KR102465483B1 - Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance - Google Patents

Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance Download PDF

Info

Publication number
KR102465483B1
KR102465483B1 KR1020210026735A KR20210026735A KR102465483B1 KR 102465483 B1 KR102465483 B1 KR 102465483B1 KR 1020210026735 A KR1020210026735 A KR 1020210026735A KR 20210026735 A KR20210026735 A KR 20210026735A KR 102465483 B1 KR102465483 B1 KR 102465483B1
Authority
KR
South Korea
Prior art keywords
stainless steel
corrosion resistance
film
corrosion
oxide film
Prior art date
Application number
KR1020210026735A
Other languages
Korean (ko)
Other versions
KR20220122292A (en
Inventor
정찬영
Original Assignee
동의대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동의대학교 산학협력단 filed Critical 동의대학교 산학협력단
Priority to KR1020210026735A priority Critical patent/KR102465483B1/en
Publication of KR20220122292A publication Critical patent/KR20220122292A/en
Application granted granted Critical
Publication of KR102465483B1 publication Critical patent/KR102465483B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 내식성 향상을 위한 기능성 초발수 스테인리스 스틸 표면 개발 기술에 관한 것으로, 본 발명에 따른 스테인리스 스틸 표면에 내식성(Corrosion resistance) 산화막을 형성하는 방법은, 종래의 균일한 다공성 산화막을 형성하기 위한 프리패터닝(pre-patterning) 공정 없이도 균일한 다공성 산화막을 형성할 수 있고, 또한 종래의 양극산화처리 후에 기공확장 단계 없이도 초소수성 및 내식성이 현저히 우수한 효과가 있어, 제조단가를 절감할 수 있다.The present invention relates to a technology for developing a functional super water-repellent stainless steel surface for improving corrosion resistance, and the method for forming a corrosion resistance oxide film on a stainless steel surface according to the present invention is a conventional method for forming a uniform porous oxide film. It is possible to form a uniform porous oxide film without a pre-patterning process, and also has remarkably excellent effects in superhydrophobicity and corrosion resistance without a pore expansion step after conventional anodization, thereby reducing manufacturing cost.

Description

내식성 향상을 위한 기능성 초발수 스테인리스 스틸 표면 개발 기술{Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance}Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance

본 발명은 내식성 향상을 위한 기능성 초발수 스테인리스 스틸 표면 개발 기술에 관한 것이다.The present invention relates to a technology for developing a functional super water-repellent stainless steel surface for improving corrosion resistance.

스테인리스 스틸은 크롬을 첨가하여 녹이 슬지 않는 금속 합금으로 가공성, 경제성 및 우수한 내식성 등의 특성을 가지므로 해양, 기계, 전자 부품, 배관, 발전, 원자력 등 여러 산업분야에서 활용되고 있다. 그러나 스테인리스 스틸은 이와 같은 장점에도 불구하고 가스 배관 및 해양산업 등 혹독한 환경과 같은 환경에서 내식성이 취약하다는 단점을 가지고 있다.Stainless steel is a metal alloy that does not rust by adding chromium, and has characteristics such as machinability, economy, and excellent corrosion resistance. However, despite these advantages, stainless steel has a disadvantage in that it has poor corrosion resistance in harsh environments such as gas pipelines and marine industries.

이런 단점을 해결하기 위해 내식성을 향상하기 위한 부식 방지 표면처리 기술 연구가 활발히 이루어지고 있다. 최근 젖음성 거동을 이용한 연구를 통해 초발수성 표면을 구현하는 연구가 주목받고 있다.In order to solve these shortcomings, research on anti-corrosion surface treatment technology to improve corrosion resistance is being actively conducted. Recently, research using a wettability behavior to implement a superhydrophobic surface is attracting attention.

초발수성 표면은 발수성(Water Repellency), 자기세정(Self-Cleaning), 발유성(Oil Repellency), 결빙방지(Anti-Icing), 착상방지(Anti-Frost)등 여러가지 특성을 활용할 수 있으며, 첨단 디스플레이, 광학필름, 반도체, 박막 코팅 등 다양한 산업에서 이용할 수 있다.The super water-repellent surface can utilize various characteristics such as water repellency, self-cleaning, oil repellency, anti-icing, anti-frost, etc. , optical film, semiconductor, thin film coating, etc. can be used in various industries.

젖음성 거동은 소재의 표면에너지에 의해 결정되며, 표면 에너지를 감소시켜 표면 접촉각이 150° 이상이 되어 초발수성이 구현된다. 이와 같은 초발수성 표면은 연 꽃잎, 매미날개, 벼 잎 등 여러가지 자연 소재를 보고 개발되었으며, 마이크로 및 나노크기의 구조를 제작하여 표면에너지를 감소시켜 제작하는 등 다양한 방법들이 연구되고 있다.Wettability behavior is determined by the surface energy of the material, and by reducing the surface energy, the surface contact angle becomes more than 150° to realize super water repellency. Such a superhydrophobic surface was developed by looking at various natural materials such as lotus petals, cicada wings, and rice leaves, and various methods are being studied, such as fabricating micro- and nano-sized structures to reduce surface energy.

하지만 금속에 마이크로 및 나노 크기의 구조물을 균일하게 구현할 수 있는 방법이 제한적이다. 다양한 표면처리법 중 양극산화 방법은 금속에 인위적으로 균일하고 두꺼운 산화 피막을 형성시킬 수 있다.However, methods for uniformly implementing micro- and nano-sized structures on metal are limited. Among the various surface treatment methods, the anodization method can artificially form a uniform and thick oxide film on the metal.

양극산화 법으로 만들어진 산화피막은 장벽형 피막과 기공형 피막으로 나누어지며, 장벽형 피막은 기공과 같은 빈 공간 없이 산화막 내부가 치밀하게 형성된 피막을 말하며, 기공형 피막은 기공구조가 규칙적으로 배열되는 나노 구조를 가지는 다공성 피막과 기공과 기공사이에 빈공간이 존재하는 나노 튜브형 피막으로 나누어진다.The oxide film made by the anodization method is divided into a barrier film and a pore film. The barrier film refers to a film in which the inside of the oxide film is densely formed without empty spaces such as pores. It is divided into a porous film having a nanostructure and a nanotubular film in which pores and empty spaces exist between pores.

여기서, 상기 양극산화는 금속의 표면 처리방법 중 가장 널리 알려진 처리방법의 하나로서, 전해액에 침적된 금속 모재를 양극으로 하여 통전하는 경우, 양극에서 발생하는 산소에 의하여 모재의 표면이 산화되면서 산화피막을 형성하여 모재의 물성을 향상하는 처리방법이다.Here, the anodic oxidation is one of the most widely known treatment methods among the surface treatment methods of metal. When electricity is energized using a metal base material immersed in an electrolyte as an anode, the surface of the base material is oxidized by oxygen generated from the anode to form an oxide film. It is a treatment method to improve the physical properties of the base material by forming

즉, 상기 전해액 중의 산소이온이나 수산이온이 모재의 표면에 형성되어 있던 산화피막으로 침투하여 금속이온과 결합하여 산화층을 형성함으로써, 상기 모재와 상기 산화층의 계면 부근에 기공성의 산화피막과 수산화피막이 성장하여 상기 모재의 물성을 더욱 향상시키게 되는 것이다.That is, oxygen ions or hydroxide ions in the electrolyte penetrate into the oxide film formed on the surface of the base material and combine with metal ions to form an oxide layer, whereby a porous oxide film and hydroxide film grow near the interface between the base material and the oxide layer. Thus, the physical properties of the base material are further improved.

양극산화에 의해 금속 모재의 물성을 증대함에 있어서, 상기 양극산화의 가장 핵심적인 변수로는 양극산화처리 전압, 시간, 그리고 모재 금속의 순도와 같은 다양한 함수를 적절히 세팅하는 것이 무엇보다도 중요하다.In increasing the physical properties of the metal base material by anodization, it is most important to properly set various functions such as anodization voltage, time, and purity of the base metal as the most essential parameters of the anodization.

스테인리스 스틸에도 성분 함량에 따라 다양한 합금 종류가 있고, 성분 함량에 따라서 목적하는 양극산화처리의 조건은 달라질 수 있어, 처리대상 모재의 성분 함량은 매우 중요하다 할 수 있다.Stainless steel also has various types of alloys depending on the component content, and the desired conditions for anodization may vary depending on the component content, so the component content of the base material to be treated is very important.

본 발명자는 SUS 304계열 스테인리스 스틸을 모재로 하여 양극산화처리 시간 및 전압을 최적화하여 초소수성 및 부식 억제율이 향상된 양극산화막을 형성하는 조건을 알아내고, 본 발명을 완성하였다.The present inventors have found out the conditions for forming an anodized film with improved superhydrophobicity and corrosion inhibition by optimizing the anodization time and voltage using SUS 304 series stainless steel as a base material, and completed the present invention.

등록특허 10-1832059호Registered Patent No. 10-1832059

본 발명의 목적은 스테인리스 스틸 표면에 내식성(Corrosion resistance) 산화막을 형성하는 방법을 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for forming a corrosion-resistant oxide film on a stainless steel surface.

본 발명의 다른 목적은 상기 방법으로 제조된 초소수성 양극산화막이 형성된 스테인리스 스틸을 제공하는 것이다.Another object of the present invention is to provide a stainless steel having a superhydrophobic anodized film prepared by the above method.

본 발명의 또 다른 목적은 상기 방법으로 제조된 내식성 양극산화막이 형성된 스테인리스 스틸을 제공하는 것이다.Another object of the present invention is to provide a stainless steel with a corrosion-resistant anodized film manufactured by the above method.

본 발명의 다른 목적은 상기 방법으로 제조된 스테인리스 스틸을 포함하는 의료기기, 해상용 운송수단, 지상용 운송수단, 항공 운송수단을 제공하는 것이다.Another object of the present invention is to provide a medical device, marine transportation means, ground transportation means, and air transportation means including the stainless steel manufactured by the above method.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 스테인리스 스틸 표면을 세척하고 건조하는 단계(단계 1);The present invention comprises the steps of washing and drying a stainless steel surface (step 1);

65-75 V 인가 전압에서 2.5-3.5 시간 동안 양극산화처리하여, 스테인리스 스틸 표면에 양극산화막을 형성하는 단계(단계 2);forming an anodization film on the stainless steel surface by anodizing at a voltage of 65-75 V for 2.5-3.5 hours (step 2);

플라즈마 처리하여 유기 잔여물을 제거하고 양극산화막 표면을 친수성으로 만드는 단계(단계 3); 및Plasma treatment to remove organic residues and make the surface of the anodized film hydrophilic (step 3); and

SAM(Self-Assembled Monolayer) 코팅 가능한 소수성 코팅제로 코팅하는 단계(단계 4);를 포함하는,Including the; SAM (Self-Assembled Monolayer) coating with a coatingable hydrophobic coating agent (step 4);

스테인리스 스틸 표면에 내식성(Corrosion resistance) 산화막을 형성하는 방법을 제공한다.A method for forming a corrosion-resistant oxide film on a stainless steel surface is provided.

상기 스테인리스 스틸은 다양한 스테인리스 스틸에 모두 적용가능하나, 바람직하게는 SUS 304 또는 SUS 304L일 수 있다.The stainless steel is applicable to various stainless steels, but may preferably be SUS 304 or SUS 304L.

상기 단계 2의 양극산화처리에서 전해질(electrolyte)은 0.05-0.15M의 NH4F, 0.05-0.15M의 물이 포함된 에틸렌글리콜을 사용할 수 있고, 바람직하게는 0.08-0.12M의 NH4F, 0.08-0.12M의 물이 포함된 에틸렌글리콜을 사용할 수 있으며, 더욱 바람직하게는 0.09-0.11M의 NH4F, 0.09-0.11M의 물이 포함된 에틸렌글리콜을 사용할 수 있고, 본 발명에서는 일례로서 0.1M의 NH4F, 0.1M의 물이 포함된 에틸렌글리콜을 전해질로서 사용하였으나 이에 제한하지 않는다.In the anodization treatment of step 2, the electrolyte may be 0.05-0.15M of NH 4 F, 0.05-0.15M of ethylene glycol containing water, preferably 0.08-0.12M of NH 4 F, Ethylene glycol containing water of 0.08-0.12M may be used, and more preferably, ethylene glycol containing water of 0.09-0.11M NH 4 F and 0.09-0.11M water may be used, and in the present invention, as an example Ethylene glycol containing 0.1M of NH 4 F and 0.1M of water was used as an electrolyte, but is not limited thereto.

상기 단계 2는 세척된 스테인리스 스틸을 65-75 V에서 2.5-3.5시간 동안 양극산화처리할 수 있고, 바람직하게는 68-72 V에서 2.8-3.2시간, 더욱 바람직하게는 69-71 V에서 2.9-3.1시간 실시할 수 있다.In step 2, the cleaned stainless steel may be anodized at 65-75 V for 2.5-3.5 hours, preferably at 68-72 V for 2.8-3.2 hours, more preferably at 69-71 V for 2.9- It can be performed for 3.1 hours.

접촉각 160° 이상의 초소수성 및 부식 억제율 90% 이상을 구현하기 위해서는, 69-71 V에서 2.9-3.1시간 양극산화처리하는 것이 바람직하고, 이 조건을 벗어날 경우 초소수성 구현이 안되거나 부식 억제율이 낮은 문제점이 있을 수 있다.In order to realize superhydrophobicity with a contact angle of 160° or more and corrosion inhibition rate of 90% or more, it is desirable to anodize at 69-71 V for 2.9-3.1 hours. This can be.

상기 단계 4의 SAM 코팅 가능한 소수성 코팅제로는 표면에너지가 6mJ/m2 내지 20mJ/m2인 플루오르카본 체인 수가 1 내지 20개인 퍼플로로알킬실란, 탄소수가 1 내지 20개인 알킬실란 등을 사용할 수 있고, 일례로 1H,1H,2H,2H-퍼플로로데실트리클로로실란(FDTS), 트리클로로옥틸실란(OTS), 옥타데실트리클로로실란(ODTS) 등을 사용할 수 있다.As the hydrophobic coating agent capable of SAM coating in step 4, perfluoroalkylsilane having 1 to 20 fluorocarbon chains having a surface energy of 6mJ/m 2 to 20mJ/m 2 , alkylsilane having 1 to 20 carbon atoms, etc. can be used. and, for example, 1 H , 1 H , 2 H , 2 H -Perfluorodecyltrichlorosilane (FDTS), trichlorooctylsilane (OTS), octadecyltrichlorosilane (ODTS), and the like may be used.

또한, 본 발명은 상기 방법으로 제조된 초소수성 양극산화막이 형성된 스테인리스 스틸을 제공한다.In addition, the present invention provides a stainless steel having a superhydrophobic anodized film prepared by the above method.

나아가, 본 발명은 상기 방법으로 제조된 내식성 양극산화막이 형성된 스테인리스 스틸을 제공한다.Furthermore, the present invention provides a stainless steel with a corrosion-resistant anodized film manufactured by the above method.

또한, 본 발명은 상기 방법으로 제조된 스테인리스 스틸을 포함하는 의료기기, 해상용 운송수단, 지상용 운송수단, 항공 운송수단을 제공한다.In addition, the present invention provides a medical device, a marine transportation means, a ground transportation means, and an air transportation means including the stainless steel manufactured by the above method.

본 발명에 따른 스테인리스 스틸 표면에 내식성(Corrosion resistance) 산화막을 형성하는 방법은, 종래의 균일한 다공성 산화막을 형성하기 위한 프리패터닝(pre-patterning) 공정 없이도 균일한 다공성 산화막을 형성할 수 있고, 또한 종래의 양극산화처리 후에 기공확장 단계 없이도 초소수성 및 내식성이 현저히 우수한 효과가 있어, 제조단가를 절감할 수 있다.The method for forming a corrosion resistance oxide film on a stainless steel surface according to the present invention can form a uniform porous oxide film without a conventional pre-patterning process for forming a uniform porous oxide film, and also Even without a pore expansion step after conventional anodizing treatment, there is an effect of remarkably excellent superhydrophobicity and corrosion resistance, thereby reducing the manufacturing cost.

도 1은 실시예의 단계 1 내지 단계 3까지 실시한 후 얻은 3개의 샘플에 대한 EDS 측정 결과이다.
도 2는 실시예에서 단계 1 내지 3까지 실시한 후 얻은 3개의 샘플 표면에 형성된 산화막의 표면 형상을 FE-SEM으로 관찰한 이미지이다.
도 3은 실시예에서 단계 1 내지 단계 3까지만 실시한 샘플(SAM 코팅 미실시)의 접촉각을 측정한 결과이다.
도 4는 실시예에서 단계 1 내지 단계 4까지 모두 실시한 샘플(SAM 코팅 실시)의 접촉각을 측정한 결과이다.
도 5는 실시예에서 단계 1 내지 단계 4까지 모두 실시한 샘플의 동전위분극 곡선을 나타낸 도면이다.
1 is an EDS measurement result for three samples obtained after performing steps 1 to 3 of the example.
2 is an image observed by FE-SEM of the surface shape of the oxide film formed on the surfaces of three samples obtained after performing steps 1 to 3 in Example.
Figure 3 is a result of measuring the contact angle of the sample (SAM coating not carried out) carried out only to steps 1 to 3 in Examples.
4 is a result of measuring the contact angle of the sample (SAM coating is performed) all performed from steps 1 to 4 in the example.
5 is a view showing the co-potential polarization curve of the samples performed all the steps 1 to 4 in the Example.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited by the following examples.

<실시예 1-1 내지 1-3> 스테인리스 스틸(SUS 304)의 양극산화처리<Examples 1-1 to 1-3> Anodizing treatment of stainless steel (SUS 304)

단계 1: 스테인리스 스틸(SUS 304) 기판의 준비Step 1: Preparation of stainless steel (SUS 304) substrate

20 mm × 30 mm × 0.5 mm 크기의 스테인리스 스틸(SUS 304)을 사용하였다. 표면 이물질 제거 및 표면 클리닝을 위해 에탄올과 아세톤에 침지시켜 초음파 세척을 실시하였으며, 증류수를 이용하여 한번 더 세척한 후 건조하였다.A stainless steel (SUS 304) having a size of 20 mm × 30 mm × 0.5 mm was used. Ultrasonic cleaning was performed by immersing in ethanol and acetone to remove foreign substances on the surface and cleaning the surface. After washing again with distilled water, it was dried.

SUS 304 등의 스테인리스 스틸의 성분을 하기에 나타내었다. 참조로, 금속의 종류, 그리고 합금의 종류에 따라서 초친수성 산화막을 형성하기 위한 최적의 양극산화 처리조건에는 상당한 차이가 있고, 본 발명에서는 SUS 304에 초점을 맞추어 초친수성 산화막을 형성하기 위한 최적의 양극산화 처리조건을 찾아내었다.Components of stainless steel such as SUS 304 are shown below. For reference, there is a significant difference in the optimal anodization treatment conditions for forming a superhydrophilic oxide film depending on the type of metal and the type of alloy, and the present invention focuses on SUS 304 to form a superhydrophilic oxide film. Anodizing treatment conditions were found.

Figure 112021023796497-pat00001
Figure 112021023796497-pat00001

단계 2: 양극산화 처리Step 2: Anodizing

양극산화 공정은 양극에 스테인리스 스틸, 음극에 백금을 사용하였으며, 전극간 거리는 5cm 로 유지했다. 에틸렌글리콜 용액을 기반으로 0.1 M NH4F, 0.1 M H2O을 첨가한 전해질 용액에서 이중 자켓 비커와 수냉식 냉각기를 이용하여 0℃의 온도로 유지하였다. 인가전압을 30V(실시예 1-1), 50V(실시예 1-2), 70V(실시예 1-3)로 하여 3시간 동안 진행하였으며, 양극산화 후 시편을 증류수로 세척, 건조하였다.In the anodization process, stainless steel was used for the anode and platinum was used for the cathode, and the distance between the electrodes was maintained at 5 cm. Based on the ethylene glycol solution, 0.1 M NH 4 F, 0.1 MH 2 O was added to the electrolyte solution, which was maintained at a temperature of 0° C. using a double jacket beaker and a water-cooled cooler. The applied voltage was 30V (Example 1-1), 50V (Example 1-2), and 70V (Example 1-3) for 3 hours, and after anodization, the specimen was washed with distilled water and dried.

단계 3: 플라즈마 처리Step 3: Plasma Treatment

플라즈마 장치를 이용하여 표면에 15분 동안 산소 플라즈마로 유기 잔여물 제거하고 친수성으로 만든 후 공기 중에서 가열 교반기를 사용하여 150℃에서 10분 동안 건조하였다. 플라즈마 처리 조건은 200W, 50KHz, O2 50sccm, RIE 모드로 15분 동안 플라즈마 처리하였다.Using a plasma apparatus, organic residues were removed from the surface with oxygen plasma for 15 minutes, made hydrophilic, and then dried in air at 150° C. for 10 minutes using a heating stirrer. Plasma treatment conditions were 200W, 50KHz, O 2 50sccm, plasma treatment for 15 minutes in RIE mode.

단계 4: 자기조립 단분자막(Self-Assembled Monolayer, SAM) 코팅Step 4: Self-Assembled Monolayer (SAM) Coating

플라즈마 처리가 완료된 양극산화 샘플에 초발수 특성을 부여하기 위해, 자기조립 단분자막(Self-Assembled Monolayer, SAM) 코팅을 낮은 표면에너지를 가지는 물질인 FDTS(1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) 용액을 사용하여 수행하였다.In order to give super water-repellent properties to the plasma-treated anodized sample, the self-assembled monolayer (SAM) coating was coated with FDTS (1H, 1H, 2H, 2H-Perfluorodecyltrichlorosilane) solution, which is a material with low surface energy. was carried out using

<실험예 1> EDS(Energy dispersive spectroscopy)를 이용한 산화막 형성 평가<Experimental Example 1> Evaluation of oxide film formation using EDS (Energy dispersive spectroscopy)

실시예에서 단계 1 내지 단계 3까지(SAM 코팅 미실시) 실시한 후 얻은 3개의 스테인리스 스틸(SUS 304) 샘플에 대해서 EDS(모델명: X-MAX, 제조사: OXFORD) 측정을 하여, 산화막 형성 여부를 평가하였고, 그 결과를 도 1에 나타내었다.EDS (model name: X-MAX, manufacturer: OXFORD) was measured for three stainless steel (SUS 304) samples obtained after performing steps 1 to 3 (SAM coating not performed) in the Example, and the formation of an oxide film was evaluated. , the results are shown in FIG. 1 .

도 1은 실시예의 단계 1 내지 단계 3까지 실시한 후 얻은 3개의 샘플에 대한 EDS 측정 결과이다.1 is an EDS measurement result for three samples obtained after performing steps 1 to 3 of the example.

도 1에 나타난 바와 같이, 양극산화 후에 산소와 철이 주성분으로 나타나 있으며, 그 외에 크롬, 망간, 니켈 등이 검출되었으며 탄소는 샘플을 스테이지에 고정하기 위한 카본테이프에 영향으로 노이즈에 해당한다. 이 결과를 통해 스테인리스 스틸 표면에 산화막이 형성된 것을 확인할 수 있다.As shown in FIG. 1, after anodization, oxygen and iron are shown as main components, and in addition, chromium, manganese, nickel, etc. were detected, and carbon corresponds to noise due to the influence of the carbon tape for fixing the sample to the stage. From this result, it can be confirmed that an oxide film is formed on the surface of the stainless steel.

<실험예 2> FE-SEM(Field Emission Scanning Electron Microscope)을 이용한 표면 형상 관찰<Experimental Example 2> Observation of surface shape using FE-SEM (Field Emission Scanning Electron Microscope)

실시예에서 단계 1 내지 단계 3까지(SAM 코팅 미실시) 실시한 스테인리스 스틸(SUS 304) 표면에 형성된 산화막의 표면 형상을 FE-SEM(모델명: MIRA 3 LMH In-Beam Detector, 제조사: TESCAN)을 이용하여 관찰하였고, 그 결과를 도 2에 나타내었다.In the example, the surface shape of the oxide film formed on the surface of the stainless steel (SUS 304) performed from steps 1 to 3 (SAM coating not performed) was measured using FE-SEM (model name: MIRA 3 LMH In-Beam Detector, manufacturer: TESCAN). was observed, and the results are shown in FIG. 2 .

구체적으로, 샘플의 표면 형상을 관찰하기 위하여 샘플을 절단하여 카본 테이프로 스테이지에 고정하고, 양극산화로 만들어진 구조물은 비전도성인 산화물이므로 백금 코팅을 40초간 수행한 후 관찰하였다.Specifically, in order to observe the surface shape of the sample, the sample was cut and fixed to the stage with carbon tape, and the structure made by anodization was a non-conductive oxide, so platinum coating was performed for 40 seconds and then observed.

도 2는 실시예에서 단계 1 내지 3까지 실시한 후 얻은 3개의 샘플 표면에 형성된 산화막의 표면 형상을 FE-SEM으로 관찰한 이미지이다.2 is an image observed by FE-SEM of the surface shape of the oxide film formed on the surfaces of three samples obtained after performing steps 1 to 3 in Example.

도 2에 나타난 바와 같이, (a)와 (b)는 30V, 50V의 인가전압에서의 이미지이며, (a)와 (b)에서는 장벽형 산화피막이 형성되어 표면에 기공은 관찰하지 못하였다. 그러나 (c)에서는 앞의 (a)와 (b)의 조건과 다르게 다공성 구조가 형성되어지는 것을 관찰할 수 있었다.As shown in FIG. 2, (a) and (b) are images at applied voltages of 30V and 50V, and in (a) and (b), a barrier-type oxide film was formed and no pores were observed on the surface. However, in (c), it was observed that a porous structure was formed differently from the conditions of (a) and (b).

표 1에 도 2의 FE-SEM 이미지를 이용하여 양극산화 후 표면에 생성되어진 기공 직경(Pore Diameter, Dp), 기공사이의 간격(Interpore Distance, Dint), 고체분율(Solid Fraction)을 측정한 결과를 나타내었다. 고체분율은 고체-액체 비율을 하기 수학식 (1)에 의해 산출되었다.In Table 1, using the FE-SEM image of FIG. 2, the pore diameter (Pore Diameter, D p ), the interpore distance (D int) , and the solid fraction generated on the surface after anodization were measured. One result was shown. The solid fraction was calculated by the following equation (1) for the solid-liquid ratio.

[수학식 1][Equation 1]

Figure 112021023796497-pat00002
Figure 112021023796497-pat00002

f SL : 고체 분율(Solid Fraction) f SL : Solid Fraction

a: 기공간의 거리a: distance of air space

r: 기공의 반지름r: the radius of the pore

Dp(nm)D p (nm) Dint(nm)D int (nm) 고체분율solid fraction 30V30V NoneNone NoneNone NoneNone 50V50V NoneNone NoneNone NoneNone 70V70V 115.79±17.46115.79±17.46 137.06±15.31137.06±15.31 0.3550.355

표 1에 나타난 바와 같이, 도 2에서 70V 전압 조건의 샘플(c) 다공성 표면에서 기공 직경은 115.59nm, 기공간의 거리는 137.06nm, 고체분율은 0.355이다. 이를 통해 30V, 50V 전압조건에서는 양극산화 피막에서 내부의 기공과 같은 빈 공간이 존재하지 않고 치밀하게 형성된 피막이 형성되었으며, 70V의 전압 조건에서 다소 규칙적인 기공을 가지는 다공성 피막이 형성됨을 관찰하였다. 고체분율(Solid Fraction)은 거칠기율을 의미한다. As shown in Table 1, the pore diameter is 115.59 nm, the pore distance is 137.06 nm, and the solid fraction is 0.355 on the porous surface of the sample (c) under the 70V voltage condition in FIG. 2 . Through this, it was observed that under the voltage conditions of 30V and 50V, a densely formed film was formed without empty spaces such as internal pores in the anodized film, and a porous film with somewhat regular pores was formed under the voltage condition of 70V. The solid fraction refers to the roughness ratio.

<실험예 3> 접촉각 평가<Experimental Example 3> Contact angle evaluation

실시예에서 단계 1 내지 단계 3까지만 실시한 샘플과 단계 1 내지 단계 4까지 모두 실시한 샘플의 표면 젖음성을 알아보기 위해 접촉각을 측정하였고, 그 결과를 도 3, 도 4 및 표 2에 나타내었다.In Examples, the contact angle was measured to determine the surface wettability of the samples subjected to steps 1 to 3 and the samples subjected to all steps 1 to 4, and the results are shown in FIGS. 3, 4 and Table 2.

구체적으로, 측정 시에 기준 액체로 3.5㎕의 증류수를 사용하였다. 표면 위에 액적을 떨어뜨린 후 5초의 시간후에 접촉각을 측정하였고, 시편 당 10번 측정을 하였다.Specifically, 3.5 μl of distilled water was used as a reference liquid in the measurement. After dropping the droplet on the surface, the contact angle was measured after 5 seconds, and measurements were made 10 times per specimen.

도 3은 실시예에서 단계 1 내지 단계 3까지만 실시한 샘플(SAM 코팅 미실시)의 접촉각을 측정한 결과이다.3 is a result of measuring the contact angle of the sample (SAM coating not carried out) carried out only to steps 1 to 3 in Examples.

도 4는 실시예에서 단계 1 내지 단계 4까지 모두 실시한 샘플(SAM 코팅 실시)의 접촉각을 측정한 결과이다.4 is a result of measuring the contact angle of the samples (SAM coating is performed) all performed from steps 1 to 4 in the Example.

도 3 및 도 4의 결과를 하기 표 2에 정리하여 나타내었다.The results of FIGS. 3 and 4 are summarized in Table 2 below.

SAM 코팅전 (°)Before SAM coating (°) SAM 코팅후 (°)After SAM coating (°) 30V30V 59.26±4.4559.26±4.45 115.02±2.99115.02±2.99 50V50V 44.87±4.4644.87±4.46 119.69±1.78119.69±1.78 70V70V 17.04±3.1417.04±3.14 161.80±1.00161.80±1.00

표 2에 나타난 바와 같이, SAM 코팅 미실시 샘플의 경우 인가전압 30 V에서 59.26°, 50 V에서 44.87°인 반면에 70 V에서 17.04°로 초친수성이 나타남을 확인하였다. 이는 낮은 표면에너지를 가진 FDTS용액으로 SAM 코팅 실시 전의 샘플로서 형성된 양극산화 피막으로 인하여 친수성을 나타낸다. 낮은 표면에너지를 가진 FDTS용액으로 SAM 코팅 실시 샘플의 경우 인가전압 30 V에서 115.02°, 50 V 에서는 119.69°인 반면에 70 V에서는 161.8°로 초발수이 나타남을 확인하였다.As shown in Table 2, it was confirmed that, in the case of the sample not coated with SAM, superhydrophilicity was shown at 59.26° at 30 V and 44.87° at 50 V, while 17.04° at 70 V. It shows hydrophilicity due to the anodization film formed as a sample before SAM coating with an FDTS solution with low surface energy. In the case of the sample coated with SAM with FDTS solution with low surface energy, it was confirmed that super water repellency appeared at 115.02° at 30 V and 119.69° at 50 V, whereas at 70 V, it was 161.8°.

다공성 산화막을 가진 표면에서는 코팅으로 인하여 기공 또는 고체 표면사이에서 공기가 물방울을 떠받드는 형상이 될 수 있음으로 인해 초발수성 표면이 형성된다.On a surface with a porous oxide film, a superhydrophobic surface is formed because the coating can be shaped to hold water droplets between pores or solid surfaces.

<실험예 4> 내식성(Corrosion resistance) 평가<Experimental Example 4> Corrosion resistance evaluation

실시예에서 단계 1 내지 단계 4까지 모두 실시한 샘플의 내식성을 평가하였고, 그 결과를 도 5 및 표 3에 나타내었다.In Examples, the corrosion resistance of the samples performed from steps 1 to 4 were evaluated, and the results are shown in FIG. 5 and Table 3.

구체적으로, 내식성은 전기화학적 방법인 동전위분극시험(Potentio-Dynamic Polarization Test, PDP)으로 상온의 3.5 wt% NaCl 용액에서 진행하였다. 분석 시험 진행 전 1시간 동안 상온에서 3.5 wt.% NaCl 용액에 샘플을 침지 시킨 후 측정하였다. 분극 시험은 3전극 시스템으로 작업전극으로는 샘플을 사용하였고 상대전극으로는 백금(Pt)을 사용하였으며 기준전극으로는 은/염화은(Ag/AgCl) 전극을 이용하였다. 측정 조건은 -500 mV 내지 +14000 mV(vs. Ag/AgCl) 범위를 1 mV/sec의 주사 속도로 전기화학적 특성 분석을 통해 내식성을 평가하였다.Specifically, corrosion resistance was conducted in a 3.5 wt% NaCl solution at room temperature by an electrochemical method, Potentio-Dynamic Polarization Test (PDP). Measurements were made after immersing the sample in 3.5 wt.% NaCl solution at room temperature for 1 hour before proceeding with the analysis test. The polarization test is a three-electrode system, using a sample as a working electrode, platinum (Pt) as a counter electrode, and a silver/silver chloride (Ag/AgCl) electrode as a reference electrode. The measurement conditions were -500 mV to +14000 mV (vs. Ag/AgCl) range, and corrosion resistance was evaluated through electrochemical characterization at a scanning rate of 1 mV/sec.

도 5는 실시예에서 단계 1 내지 단계 4까지 모두 실시한 샘플의 동전위분극 곡선을 나타낸 도면이다.5 is a view showing the co-potential polarization curve of the samples performed all the steps 1 to 4 in the Example.

도 5의 결과를 정리하여 하기 표 3에 나타내었다.The results of FIG. 5 are summarized and shown in Table 3 below.

Ecorr (mV)E corr (mV) Icorr (A/cm2)I corr (A/cm 2 ) IE (%)IE (%) 무처리 SUS304Untreated SUS304 -37.8-37.8 1.12×10-8 1.12×10 -8 00 30V30V 112112 5.04×10-8 5.04×10 -8 77.5877.58 50V50V 199199 9.97×10-8 9.97×10 -8 88.6788.67 70V70V 254254 1.19×10-9 1.19×10 -9 90.5090.50

Ecorr: 부식전위E corr : corrosion potential

Icorr: 질량의 손실을 나타내는 부식전류밀도I corr : Corrosion current density representing the loss of mass

IE: 무처리 SUS 304 대비 실시예 처리 샘플의 부식 억제율(Inhibition Efficiency)IE: Inhibition Efficiency of Example Treated Samples vs. Untreated SUS 304

표 3에 나타난 바와 같이, 부식전위(Ecorr)는 아무 처리하지 않은 스테인리스 스틸(Bare SUS304, -37.8 mV)과 비교하여 30V의 인가전압(112 mV), 50V의 인가전압(199 mV), 70V의 인가전압(254 mV)의 표면 개질을 한 구조에서 양의 방향을 이동하였음을 확인하였다. 또한 부식전류밀도(Icorr)은 아무 처리하지 않은 스테인리스 스틸(1.12Х10-8 A/cm2)과 비교하여 30V 인가전압에서(5.04Х10-8 A/cm2), 50V 인가전압(9.97Х10-8 A/cm2), 70V 인가전압(1.19Х10-9 A/cm2)의 표면 개질을 한 구조에서 인가 전압의 증가 따라 부식전류밀도가 감소한 것을 확인할 수 있었다. 부식전류는 질량 손실 반응이 부식에 직접적인 관련 있으므로, Icorr값을 이용하여 부식억제율을 평가하는 데 사용하였다. 부식전류밀도를 이용하여 계산되어진 부식억제율은 하기 수학식 2로 계산하였다. 가장 중요한 지표인 부식 억제율은 30V에서 77.58%, 50V에서 88.67%, 70V에서 90.50%로 나타났다. 이는 양극산화 처리를 통한 표면 형상을 구현한 후 SAM 코팅을 실시할 경우 내식성이 현저히 향상될 수 있음을 나타내는 결과이다. As shown in Table 3, the corrosion potential (E corr ) was 30V applied voltage (112 mV), 50V applied voltage (199 mV), 70V compared to untreated stainless steel (Bare SUS304, -37.8 mV). It was confirmed that the positive direction was shifted in the structure subjected to surface modification of the applied voltage (254 mV). In addition, the corrosion current density (I corr ) was compared to untreated stainless steel (1.12Х10 -8 A/cm 2 ) at 30V applied voltage (5.04Х10 -8 A/cm 2 ), 50V applied voltage (9.97Х10 - 8 A/cm 2 ) and 70V applied voltage (1.19Х10 -9 A/cm 2 ), it was confirmed that the corrosion current density decreased as the applied voltage increased in the structure with the surface modification. The corrosion current was used to evaluate the corrosion inhibition rate using the I corr value because the mass loss reaction is directly related to the corrosion. The corrosion inhibition rate calculated using the corrosion current density was calculated by Equation 2 below. The most important index, corrosion inhibition, was 77.58% at 30V, 88.67% at 50V, and 90.50% at 70V. This result indicates that corrosion resistance can be remarkably improved when SAM coating is performed after realizing a surface shape through anodization.

즉, 다공성 산화피막은 친수성을 가지므로 발수성 구현을 위해 FDTS으로 SAM 코팅하여 기공 내에 공기를 가두어 부식방지 효율 특성을 향상시켰다. 다공성 구조물 및 산화피막이 두꺼워 기공내 많은 공기를 가둘 수 있으므로 내식성의 향상이 가능한 것으로 사료된다.In other words, since the porous oxide film has hydrophilicity, it was coated with FDTS SAM to realize water repellency, and air was trapped in the pores to improve the anti-corrosion efficiency characteristics. It is considered that corrosion resistance can be improved because the porous structure and the oxide film are thick, which can trap a lot of air in the pores.

[수학식 2][Equation 2]

Figure 112021023796497-pat00003
Figure 112021023796497-pat00003

i: 실시예에서 단계 1 내지 단계 4까지 모두 실시한 샘플의 부식전류밀도i: Corrosion current density of all samples performed from step 1 to step 4 in the example

i0: 무처리 SUS 304의 부식전류밀도i 0 : Corrosion current density of untreated SUS 304

IE: 무처리 SUS 304 대비 실시예 처리 샘플의 부식 억제율IE: Corrosion inhibition rate of Example treated samples compared to untreated SUS 304

<실험예 5> 초발수성 구현을 위한 양극산화 최적 조건(시간 및 전압) 평가<Experimental Example 5> Evaluation of optimal conditions for anodization (time and voltage) for realization of super water repellency

상기 실험예 1 내지 4를 통해 양극산화 처리 조건으로 3시간 및 70V 처리할 경우 내식성이 가장 우수함을 확인하였다. 이에, 본 실험예 5에서는 양극산화 처리 조건 3시간 및 70V를 기준으로 하여 최적 조건을 알아보았고, 그 결과를 표 4 및 표 5에 나타내었다. 양극산화 처리 시간 및 전압을 달리한 것을 제외하고는 실시예와 동일하게 샘플(SAM 코팅 실시)을 제조하였다.Through Experimental Examples 1 to 4, it was confirmed that the corrosion resistance was the best when treated with anodizing conditions for 3 hours and 70V. Therefore, in this Experimental Example 5, the optimum conditions were investigated based on the anodization treatment condition of 3 hours and 70V, and the results are shown in Tables 4 and 5. A sample (SAM coating) was prepared in the same manner as in Example, except that the anodization treatment time and voltage were changed.

시간(h)time (h) 전압(V)Voltage (V) 접촉각(°)Contact angle (°) IE(%)IE (%) 실시예 2-1Example 2-1 2.82.8 7070 119.28±2.16119.28±2.16 72.9772.97 실시예 2-2Example 2-2 2.92.9 161.26±2.14161.26±2.14 90.3790.37 실시예 2-3
(= 실시예 1-3)
Example 2-3
(= Examples 1-3)
3.03.0 161.80±1.00161.80±1.00 90.5090.50
실시예 2-4Example 2-4 3.13.1 160.87±1.58160.87±1.58 90.4190.41 실시예 2-5Example 2-5 3.23.2 120.69±0.89120.69±0.89 75.8175.81

시간(h)time (h) 전압(V)Voltage (V) 접촉각(°)Contact angle (°) IE(%)IE (%) 실시예 3-1Example 3-1 3.03.0 6868 120.12±2.47120.12±2.47 77.2877.28 실시예 3-2Example 3-2 6969 160.29±1.25160.29±1.25 90.4190.41 실시예 3-3
(= 실시예 1-3)
Example 3-3
(= Examples 1-3)
7070 161.80±1.00161.80±1.00 90.5090.50
실시예 3-4Example 3-4 7171 160.11±1.36160.11±1.36 90.4890.48 실시예 3-5Example 3-5 7272 119.47±1.89119.47±1.89 74.2974.29

표 4 및 표 5에 나타난 바와 같이, 초발수성 및 내식성 측면에서 양극산화 처리 시간 2.9-3.1 h 및 인가 전압 69-71 V에서 가장 우수한 결과를 확인할 수 있었다.As shown in Tables 4 and 5, the best results were confirmed at an anodization time of 2.9-3.1 h and an applied voltage of 69-71 V in terms of super water repellency and corrosion resistance.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated by the claims rather than the foregoing description, and all differences within the scope of equivalents thereto should be construed as being included in the present invention.

Claims (14)

스테인리스 스틸 표면을 세척하고 건조하는 단계(단계 1);
65-75 V 인가 전압에서 2.5-3.5 시간 동안 양극산화처리하여, 스테인리스 스틸 표면에 양극산화막을 형성하는 단계(단계 2);
플라즈마 처리하여 유기 잔여물을 제거하고 양극산화막 표면을 친수성으로 만드는 단계(단계 3); 및
SAM(Self-Assembled Monolayer) 코팅 가능한 소수성 코팅제로 코팅하는 단계(단계 4);를 포함하고,
상기 단계 2의 양극산화처리에 사용하는 전해질은 0.09-0.11M의 NH4F 및 0.09-0.11M의 물이 포함된 에틸렌글리콜이고, 상기 전해질의 온도는 -1 내지 1℃인 것을 특징으로 하는,
스테인리스 스틸 표면에 내식성(Corrosion resistance) 산화막을 형성하는 방법.
cleaning and drying the stainless steel surface (step 1);
forming an anodization film on the stainless steel surface by anodizing at a voltage of 65-75 V for 2.5-3.5 hours (step 2);
Plasma treatment to remove organic residues and make the surface of the anodized film hydrophilic (step 3); and
Including; coating with a hydrophobic coating agent capable of self-assembled monolayer (SAM) coating (step 4);
The electrolyte used for the anodizing treatment of step 2 is ethylene glycol containing 0.09-0.11M of NH 4 F and 0.09-0.11M of water, and the temperature of the electrolyte is -1 to 1°C, characterized in that,
A method of forming a corrosion-resistant oxide film on a stainless steel surface.
제1항에 있어서,
상기 스테인리스 스틸은 SUS 304 또는 SUS 304L인 것을 특징으로 하는 방법.
According to claim 1,
The method, characterized in that the stainless steel is SUS 304 or SUS 304L.
삭제delete 제1항에 있어서,
상기 단계 2의 양극산화처리는 68-72 V 인가 전압에서 2.8-3.2 시간 동안 처리하는 것을 특징으로 하는 방법.
According to claim 1,
The anodizing treatment of step 2 is characterized in that the treatment is performed at a voltage of 68-72 V for 2.8-3.2 hours.
제4항에 있어서,
상기 단계 2의 양극산화처리는 69-71 V 인가 전압에서 2.9-3.1 시간 동안 처리하는 것을 특징으로 하는 방법.
5. The method of claim 4,
The anodizing treatment in step 2 is characterized in that the treatment is performed at a voltage of 69-71 V for 2.9-3.1 hours.
제1항에 있어서,
상기 SAM 코팅 가능한 소수성 코팅제는 1H,1H,2H,2H-퍼플로로데실트리클로로실란(FDTS), 트리클로로옥틸실란(OTS) 및 옥타데실트리클로로실란(ODTS) 중 어느 하나인 것을 특징으로 하는 방법.
According to claim 1,
The SAM coatable hydrophobic coating agent is any one of 1 H ,1 H ,2 H ,2 H -perfluorodecyltrichlorosilane (FDTS), trichlorooctylsilane (OTS) and octadecyltrichlorosilane (ODTS) A method characterized in that.
제1항에 있어서,
스테인리스 스틸 표면에 접촉각 160° 이상의 양극산화막이 형성되는 것을 특징으로 하는 방법.
According to claim 1,
A method, characterized in that an anodization film is formed on the surface of the stainless steel with a contact angle of 160° or more.
제1항에 있어서,
스테인리스 스틸 표면에 부식 억제율 90% 이상의 양극산화막이 형성되는 것을 특징으로 하는 방법.
According to claim 1,
A method, characterized in that an anodization film having a corrosion inhibition rate of 90% or more is formed on the surface of the stainless steel.
제1항의 방법으로 제조된 초소수성 양극산화막이 형성된 스테인리스 스틸.
A stainless steel with a superhydrophobic anodized film produced by the method of claim 1 .
제1항의 방법으로 제조된 내식성 양극산화막이 형성된 스테인리스 스틸.
A stainless steel with a corrosion-resistant anodized film manufactured by the method of claim 1 .
제1항의 방법으로 제조된 스테인리스 스틸을 포함하는 의료기기.
A medical device comprising stainless steel manufactured by the method of claim 1 .
제1항의 방법으로 제조된 스테인리스 스틸을 포함하는 해상용 운송수단.
A marine vehicle comprising stainless steel manufactured by the method of claim 1 .
제1항의 방법으로 제조된 스테인리스 스틸을 포함하는 지상용 운송수단.
A ground vehicle comprising stainless steel manufactured by the method of claim 1 .
제1항의 방법으로 제조된 스테인리스 스틸을 포함하는 항공 운송수단.An air vehicle comprising stainless steel manufactured by the method of claim 1 .
KR1020210026735A 2021-02-26 2021-02-26 Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance KR102465483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210026735A KR102465483B1 (en) 2021-02-26 2021-02-26 Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210026735A KR102465483B1 (en) 2021-02-26 2021-02-26 Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance

Publications (2)

Publication Number Publication Date
KR20220122292A KR20220122292A (en) 2022-09-02
KR102465483B1 true KR102465483B1 (en) 2022-11-09

Family

ID=83280935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210026735A KR102465483B1 (en) 2021-02-26 2021-02-26 Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance

Country Status (1)

Country Link
KR (1) KR102465483B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102204255B1 (en) 2019-08-12 2021-01-18 동의대학교 산학협력단 Manufacturing method of superhydrophobic 6000 aluminum alloy for engines and automobile wheels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832059B1 (en) 2016-06-24 2018-02-23 인하대학교 산학협력단 Method for fabrication of TiO2 films with anti-finger property

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102204255B1 (en) 2019-08-12 2021-01-18 동의대학교 산학협력단 Manufacturing method of superhydrophobic 6000 aluminum alloy for engines and automobile wheels

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Journal of Nano Research. Vol. 60. pp 42-50
Nanotechnology 31 (2020) 315603
Sci Rep 8. 4101 (2018)

Also Published As

Publication number Publication date
KR20220122292A (en) 2022-09-02

Similar Documents

Publication Publication Date Title
JP7224068B2 (en) Method for producing anodic oxide film of 5000 series aluminum alloy having hydrophobic surface of pillar-on-pore structure
CN109989090A (en) A method of corrosion stability of magnesium alloy film layer is prepared using superslide surface
US20140255682A1 (en) Nanoengineered superhydrophobic anti-corrosive aluminum surfaces
KR102465483B1 (en) Development of functional super water-repellent stainless steel surface technology for improving corrosion resistance
Ji et al. Fabrication of superhydrophobic aluminum alloy surface with hierarchical pore nanostructure for anti-corrosion
KR102501419B1 (en) Functional super water-repellent stainless steel (SUS 304) surface development technology for improving corrosion resistance of heat exchangers and their components
KR102465485B1 (en) Method of forming corrosion resistance and superhydrophobic oxide film on the surface of stainless steel for water and sewage materials
KR102465479B1 (en) Development of Water-repellent Stainless Steel (SUS 316L) Surface by Stepwise Anodizing Technique
KR102624269B1 (en) Manufacturing Method of Functional Stainless Steel 316L Materials for Road Structures and Building Structures
KR20240057669A (en) Functional surface treated SUS316L gasket
KR20240039723A (en) Method of Forming Corrosion Resistance and Superhydrophobic Oxide Film on the Surface of Stainless Steel 316L for Water and Sewage Materials
KR20240043272A (en) Functional surface treated SUS 316L manhole cover
KR20240065788A (en) Development of Functional Surface Treatment for Sports and Leisure Products SUS 316L
KR102473966B1 (en) Surface development of functional stainless steel (SUS 316) to improve anti-corrosion efficiency of heat exchangers and their components
KR20240061783A (en) Development of Functional Surface Treatment on SUS 316L for Kitchen Supplies
KR20240047018A (en) Method of surface treatment of SUS316L appearance or parts of generator or transportation
KR20240050504A (en) Functional surface treatment method of SUS 316L material for medical instruments or their parts
KR20240053402A (en) Functional surface treated cutting instruments or smart farm instruments of SUS 316L
KR20200093199A (en) Method for superhydrophobic surface of the outer panel or component for heat exchanger
Choudhary et al. Effect of surface roughness of an electropolished aluminum substrate on the thickness, morphology, and hardness of aluminum oxide coatings formed during anodization in oxalic acid
Wang et al. Growth and corrosion behaviors of thin anodic alumina membrane on AA5083 Al-Mg alloy in incalescent medium
Gujela et al. Anodic aluminum oxide (AAO) nano membrane fabrication under different conditions
KR102562889B1 (en) A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 5000 alloys without prepatterning process
KR102181035B1 (en) Method of functional hydrophobic surface treatment for sensors case
KR102562890B1 (en) A method for manufacturing anodized film to create a uniform POP nanostructure for aluminum 3000 alloys without pre-patterning process

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant