KR102453813B1 - 광 빗살 발생 장치 및 이를 포함하는 분광기 - Google Patents

광 빗살 발생 장치 및 이를 포함하는 분광기 Download PDF

Info

Publication number
KR102453813B1
KR102453813B1 KR1020180027098A KR20180027098A KR102453813B1 KR 102453813 B1 KR102453813 B1 KR 102453813B1 KR 1020180027098 A KR1020180027098 A KR 1020180027098A KR 20180027098 A KR20180027098 A KR 20180027098A KR 102453813 B1 KR102453813 B1 KR 102453813B1
Authority
KR
South Korea
Prior art keywords
optical
light
optical comb
comb
generated
Prior art date
Application number
KR1020180027098A
Other languages
English (en)
Other versions
KR20190106105A (ko
Inventor
권오기
김기수
김성복
임영안
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020180027098A priority Critical patent/KR102453813B1/ko
Priority to US16/295,786 priority patent/US10852617B2/en
Publication of KR20190106105A publication Critical patent/KR20190106105A/ko
Application granted granted Critical
Publication of KR102453813B1 publication Critical patent/KR102453813B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/457Correlation spectrometry, e.g. of the intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0085Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J2003/102Plural sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1208Prism and grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/56Frequency comb synthesizer

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)

Abstract

개시된 일 실시 예에 따른 광 빗살 발생 장치는, 기준 파장 대역의 광을 생성하고 생성된 광을 출력하기 위한 광원, 및 출력된 광으로부터 기준 빗살 간격을 갖는 광 빗살을 발생시키기 위한 광 빗살 발생기를 포함하고, 광원은, 출력되는 광의 파장을 기준 시간 구간마다 기준 주파수 간격만큼 변화시키고, 광 빗살은 기준 주파수 간격의 파장 범위에서 발생되고, 기준 파장 대역은 3μm 보다 크거나 같고 30μm 보다 작거나 같을 수 있다.

Description

광 빗살 발생 장치 및 이를 포함하는 분광기{LIGHT COMB GENERATING DEVICE AND SPECTROMETERS COMPRISING THE SAME}
본 발명은 광 빗살 발생 장치 및 이를 포함하는 분광기에 관한 것으로, 더 구체적으로는 중적외선 파장 대역의 광으로부터 광 빗살을 발생시키기 위한 장치 및 이를 활용한 분광기에 관한 것이다.
분광기(spectrometers)는 방사선의 주파수를 측정 및 분석할 수 있는 장치로서, 주로 광 계측 및 측량 분야에 활용될 수 있으며, 최근에는 탐침 및 센서 분야에 많이 활용되고 있다. 분광기를 이용한 가스 센서는 가스 분자의 고유 진동모드에 대응하는 파장 대역에서의 흡광도(absorbance)를 측정하는 방식을 사용한다. 분광기를 이용한 가스 센서는, 분자의 고유한 지문을 인식하는 방식의 센서라 할 수 있으므로, 기존의 화학적 및 전기적 방식을 사용하는 가스 센서에 비해 고정밀, 고감도 센서로 구현될 수 있다.
분광기는 프리즘 또는 회절격자와 같은 분산계(dispersive system)를 이용한 구성 또는 간섭계(interferometer)와 퓨리에 변환을 사용한 구성(FT-IR: Fourier Transformed-InfraRed)을 통해 입사광을 분해하고, 분해된 입사광을 주파수에 따라 나열할 수 있다. 또한, 분광기는 시료에 광을 입사시킨 후, 투과 또는 반사되는 광의 흡광 스펙트럼을 분석할 수 있다.
본 발명은 중적외선 파장 대역에서의 광 빗살 발생 장치 및 이를 포함하는 분광기를 제공하기 위한 것이다.
본 실시 예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 이하의 실시 예들로부터 또 다른 기술적 과제들이 유추될 수 있다.
광 빗살 발생 장치는, 중적외선 파장 대역의 광을 생성하고 상기 생성된 광을 출력하기 위한 광원, 및 상기 출력된 광으로부터 기준 빗살 간격을 갖는 광 빗살을 발생시키기 위한 광 빗살 발생기를 포함하고, 상기 광원은, 상기 출력되는 광의 파장을 기준 시간 구간마다 기준 주파수 간격만큼 변화시킬 수 있다. 상기 광 빗살은 기준 주파수 간격의 파장 범위에서 발생되고, 상기 중적외선 파장 대역은 기준 파장 대역은 3μm 보다 크거나 같고 30μm 보다 작거나 같다.
시료의 특성을 분석하기 위한 분광기는, 상기 시료를 충전하기 위한 셀, 중적외선 파장 대역의 광을 송신하거나 수신하기 위한 광 송수신기, 및 상기 광 송수신기로부터 수신된 상기 광으로부터 제1광 빗살과 제2광 빗살을 발생시키기 위한 이중 광 빗살 발생기를 포함하고, 상기 제1광 빗살과 상기 제2광 빗살은 각각 제1주파수 간격과 제2주파수 간격을 가지되, 상기 제1광 빗살은 상기 가스 셀을 거쳐 상기 이중 광 빗살 발생기로 되돌아오고, 상기 이중 광 빗살 발생기는, 상기 발생된 제2광 빗살과 상기 되돌아온 상기 제1광 빗살이 결합된 광 신호를 상기 광 송수신기로 송신할 수 있다.
개시된 일 실시 예에 따른 광 빗살 발생 장치는 광원에서 출력되는 광의 파장을 기준 시간 마다 이산적으로 변화시킴으로써, 출력 광의 선폭 증대와 광 출력의 감소 문제가 개선될 수 있으며 고속 동작이 가능하다. 또한, 광 빗살 발생 장치는, 파장 가변 광원과 광 빗살 발생기의 조합을 통해 광대역의 광 빗살을 발생시킬 수 있기 때문에, 저가격 및 저전력으로 구현될 수 있다.
도1은 일 실시 예에 따른 광 빗살 발생 장치의 블록도를 나타낸다.
도2는 일 실시 예에 따른 광 빗살 발생 장치의 동작을 보충적으로 설명하기 위한 개념도이다.
도3은 일 실시 예에 따른 광 빗살 발생 장치의 동작을 보충적으로 설명하기 위한 개념도이다.
도4는 일 실시 예에 따른 광 빗살 발생 장치의 상세한 구성을 나타낸다.
도5는 일 실시 예에 따라 생성된 광 빗살을 나타낸다.
도6은 일 실시 예에 따른 가스 센서로 활용되는 분광기의 블록도를 나타낸다.
도7은 일 실시 예에 따라 가스 센서로 활용되는 분광기의 상세한 구성을 나타낸다.
도8은 일 실시 예에 따라 가스 센서로 활용되는 분광기의 구성을 나타낸다.
도9는 일 실시 예에 따라 가스 센서로 활용되는 분광기의 구성을 나타낸다.
아래에서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자들(이하, 통상의 기술자들)이 본 발명을 용이하게 실시할 수 있도록, 첨부되는 도면들을 참조하여 몇몇 실시 예가 명확하고 상세하게 설명될 것이다.
일 실시 예에 따라, 간섭계를 활용한 분광기는, 기준 암(reference arm)의 기계적 변위를 제거하기 위해 광 대역 비간섭광(incohernet light) 대신 파장 가변 간섭 광(coherent light)을 사용할 수 있다. 파장 가변 광원을 활용한 분광기는, 파장 가변 광원을 특정 파장에 고정시켜 발진시킬 경우, 매우 좁은 선폭(linewidth)의 고출력 광을 발생시킬 수 있다. 그러나 파장 가변 속도를 증가시킬 경우, 출력 광의 순간 선폭(instantaneous linewidth)이 증가하고, 광 출력이 크게 감소(공진기내의 발진을 위한 라운드 트립(round-trip) 시간보다 가변시간이 짧을 경우)하는 문제가 발생할 수 있다. 특히, MHz 이상의 반복율로 파장 가변 동작을 반복할 경우, 분광기의 분해능과 감도가 저하되어 실시간 혼합가스검출 시스템의 구현이 어려울 수 있다.
중적외선 파장 대역(mid-IR: 동작 파장 3μm~30μm)의 흡수강도는 광통신 파장 대역인 근적외선 파장 대역의 그것에 비해 10,000배 이상 높기 때문에, 최근 중적외선 파장 대역에서 동작하는 분광기 개발이 요구되고 있다. 중적외선 파장 대역 분광기는, 근적외선(near IR) 파장 대역의 광을 출력하는 광원에 서로 다른 주파수 간격을 갖는 광 빗살을 발생시키기 위한 광 빗살 발생기(optical comb generator)를 배치함으로써 구성될 수 있다. 이러한 경우, 중적외선 파장 대역 분광기는, 상기 광원의 출력을 DFG(difference frequency generation) 방식을 통해 중적외선 파장(mid-IR)대로 변환시킴으로써 동작할 수 있다. 다만, 광대역 광 빗살 발생기의 구현과 중적외선 변환을 위해 고가의 광부품들이 요구될 수 있으며, 낮은 DFG 변환 효율로 인해 고전력이 요구될 수 있다.
도1은 일 실시 예에 따른 광 빗살 발생 장치의 블록도를 나타낸다. 도2는 일 실시 예에 따른 광 빗살 발생 장치의 동작을 보충적으로 설명하기 위한 개념도이다. 도1 및 도2를 함께 참조하여, 광 빗살 발생 장치(1000)의 동작을 설명한다.
광 빗살 발생 장치(1000)는 광원(1200) 및 광 빗살 발생기(optical comb generator, 1400)를 포함할 수 있다.
광원(1200)은 기준 파장 대역의 광을 생성하고 생성된 광을 출력할 수 있다. 기준 파장 대역은, 파장 대역이 3μm 보다 크거나 같고 30μm 보다 작거나 같은 중적외선 파장 대역을 의미할 수 있다.
도2를 참조하면, 광원(1200)은 전체 파장가변 범위(total wavelength tuning range)에 대해 기준 시간 구간 Δt 마다 출력되는 광의 파장을 기준 주파수 간격 Δf 에 따라 계단식으로 변화시킬 수 있다. 광원(1200)은 반복률(Repetition rate)에 기초하여, 광의 파장을 이산적으로 증가시키는 동작을 주기적으로 반복할 수 있다. 예를 들어, 광원(1200)은 시간 t0에서부터 시간 t1에 이르기까지, 초기 주파수 f0 로부터 출발하여 출력되는 광의 파장을 기준 주파수 간격 Δf 에 따라 계단식으로 변화시킬 수 있다. 시간 t1가 되면 광원(1200)은 다시 초기 주파수 f0 로부터 출발하여 출력되는 광의 파장을 기준 주파수 간격 Δf 에 따라 계단식으로 변화시킬 수 있다. 일 실시 예에 따라, 반복율은 N Hz 로 나타낼 수 있으며, 이러한 경우 광원(1200)은 전체 파장 가변 범위 내에서 출력되는 광의 파장을 변화시키는 동작을 1초에 N 번 반복할 수 있다. 광원(1200)은 파장 가변 레이저(tunable laser)로 구현될 수 있으나 이에 제한되지 않는다.
광 빗살 발생기(1400)는 광원(1200)으로부터 출력된 광으로부터 기준 빗살 간격을 갖는 광 빗살을 발생시킬 수 있다. 광 빗살은 기준 빗살 간격으로 서로 이격된 복수의 광 빗살 선들을 포함할 수 있다. 도2를 참조하면, 광 빗살 발생기(1400)는 광원(1200)으로부터 출력된 파장을 중심으로 하는 파장 범위 내에서 기준 빗살 간격 δf을 갖는 광 빗살을 발생시킬 수 있다. 파장 범위의 크기는 기준 주파수 간격 Δf 의 크기를 의미한다.
도3은 일 실시 예에 따른 광 빗살 발생 장치의 동작을 보충적으로 설명하기 위한 개념도이다.
도3을 참조하면, 도1의 광 빗살 발생기(1400)는 광원(1200)에서 생성된 광 모드(즉, 파장)마다 기준 주파수 간격 Δf 내에서 기준 빗살 간격 δf 으로 이산된 광 빗살선들을 갖는 광 빗살을 발생시킬 수 있다. 예를 들어, 광 모드(3200)에 대해 기준 빗살 간격 δf을 갖는 광 빗살(3400)이 발생될 수 있다.
가스분자들의 흡광 스펙트럼을 분석하면, 1파수(wavenumber(1/cm), 예를 들어, 30GHz)에서 통상적으로 10개 이상의 방사선이 존재할 수 있다. 따라서, 일 실시 예에 따라 센서는, 30GHz의 100분에 1인 300MHz 이하의 빗살 간격을 가지는 광 빗살에 기초하여, 가스분자로부터 방사선을 검출할 수 있다.
일 실시 예에 따라, 도1의 광 빗살 발생 장치(1000)는, 광원에서 출력되는 광의 파장을 변화시키기 위해 회절격자 또는 파장 가변부를 선형적으로 스위핑(sweeping)하는 방식을 사용하는 장치에 비해, 기준 시간 구간(예를 들어, 도2의 Δt)만큼의 안정화 시간을 획득할 수 있으므로, 출력 광의 선폭 증대와 광 출력의 감소 문제를 개선할 수 있으며, 동시에 고속 동작이 가능하다. 또한, 도1의 광 빗살 발생 장치(1000)는 파장 가변이 가능한 광원(1200)과 광 빗살 발생기(1400)의 조합을 통해 광대역 광빗살을 발생시킬 수 있기 때문에, 저가격 및 저전력으로 구동하는 것이 가능하다.
도4는 일 실시 예에 따른 광 빗살 발생 장치의 상세한 구성을 나타낸다.
광 빗살 발생 장치(4000)는 도1을 참조하여 상술한 광 빗살 발생 장치(1000)에 대응될 수 있다. 파장가변 레이저(4200)는 도1의 광원(1200)에 대응될 수 있고, 광 빗살 발생기(4400)는 도1의 광 빗살 발생기(1400)에 대응될 수 있다. 따라서, 이하 생략된 내용이라 하더라도 도1의 광원(1200) 및 광 빗살 발생기(1400)에 관하여 기술된 내용은 도4의 파장가변 레이저(4200) 및 광 빗살 발생기(4400)에도 적용될 수 있다.
파장가변 레이저(4200)는 중적외선 파장 대역의 광을 생성하고 생성된 광을 출력할 수 있다. 파장가변 레이저(4200)는 전체 파장가변 범위서, 기준 시간 구간 Δt마다 출력되는 광의 파장을 기준 주파수 간격 Δf에 따라 이산적으로 가변시킬 수 있다. 파장가변 레이저(4200)는 회절격자(grating, 4220), 빔 편향기(beam deflector, 4240), 및 광 이득 매질(gain, 4280)을 포함할 수 있다.
회절격자(4220)는 빛의 회절 효과를 이용하여, 특정 방향으로 입사된 광의 파장에 따라 다른 각도로 출력 광을 생성할 수 있다. 빔 편향기(4240)는 입사 광을 편향시키기 위한 장치이다. 광 이득 매질(4280)은 전류 주입을 통해 광을 생성시킬 수 있다. 광 이득 매질(4280)은 반도체 다이오드로 구성될 수 있으며, 전류의 주입으로 발생되는 밴드 내 전이(intra-band transition) 또는 밴드 간 전이(inter-band transition)를 통해 중적외선 파장대역의 광을 생성할 수 있다.
파장가변 레이저(4200)에서 생성되는 광은, 광 이득 매질(4280)의 전류 주입을 통해 생성된 광을 빔 편향기(4240)와 회절격자(4220)를 거치게 함으로써 생성될 수 있다. 일 실시 예에 따라, 광 이득 매질(4280)의 전류 주입을 통해 생성된 광은 빔 편향기(4240), 및 회절격자(4220)를 거치게 되고, 특정 파장대역의 빔만 회절격자(4220)로부터 반사되어 광 이득 매질(4280)로 되돌아온다.
상술한 동작을 통해 공진(resonance)이 발생되고, 특정 파장의 광이 생성될 수 있다. 일 실시 예에 따라, 파장가변 레이저(4200)로부터 출력되는 광의 파장(또는, 주파수)은, 빔 편향기(4240)로 전기적 신호(전압 또는 전류)가 인가됨에 따라 빔의 파면(wave front)이 변화되거나, 회절격자(4220)의 입사각이 변화되어 회절격자(4220)로부터 반사되는 광의 파장이 변화됨으로써 결정될 수 있다.
광 빗살 발생기(4400)는 파장가변 레이저(4200)에서 생성된 광으로부터 광 빗살을 발생시킬 수 있다. 일 실시 예에 따라, 광 빗살 발생기(4400)는 고조파 변조기(harmonic modulator, 4420)를 포함할 수 있으며, 고조파 변조기(4420)는 변조 주파수(modulation frequency)에 대한 광의 고조파(harmonic wave)를 생성할 수 있다. 따라서, 광 빗살 발생기(4400)는 발생되는 기준 빗살 간격을 변조 주파수에 기초하여 조절할 수 있다.
고조파 변조기(4420)는 다양한 형태로 구현될 수 있다. 일 실시 예에 따라, 세기 변조기 (intensity modulator)와 위상 변조기(phase modulator)를 직렬로 결합시키고, 2π의 정수배의 전압을 사용하여 위상 변조기의 주파수를 세기 변조기의 주파수와 동일하게 변조시킬 경우, 세기 변조기와 위상 변조기 사이의 특정한 위상차 조건에서 광 빗살이 발생되도록 구현될 수 있으나 이에 제한되지 않는다. 일 실시 예에 따라, 고조파 변조기(4420)는 세기 변조기 대신 위상 변조기들의 조합으로 구현될 수 있다. 예를 들어, 위상 변조기의 병렬 결합인 마하젠더(Mach-Zender) 변조기의 상부 암과 하부 암에 위상 차이를 발생시킨 다음, 2π의 정수배의 전압으로 마하젠더 변조기를 구동시킴으로써 광 빗살을 발생시킬 수도 있다.
도5는 도4의 광원(4200)으로부터 출력되는 광의 중심파장이 3350nm 이고 도4의 고조파 변조기(4420)의 변조 주파수가 300MHz인 경우의 광 빗살을 나타낸다. 약 24GHz 의 파장 범위 내에서 300MHz 의 빗살 간격을 갖는 83개의 광 빗살선들이 발생될 수 있다. 예를 들어, 광의 중심파장(3350nm)은 도3의 모드(3200)에 대응될 수 있으며, 파장 범위(24GHz)는 도3의 기준 주파수 간격 Δf에 대응될 수 있다. 또한, 빗살 간격(300MHz)은 도3의 기준 빗살 간격 δf에 대응될 수 있다. 생성된 83개의 광 빗살들에 기초하여, 가스분자로부터 방사선이 검출될 수 있다.
도6은 일 실시 예에 따라 가스 센서로 활용되는 분광기의 블록도를 나타낸다.
분광기(6000)는 광 송수신기(6200), 이중 광 빗살 발생기(6400), 및 가스 셀(6600)을 포함할 수 있다.
광 송수신기(6200)는 중적외선 파장 대역의 광을 송신하거나 수신할 수 있다. 예를 들어, 광 송수신기(6200)는 중적외선 파장 대역의 광을 생성하고 생성된 광을 이중 광 빗살 발생기(6400)로 송신하거나, 이중 광 빗살 발생기(6400) 또는 가스 셀(6600)로부터 중적외선 파장 대역의 광을 수신할 수 있다. 광 송수신기(6200)는 파장가변 광원(6220) 및 광 다이오드(6240)를 포함할 수 있다. 일 실시 예에 따른 파장가변 광원(6220)은, 도4의 파장가변 레이저(4200)로 구현될 수 있다. 파장가변 광원(6220)으로부터 생성된 단일모드 광(즉, 특정 파장의 광)은 반사기(예를 들어, 거울)을 거쳐 이중 광 빗살 발생기(6400) 내의 분배기(6420)로 전달될 수 있다. 광 다이오드(6240)의 동작은 후술한다.
이중 광 빗살 발생기(6400)는 광 송수신기(6200)로부터 출력된 중적외선 파장 대역의 광을 수신하고 수신된 광으로부터 제1광 빗살과 제2광 빗살을 발생시킬 수 있다. 예를 들어, 이중 광 빗살 발생기(6400)는 수신된 광을 두 개의 광(제1광, 제2광)으로 분리할 수 있다. 이중 광 빗살 발생기(6400)는 제1광에 대해 제1광 빗살을 생성하고 제2광에 대해 제2광 빗살을 발생시킬 수 있다. 제1광 빗살과 제2광 빗살은 서로 다른 변조 주파수를 사용하여 생성될 수 있다.
이중 광 빗살 발생기(6400)는 분배기(6420), 제1광 빗살 발생기(6440), 제2광 빗살 발생기(6460), 및 결합기(6480)를 포함할 수 있다.
분배기(6420)는 광 송수신기(6200)로부터 수신된 중적외선 파장 대역의 광으로부터 제1광과 제2광을 분리할 수 있다. 분배기(6420)는 입사된 광을 복수의 경로로 진행시킬 수 있는 광학 소자를 의미할 수 있다. 제1광은 제1광로로 진행하게 되고, 제2광은 제2광로로 진행할 수 있다. 제1광로는 제1광 빗살 발생기(6440)와 가스 셀(6600) 내의 가스 시료를 거쳐 결합기(6480)에 도달하는 경로이다. 제2광로는 제2광 빗살 발생기(6460)를 거쳐 결합기(6480)에 도달하는 경로이다. 따라서, 제1광은 제1광 빗살 발생기(6440)로 전달되고 제2광은 제2광 빗살 발생기(6460)로 전달될 수 있다.
제1광 빗살 발생기(6440)는 제1광에 기초하여 제1광 빗살을 발생시키고, 제2광 빗살 발생기(6460)는 제2광에 기초하여 제2광 빗살을 발생시킬 수 있다. 일 실시 예에 따라, 제1광 빗살 발생기(6440)와 제2광 빗살 발생기(6460) 각각은 도4의 광 빗살 발생기(4400)로 구현될 수 있다. 제1광 빗살은 가스 셀(6600)로 전달된다.
가스 셀(6600)은 측정하고자 하는 시료(예를 들어, 가스 분자)가 충전된 셀이다. 가스 셀(6600)은 가스 주입구로부터 가스 배출구로 가스가 흐르도록 구성된 가스 튜브(6620)를 포함할 수 있다. 제1광 빗살은 가스 튜브(6620)를 진행할 수 있다. 가스 튜브(6620) 내의 시료를 투과하거나 시료로부터 반사된 제1광 빗살은 이중 광 빗살 발생기(6400) 내의 결합기(6480)로 전달될 수 있다.
결합기(6480)는 제2광 빗살 발생기(6460)로부터 수신된 제2광 빗살과 가스 셀(6600)로부터 수신된 제1광 빗살을 결합하고 결합된 광 신호를 생성할 수 있다. 일 실시 예에 따라, 결합된 광 신호는 제1광 빗살과 제2광 빗살이 시간 영역에서 서로 간섭됨으로써 발생된 신호일 수 있다. 결합기(6640)는 결합된 광 신호를 광 다이오드(6240)로 전달할 수 있다.
광 다이오드(6240)는 결합기(6480)로부터 수신된 결합된 광 신호를 전기적 신호로 변환할 수 있다. 광 다이오드(6240)에 의해 생성된 전기적 신호는, 주파수 변환(예를 들어, 퓨리에 변환)될 수 있고, 주파수 변환된 광 신호는 가스 셀(6600) 내의 시료의 흡광도 및/또는 성분을 분석하기 위해 사용될 수 있다. 주파수 변환된 광 신호에 기초하여 가스 시료의 특성이 분석될 수 있다. 예를 들어, 광 다이오드(6240)에 의해 생성된 전기적 신호는 분광기(6000) 외부의 컴퓨터 장치에 의해 주파수 변환될 수 있다. 주파수 변환된 신호에 기초하여 가스 시료의 흡광 스펙트럼이 분석될 수 있다.
일 실시 예에 따라, 파장가변 광원(6220)의 기준 주파수 간격이 증가할수록 파장가변 광원(6220)에서 제공되는 중심파장(예를 들어, 도3의 모드(3200))의 개수는 감소(안정성은 증가)될 수 있는 반면, 이중 광 빗살 발생기(6400)로부터 발생이 요구되는 빗살의 개수가 증가할 수 있다. 따라서, 검출되는 시료(가스 분자)의 파장범위에 따라 적절한 동작조건의 조절이 필요하다. 또한, 기준 주파수 간격마다 도5의 형태의 광 빗살이 생성되므로, 기준 주파수 간격의 경계에 인접한 주파수에서의 광 빗살은 시간 간격에 따라 오버 랩(overlap)되어 획득될 수 있다. 따라서, 일 실시 예에 따라, 광 다이오드(6240)에서 광 신호가 전기적 신호로 변환된 후에, 제로 패딩(zero padding) 등과 같이 적절한 퓨리에 변환 기술이 사용되거나 보정필터가 사용될 수 있다.
도7은 일 실시 예에 따라, 가스 센서로 활용되는 분광기의 상세한 구성을 나타낸다.
도7을 참조하면, 분광기(7000)는 광 송수신기(7200), 이중 광 빗살 발생기(7400), 및 가스 셀(7600)을 포함할 수 있다. 광 송수신기(7200), 이중 광 빗살 발생기(7400), 및 가스 셀(7600)은 각각 도6의 광 송수신기(6200), 이중 광 빗살 발생기(6400), 및 가스 셀(6600)의 상세한 실시 예를 나타낼 수 있다.
광 송수신기(7200)의 동작을 먼저 설명한다. 회절 격자(7210), 빔 편향기(7220), 광 이득 매질(7230)로 구성된 파장가변 광원으로부터 출력된 광은 반사기(7240)(예를 들어, 거울)를 거친 다음 분배기(7420)로 전달될 수 있다. 회절 격자(7210), 빔 편향기(7220), 및 광 이득 매질(7230)로 구성된 파장가변 광원의 동작은 도2를 참조하여 상술하였으므로 상세한 설명은 생략한다.
분배기(7420)는 반사기(7240)로부터 수신된 광으로부터 두 개의 서로 다른 광로(제1광로, 제2광로)로 진행할 제1광과 제2광을 분리할 수 있다.
제1광로는 제1광 빗살 발생기(7430), 반사기(7620), 가스 튜브(7640), 및 반사기(7660)를 거친 다음 결합기(7460)로 도달하는 경로이다. 제1광 빗살 발생기(7430)는 제1광으로부터 제1광 빗살을 발생시킬 수 있다. 일 실시 예에 따라, 제1광 빗살 발생기(7430)는 고조파 변조기(7435)를 사용하여 제1광 빗살의 기준 빗살 간격 δf1을 조절할 수 있다. 제1광 빗살은 반사기(7620)를 거친 다음 가스 튜브(7640)를 진행한다. 가스 튜브(7640)를 진행한 제1광 빗살은 결합기(7460)로 전달될 수 있다.
제2광로는 단일모드 광의 파장을 이동시키는 기능을 수행하는 AOM(acousto optic modulator, 7440)과 제2광 빗살 발생기(7450)를 거친 다음 결합기(7460)에 도달하는 경로이다. 제2광 빗살 발생기(7450)는 제2광으로부터 제2광 빗살을 발생시킬 수 있다. 일 실시 예에 따라, 제2광 빗살 발생기(7450)는 고조파 변조기(7455)를 사용하여 제2광 빗살의 기준 빗살 간격 δf2을 조절할 수 있다. 제2광 빗살은 결합기(7460)로 전달될 수 있다.
결합기(7460)는 제2광 빗살 발생기(7450)로부터 수신된 제2광 빗살과 가스 셀(7600)로부터 수신된 제1광 빗살을 결합하고 결합된 광 신호를 생성할 수 있다. 일 실시 예에 따라, 결합된 광 신호는 제1광 빗살과 제2광 빗살이 시간 영역에서 서로 간섭됨으로써 발생된 신호일 수 있다. 결합기(7460)는 결합된 광 신호를 필터(7470)를 통해 필터링(예를 들어, 로우 패스 필터링)할 수 있다. 필터링된 광 신호는 반사기(7260)를 통해 광 다이오드(7270)으로 전달될 수 있다.
광 다이오드(7270)는 결합기(7460)로부터 수신된 결합된 광 신호를 전기적 신호로 변환할 수 있다. 광 다이오드(7270)에 의해 생성된 전기적 신호는, 주파수 변환(예를 들어, 퓨리에 변환)될 수 있고 가스 튜브(7640) 내의 시료의 흡광도 및/또는 성분을 분석하기 위해 사용될 수 있다.
도8은 일 실시 예에 따른 투과형 가스 센서로 활용될 수 있는 분광기의 구성을 나타낸다. 도8의 분광기(8000)는 도 6의 분광기(6000)를 광섬유 기반으로 구현하는 실시 예이다. 따라서, 이하 생략된 내용이라 하더라도 도6의 분광기(6000)에 관하여 기술된 내용은 도8의 분광기(8000)에도 적용될 수 있다.
파장가변 광원(8200)은 중적외선 파장 대역의 광을 출력할 수 있다. 파장가변 광원(8200)으로부터 출력된 광(파장 : f1)은 1x2 분배기(8300)로 전달된다.
파장가변 광원(8200)으로부터 출력된 광(파장 : f1)은 1x2 분배기(8300)를 거친 다음 제1광과 제2광으로 분리될 수 있다. 제1광과 제2광은 제1광 빗살 발생기(8400)와 제2광 빗살 발생기(8600)로 각각 진행할 수 있다.
제1광 빗살 발생기(8400)는 제1광으로부터 δf1의 빗살 간격을 갖는 제1광 빗살을 발생시킬 수 있다. 제2광 빗살 발생기(8600)는 제2광으로부터 δf2의 빗살 간격을 갖는 제2광 빗살을 발생시킬 수 있다. 제1광 빗살은 가스 튜브를 거친 다음 2x1 결합기(8700)에 도달하는 시료 신호 경로를 진행하고, 제2광 빗살은 가스 튜브를 거치지 않고 광 선로를 거친 다음 2x1 결합기(8700)에 도달하는 기준 신호 경로를 진행할 수 있다.
제1광 빗살과 제2광 빗살은 2x1 결합기(8700)를 거친 다음 광 다이오드(8800)로 입사되고, 광 다이오드(8800)는 제1광 빗살과 제2광 빗살이 시간 영역에서 서로 간섭됨으로써 발생된 광 신호를 전기적 신호로 변환함으로써 시간 영역의 간섭 패턴을 생성할 수 있다. 일 실시 예에 따라, 시간 영역의 간섭 패턴을 주파수 변환함으로써 빗살 간격의 차(δf2 - δf1)에 해당하는 주파수 간격의 포락선 패턴(envelop pattern)이 획득되고 포락선 패턴에 기초하여 가스의 특성이 분석될 수 있다.
도9는 일 실시 예에 따른 반사형 가스 센서로 활용될 수 있는 분광기의 구성을 나타낸다.
분광기(9000)는 도8을 참조하여 상술한 분광기(8000)의 다른 형태이다. 따라서, 이하 생략된 내용이라 하더라도 도8의 광원(8200), 1x2 분배기(8300), 제1광 빗살 발생기(8400), 제2광 빗살 발생기(8600), 2x1 결합기(8700), 및 광 다이오드(8800)에 관하여 기술된 내용은 도9의 광원(9200), 1x2 분배기(9300), 제1광 빗살 발생기(9400), 제2광 빗살 발생기(9600), 2x1 결합기(9700), 및 광 다이오드(9800)에도 적용될 수 있다.
도9의 분광기(9000)가 도8의 분광기(8000)와 다른 점은, 시료의 특성을 분석하기 위해 시료로부터 반사된 제1광 빗살과 거울로부터 반사된 제2광 빗살이 사용된다는 것이다. 예를 들어, 제1광 빗살 발생기(9400)로부터 출력된 제1광 빗살은 시료로부터 반사되어 프로브(probe)와 써큘레이터(circulator)를 통해 결합기에 도달하는 시료 신호 경로를 진행할 수 있다. 제2광 빗살 발생기(9600)로부터 출력된 제2광 빗살은 거울로부터 반사되어 광 선로와 써큘레이터를 통해 결합기에 도달하는 기준 신호 경로를 진행할 수 있다.
결합기는 시료로부터 반사된 제1광 빗살과 거울로부터 반사된 제2광 빗살을 수신할 수 있다. 분광기(9000)는 투과형태로 구현이 어려운 환경이나 OCT(optical coherent tomography)와 같이 단층촬영 기법에서 활용될 수 있는 구성이다.
위 설명들은 본 발명을 구현하기 위한 예시적인 구성들 및 동작들을 제공하도록 의도된다. 본 발명의 기술 사상은 위에서 설명된 실시 예들뿐만 아니라, 위 실시 예들을 단순하게 변경하거나 수정하여 얻어질 수 있는 구현들도 포함할 것이다. 또한, 본 발명의 기술 사상은 위에서 설명된 실시 예들을 앞으로 용이하게 변경하거나 수정하여 달성될 수 있는 구현들도 포함할 것이다.

Claims (13)

  1. 3μm 보다 크거나 같고 30μm 보다 작거나 같은 중적외선 파장 대역의 광을 생성하고 상기 생성된 광을 출력하기 위한 광원; 및
    상기 출력된 광으로부터 기준 빗살 간격을 갖는 광 빗살을 발생시키기 위한 광 빗살 발생기를 포함하고,
    상기 광원은, 상기 출력되는 광의 파장을 기준 시간 구간마다 기준 주파수 간격만큼 변화시키고,
    상기 광 빗살은 상기 기준 주파수 간격의 파장 범위에서 발생되는 광 빗살 발생 장치.
  2. 제1항에 있어서,
    상기 광원은,
    회절격자;
    빔 편향기; 및
    광 이득 매질을 포함하고,
    상기 광 이득 매질로의 전류 주입을 통해 생성된 광이, 상기 빔 편향기와 상기 회절격자를 거침으로써 상기 중적외선 파장 대역의 상기 광이 생성되는 광 빗살 발생 장치.
  3. 제1항에 있어서,
    상기 광 빗살 발생기는, 변조 주파수에 대해 상기 광의 고조파를 생성함으로써 상기 기준 빗살 간격을 변화시키기 위한 고조파 변조기를 포함하는 광 빗살 발생 장치.
  4. 제3항에 있어서,
    상기 고조파 변조기는, 위상 변조기의 병렬 결합인 마하젠더 변조기를 포함하는 광 빗살 발생 장치.
  5. 시료를 충전하기 위한 셀;
    기준 파장 대역의 광을 송신하거나 수신하기 위한 광 송수신기; 및
    상기 광 송수신기로부터 수신된 상기 광으로부터 제1광과 제2광을 분리하고, 상기 제1광으로부터 제1광 빗살을 발생시키고 상기 제2광으로부터 제2광 빗살을 발생시키기 위한 이중 광 빗살 발생기를 포함하고,
    상기 이중 광 빗살 발생기는 수신된 상기 광으로부터 상기 제1광과 상기 제2광을 분리하기 위한 분배기를 포함하고,
    상기 제1광 빗살과 상기 제2광 빗살은 각각 제1주파수 간격과 제2주파수 간격을 가지되, 상기 제1광 빗살은 상기 셀을 거친 후 상기 이중 광 빗살 발생기로 되돌아오고,
    상기 이중 광 빗살 발생기는, 상기 발생된 제2광 빗살과 상기 되돌아온 상기 제1광 빗살이 결합된 광 신호를 상기 광 송수신기로 송신하는 분광기.
  6. 제5항에 있어서,
    상기 기준 파장 대역은 3μm 보다 크거나 같고 30μm 보다 작거나 같은 분광기.
  7. 제5항에 있어서,
    상기 광 송수신기는,
    상기 기준 파장 대역의 상기 광을 생성하고 상기 생성된 광을 출력하기 위한 광원; 및
    상기 이중 광 빗살 발생기로부터 수신된 상기 결합된 광 신호를 전기적 신호로 변환하기 위한 광 다이오드를 포함하는 분광기.
  8. 제7항에 있어서,
    상기 광원은,
    회절격자;
    빔 편향기; 및
    광 이득 매질을 포함하고,
    상기 광 이득 매질의 전류 주입을 통해 생성된 광이 상기 빔 편향기와 상기 회절격자를 거침으로써 상기 기준 파장 대역의 상기 광이 생성되는 분광기.
  9. 제5항에 있어서,
    상기 이중 광 빗살 발생기는,
    상기 제1광으로부터 상기 제1광 빗살을 발생시키기 위한 제1광 빗살 발생기; 및
    상기 제2광으로부터 상기 제2광 빗살을 발생시키기 위한 제2광 빗살 발생기를 더 포함하는 분광기.
  10. 제9항에 있어서,
    상기 제1광 빗살과 상기 제2광 빗살 각각은 제1기준 빗살 간격과 제2기준 빗살 간격을 가지고,
    상기 제1광 빗살 발생기는 상기 제1기준 빗살 간격을 조절하기 위한 제1고조파 변조기를 포함하고,
    상기 제2광 빗살 발생기는 상기 제2기준 빗살 간격을 조절하기 위한 제2고조파 변조기를 포함하는 분광기.
  11. 제9항에 있어서,
    상기 이중 광 빗살 발생기는,
    상기 발생된 제2광 빗살과 상기 되돌아온 상기 제1광 빗살을 수신하고, 상기 수신된 상기 제2광 빗살과 상기 제1광 빗살을 결합하여 결합된 광 신호를 생성하기 위한 결합기를 더 포함하는 분광기.
  12. 제5항에 있어서,
    상기 셀은, 상기 제1광 빗살이 진행하는 가스 튜브를 포함하는 분광기.
  13. 제5항에 있어서,
    상기 결합된 광 신호는 주파수 변환되고, 상기 주파수 변환된 광 신호에 기초하여 상기 시료의 흡광도 또는 성분이 분석되는 분광기.
KR1020180027098A 2018-03-07 2018-03-07 광 빗살 발생 장치 및 이를 포함하는 분광기 KR102453813B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180027098A KR102453813B1 (ko) 2018-03-07 2018-03-07 광 빗살 발생 장치 및 이를 포함하는 분광기
US16/295,786 US10852617B2 (en) 2018-03-07 2019-03-07 Light comb generating device and spectrometers including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180027098A KR102453813B1 (ko) 2018-03-07 2018-03-07 광 빗살 발생 장치 및 이를 포함하는 분광기

Publications (2)

Publication Number Publication Date
KR20190106105A KR20190106105A (ko) 2019-09-18
KR102453813B1 true KR102453813B1 (ko) 2022-10-17

Family

ID=67844582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180027098A KR102453813B1 (ko) 2018-03-07 2018-03-07 광 빗살 발생 장치 및 이를 포함하는 분광기

Country Status (2)

Country Link
US (1) US10852617B2 (ko)
KR (1) KR102453813B1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015975B2 (en) * 2017-05-15 2021-05-25 The Trustees Of Princeton University Fast computational phase and timing correction for multiheterodyne spectroscopy
US11112310B2 (en) * 2019-08-29 2021-09-07 Dublin City University Dual-comb spectroscopy
US11469571B2 (en) 2019-11-21 2022-10-11 Kla Corporation Fast phase-shift interferometry by laser frequency shift
KR102436763B1 (ko) 2020-03-05 2022-08-29 한국전자통신연구원 초분광 센서
CN111982848B (zh) * 2020-06-05 2022-10-11 中国科学院上海光学精密机械研究所 基于高轨卫星平台收发分置的双光梳大气成分探测装置
CN115698834A (zh) * 2020-06-26 2023-02-03 松下知识产权经营株式会社 双光频梳发生装置及计测装置
CN114153137B (zh) * 2021-11-03 2022-08-05 北京大学 一种基于异步相位跟踪的双光梳时间测量装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150002918A1 (en) 2013-06-26 2015-01-01 Electronics And Telecommunications Research Institute Wavelength swept source apparatus and controlling method thereof
US20180252985A1 (en) 2015-09-11 2018-09-06 University Of Helsinki Method and apparatus for frequency comb generation using an optical manipulator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8120778B2 (en) * 2009-03-06 2012-02-21 Imra America, Inc. Optical scanning and imaging systems based on dual pulsed laser systems
US8564785B2 (en) * 2009-09-18 2013-10-22 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Comb-based spectroscopy with synchronous sampling for real-time averaging
US8693004B2 (en) 2010-07-02 2014-04-08 Sandia Corporation Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source
US9651488B2 (en) * 2010-10-14 2017-05-16 Thermo Fisher Scientific (Bremen) Gmbh High-accuracy mid-IR laser-based gas sensor
US9653877B1 (en) * 2013-11-08 2017-05-16 Stc.Unm Nested frequency combs
US11967799B2 (en) * 2014-09-05 2024-04-23 Pilot Photonics Limited Spectroscopic detection using a tunable frequency comb
US10240998B2 (en) * 2015-05-12 2019-03-26 The United States Of America, As Represented By The Secretary Of Commerce Determining a location and size of a gas source with a spectrometer gas monitor
KR102285677B1 (ko) 2016-02-22 2021-08-05 한국전자통신연구원 광센서
US10020635B1 (en) * 2016-04-15 2018-07-10 University Of Central Florida Research Foundation, Inc. Spectrometer device with stabilized laser and related devices and methods
US10224688B2 (en) * 2017-05-31 2019-03-05 Samsung Electronics Co., Ltd. Optical dual-comb source apparatuses including optical microresonator
US10923874B2 (en) * 2018-04-10 2021-02-16 Ecole Polytechnique Federale De Lausanne (Epfl) Multiple soliton comb generation method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150002918A1 (en) 2013-06-26 2015-01-01 Electronics And Telecommunications Research Institute Wavelength swept source apparatus and controlling method thereof
US20180252985A1 (en) 2015-09-11 2018-09-06 University Of Helsinki Method and apparatus for frequency comb generation using an optical manipulator

Also Published As

Publication number Publication date
KR20190106105A (ko) 2019-09-18
US20190278151A1 (en) 2019-09-12
US10852617B2 (en) 2020-12-01

Similar Documents

Publication Publication Date Title
KR102453813B1 (ko) 광 빗살 발생 장치 및 이를 포함하는 분광기
US8699013B2 (en) Chromatic dispersion measurement device and chromatic dispersion measurement method for measuring the dispersion of light pulses
Zou et al. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair
US9207121B2 (en) Cavity-enhanced frequency comb spectroscopy system employing a prism cavity
US11300452B2 (en) Spectral measurement method, spectral measurement system, and broadband pulsed light source unit
US9923631B1 (en) Optical signal processing characterization of microwave and electro-optic devices
CN107872274B (zh) 一种光纤色散系数的测量方法
JP5713501B2 (ja) ホモダイン検波方式電磁波分光測定システム
EP3527964B1 (en) Light angle modulation measurement apparatus and measurement method
WO2016087450A2 (en) Spectroscopic apparatus and method
US8290375B2 (en) Modulation based optical spectrum analyzer
CN102353452B (zh) 一种f-p腔自由光谱范围测量系统
US8003947B1 (en) System and method for magnitude and phase retrieval by path modulation
JP4853255B2 (ja) ガス分析装置
CN102607702A (zh) 宽带参考光源光频域游标法光谱仪
Hao et al. Enhanced laser self-mixing interferometry based on tunable Fabry-Perot filter
Poiana et al. All-Fiber Electro-Optic Dual Optical Frequency Comb for Fiber Sensors
JP2015176072A (ja) 中赤外レーザ光発生装置及びガス検出装置並びに中赤外レーザ光発生方法及びガス検出方法
EP2166324B1 (en) System and method for suppressing noise by frequency dither
JP5168684B2 (ja) 時間分解分光システム,時間分解分光方法及びテラヘルツ波発生システム
Jones et al. Ultra-wideband tunable dual-mode laser for continuous wave terahertz generation
US8027590B2 (en) System and method for signal extraction by path modulation
CN202547780U (zh) 宽带参考光源光频域游标法光谱仪
Morozov et al. Microwave spectroscopy of the fiber Bragg grating
CN110927092B (zh) 一种双电光频率梳式中红外光谱仪

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right