosorbide skeleton and a sulfonic acid group as an additive material that is included in the non-aqueous electrolyte solution of a lithium secondary battery and acts to form a film on the electrode surface. In Patent Document 1, the lifespan of a battery manufactured was evaluated using an electrolyte solution containing dimethanesulfonyl isosorbide compound as an additive, but the manufacturing method or purification method of the compound is not presented, and the manufacturing process among the compounds is not provided. There is no awareness of the chlorine contained in it and the problems associated with it.

다이알칸설포닐 아이소소바이드 화합물을 제조하기 위한 종래의 기술에서는, 염기성 촉매 존재 하에서 아이소소바이드와 알칸설포닐 클로라이드(alkanesulfonyl chloride)를 반응시키고, 결정화를 통해 정제를 진행한다.In the conventional technology for producing dialkanesulfonyl isosorbide compounds, isosobide and alkanesulfonyl chloride are reacted in the presence of a basic catalyst, and purification is performed through crystallization.

특허문헌 2에서는 용매 겸 염기로서 피리딘을 사용하여 1,4;3,6-다이언하이드로-D-글루시톨 2,5-다이메탄설포네이트(즉, 다이메탄설포닐 아이소소바이드)를 합성하고, 상온에서 15시간 이상 반응을 진행하며, 용매 겸 염기인 피리딘을 제거하기 위해 감압 증류를 진행한다. 이 반응은 생성물을 얻기 위해 장시간 반응을 진행하고, 반응 시 염기성인 피리딘과 산성인 메탄설포닐 클로라이드를 직접적으로 반응시켜 작업자의 위험성이 존재한다. 특허문헌 2는 상기 반응 후의 고순도를 목적으로 하는 정제 방법을 제시하지 않는다.In Patent Document 2, 1,4;3,6-dianhydro-D-glucitol 2,5-dimethanesulfonate (i.e., dimethanesulfonyl isosorbide) was synthesized using pyridine as a solvent and base. , the reaction proceeds at room temperature for more than 15 hours, and distillation under reduced pressure is performed to remove pyridine, which is both a solvent and a base. This reaction takes a long time to obtain the product, and there is a risk to workers because basic pyridine and acidic methanesulfonyl chloride react directly during the reaction. Patent Document 2 does not suggest a purification method aimed at high purity after the above reaction.

특허문헌 3에서는 용매 겸 염기로서 무수 피리딘을 사용하여 아이소소바이드와 메실 클로라이드를 반응시켜 아이소소바이드 메탄설포네이트를 제조하며, 상온에서 20시간 이상 반응을 진행한다. 이후 정제 단계에서는 다이클로로메탄을 사용하는데, 다이클로로메탄에 대한 생성물의 용해도가 낮아, 수율 저하가 발생할 수 있다. 특허문헌 3은 아이소소바이드 모노이미다졸염 화합물의 진통제 용도를 개시하며, 아이소소바이드 메탄설포네이트는 아이소소바이드 이미다졸염 화합물을 합성하기 위한 중간체로서 제시되어 있다.In Patent Document 3, isosorbide methanesulfonate is prepared by reacting isosorbide and mesyl chloride using anhydrous pyridine as a solvent and base, and the reaction is carried out at room temperature for more than 20 hours. In the subsequent purification step, dichloromethane is used, but the solubility of the product in dichloromethane is low, which may lead to a decrease in yield. Patent Document 3 discloses the use of an isosorbide monoimidazole salt compound as an analgesic, and isosorbide methanesulfonate is presented as an intermediate for synthesizing the isosorbide imidazole salt compound.

비특허문헌 1에서는 용매 겸 염기로 피리딘을 사용하여 아이소소바이드 메탄설포네이트를 합성하는데, 상온에서 20시간 이상 반응을 진행한다. 반응 시 염기성인 피리딘과 산성인 메탄설포닐 클로라이드를 직접적으로 반응시켜 작업자의 위험성이 존재한다. 비특허문헌 1은 상기 반응 후의 고순도를 목적으로 하는 정제 방법을 제시하지 않는다.In Non-Patent Document 1, isosorbide methanesulfonate is synthesized using pyridine as both a solvent and a base, and the reaction proceeds at room temperature for more than 20 hours. During the reaction, there is a risk to workers as basic pyridine and acidic methanesulfonyl chloride react directly. Non-patent Document 1 does not suggest a purification method aimed at high purity after the above reaction.

일본 특허 등록 제6115122호 공보Japanese Patent Registration No. 6115122 Publication 미국 특허 등록 제4,535,158호 공보U.S. Patent Registration No. 4,535,158 중국 공개 특허 제106478653호 공보China Publication Patent No. 106478653

New J. Chem., 2009, 33, 479-483New J. Chem., 2009, 33, 479-483

본 발명은 반응 안정성을 확보하고, 생성물의 최종 수율을 저하시키지 않으면서도 제조 과정에 유래하는 염소 농도를 간이한 방법으로 저하시킬 수 있는, 다이알칸설포닐 아이소소바이드의 새로운 제조 방법을 제공하는 것을 과제로 한다.The object of the present invention is to provide a new method for producing dialkanesulfonyl isosorbide, which ensures reaction stability and can reduce the chlorine concentration derived from the production process in a simple manner without reducing the final yield of the product. Do this.

본 발명은 종래의 다이알칸설포닐 아이소소바이드로 이루어진 전해액 첨가제에 비하여 더욱 향상된 전기화학적 특성을 발휘하는 고순도의 다이알칸설포닐 아이소소바이드로 이루어진 전해액 첨가제를 제공하는 것을 과제로 한다.The object of the present invention is to provide an electrolyte solution additive made of high-purity dialkanesulfonyl isosorbide that exhibits further improved electrochemical properties compared to conventional electrolyte solution additives made of dialkanesulfonyl isosorbide.

본 발명은 상기 전해액 첨가제를 포함하는 전해액으로서, 리튬이차전지, 특히 하이 니켈(high nickel) 양극재를 사용하는 리튬이차전지에 사용되는 경우, 더욱 향상된 전기화학적 특성을 발휘하는 전해액을 제공하는 것을 과제로 한다.The object of the present invention is to provide an electrolyte solution containing the above electrolyte solution additive, which exhibits further improved electrochemical properties when used in lithium secondary batteries, especially lithium secondary batteries using high nickel cathode materials. Do this.

본 발명자들은, 각종 검토를 행한 결과, 종래의 방법으로 제조된 다이알칸설포닐 아이소소바이드 화합물 중에는, 제조 과정 중에 사용된 함염소 물질에 유래하는 불순물인 염소가 함유되어 있고, 그 염소의 농도를 50ppm 이하로 저감하여 고순도의 다이알칸설포닐 아이소소바이드로 함으로써, 당해 다이알칸설포닐 아이소소바이드로 이루어진 전해액 첨가제를 사용한 리튬이차전지의 전기화학적 특성이 크게 향상함을 알아내어, 본 발명을 완성하기에 이르렀다.As a result of various studies, the present inventors have found that dialkanesulfonyl isosorbide compounds produced by conventional methods contain chlorine, which is an impurity derived from chlorine-containing substances used during the production process, and that the concentration of chlorine is set to 50 ppm. It was found that the electrochemical properties of a lithium secondary battery using an electrolyte solution additive made of the dialkanesulfonyl isosorbide were greatly improved by reducing it to the following and using a high-purity dialkanesulfonyl isosorbide, and the present invention was completed. .

또한 본 발명자들은, 각종 검토를 행한 결과, 아이소소바이드와 알칸설포닐 클로라이드를 반응시켜 다이알칸설포닐 아이소소바이드를 제조하는 제조 방법에 있어서, 종래 기술과 다른 새로운 염기성 촉매와 유기 용매를 사용함으로써 반응을 안정적으로 수행하고, 나아가 반응생성물 중에 존재하는 염소의 저감 수단으로서 염기성의 이온 교환 수지를 사용함으로써 간이하고 효율적으로 염소를 저감할 수 있음을 알아내었다.In addition, as a result of various studies, the present inventors have found that, in a production method for producing dialkanesulfonyl isosorbide by reacting isosorbide with alkanesulfonyl chloride, a new basic catalyst and an organic solvent that are different from the prior art are used for the reaction. was carried out stably, and furthermore, it was found that chlorine present in the reaction product could be reduced simply and efficiently by using a basic ion exchange resin as a means of reducing chlorine.

본 발명은 다음의 해결 수단을 제공한다.The present invention provides the following solutions.

[1] 다이알칸설포닐 아이소소바이드 화합물의 제조 방법으로서, [1] A method for producing dialkanesulfonyl isosorbide compounds,

상기 다이알칸설포닐 아이소소바이드 화합물이 하기 일반식(1)으로 표시되는 것이고,The dialkanesulfonyl isosorbide compound is represented by the following general formula (1),

아이소소바이드와 탄소수 1 내지 3의 알킬기를 함유하는 알칸설포닐 클로라이드를, 염기성 촉매 존재하에, 유기 용매 중에서 반응시키는 단계로서, 상기 염기성 촉매가 트리에틸아민이고, 상기 유기 용매가 아세토나이트릴, 다이메틸 설폭사이드, 다이메틸포름아마이드, 또는 테트라하이드로퓨란인, 단계(1)를 포함하는 방법.A step of reacting isosorbide and an alkanesulfonyl chloride containing an alkyl group of 1 to 3 carbon atoms in an organic solvent in the presence of a basic catalyst, wherein the basic catalyst is triethylamine and the organic solvent is acetonitrile, methyl sulfoxide, dimethylformamide, or tetrahydrofuran. A method comprising step (1).

(일반식(1) 중, R1 및 R2는 탄소수 1 내지 3의 알킬기를 나타낸다)(In General Formula (1), R 1 and R 2 represent an alkyl group having 1 to 3 carbon atoms)

[2] 상기 단락 [1]에 있어서,[2] In paragraph [1] above,

상기 단계(1)에서 얻어진 반응 생성물을 염기성 이온 교환 수지와 접촉시켜 상기 반응 생성물 중의 염소 부산물을 제거하는 단계(2)를 더 포함하며,It further comprises a step (2) of removing chlorine by-products in the reaction product by contacting the reaction product obtained in step (1) with a basic ion exchange resin,

상기 단계(2)를 거쳐 얻어진 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물 중의 염소 농도가 50ppm 이하인, 다이알칸설포닐 아이소소바이드 화합물의 제조 방법Method for producing a dialkanesulfonyl isosorbide compound wherein the chlorine concentration in the dialkanesulfonyl isosorbide compound represented by general formula (1) obtained through step (2) is 50 ppm or less.

[3] 상기 단락 [1] 또는 [2]의 제조 방법으로 제조된, 염소 농도가 50ppm 이하인 하기 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물로 이루어진, 리튬이차전지용 전해액 첨가제.[3] An electrolyte solution additive for lithium secondary batteries, produced by the production method of paragraph [1] or [2] above, and consisting of a dialkanesulfonyl isosorbide compound represented by the following general formula (1) and having a chlorine concentration of 50 ppm or less.

(일반식(1) 중, R1 및 R2는 탄소수 1 내지 3의 알킬기를 나타낸다)(In General Formula (1), R 1 and R 2 represent an alkyl group having 1 to 3 carbon atoms)

[4] 리튬염, 비수성 유기용매, 및 상기 단락 [3] 기재의 리튬이차전지용 전해액 첨가제를 포함하는 리튬이차전지용 전해액[4] Electrolyte solution for lithium secondary batteries containing lithium salt, non-aqueous organic solvent, and electrolyte solution additive for lithium secondary batteries described in paragraph [3] above.

[5] 양극과, 음극과, 분리막과, 전해액을 포함하는 리튬이차전지로서, [5] A lithium secondary battery comprising an anode, a cathode, a separator, and an electrolyte,

상기 양극이 양극 활물질로서 리튬을 제외한 금속 중 니켈의 함량이 80몰% 이상인 리튬복합금속산화물을 포함하고, The positive electrode includes a lithium composite metal oxide having a nickel content of 80 mol% or more among metals excluding lithium as a positive electrode active material,

상기 전해액이 상기 단락 [4] 기재의 리튬이차전지용 전해액인, 리튬이차전지.A lithium secondary battery, wherein the electrolyte is the electrolyte for a lithium secondary battery as described in paragraph [4] above.

상기 [1] 내지 [2] 기재의 다이알칸설포닐 아이소소바이드 화합물의 제조 방법에 의하면, 종래의 기술에서 산과 염기의 직접적 반응, 장시간 소요에 대한 문제점을 해결하고, 염소 함유량이 저감된 고순도의 다이알칸설포닐 아이소소바이드 화합물을 간단하게 제조할 수 있다. According to the method for producing dialkanesulfonyl isosorbide compounds described in [1] to [2] above, the problems of direct reaction between acid and base and long time required in the prior art are solved, and a high-purity dial with reduced chlorine content is produced. Cansulfonyl isosorbide compounds can be easily prepared.

상기 [3] 기재의 리튬이차전지용 전해액 첨가제, [4] 기재의 리튬이차전지용 전해액, [5] 기재의 리튬이차전지에 의하면, 리튬이차전지의 전기화학적 특성을 향상시킬 수 있다.According to the electrolyte solution additive for a lithium secondary battery described in [3], the electrolyte solution for a lithium secondary battery described in [4], and the lithium secondary battery described in [5], the electrochemical properties of a lithium secondary battery can be improved.

[도 1] 실시예 A1에서 제조된 물질의 1H-NMR 스펙트럼 이미지[Figure 1] 1H-NMR spectrum image of the material prepared in Example A1

(다이알칸설포닐 아이소소바이드 화합물의 제조 방법)(Method for producing dialkanesulfonyl isosorbide compound)

본 발명의 제조 방법에서 제조하는 다이알칸설포닐 아이소소바이드 화합물은, 하기 일반식(1)으로 표시되는 것이다.The dialkanesulfonyl isosorbide compound produced by the production method of the present invention is represented by the following general formula (1).

(일반식(1) 중, R1 및 R2는 탄소수 1 내지 3의 알킬기를 나타낸다)(In General Formula (1), R 1 and R 2 represent an alkyl group having 1 to 3 carbon atoms)

본 발명의 다이알칸설포닐 아이소소바이드 화합물의 제조 방법은, 아이소소바이드와 탄소수 1 내지 3의 알킬기를 함유하는 알칸설포닐 클로라이드를, 염기성 촉매 존재하에, 유기 용매 중에서 반응시키는 단계로서, 상기 염기성 촉매가 트리에틸아민 또는 N,N-디메틸아닐린이고, 상기 유기 용매가 아세토나이트릴, 다이메틸 설폭사이드, 다이메틸포름아마이드, 또는 테트라하이드로퓨란인, 단계(1)를 포함한다.The method for producing a dialkanesulfonyl isosorbide compound of the present invention is a step of reacting isosobide and an alkanesulfonyl chloride containing an alkyl group of 1 to 3 carbon atoms in an organic solvent in the presence of a basic catalyst, wherein the basic catalyst is triethylamine or N,N-dimethylaniline, and the organic solvent is acetonitrile, dimethyl sulfoxide, dimethylformamide, or tetrahydrofuran.

상기와 같은 염기성 촉매와 유기 용매의 조합을 사용하면, 피리딘을 염기성 촉매이자 용매로 사용하는 종래 기술과는 달리, 산과 염기의 직접적인 반응을 막아, 반응의 안정성을 확보할 수 있다. By using the combination of a basic catalyst and an organic solvent as described above, unlike the prior art that uses pyridine as a basic catalyst and solvent, direct reaction between acid and base can be prevented, thereby ensuring the stability of the reaction.

상기 염기성 촉매 중에서는 반응 종결 후 잔류 촉매의 최소화 면에서, 트라이에틸아민이 특히 바람직하다.Among the basic catalysts, triethylamine is particularly preferred in terms of minimizing residual catalyst after completion of the reaction.

상기 유기 용매 중에서는 건조 단계에서 제거의 용이성 면에서, 아세토나이트릴이 특히 바람직하다.Among the above organic solvents, acetonitrile is particularly preferred in terms of ease of removal in the drying step.

상기 반응시 전체 반응액 중 아이소소바이드의 농도는 1 내지 2 M로 하는 것이 바람직하다. During the above reaction, the concentration of isosorbide in the entire reaction solution is preferably 1 to 2 M.

상기 반응시 전체 반응액 중 알칸설포닐 클로라이드의 농도는 2 내지 4 M로 하는 것이 바람직하다.During the above reaction, the concentration of alkanesulfonyl chloride in the entire reaction solution is preferably 2 to 4 M.

상기 반응시 전체 반응액 중 염기성 촉매의 사용량은, 아이소소바이드 1몰에 대하여, 2 내지 4 몰로 하는 것이 바람직하다. 염기성 촉매의 사용량을 상기 하한 이상으로 하는 것은, 반응 종결 후 잔류 촉매 최소화 면에서 바람직하고, 염기성 촉매의 사용량을 상기 상한 이하로 하는 것은, 반응 속도 면에서 바람직하다. During the above reaction, the amount of basic catalyst used in the entire reaction solution is preferably 2 to 4 moles per 1 mole of isosorbide. It is preferable to set the amount of the basic catalyst used to be more than the above lower limit in terms of minimizing residual catalyst after completion of the reaction, and to set the amount of the basic catalyst to be less than the above upper limit is preferable in terms of reaction speed.

상기 반응은 10 내지 25℃에서 행하는 것이 바람직하다. 반응 온도를 상기 하한 이상으로 하는 것은, 반응 속도 면에서 바람직하고, 반응 온도를 상기 상한 이하로 하는 것은, 반응 안정성 면에서 바람직하다. The reaction is preferably carried out at 10 to 25°C. Setting the reaction temperature above the above lower limit is preferable in terms of reaction speed, and setting the reaction temperature below the above upper limit is preferable in terms of reaction stability.

상기 반응의 반응 시간은 1 내지 2 시간으로 하는 것이 바람직하다. 반응 시간을 상기 하한 이상으로 하는 것은, 반응 전환율 면에서 바람직하고, 반응 시간을 상기 상한 이하로 하는 것은, 촉매의 부반응 억제 면에서 바람직하다. The reaction time for the above reaction is preferably 1 to 2 hours. Setting the reaction time above the above lower limit is preferable in terms of reaction conversion rate, and setting the reaction time below the above upper limit is preferable from the perspective of suppressing side reactions of the catalyst.

한편, 아이소소바이드와 반응시키는 알칸설포닐 클로라이드는, 일반적인 메실레이션(mesylation) 반응에 다양하게 응용되는 물질이지만, 이로부터 염소가 탈리하여 염산이 발생하며, 본 발명자들은 상기 염산의 발생이 반응생성물 중의 염소 함량을 높게 만드는 요인이 될 수 있음을 인식하였다. Meanwhile, alkanesulfonyl chloride reacted with isosorbide is a substance widely applied in general mesylation reactions, but chlorine is desorbed from it to generate hydrochloric acid, and the present inventors believe that the generation of hydrochloric acid is a reaction product. It was recognized that this could be a factor in increasing the chlorine content in water.

본 발명의 다이알칸설포닐 아이소소바이드 화합물의 제조 방법의 다른 양태는, 상기 단계(1)에서 얻어진 반응 생성물을 염기성 이온 교환 수지와 접촉시켜 상기 반응 생성물 중의 염소 부산물을 제거하는 단계(2); 를 더 포함한다. 단계(1) 후에 단계(2)를 거침으로써, 상기 반응 생성물 중의 염소의 농도를 50ppm 이하까지 저감할 수 있다. Another aspect of the method for producing the dialkanesulfonyl isosorbide compound of the present invention includes the step (2) of contacting the reaction product obtained in step (1) with a basic ion exchange resin to remove chlorine by-products in the reaction product; It further includes. By performing step (2) after step (1), the concentration of chlorine in the reaction product can be reduced to 50 ppm or less.

단계(2)에서 사용하는 염기성 이온 교환 수지로는, 1급 아민, 2급 아민, 3급 아민, 4급 암모늄 등을 예로 들 수 있으나 그에 한정되는 것은 아닌 염기성의 원자단을 가지며, 반응 생성물 중의 염소 이온과 수지 중의 음이온을 교환할 수 있는 것이면 제한 없이 사용할 수 있다. The basic ion exchange resin used in step (2) includes, but is not limited to, primary amine, secondary amine, tertiary amine, quaternary ammonium, etc., has a basic atomic group, and chlorine in the reaction product. Any material that can exchange ions with anions in the resin can be used without limitation.

반응 생성물에 염기성 이온 교환 수지를 소정량 첨가하고, 첨가 완료 후 상온에서 교반하고, 사용 후의 이온 교환 수지를 분리하는 방법으로 염소 부산물의 농도를 저감할 수 있다. 이때, 염기성 이온 교환 수지의 첨가량은 아이소소바이드 대비 0.5 내지 2wt%로 하는 것이 바람직하다. 또한, 상기 염기성 이온 교환 수지의 첨가 후의 교반 속도는 150 내지 300 rpm으로 하는 것이 바람직하다. 상기 사용 후의 이온 교환 수지를 분리하는 수단으로서는 진공 여과 필터가 바람직하다. The concentration of chlorine by-products can be reduced by adding a predetermined amount of basic ion exchange resin to the reaction product, stirring at room temperature after completion of addition, and separating the used ion exchange resin. At this time, the amount of basic ion exchange resin added is preferably 0.5 to 2 wt% compared to isosorbide. Additionally, the stirring speed after addition of the basic ion exchange resin is preferably set to 150 to 300 rpm. A vacuum filtration filter is preferred as a means for separating the used ion exchange resin.

염기성 이온 교환 수지를 사용함으로써, 일반적인 정제 방법으로 제거하기 어려운 염소 이온을 간이하고 효율적으로 제거할 수 있다. By using a basic ion exchange resin, chlorine ions that are difficult to remove by general purification methods can be removed simply and efficiently.

본 발명의 다이알칸설포닐 아이소소바이드 화합물의 제조 방법은, 상술한 단계(1)과 단계(2) 외에, 하기의 단계 중의 하나 이상을 더 포함해도 된다.The method for producing the dialkanesulfonyl isosorbide compound of the present invention may further include one or more of the following steps in addition to steps (1) and (2) described above.

즉, 상기 단계(1)과 단계(2) 사이에, 상기 단계(1)에서의 반응이 종료한 후 불용물을 여과하는 단계(1')을 포함할 수 있다. 불용물을 여과하는 수단으로서는 진공 여과 필터가 바람직하다. That is, between step (1) and step (2), a step (1') of filtering insoluble matter after the reaction in step (1) is completed may be included. A vacuum filtration filter is preferred as a means for filtering insoluble matter.

또는, 상기 단계(2) 후에, 염소 부산물이 제거된 제거 후 용액에 증류수를 첨가하여 잔류 부산물을 제거하고 다이메탄설포닐 아이소소바이드를 석출하는 단계(3)를 더 포함할 수 있다. 단계(3)의 세정에 의해 제거되는 잔류 부산물은 미반응 물질, 염기 촉매에 생성된 염, 잔류 반응 용매 등이다. 단계(3)을 거침으로써, 부산물의 농도를 더욱 저감하면서 고순도의 다이메탄설포닐 아이소소바이드를 석출시킬 수 있다. Alternatively, after step (2), a step (3) of removing the chlorine by-product and adding distilled water to the solution to remove the remaining by-product and precipitate dimethanesulfonyl isosorbide may be further included. Residual by-products removed by washing in step (3) include unreacted materials, salts generated in the base catalyst, residual reaction solvent, etc. By going through step (3), high purity dimethanesulfonyl isosorbide can be precipitated while further reducing the concentration of by-products.

또는, 상기 단계(3) 후에, 상기 단계(3)에서 석출된 다이메탄설포닐 아이소소바이드를 건조시키는 단계(4)를 더 포함할 수 있다. 단계(4)의 건조 온도는 40 내지 60℃가 바람직하고, 건조 수단으로서는 진공 건조기가 바람직하다.Alternatively, after step (3), a step (4) of drying the dimethanesulfonyl isosorbide precipitated in step (3) may be further included. The drying temperature in step (4) is preferably 40 to 60°C, and the drying means is preferably a vacuum dryer.

(리튬이차전지용 전해액 첨가제)(Electrolyte additive for lithium secondary batteries)

본 발명의 리튬이차전지용 전해액 첨가제는, 상술한 제조 방법으로 제조된, 염소 농도가 50ppm 이하인 하기 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물로 이루어진다.The electrolyte solution additive for lithium secondary batteries of the present invention consists of a dialkanesulfonyl isosorbide compound represented by the following general formula (1), which is manufactured by the above-described production method and has a chlorine concentration of 50 ppm or less.

(일반식(1) 중, R1 및 R2는 탄소수 1 내지 3의 알킬기를 나타낸다)(In General Formula (1), R 1 and R 2 represent an alkyl group having 1 to 3 carbon atoms)

다이알칸설포닐 아이소소바이드 화합물의 이차전지 전해액 첨가제로서의 용도는 공지이지만, 본 발명자들은 크루드 상태의 이 화합물을 염소 농도가 높은 채로 이차전지 전해액 첨가제로 사용하게 될 경우, 전지 내에서 산을 발생하여 염 분해, SEI 손상 등의 부반응을 일으킴으로써, 전지 특성을 낮추는 원인이 될 수 있음을 알아내었다. 본 발명의 리튬이차전지용 전해액 첨가제는, 본 발명의 신규한 제조 방법에 의하여 제조된, 염소 농도가 50ppm 이하로 저감된 다이알칸설포닐 아이소소바이드 화합물로 이루어짐으로써, 이를 사용한 리튬이차전지의 화성 충방전 특성 및 상온 수명 특성 등의 전지 특성이 종래 기술에 비해 크게 향상된다.The use of dialkanesulfonyl isosorbide compounds as secondary battery electrolyte additives is known, but the present inventors found that when this crude compound is used as a secondary battery electrolyte additive with a high chlorine concentration, acid is generated within the battery. It was found that by causing side reactions such as salt decomposition and SEI damage, it could be the cause of lowering battery characteristics. The electrolyte additive for lithium secondary batteries of the present invention is made of a dialkanesulfonyl isosorbide compound with a chlorine concentration reduced to 50 ppm or less, produced by the novel production method of the present invention, thereby enabling chemical charging and discharging of lithium secondary batteries using the same. Battery characteristics, such as battery life characteristics and room temperature life characteristics, are greatly improved compared to the prior art.

상기 염소 농도는, KS M 0180 산화 열가수 분해후 이온크로마토그래프 검출에 의한 할로젠(F, Cl, Br) 및 황의 시험방법에 의해 측정할 수 있다.The chlorine concentration can be measured by the KS M 0180 test method for halogens (F, Cl, Br) and sulfur by ion chromatographic detection after oxidative thermal hydrolysis.

(리튬이차전지용 전해액)(Electrolyte for lithium secondary batteries)

본 발명의 리튬이차전지용 전해액은, 리튬염, 비수성 유기 용매, 및, 염소 농도가 50ppm 이하인 상기 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물로 이루어진 리튬이차전지용 전해액 첨가제를 포함한다.The electrolyte solution for lithium secondary batteries of the present invention includes a lithium salt, a non-aqueous organic solvent, and an electrolyte solution additive for lithium secondary batteries consisting of a dialkanesulfonyl isosorbide compound represented by the general formula (1) with a chlorine concentration of 50 ppm or less. .

상기 리튬이차전지용 전해액 첨가제는, 전체 전해액 중에 0.1 내지 10wt%의 양으로 함유되는 것이 바람직하고, 0.1 내지 5wt%의 양으로 함유되는 것이 더욱 바람직하며, 0.1 내지 2wt%의 양으로 함유되는 것이 특히 바람직하다. 상기 함유량이 0.1wt% 미만이면 전극 표면에 피막을 형성하는 효과가 충분하지 않으며, 상기 함유량이 10wt% 초과이면, 전극 표면에 두꺼운 피막을 형성하여 성능 저하에 대한 문제가 있다.The electrolyte solution additive for lithium secondary batteries is preferably contained in an amount of 0.1 to 10 wt%, more preferably contained in an amount of 0.1 to 5 wt%, and especially preferably contained in an amount of 0.1 to 2 wt% in the total electrolyte solution. do. If the content is less than 0.1 wt%, the effect of forming a film on the electrode surface is not sufficient, and if the content is more than 10 wt%, a thick film is formed on the electrode surface, causing a problem of performance deterioration.

상기 리튬염으로서는, 리튬이차전지에서 통상적으로 사용되는 것을 사용 가능하며, 대표적인 리튬염의 예는, 리튬 비스(트라이플루오로메탄설포닐)이미드(LiTFSI), 리튬 헥사플루오로포스페이트(LiPF6), 리튬 테트라플루오로보레이트(LiBF4), 리튬 퍼클로레이트(LiClO4), 리튬 보로하이드라이드(LiBH4) 등을 포함하나 이에 한정되지 않는다. 리튬염은 공지의 물질을 1종 또는 2종 이상 혼합하여 사용 가능하다.As the lithium salt, those commonly used in lithium secondary batteries can be used. Representative examples of lithium salts include lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium hexafluorophosphate (LiPF 6 ), It includes, but is not limited to, lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), and lithium borohydride (LiBH 4 ). Lithium salt can be used by mixing one or two or more known substances.

상기 비수성 유기 용매로서는, 예를 들어, 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 에틸메틸 카보네이트 등의 선형 카보네이트계, 에틸렌 카르보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트 등의 환형 카보네이트계, 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤 및 γ-카프로락톤 등의 선형 또는 환형 에스테르계, 폴리메틸비닐 케톤, 사이클로헥사논 등의 케톤계, 다이부틸에테르, 테트라글라임, 다이글라임, 다이메톡시에탄, 2-메틸테트라하이드로퓨란, 테트라하이드로퓨란, 3-메틸테트라하이드로퓨란, 1,3-다이옥산, 2-메틸-1,3-다이옥산, 4-메틸-1,3-다이옥산, 1,4-다이옥산 등의 선형 또는 환형 에테르계, 그 밖의 알려진 비양자성 유기 용매가 사용될 수 있으나 이에 한정되지 않는다. 비수성 유기 용매는 1종 또는 2종 이상 혼합하여 사용 가능하다.Examples of the non-aqueous organic solvent include linear carbonates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, and ethylmethyl carbonate, ethylene carbonate, propylene carbonate, and butylene carbonate. Cyclic carbonate systems such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, γ-valerolactone and γ-caprolactone, linear or cyclic ester systems, poly Ketones such as methyl vinyl ketone and cyclohexanone, dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran, 3-methyltetrahydrofuran, 1,3 -Linear or cyclic ethers such as dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1,4-dioxane, and other known aprotic organic solvents can be used, but are not limited to these. No. Non-aqueous organic solvents can be used one type or in a mixture of two or more types.

(리튬이차전지)(lithium secondary battery)

본 발명의 리튬이차전지는, 양극과, 음극과, 분리막과, 전해액을 포함하며, 상기 양극이 양극 활물질로서 리튬을 제외한 금속 중 니켈의 함량이 80몰% 이상인 리튬복합금속산화물을 포함하고, 상기 전해액이 상술한 본 발명의 리튬이차전지 전해액인 것을 특징으로 한다. The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolyte, and the positive electrode includes a lithium composite metal oxide having a nickel content of 80 mol% or more among metals other than lithium as a positive electrode active material, The electrolyte is characterized in that it is the lithium secondary battery electrolyte of the present invention described above.

상기 리튬복합금속산화물은, 리튬을 제외한 금속으로서 니켈을 반드시 포함하며, 리튬을 제외한 금속 중 니켈의 함량이 80몰% 이상인 하이니켈계의 리튬복합금속산화물이다. 하이니켈계의 리튬복합금속산화물을 양극 활물질로서 사용한 리튬이차전지는 에너지밀도가 높다. 상기 리튬복합금속산화물은, 리튬, 니켈 외의 금속으로서, Cr, Fe, Co, Cu, Zr, Al 및 Mg 중 하나 이상을 더 포함하는 것일 수 있다. 바람직하게는 리튬복합금속산화물은 NCM계(니켈, 코발트, 망간 함유), NCMA계(니켈, 코발트, 망간, 알미늄 함유), 또는 NCA(니켈, 코발트, 알미늄 함유)이고, 더욱 바람직하게는 NCM계이다. The lithium composite metal oxide is a high-nickel-based lithium composite metal oxide that necessarily contains nickel as a metal other than lithium, and has a nickel content of 80 mol% or more among metals other than lithium. Lithium secondary batteries using high-nickel-based lithium composite metal oxide as a positive electrode active material have high energy density. The lithium composite metal oxide may be a metal other than lithium and nickel, and may further include one or more of Cr, Fe, Co, Cu, Zr, Al, and Mg. Preferably, the lithium composite metal oxide is NCM-based (containing nickel, cobalt, and manganese), NCMA-based (containing nickel, cobalt, manganese, and aluminum), or NCA (containing nickel, cobalt, and aluminum), and more preferably NCM-based. am.

염소 농도가 50ppm 이하로 저감된 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물로 이루어진 전해액 첨가제를 포함하는 본 발명의 리튬이차전지 전해액은, 특히 이러한 하이니켈계의 리튬복합금속산화물을 포함하는 양극 활물질과 조합될 때, 화성 충방전 특성 및 상온 수명 특성의 전지 특성 향상 효과가 커진다. 다만, 리튬을 제외한 금속 중 니켈의 함량이 80몰% 이상인 하이니켈계의 리튬복합금속산화물을 제외한 다른 리튬복합금속산화물, 또는, 다른 양극 활물질을 더 포함하는 경우를 본 발명의 범위에서 배제하는 것은 아니다.The lithium secondary battery electrolyte of the present invention, which contains an electrolyte solution additive composed of a dialkanesulfonyl isosorbide compound represented by the general formula (1) with the chlorine concentration reduced to 50 ppm or less, is particularly suitable for using such high nickel-based lithium composite metal oxide. When combined with a positive electrode active material containing the battery, the effect of improving battery characteristics in terms of chemical charge/discharge characteristics and room temperature lifespan characteristics increases. However, the scope of the present invention excludes other lithium composite metal oxides other than high-nickel-based lithium composite metal oxides with a nickel content of 80 mol% or more among metals other than lithium, or cases where other positive electrode active materials are further included. no.

양극은 양극 활물질 외, 바인더 및 도전재를 포함한다. 바인더로는 폴리비닐리덴 플루오라이드계, 폴리올레핀계, 폴리비닐알코올계, 폴리아크릴계 등의 각종 공지의 전극 바인더 물질을 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 도전재로서는 천연 흑연, 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 등의 카본블랙; 그라펜, 그라파이트 등의 탄소계 물질; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말; 기타 산화 아연, 티탄산 칼륨, 산화 티탄, 폴리페닐렌 유도체 등의 도전성 고분자를 들 수 있으나, 이에 한정되지 않는 물질들을 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 양극 집전체 상에 형성한 양극 활물질층의 밀도는 1.5g/cm3 이상 6g/cm3 이하인 것이 바람직하다. The positive electrode includes a binder and a conductive material in addition to the positive electrode active material. As a binder, various known electrode binder materials such as polyvinylidene fluoride-based, polyolefin-based, polyvinyl alcohol-based, and polyacrylic-based can be used alone or in a mixture of two or more types. As a conductive material, graphite such as natural graphite and artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, Denka black, thermal black, etc.; Carbon-based materials such as graphene and graphite; Conductive fibers such as carbon fiber and metal fiber; fluorinated carbon; Metal powders such as aluminum and nickel powder; Other conductive polymers such as zinc oxide, potassium titanate, titanium oxide, and polyphenylene derivatives may be mentioned, but are not limited to these, and materials may be used alone or in a mixture of two or more types. The density of the positive electrode active material layer formed on the positive electrode current collector is preferably 1.5 g/cm 3 or more and 6 g/cm 3 or less.

본 발명의 리튬이차전지에 있어서, 음극과 분리막의 구성은 특히 한정되지 않는다.In the lithium secondary battery of the present invention, the configuration of the negative electrode and separator is not particularly limited.

음극의 음극 활물질로서는 흑연, 실리콘, 또는 이들 둘다를 포함하는 것을 사용할 수 있다. 음극 바인더로서는, 폴리비닐리덴플루오라이드 등의 용제계 바인더 외에, SBR(스티렌 부타디엔 고무)/CMC(카르복시메틸셀룰로오스) 등의 수계 바인더를 사용할 수도 있다.As the negative electrode active material of the negative electrode, one containing graphite, silicon, or both can be used. As the negative electrode binder, in addition to solvent-based binders such as polyvinylidene fluoride, water-based binders such as SBR (styrene butadiene rubber)/CMC (carboxymethyl cellulose) can also be used.

분리막으로서는 적절한 이온 투과도와 기계적 강도, 내열성, 전극 접착성과, 적절한 셧다운 온도를 갖는 공지의 분리막을, 단층막, 다층막, 복합막 등의 층 구조의 제한없이, 유무기 재료의 복합 여부에 상관없이, 적절히 사용할 수 있다. As a separator, a known separator having appropriate ion permeability, mechanical strength, heat resistance, electrode adhesion, and appropriate shutdown temperature can be used, regardless of the layer structure such as a single layer film, multilayer film, or composite film, regardless of whether it is a composite of organic or inorganic materials, It can be used appropriately.

이하에서는, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 아래의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명을 제한하는 것이 아니며, 당 기술 분야의 통상의 기술자는 본 실시예에 대하여 본 발명의 범위 및 기술사상의 범위 내에서 다양한 변경 및 수정을 가할 수 있다.Below, preferred embodiments are presented to aid understanding of the present invention. The examples below are only illustrative of the present invention and do not limit the present invention, and those skilled in the art may make various changes and modifications to the present embodiments within the scope and spirit of the present invention. It can be done.

[실시예 A1 및 비교예 A1∼A2: 다이메탄설포닐 아이소소바이드 화합물로 이루어진 전해액 첨가제의 제조][Example A1 and Comparative Examples A1 to A2: Preparation of electrolyte additive consisting of dimethanesulfonyl isosorbide compound]

실시예 A1Example A1

상온에서 유기 용매로서 아세토나이트릴(Acetonitrile) 50mL에, 10g (68.4 mmol)의 아이소소바이드(분자량 146.14g/mol), 15.7g (137.0mmol)의 메탄설포닐 클로라이드(분자량 114.56g/mol)를 첨가했다. 상기 용액의 온도를 0∼10℃로 낮추고, 염기성 촉매로서 13.9g (137.4mmol)의 트리에틸아민(분자량 101.19g/mol)을 천천히 첨가했다. 첨가 완료 후 상기 용액을 상온에서 1시간 동안 교반하면서 반응시켰다. Add 10 g (68.4 mmol) of isosorbide (molecular weight 146.14 g/mol) and 15.7 g (137.0 mmol) of methanesulfonyl chloride (molecular weight 114.56 g/mol) to 50 mL of acetonitrile as an organic solvent at room temperature. added. The temperature of the solution was lowered to 0-10°C, and 13.9 g (137.4 mmol) of triethylamine (molecular weight 101.19 g/mol) was slowly added as a basic catalyst. After completion of addition, the solution was reacted with stirring at room temperature for 1 hour.

반응 종료 후 불용물을 진공 여과 필터로 여과했다. 고순도의 다이메탄설포닐 아이소소바이드 화합물을 제조하기 위해, 상기에서 여과된 용액에 이온 교환 수지인 Amberlite®A26 20g을 첨가하고 30분간 상온 교반하여 염소 부산물을 제거했다. 부산물이 제거된 용액을 진공 여과 필터로 여과하여 상기 이온 교환 수지를 제거 후, 용액에 증류수 250mL를 첨가하여 소량의 잔류 부산물을 제거하고 다이메탄설포닐 아이소소바이드를 석출시켰다. 이를 진공 여과 필터로 여과하고, 60℃의 진공 건조기에서 12시간 동안 건조하여. 백색 고체의 고순도 다이메탄설포닐 아이소소바이드 18g을 수득했다(최종 수율 87%).After completion of the reaction, the insoluble matter was filtered using a vacuum filtration filter. To prepare a high-purity dimethanesulfonyl isosorbide compound, 20 g of Amberlite®A26, an ion exchange resin, was added to the filtered solution above and stirred at room temperature for 30 minutes to remove chlorine by-products. The solution from which the by-products were removed was filtered through a vacuum filtration filter to remove the ion exchange resin, and then 250 mL of distilled water was added to the solution to remove a small amount of residual by-products and precipitate dimethanesulfonyl isosorbide. This was filtered through a vacuum filtration filter and dried in a vacuum dryer at 60°C for 12 hours. 18 g of high purity dimethanesulfonyl isosorbide as a white solid was obtained (final yield 87%).

실시예 A1에서 수득한 다이메탄설포닐 아이소소바이드의 1H-NMR 분석결과는 다음과 같다(도 1).The 1H-NMR analysis results of dimethanesulfonyl isosorbide obtained in Example A1 are as follows (FIG. 1).

1H-NMR (400MHz, CD3CN-d3): δ 3.10 (6H, s, -SH3), 3.83 (1H, dd, -CH2), 3.93(2H, m, -CH2), 4.12 (1H, d, -CH2), 4.65 (1H, m, -CH), 4.87 (1H, m, -CH), 5.05 (2H, m, -CH)1H-NMR (400MHz, CD 3 CN-d 3 ): δ 3.10 (6H, s, -SH 3 ), 3.83 (1H, dd, -CH 2 ), 3.93(2H, m, -CH 2 ), 4.12 ( 1H, d, -CH 2 ), 4.65 (1H, m, -CH), 4.87 (1H, m, -CH), 5.05 (2H, m, -CH)

최종 수득한 다이메탄설포닐 아이소소바이드 중의 염소 농도를 표준 분석법 KS M 0180에 의해 분석하여 표 1에 기재하였다. The chlorine concentration in the finally obtained dimethanesulfonyl isosorbide was analyzed by standard analysis method KS M 0180 and is listed in Table 1.

실시예 A1에서 수득된 다이메탄설포닐 아이소소바이드로 이루어진 전해액 첨가제를 전해액 첨가제(EA1)라 한다.The electrolyte additive consisting of dimethanesulfonyl isosorbide obtained in Example A1 is referred to as electrolyte additive (EA1).

비교예 A1 Comparative Example A1

상온에서 유기 용매 및 염기성 촉매로서 피리딘 13.5mL (167.6mmol)에 10g (68.4 mmol)의 아이소소바이드(분자량 146.14g/mol)를 첨가하여 용해시켰다. 상기 용액의 온도를 0℃로 낮추고 15.7g (137.0mmol)의 메탄설포닐 클로라이드(분자량 114.56g/mol)를 적가했다. 첨가 완료 후 상기 용액을 상온에서 20시간 동안 교반하면서 반응시켰다. 10 g (68.4 mmol) of isosorbide (molecular weight 146.14 g/mol) was added and dissolved in 13.5 mL (167.6 mmol) of pyridine as an organic solvent and basic catalyst at room temperature. The temperature of the solution was lowered to 0°C, and 15.7 g (137.0 mmol) of methanesulfonyl chloride (molecular weight 114.56 g/mol) was added dropwise. After completion of addition, the solution was reacted with stirring at room temperature for 20 hours.

반응 종료 후, 디클로로메탄 300mL를 가하고, 포화 탄산수소나트륨 용액 500mL로 세척 후, 유기층을 분리하였다. 유기층을 무수 황산나트륨으로 건조 여과하고, 용매를 감압 농축한 후, 물을 가하여 55℃로 승온하고, 2시간 동안 교반했다. 이후 실온으로 냉각하여 백색 고체를 분리 여과하고, 얻은 여과물을 에탄올로 반복 세척하였다. 60℃의 진공건조기에서 12시간 동안 건조하여, 백색 고체의 다이메탄설포닐 아이소소바이드 8g을 수득하였다(최종 수율 39%). 최종 수득한 다이메탄설포닐 아이소소바이드 중의 염소 농도를 표준 분석법 KS M 0180에 의해 분석하여 표 1에 기재하였다. 비교예 A1에서 수득된 다이메탄설포닐 아이소소바이드로 이루어진 전해액 첨가제를 전해액 첨가제(CA1)라 한다.After completion of the reaction, 300 mL of dichloromethane was added, washed with 500 mL of saturated sodium bicarbonate solution, and the organic layer was separated. The organic layer was dried and filtered over anhydrous sodium sulfate, the solvent was concentrated under reduced pressure, water was added, the temperature was raised to 55°C, and the mixture was stirred for 2 hours. Afterwards, it was cooled to room temperature, the white solid was separated and filtered, and the obtained filtrate was washed repeatedly with ethanol. By drying in a vacuum dryer at 60°C for 12 hours, 8 g of dimethanesulfonyl isosorbide as a white solid was obtained (final yield 39%). The chlorine concentration in the finally obtained dimethanesulfonyl isosorbide was analyzed by standard analysis method KS M 0180 and is listed in Table 1. The electrolyte additive consisting of dimethanesulfonyl isosorbide obtained in Comparative Example A1 is referred to as electrolyte additive (CA1).

비교예 A2Comparative Example A2

메탄설포닐 클로라이드의 첨가량을 19.6g (171.1mmol)으로 한 외에는 비교예 A1과 마찬가지로 하여, 백색 고체의 다이메탄설포닐 아이소소바이드 10g을 수득하였다(최종 수율 48%). 최종 수득한 다이메탄설포닐 아이소소바이드 중의 염소 농도를 표준 분석법 KS M 0180에 의해 분석하여 표 1에 기재하였다. 비교예 A2에서 수득된 다이메탄설포닐 아이소소바이드로 이루어진 전해액 첨가제를 전해액 첨가제(CA2)라 한다.In the same manner as Comparative Example A1 except that the amount of methanesulfonyl chloride added was 19.6 g (171.1 mmol), 10 g of dimethanesulfonyl isosorbide as a white solid was obtained (final yield 48%). The chlorine concentration in the finally obtained dimethanesulfonyl isosorbide was analyzed by standard analysis method KS M 0180 and is listed in Table 1. The electrolyte additive consisting of dimethanesulfonyl isosorbide obtained in Comparative Example A2 is referred to as electrolyte additive (CA2).

구분division Cl(ppm)Cl(ppm) 실시예 A1Example A1 전해액 첨가제(EA1)Electrolyte additive (EA1) N/DN/D 비교예 A1Comparative Example A1 전해액 첨가제(CA1)Electrolyte additive (CA1) 198198 비교예 A2Comparative Example A2 전해액 첨가제(CA2)Electrolyte additive (CA2) 258258

[실시예 1∼2 및 비교예 1∼3: 전해액의 제조, 및 상기 전해액과 하이니켈 계의 양극 활물질을 갖는 리튬이차전지의 제조][Examples 1 to 2 and Comparative Examples 1 to 3: Preparation of electrolyte and preparation of lithium secondary battery having the electrolyte and high nickel-based positive electrode active material]

(전해액의 제조)(Preparation of electrolyte solution)

비수성 유기 용매로서 EC(ethylene carbonate)과 DEC(diethyl carbonate)의 25:75 (부피비) 혼합물에, 리튬염으로서 LiPF6를 1.15M 농도로 용해하고, 전해액 첨가제로서 상술한 전해액 첨가제(EA1), (CA1) 또는 (CA2)을 하기 표 2에 기재된 양으로 첨가하여, 전해액을 제조하였다.In a 25:75 (volume ratio) mixture of EC (ethylene carbonate) and DEC (diethyl carbonate) as a non-aqueous organic solvent, LiPF 6 as a lithium salt was dissolved at a concentration of 1.15 M, and as an electrolyte solution additive, the electrolyte solution additive (EA1) described above, An electrolyte solution was prepared by adding (CA1) or (CA2) in the amounts shown in Table 2 below.

(양극의 제조)(Manufacture of anode)

양극 활물질로서 Li[Ni0.8Co0.1Mn0.1]O2, 도전재로서 카본 블랙, 바인더로서 PVdF를, 중량비로 95:2.5:2.5가 되도록 N-메틸-2-피롤리돈에 첨가 및 혼합하여 양극 슬러리를 제조하고, 이를 집전체로서 알루미늄 포일(두께 15㎛)의 양면에 도포한 후, 110℃에서 1시간 건조하고, 압연하여, 양극을 제조하였다.Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 as the positive electrode active material, carbon black as the conductive material, and PVdF as the binder were added and mixed with N-methyl-2-pyrrolidone in a weight ratio of 95:2.5:2.5 to form the positive electrode. A slurry was prepared, applied to both sides of aluminum foil (thickness 15㎛) as a current collector, dried at 110°C for 1 hour, and rolled to prepare a positive electrode.

(음극의 제조)(Manufacture of cathode)

음극 활물질로서 그라파이트, 도전재로서 카본 블랙, 음극 바인더로서 CMC(sodium carboxymethyl cellulose) 및 SBR (styrene butadiene rubber)을, 중량비로 96:1:1.5:1.5가 되도록 3차 증류수에 첨가 및 혼합하여 음극 슬러리를 제조하고, 이를 집전체로서 구리 포일(두께 10㎛)의 양면에 도포한 후 80℃에서 0.5시간 건조하고, 압연하여, 음극을 제조하였다.Graphite as a negative electrode active material, carbon black as a conductive material, and CMC (sodium carboxymethyl cellulose) and SBR (styrene butadiene rubber) as a negative electrode binder are added and mixed in triple distilled water at a weight ratio of 96:1:1.5:1.5 to create a negative electrode slurry. was prepared and applied to both sides of a copper foil (thickness 10㎛) as a current collector, dried at 80°C for 0.5 hours, and rolled to prepare a negative electrode.

(리튬이차전지의 제조)(Manufacture of lithium secondary batteries)

상기에서 제조한 음극과 양극의 사이에 폴리에틸렌(PE)으로 이루어진 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 직경 20mm, 높이 3.2mm의 스테인레스 코인 셀(CR2032) 하우징에 넣고, 코인 셀 내에 상기에서 제조된 전해액을 주입하여, 리튬이차전지를 제조하였다.An electrode assembly was manufactured by interposing a separator made of polyethylene (PE) between the cathode and anode prepared above, and the electrode assembly was placed in a stainless steel coin cell (CR2032) housing with a diameter of 20 mm and a height of 3.2 mm, and placed within the coin cell. A lithium secondary battery was manufactured by injecting the electrolyte solution prepared above.

실시예 1 내지 2, 비교예 1 내지 3에서 전해액의 제조에 사용한 전해액 첨가제와 첨가량은 하기 표 2에 기재한 바와 같다.The electrolyte solution additives and addition amounts used to prepare the electrolyte solution in Examples 1 to 2 and Comparative Examples 1 to 3 are shown in Table 2 below.

실시예Example 비교예Comparative example 1One 22 1One 22 33 전해액 첨가제 electrolyte additive (EA1)(EA1) (EA1)(EA1) (CA2)(CA2) (CA2)(CA2) -- 전해액 전체 중량 중 전해액 첨가제의 첨가량 (wt%)Amount of electrolyte additive added in total weight of electrolyte (wt%) 1One 1010 1One 1010 --

[참고예 4∼5: 다이메탄설포닐 아이소소바이드 화합물이 아닌 다른 물질로 이루어진 리튬이차전지 전해액 첨가제를 사용한 전해액의 제조, 및 상기 전해액과 하이니켈계의 양극 활물질을 갖는 리튬이차전지의 제조][Reference Examples 4 to 5: Preparation of an electrolyte using a lithium secondary battery electrolyte additive made of a material other than dimethanesulfonyl isosorbide compound, and preparation of a lithium secondary battery having the electrolyte and a high nickel-based positive electrode active material]

전해액 첨가제의 종류와 첨가량을 하기 표 3에 기재한 바와 같이 변경한 것을 제외하고, 실시예 1과 마찬가지로 하여 리튬이차전지 전해액 및 리튬이차전지를 제조하였다.A lithium secondary battery electrolyte and a lithium secondary battery were manufactured in the same manner as in Example 1, except that the type and amount of electrolyte additives were changed as shown in Table 3 below.

참고예Reference example 44 55 전해액 첨가제electrolyte additive 비닐렌 카보네이트vinylene carbonate 플루오로에틸렌
카보네이트
fluoroethylene
carbonate
전해액 전체 중량 중 전해액 첨가제의 첨가량 (wt%)Amount of electrolyte additive added in total weight of electrolyte (wt%) 1One 55

[참고예 6: 리튬이차전지 전해액의 제조, 및 상기 전해액과 하이니켈계 양극 활물질이 아닌 다른 양극 활물질을 갖는 리튬이차전지의 제조][Reference Example 6: Preparation of a lithium secondary battery electrolyte, and preparation of a lithium secondary battery having the electrolyte and a positive electrode active material other than a high nickel-based positive electrode active material]

실시예 1과 동일하게 하되, 양극 활물질로서 Li[Ni1/3Co1/3Mn1/3]O2를 사용하여, 참고예 6의 리튬이차전지를 제조하였다.The lithium secondary battery of Reference Example 6 was manufactured in the same manner as in Example 1, but using Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 as the positive electrode active material.

[전지 특성 평가][Evaluation of battery characteristics]

상기 실시예, 비교예, 참고예에서 얻어진 리튬이차전지에 대하여, 하기와 같이 화성 충방전 특성 및 상온 수명 특성을 평가하였다. For the lithium secondary batteries obtained in the above Examples, Comparative Examples, and Reference Examples, chemical charge/discharge characteristics and room temperature life characteristics were evaluated as follows.

<화성 충방전 특성 평가><Evaluation of Mars charging and discharging characteristics>

제조된 리튬이차전지를 아래 조건으로 화성(formation) 충방전을 실시하여 측정한 화성 방전 용량을 화성 충전 용량으로 나눈 값을 ICE(Initial Coulombic Efficiency, 초기 쿨롱 효율)로서 하기 표 4에 나타낸다.The manufactured lithium secondary battery was charged and discharged under the conditions below, and the measured formation discharge capacity divided by the formation charge capacity is shown in Table 4 below as ICE (Initial Coulombic Efficiency).

충전 조건: CC-CV 0.2C rate 4.2V 0.05C CUT-OFFCharging conditions: CC-CV 0.2C rate 4.2V 0.05C CUT-OFF

방전 조건: CC 0.2C rate 3.0V CUT-OFFDischarge conditions: CC 0.2C rate 3.0V CUT-OFF

ICE(초기 쿨롱 효율, %)ICE (Initial Coulombic Efficiency, %) 실시예 1Example 1 88.088.0 실시예 2Example 2 83.083.0 비교예 1Comparative Example 1 85.585.5 비교예 2Comparative Example 2 81.081.0 비교예 3Comparative Example 3 79.079.0 참고예 4Reference example 4 87.987.9 참고예 5Reference example 5 88.188.1 참고예 6Reference example 6 88.088.0

<상온 수명 특성 평가><Evaluation of room temperature lifespan characteristics>

화성 충방전을 거친 리튬이차전지를, 25℃에서 하기 조건의 충전-방전을 350 사이클 반복하여 행하였다. A lithium secondary battery that had undergone chemical charging and discharging was subjected to 350 repeated charge-discharge cycles at 25°C under the following conditions.

충전 조건: CC-CV 1C rate 4.2V 0.05C CUT-OFFCharging conditions: CC-CV 1C rate 4.2V 0.05C CUT-OFF

방전 조건: CC 1C rate 3.0V CUT-OFFDischarge conditions: CC 1C rate 3.0V CUT-OFF

1사이클에서의 방전 용량에 대한 350사이클에서의 방전 용량의 %값을 350사이클에서의 용량 유지율(%)로 하여 상온 수명 특성을 평가했다. 결과를 하기 표 5에 나타낸다.The room temperature lifespan characteristics were evaluated using the % value of the discharge capacity at 350 cycles relative to the discharge capacity at 1 cycle as the capacity retention rate (%) at 350 cycles. The results are shown in Table 5 below.

350사이클의
용량 유지율 (%)
350 cycles of
Capacity maintenance rate (%)
실시예 1Example 1 96.096.0 실시예 2Example 2 93.193.1 비교예 1Comparative Example 1 88.088.0 비교예 2Comparative Example 2 86.286.2 비교예 3Comparative Example 3 85.585.5 참고예 4Reference example 4 88.188.1 참고예 5Reference example 5 95.295.2 참고예 6Reference example 6 94.194.1

본 발명의 다이알칸설포닐 아이소소바이드의 새로운 제조 방법은 반응 안정성을 확보하고, 생성물의 최종 수율을 저하시키지 않으면서도 제조 과정에 유래하는 염소 농도를 간이한 방법으로 저하시킬 수 있어 산업상 유용하게 이용될 수 있다.The new production method of dialkanesulfonyl isosorbide of the present invention ensures reaction stability and can reduce the chlorine concentration derived from the production process in a simple manner without reducing the final yield of the product, making it useful industrially. It can be.

본 발명의 고순도의 다이알칸설포닐 아이소소바이드로 이루어진 전해액 첨가제는, 염소 농도가 높은 다이알칸설포닐 아이소소바이드로 이루어진 전해액 첨가제에 비하여, 이를 첨가하는 리튬이차전지, 특히, 하이 니켈(high nickel) 양극재를 사용하는 리튬이차전지의 전기화학적 특성이 크게 향상되므로 산업상 유용하게 이용될 수 있다.The electrolyte additive made of high-purity dialkanesulfonyl isosorbide of the present invention is more effective in lithium secondary batteries, especially high nickel positive electrodes, than electrolyte additives made of dialkanesulfonyl isosorbide with high chlorine concentration. The electrochemical properties of lithium secondary batteries using ash are greatly improved, so they can be usefully used industrially.

Claims (5)

다이알칸설포닐 아이소소바이드 화합물의 제조 방법으로서,
상기 다이알칸설포닐 아이소소바이드 화합물이 하기 일반식(1)으로 표시되는 것이고,
아이소소바이드와 탄소수 1 내지 3의 알킬기를 함유하는 알칸설포닐 클로라이드를, 염기성 촉매 존재하에, 유기 용매 중에서 반응시키는 단계로서, 상기 염기성 촉매가 트리에틸아민이고, 상기 유기 용매가 아세토나이트릴, 다이메틸 설폭사이드, 다이메틸포름아마이드, 또는 테트라하이드로퓨란인, 단계(1) 및
상기 단계(1)에서 얻어진 반응 생성물을 염기성 이온 교환 수지와 접촉시켜 상기 반응 생성물 중의 염소 부산물을 제거하는 단계(2)를 포함하며,
상기 단계(2)를 거쳐 얻어진 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물 중의 염소 농도가 50ppm 이하인, 다이알칸설포닐 아이소소바이드 화합물의 제조 방법.

(일반식(1) 중, R1 및 R2는 탄소수 1 내지 3의 알킬기를 나타낸다)
A method for producing a dialkanesulfonyl isosorbide compound, comprising:
The dialkanesulfonyl isosorbide compound is represented by the following general formula (1),
A step of reacting isosorbide and an alkanesulfonyl chloride containing an alkyl group of 1 to 3 carbon atoms in an organic solvent in the presence of a basic catalyst, wherein the basic catalyst is triethylamine and the organic solvent is acetonitrile, Methyl sulfoxide, dimethylformamide, or tetrahydrofuranine, step (1) and
A step (2) of removing chlorine by-products in the reaction product by contacting the reaction product obtained in step (1) with a basic ion exchange resin,
A method for producing a dialkanesulfonyl isosorbide compound, wherein the chlorine concentration in the dialkanesulfonyl isosorbide compound represented by general formula (1) obtained through step (2) is 50 ppm or less.

(In General Formula (1), R 1 and R 2 represent an alkyl group having 1 to 3 carbon atoms)
양극과, 음극과, 분리막과, 전해액을 포함하는 리튬이차전지로서,
상기 양극이 리튬을 제외한 금속 중 니켈의 함량이 80몰% 이상인 양극활물질을 갖고,
상기 전해액이, 리튬염, 비수성 유기용매, 및, 제1항의 제조 방법으로 제조된, 염소 농도가 50ppm 이하인 상기 일반식(1)으로 표시되는 다이알칸설포닐 아이소소바이드 화합물로 이루어진 전해액 첨가제를 포함하는,
리튬이차전지.
A lithium secondary battery comprising an anode, a cathode, a separator, and an electrolyte,
The positive electrode has a positive electrode active material having a nickel content of 80 mol% or more among metals excluding lithium,
The electrolyte solution includes a lithium salt, a non-aqueous organic solvent, and an electrolyte solution additive consisting of a dialkanesulfonyl isosorbide compound represented by the general formula (1) having a chlorine concentration of 50 ppm or less, prepared by the production method of claim 1. doing,
Lithium secondary battery.
삭제delete 삭제delete 삭제delete
KR1020230069305A 2023-05-30 2023-05-30 Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery KR102638391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230069305A KR102638391B1 (en) 2023-05-30 2023-05-30 Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230069305A KR102638391B1 (en) 2023-05-30 2023-05-30 Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery

Publications (1)

Publication Number Publication Date
KR102638391B1 true KR102638391B1 (en) 2024-02-20

Family

ID=90056608

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230069305A KR102638391B1 (en) 2023-05-30 2023-05-30 Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
KR (1) KR102638391B1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535158A (en) 1980-07-25 1985-08-13 Dr. Willmar Schwabe Gmbh & Co. Optionally N-substituted aminodesoxy-1.4;3.6-dianhydrohexitol derivatives
JPS6115122B2 (en) * 1978-06-26 1986-04-22 Mitsubishi Metal Corp
WO2009144450A1 (en) * 2008-05-29 2009-12-03 Amura Therapeutics Limited Tetrahydrofuro [3, 2-b] pyrrol-3-one derivatives as inhibitors of cysteine proteases
WO2010070079A1 (en) * 2008-12-19 2010-06-24 Lacer, S.A. New stereospecific method for the preparation of dioxa-bicyclooctane nitrate compounds
WO2011025149A2 (en) * 2009-08-26 2011-03-03 서울옵토디바이스주식회사 Method for manufacturing a semiconductor substrate and method for manufacturing a light-emitting device
WO2013173020A1 (en) * 2012-05-16 2013-11-21 Archer Daniels Midland Company Isosorbide and isomannide derivatives and processes for making the same
KR20150045436A (en) * 2012-08-22 2015-04-28 머크 샤프 앤드 돔 코포레이션 Novel azabenzimidazole hexahydrofuro[3,2-b]furan derivatives
CN106478653A (en) * 2016-10-16 2017-03-08 云南民族大学 Isosorbide imidazole salt compound and preparation method thereof
WO2017048675A1 (en) * 2015-09-17 2017-03-23 Sunshine Lake Pharma Co., Ltd. Substituted heteroaryl compounds and methods of use
JP6115122B2 (en) 2012-12-26 2017-04-19 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
CN106632374A (en) * 2016-10-16 2017-05-10 云南民族大学 Isomannide-bis-benzimidazole salt compounds and preparation method thereof
WO2017105985A1 (en) * 2015-12-18 2017-06-22 Archer Daniels Midland Company Preparation of isohexide-3,6-dicarbaldehydes and isohexide-3,6-dimethanamines
JP6478653B2 (en) 2015-01-20 2019-03-06 国立大学法人信州大学 Adsorption rate measurement method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115122B2 (en) * 1978-06-26 1986-04-22 Mitsubishi Metal Corp
US4535158A (en) 1980-07-25 1985-08-13 Dr. Willmar Schwabe Gmbh & Co. Optionally N-substituted aminodesoxy-1.4;3.6-dianhydrohexitol derivatives
WO2009144450A1 (en) * 2008-05-29 2009-12-03 Amura Therapeutics Limited Tetrahydrofuro [3, 2-b] pyrrol-3-one derivatives as inhibitors of cysteine proteases
WO2010070079A1 (en) * 2008-12-19 2010-06-24 Lacer, S.A. New stereospecific method for the preparation of dioxa-bicyclooctane nitrate compounds
WO2011025149A2 (en) * 2009-08-26 2011-03-03 서울옵토디바이스주식회사 Method for manufacturing a semiconductor substrate and method for manufacturing a light-emitting device
WO2013173020A1 (en) * 2012-05-16 2013-11-21 Archer Daniels Midland Company Isosorbide and isomannide derivatives and processes for making the same
KR20150045436A (en) * 2012-08-22 2015-04-28 머크 샤프 앤드 돔 코포레이션 Novel azabenzimidazole hexahydrofuro[3,2-b]furan derivatives
JP6115122B2 (en) 2012-12-26 2017-04-19 三菱化学株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP6478653B2 (en) 2015-01-20 2019-03-06 国立大学法人信州大学 Adsorption rate measurement method
WO2017048675A1 (en) * 2015-09-17 2017-03-23 Sunshine Lake Pharma Co., Ltd. Substituted heteroaryl compounds and methods of use
WO2017105985A1 (en) * 2015-12-18 2017-06-22 Archer Daniels Midland Company Preparation of isohexide-3,6-dicarbaldehydes and isohexide-3,6-dimethanamines
CN106478653A (en) * 2016-10-16 2017-03-08 云南民族大学 Isosorbide imidazole salt compound and preparation method thereof
CN106632374A (en) * 2016-10-16 2017-05-10 云南民族大学 Isomannide-bis-benzimidazole salt compounds and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Journal of Organic Chemistry (1966), 31(5), 1509-14 *
Journal of the Chemical Society [Section] C: Organic (1966), (10), 912-15 *
New J. Chem., 2009, 33, 479-483
Synthesis : journal of synthetic organic chemistry v.47 no.17 ,pp. 2578 - 2585 , 2015* *

Similar Documents

Publication Publication Date Title
JP5524347B2 (en) Cyclic sulfate ester compound, non-aqueous electrolyte containing the same, and lithium secondary battery
JP5604105B2 (en) Non-aqueous electrolyte additive and secondary battery using the same
US11101499B2 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery
JP5695209B2 (en) Nonaqueous electrolyte containing phosphonosulfonic acid compound and lithium secondary battery
EP2065339B1 (en) Method for producing lithium difluorophosphate and nonaqueous electrolyte battery using the same
US9263765B2 (en) Cyclotriphosphazene compound, method of preparing the same, electrolyte for lithium secondary battery including the cyclotriphosphazene compound, and lithium secondary battery including the electrolyte
EP3246982B1 (en) Electrolyte solution for nonaqueous electrolyte solution cell and nonaqueous electrolyte solution cell
JP2019106362A (en) Electrolyte solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the same
JP6932686B2 (en) Methods for Producing Fluorocyclic Carbonates and Their Use for Lithium Ion Batteries
KR101749188B1 (en) Cyclotriphosphazene compound, preparing method thereof, electrolyte for lithium secodary battery, and lithium secodary battery including the same
JP5552088B2 (en) Non-aqueous electrolyte and lithium secondary battery containing benzodioxadithiepine derivative
KR20140100873A (en) Phosphorus containing compound, method of preparing the same, and electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR102638391B1 (en) Method for producing dialkanesulfonyl isosorbide compound, electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery, and lithium secondary battery
EP3604276A1 (en) New components for electrolyte compositions
KR102239499B1 (en) Carbonate compounds containing a fluorosulphonyl group, preparation method and use thereof
KR102449845B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery
EP3605698A1 (en) New components for electrolyte compositions
WO2020025499A1 (en) New components for electrolyte compositions
JP2019169238A (en) Cation for nonaqueous electrolyte solution, nonaqueous electrolyte solution, power storage device using the same, and phosphonium salt used therefor
EP4340096A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP4303978A1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP5785064B2 (en) Nonaqueous electrolyte containing phosphonoacetic acid compound and lithium secondary battery
WO2014042124A1 (en) Electrolytic solution for lithium cell and method for manufacturing same, and lithium cell provided with said electrolytic solution for lithium cell
KR20230139901A (en) Method of manufacturing vinyl ethyele carbonate compounds, and a electrolyte for lithium secondary battery and a lithium secondary battery including the same
JP2017183067A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electric storage device

Legal Events

Date Code Title Description
GRNT Written decision to grant