KR102449677B1 - Method for manufacturing biotin-containing nanoliposome - Google Patents

Method for manufacturing biotin-containing nanoliposome Download PDF

Info

Publication number
KR102449677B1
KR102449677B1 KR1020200052453A KR20200052453A KR102449677B1 KR 102449677 B1 KR102449677 B1 KR 102449677B1 KR 1020200052453 A KR1020200052453 A KR 1020200052453A KR 20200052453 A KR20200052453 A KR 20200052453A KR 102449677 B1 KR102449677 B1 KR 102449677B1
Authority
KR
South Korea
Prior art keywords
biotin
nanoliposomes
nanoliposome
mixed solution
arginine
Prior art date
Application number
KR1020200052453A
Other languages
Korean (ko)
Other versions
KR20210133624A (en
Inventor
윤경섭
양성준
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to KR1020200052453A priority Critical patent/KR102449677B1/en
Publication of KR20210133624A publication Critical patent/KR20210133624A/en
Application granted granted Critical
Publication of KR102449677B1 publication Critical patent/KR102449677B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4906Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
    • A61K8/4913Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having five membered rings, e.g. pyrrolidone carboxylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • A61K8/553Phospholipids, e.g. lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/63Steroids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/805Corresponding aspects not provided for by any of codes A61K2800/81 - A61K2800/95

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명의 일 실시예에 따른 바이오틴 함유 나노리포좀의 제조방법은, pH 조절제 및 고압유화 처리를 이용하여 바이오틴의 캡슐화율을 향상시키는 것을 특징으로 한다. 본 발명의 바이오틴 함유 나노리포좀의 제조방법을 이용하면, 물리적으로 안정적이고, 캡슐화율 및 경피흡수율이 우수한 바이오틴 함유 나노리포좀을 제공할 수 있으며, 이를 다양한 화장료 조성물에 적용할 수 있다.The method for producing biotin-containing nanoliposomes according to an embodiment of the present invention is characterized in that the encapsulation rate of biotin is improved by using a pH adjusting agent and high pressure emulsification treatment. Using the biotin-containing nanoliposome production method of the present invention, it is possible to provide a biotin-containing nanoliposome that is physically stable and has excellent encapsulation rate and transdermal absorption rate, and it can be applied to various cosmetic compositions.

Description

바이오틴 함유 나노리포좀의 제조방법{Method for manufacturing biotin-containing nanoliposome}Method for manufacturing biotin-containing nanoliposome

본 발명은 바이오틴 함유 나노리포좀의 제조방법에 관한 것으로, 구체적으로는 알지닌을 첨가하여 pH를 조절함으로써, 캡슐화율이 높은 바이오틴 함유 나노리포좀을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing biotin-containing nanoliposomes, and more particularly, to a method for producing biotin-containing nanoliposomes with a high encapsulation rate by adjusting the pH by adding arginine.

바이오틴(biotin)은 비타민 B7으로 불리는 비타민 B 복합체의 하나다. 1927년 독일의 M. A. Boas는 실험동물에게 과량의 생 난백을 먹이게 되면 피부염이나 탈모 등의 증상들이 나타나는 것을 관찰하였고, 이 증상들을 예방하는 물질이 동물 간장 내에 존재한다는 것을 발견하였다.Biotin is one of the B-complex vitamins called vitamin B7. In 1927, M. A. Boas of Germany observed that when an excessive amount of raw egg white was fed to experimental animals, symptoms such as dermatitis and hair loss appeared, and a substance preventing these symptoms existed in the liver of animals.

1931년 독일의 P. Gorgy는 피부염 및 탈모 예방인자를 농축하여 유효물질을 얻었으며, 이 물질은 피부(Haut)를 의미하는 독일어의 첫 자를 따와 비타민 H라 명명하였다. 그 후 비타민 H가 바이오틴과 동일한 물질이라는 것을 증명하고, 화학구조 또한 밝혀졌으며, 1944년 S. A. Harris 연구진에 의하여 화학적으로 합성되었다.In 1931, P. Gorgy of Germany obtained an effective substance by concentrating a factor for preventing dermatitis and hair loss, and this substance was named vitamin H after the German word for skin (Haut). After that, it was proved that vitamin H is the same substance as biotin, and the chemical structure was also revealed, and it was chemically synthesized by S. A. Harris and colleagues in 1944.

바이오틴은 황을 함유하였으며 물에 용해도가 낮은 비타민으로서 여러 대사 경로에서 carboxylase 효소의 필수 보조제 역할을 한다. 바이오틴의 단백질 합성 기능 중에서, 특히 케라틴 생성 기능은 건강한 손·발톱과 모발의 성장에 기여하는 것으로 보고되었다. 바이오틴은 상대적으로 경제적인 비용의 유효성 있는 미용 제품으로서 건강한 머리카락과 손톱을 원하는 소비자들에게 새로운 트렌드가 되었다. 현재까지 국내외적으로 바이오틴 제형화 연구는 초기상태이며 안정성과 용해도를 함께 향상시킬 수 있는 기술은 아직 보고된 사례가 없다. Biotin contains sulfur and is a vitamin with low solubility in water and serves as an essential adjuvant for carboxylase enzymes in several metabolic pathways. Among the protein synthesis functions of biotin, it has been reported that, in particular, the function of keratinogenesis contributes to the growth of healthy nails and hair. Biotin has become a new trend for consumers who want healthy hair and nails as a relatively economical and effective beauty product. So far, research on biotin formulation at home and abroad is in its infancy, and there has been no reported case of a technology that can improve both stability and solubility.

따라서, 바이오틴을 식품 및 화장품으로 개발하고 이와 관련된 기술적인 문제를 해결하기 위해, 제조 및 유통과정에서 변질되지 않게 하고 본래의 활성을 유지할 수 있도록 하는 안정화 기술 즉, 제형화 기술이 요구된다.Therefore, in order to develop biotin as food and cosmetics and to solve the related technical problems, stabilization technology, that is, formulation technology, is required so that it does not deteriorate in the manufacturing and distribution process and can maintain its original activity.

최근에는 화장품 내 유효성분의 활성을 유지하면서 동시에 안정하게 피부에 흡수시킬 수 있는 경피흡수 전달체로서 리포좀(liposome) 제형에 대한 관심이 높아지고 있다. 리포좀은 인지질로 구성된 구형의 소포체(vesicle)로서 수용성 및 유용성 성분들을 동시에 캡슐화시킬 수 있어 비타민이나 약물 등과 같은 활성성분에 대한 약물전달체(drug delivery carrier)로 많은 연구가 진행되고 있다. 이중 인지질은 생체막 내의 주요 구성성분으로서 리포좀을 구성하는 인지질막 또한 생체막과 유사한 생리학적 기능과 특성을 갖는다. 따라서 리포좀은 피부 친화적이고 안전성이 우수하여 제약 및 화장품 분야 등에서 효과적인 약물전달체로서 응용되고 있다.Recently, interest in liposome formulations as a transdermal delivery system that can be stably absorbed into the skin while maintaining the activity of active ingredients in cosmetics is increasing. Liposomes are spherical vesicles composed of phospholipids, which can encapsulate water-soluble and oil-soluble components at the same time, and thus many studies are being conducted as drug delivery carriers for active ingredients such as vitamins or drugs. The double phospholipids are a major component in the biological membrane, and the phospholipid membrane constituting the liposome also has physiological functions and properties similar to those of the biological membrane. Therefore, liposomes are skin-friendly and have excellent safety, and thus are being applied as effective drug delivery systems in pharmaceuticals and cosmetics fields.

이에 따라 리포좀 제형을 산업화시키기 위해서 안정성, 캡슐화율의 재현성, 입자 분포의 균일성 등을 보완시켜야 하는데, 이러한 문제들을 보완할 수 있는 방법으로 E. Mayhew 등은 고압유화기(Microfluidizer 등)를 활용하여 고농도 지질 현탁액으로부터 작은 입자크기의 리포좀 제조방법을 보고하였다. 또한 연속 흐름 미세 유체의 사용에 초점을 맞추어 재현 가능한 방식으로 좀 더 좁은 입자크기 분포를 갖는 마이크로(micro) 및 나노(nano) 크기의 리포좀 생산에 대한 보고가 있었다.Accordingly, in order to industrialize the liposome formulation, stability, reproducibility of encapsulation rate, uniformity of particle distribution, etc. must be supplemented. As a way to supplement these problems, E. Mayhew et al. etc.) to report a method for preparing liposomes of small particle size from a high-concentration lipid suspension. There have also been reports on the production of micro- and nano-sized liposomes with a narrower particle size distribution in a reproducible manner, focusing on the use of continuous flow microfluidics.

리포좀 종류와 특징으로 소포체의 크기와 형태에 따라 크게 MLV(Multilamella vesicle)와 ULV(Unilamella vesicle)로 나눌 수 있다. 특히 ULV는 크기에 따라 LUV(Large unilamella vesicle), SUV(Small unilamella vesicle), GUV(Giant unilamella vesicle)로 구분할 수 있다. SUV는 20 ∼ 100 nm, LUV는 100 ∼ 1,000 nm, 및 GUV는 1,000 nm 이상의 범위를 갖는다. MLV는 소포체의 막(Lamella) 형태에 따라 OLV(Oligo lamella vesicle), MLV, MVV(Multi vesicular vesicles)로 나눌 수 있다. OLV는 100 ∼ 500 nm, MLV는 500 ∼ 1,000 nm, MVV는 200 ∼ 3,500 nm 크기를 나타내며, 이외에도 다양한 크기와 형태에 따라 다양하게 분류된다.Liposomes can be broadly divided into MLV (Multilamella vesicle) and ULV (Unilamella vesicle) according to the size and shape of the endoplasmic reticulum according to the type and characteristics of the liposome. In particular, ULV can be classified into LUV (Large unilamella vesicle), SUV (Small unilamella vesicle), and GUV (Giant unilamella vesicle) according to the size. SUVs range from 20 to 100 nm, LUVs from 100 to 1,000 nm, and GUVs from 1,000 nm or greater. MLV can be divided into OLV (Oligo lamella vesicle), MLV, MVV (Multi vesicular vesicles) according to the type of membrane (Lamella) of the endoplasmic reticulum. OLV is 100 to 500 nm, MLV is 500 to 1,000 nm, MVV is 200 to 3,500 nm in size, and is classified according to various sizes and shapes.

또한, 소포체의 크기는 리포좀의 반감기를 결정하는 중요한 매개 변수이며, 크기 및 이중층의 개수가 리포좀 내 약물 캡슐화의 정도에 영향을 미친다. 따라서 리포좀은 전형적으로 그들의 크기 및 이중층 개수에 기초하여 분류되며, 최근에는 이중 리포좀(Double liposome) 및 MVV로 명명된 새로운 형태의 리포좀이 보고되고 있다. 이러한 기술로 제조된 리포좀은 다양한 효소에 대한 약물 보호를 향상시키는 것으로 알려져 있다.In addition, the size of the endoplasmic reticulum is an important parameter that determines the half-life of the liposome, and the size and number of bilayers affect the degree of drug encapsulation in the liposome. Therefore, liposomes are typically classified based on their size and number of bilayers, and recently, a new type of liposome named double liposome and MVV has been reported. Liposomes prepared by this technique are known to enhance drug protection against various enzymes.

리포좀 제형에 나노화 기술을 적용하게 되면 특정 유효성분을 피부 내에 전달하는 역할을 하는 나노 소포체의 크기가 피부를 구성하는 세포보다 작아지게 된다. 따라서, 나노 크기의 입자가 포함된 기능성화장품을 사용하면 유효성분이 피부에 보다 깊숙이 흡수 및 전달되는 것으로 알려져 있다.When nano-technology is applied to the liposome formulation, the size of the nano-vesicles, which serves to deliver specific active ingredients into the skin, becomes smaller than the cells constituting the skin. Therefore, it is known that when functional cosmetics containing nano-sized particles are used, active ingredients are absorbed and delivered more deeply into the skin.

KR 10-0753437 B1 (2007.09.14. 공고)KR 10-0753437 B1 (2007.09.14. Announcement)

본 발명의 목적은 용해도가 낮은 수용성 비타민인 바이오틴을 약물전달체의 일종인 나노리포좀에 함유시킴으로써, 바이오틴의 용해도를 향상시키고, 나노리포좀의 안정성을 향상시킨 바이오틴 함유 나노리포좀의 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a method for producing biotin-containing nanoliposomes, which improves the solubility of biotin and the stability of nanoliposomes by containing biotin, a water-soluble vitamin with low solubility, in nanoliposomes, which is a kind of drug delivery system. .

또한, 본 발명의 목적은 피부를 통한 유효성분 전달의 방법으로 알려진 나노리포좀의 효과 및 이용 가능성을 알아보기 위해 화장품에 사용되는 용해도가 낮은 탈모방지제 성분인 바이오틴을 나노리포좀에 캡슐화시켜 바이오틴의 리포좀에서의 안정성 및 용해도에 미치는 영향을 확인하는 것이다.In addition, an object of the present invention is to encapsulate biotin, which is a low-solubility anti-hair loss agent component used in cosmetics, in nanoliposomes to find out the effect and availability of nanoliposomes, which are known as a method of delivering active ingredients through the skin. To determine the effect on the stability and solubility of

본 발명의 바이오틴 함유 나노리포좀의 제조방법은, pH 조절제 및 고압유화 처리를 이용하여 바이오틴의 캡슐화율을 향상시키는 것을 특징으로 한다.The method for producing biotin-containing nanoliposomes of the present invention is characterized in that the encapsulation rate of biotin is improved by using a pH adjusting agent and high pressure emulsification treatment.

상기 바이오틴 함유 나노리포좀의 제조방법은, (a) 인지질(Phospholipid), 콜레스테롤(Cholesterol), 및 알코올(Alcohol)을 혼합하여 제1 혼합액을 제조하는 단계; (b) 보존제(Preservative), 바이오틴(Biotin), pH 조절제 및 정제수를 혼합하여 제2 혼합액을 제조하는 단계; (c) 상기 (a) 단계의 제1 혼합액과 상기 (b) 단계의 제2 혼합액을 각각 가열하여 용해시키는 단계; (d) 상기 제1 혼합액과 상기 제2 혼합액을 혼합하고 유화시켜 리포좀을 포함하는 조성물을 제조하는 단계; 및 (e) 상기 (d) 단계의 리포좀을 고압유화 처리하여 나노리포좀을 제조하는 단계를 포함할 수 있다.The manufacturing method of the biotin-containing nanoliposomes includes the steps of: (a) preparing a first mixed solution by mixing phospholipids, cholesterol, and alcohol; (b) preparing a second mixed solution by mixing a preservative, biotin, a pH adjusting agent, and purified water; (c) heating and dissolving the first mixed solution of step (a) and the second mixed solution of step (b), respectively; (d) mixing and emulsifying the first mixed solution and the second mixed solution to prepare a composition comprising liposomes; and (e) high-pressure emulsification of the liposome of step (d) to prepare a nanoliposome.

상기 인지질은, 레시틴(Lecithin)일 수 있다.The phospholipid may be lecithin.

상기 (c) 단계는, 70 ~ 75 ℃의 온도에서 1 ~ 10 분 동안 수행할 수 있다.Step (c) may be performed at a temperature of 70 to 75 °C for 1 to 10 minutes.

상기 (d) 단계는, 호머믹서기에서 상기 제1 혼합액을 상기 제2 혼합액에 투입하여 2,500 ~ 3,500 rpm으로 5 ~ 15 분 동안 수행할 수 있다.Step (d) may be performed for 5 to 15 minutes at 2,500 to 3,500 rpm by adding the first mixed solution to the second mixed solution in a home mixer.

상기 pH 조절제는, 알지닌(Arginine) 수산화나트륨(NaOH), 수산화칼륨(KOH), 및 트리에탄올아민(Triethanolamine)으로 이루어진 그룹 중 선택되는 1 종 이상일 수 있다.The pH adjusting agent may be at least one selected from the group consisting of arginine, sodium hydroxide (NaOH), potassium hydroxide (KOH), and triethanolamine.

상기 pH 조절제는 리포좀을 함유하는 조성물 총 중량%에 대하여 0.001 ~ 0.5 중량%의 양으로 사용될 수 있다.The pH adjusting agent may be used in an amount of 0.001 to 0.5% by weight based on the total weight% of the composition containing the liposome.

상기 (e) 단계는, 40 ∼ 45 ℃의 온도, 650 ~ 750 bar의 압력에서 1 ~ 3 회 수행할 수 있다.Step (e) may be performed 1 to 3 times at a temperature of 40 to 45° C. and a pressure of 650 to 750 bar.

또한, 본 발명은 상기 제조방법으로 제조되는 바이오틴 함유 나노리포좀을 제공할 수 있다.In addition, the present invention may provide a biotin-containing nanoliposome prepared by the above preparation method.

상기 나노리포좀은 입자의 크기가 100 ~ 250 nm이고, 다분산지수가 0.2 ~ 0.5 이며, 제타전위가 -80 ~ -30 mV일 수 있다.The nanoliposome may have a particle size of 100 to 250 nm, a polydispersity index of 0.2 to 0.5, and a zeta potential of -80 to -30 mV.

상기 나노리포좀 내 바이오틴의 캡슐화율이 25 % 이상일 수 있다.The encapsulation rate of biotin in the nanoliposome may be 25% or more.

상기 바이오틴의 경피흡수율이 30 % 이상일 수 있다.The transdermal absorption rate of the biotin may be 30% or more.

또한, 본 발명은 상기 나노리포좀을 포함하는 경피흡수 촉진용 화장료 조성물을 제공할 수 있다.In addition, the present invention may provide a cosmetic composition for promoting transdermal absorption comprising the nanoliposome.

본 발명의 바이오틴 함유 나노리포좀의 제조방법을 이용하면, 물리적으로 안정적이고, 캡슐화율 및 경피흡수율이 우수한 바이오틴 함유 나노리포좀을 제공할 수 있으며, 이를 다양한 화장료 조성물에 적용할 수 있다.Using the biotin-containing nanoliposome production method of the present invention, it is possible to provide a biotin-containing nanoliposome that is physically stable and has excellent encapsulation rate and transdermal absorption rate, and it can be applied to various cosmetic compositions.

도 1은 리포좀 구조 및 친유성 또는 친수성 약물의 포획 모델을 개략적으로 나타낸 것이다.
도 2는 고압을 이용한 나노크기의 분산입자 제조장치를 개략적으로 나타낸 것이다.
도 3은 실온에서 1 일, 1 주일, 1 개월 및 3 개월 후의 바이오틴 나노리포좀(#3)을 관능평가한 것이다.
도 4는 실온에서 1 일, 1 주일, 1 개월 및 3 개월 후의 바이오틴 나노리포좀(#4)을 관능평가한 것이다.
도 5는 시간에 따른 나노리포좀(#2)의 입자 크기를 나타낸 것이다(3회 측정하여 평균값으로 나타냄, *p < 0.05, **p < 0.01).
도 6은 시간에 따른 나노리포좀(#2)의 다분산 지수(PDI)의 결과 값을 나타낸 것이다(3회 측정하여 평균값으로 나타냄, *p < 0.05, **p < 0.01).
도 7은 시간에 따른 나노리포좀(#2)의 제타 전위값을 나타낸 것이다(3회 측정하여 평균값으로 나타냄, *p < 0.05).
도 8은 시간에 따른 바이오틴 함유 나노리포좀(#4)의 입자 크기를 나타낸 것이다(3회 측정하여 평균값으로 나타냄, *p < 0.05, **p < 0.01).
도 9는 시간에 따른 바이오틴 함유 나노리포좀(#4)의 제타 전위를 나타낸 것이다(3회 측정하여 평균값으로 나타냄, *p < 0.05).
도 10 A는 알지닌이 첨가되지 않은 바이오틴 함유 나노리포좀(#4-3)의 극저온 투과 전자현미경(Cryo-TEM) 이미지를 나타낸 것이고, 도 10 B는 본 발명에 따른 알지닌 첨가 바이오틴 함유 나노리포좀(#4-4)의 극저온 투과 전자현미경(Cryo-TEM) 이미지를 나타낸 것이다.
1 schematically shows the liposome structure and the capture model of a lipophilic or hydrophilic drug.
2 schematically shows an apparatus for producing nano-sized dispersed particles using high pressure.
3 is a sensory evaluation of biotin nanoliposomes (#3) after 1 day, 1 week, 1 month and 3 months at room temperature.
4 is a sensory evaluation of biotin nanoliposomes (#4) after 1 day, 1 week, 1 month and 3 months at room temperature.
5 shows the particle size of the nanoliposome (#2) over time (measured three times and expressed as an average value, * p < 0.05, ** p < 0.01).
Figure 6 shows the result value of the polydispersity index (PDI) of the nanoliposome (#2) over time (measured three times and expressed as an average value, * p < 0.05, ** p < 0.01).
7 shows the zeta potential value of the nanoliposome (#2) according to time (measured three times and expressed as an average value, * p < 0.05).
8 shows the particle size of the biotin-containing nanoliposome (#4) according to time (measured three times and expressed as an average value, * p < 0.05, ** p < 0.01).
9 shows the zeta potential of the biotin-containing nanoliposome (#4) with time (measured three times and expressed as an average value, * p < 0.05).
10 A shows a cryo-TEM image of a biotin-containing nanoliposome (#4-3) to which arginine is not added, and FIG. 10 B is an arginine-added biotin-containing nanoliposome according to the present invention. It shows the cryo-TEM image of (#4-4).

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art to which the present invention pertains can easily carry out the present invention. However, the present invention may be embodied in several different forms and is not limited to the embodiments described herein. Throughout the specification, like reference numerals are assigned to similar parts.

본 발명에서, 리포좀은 인지질로 구성된 구형의 소포체(vesicle)로서 수용성 및 유용성 성분들을 동시에 캡슐화시킬 수 있어, 비타민이나 약물 등과 같은 활성성분에 대한 약물전달체(drug delivery carrier)를 의미한다.In the present invention, liposomes are spherical vesicles composed of phospholipids, which can encapsulate water-soluble and oil-soluble components at the same time, so it means a drug delivery carrier for active ingredients such as vitamins or drugs.

본 발명의 목적은 용해도가 낮은 수용성 비타민인 바이오틴을 약물전달체의 일종인 나노리포좀에 함유시킴으로써, 바이오틴의 용해도를 향상시키고, 나노리포좀의 안정성을 향상시킨 바이오틴 함유 나노리포좀의 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a method for producing biotin-containing nanoliposomes, which improves the solubility of biotin and the stability of nanoliposomes by containing biotin, a water-soluble vitamin with low solubility, in nanoliposomes, which is a kind of drug delivery system. .

또한, 본 발명의 목적은 피부를 통한 유효성분 전달의 방법으로 알려진 나노리포좀의 효과 및 이용 가능성을 알아보기 위해 화장품에 사용되는 용해도가 낮은 탈모방지제 성분인 바이오틴을 나노리포좀에 캡슐화 시켜 바이오틴의 리포좀에서의 안정성 및 용해도에 미치는 영향을 확인하는 것이다.In addition, an object of the present invention is to encapsulate biotin, an anti-hair loss agent component with low solubility used in cosmetics, in nanoliposomes to find out the effect and availability of nanoliposomes, which are known as a method of delivering active ingredients through the skin. To determine the effect on the stability and solubility of

상기와 같은 목적을 달성하가 위한 본 발명의 일 실시예에 따른 바이오틴 함유 나노리포좀의 제조방법은, pH 조절제 및 고압유화 처리를 이용하여 바이오틴의 캡슐화율을 향상시키는 것을 특징으로 한다.The method for producing biotin-containing nanoliposomes according to an embodiment of the present invention for achieving the above object is characterized in that the encapsulation rate of biotin is improved by using a pH adjusting agent and high pressure emulsification treatment.

구체적으로, 상기 바이오틴 함유 나노리포좀의 제조방법은, (a) 인지질(Phospholipid), 콜레스테롤(Cholesterol), 및 알코올(Alcohol)을 혼합하여 제1 혼합액을 제조하는 단계; (b) 보존제(Preservative), 바이오틴(Biotin), pH 조절제 및 정제수를 혼합하여 제2 혼합액을 제조하는 단계; (c) 상기 (a) 단계의 제1 혼합액과 상기 (b) 단계의 제2 혼합액을 각각 가열하여 용해시키는 단계; (d) 상기 제1 혼합액과 상기 제2 혼합액을 혼합하고 유화시켜 리포좀을 포함하는 조성물을 제조하는 단계; 및 (e) 상기 (d) 단계의 리포좀을 고압유화 처리하여 나노리포좀을 제조하는 단계를 포함한다.Specifically, the method for preparing the biotin-containing nanoliposomes includes the steps of: (a) preparing a first mixed solution by mixing phospholipids, cholesterol, and alcohol; (b) preparing a second mixed solution by mixing a preservative, biotin, a pH adjusting agent, and purified water; (c) heating and dissolving the first mixed solution of step (a) and the second mixed solution of step (b), respectively; (d) mixing and emulsifying the first mixed solution and the second mixed solution to prepare a composition comprising liposomes; and (e) preparing a nanoliposome by high-pressure emulsification of the liposome of step (d).

본 발명에서 상기 (a) 인지질(Phospholipid), 콜레스테롤(Cholesterol), 및 알코올(Alcohol)을 혼합하여 제1 혼합액을 제조하는 단계는 상기 각 원료를 혼합하여 제조할 수 있으며 특별히 제한하지 않는다.In the present invention, the step of (a) preparing a first mixed solution by mixing phospholipids, cholesterol, and alcohol may be prepared by mixing the respective raw materials, and is not particularly limited.

본 발명에서 상기 (b) 보존제(Preservative), 바이오틴(Biotin), pH 조절제 및 정제수를 혼합하여 제2 혼합액을 제조하는 단계는 상기 각 원료를 혼합하여 제조할 수 있으며 특별히 제한하지 않는다.In the present invention, the step (b) of preparing a second mixed solution by mixing a preservative, biotin, a pH adjusting agent and purified water may be prepared by mixing the respective raw materials, and is not particularly limited.

본 발명에서 상기 (c) 상기 (a) 단계의 제1 혼합액과 상기 (b) 단계의 제2 혼합액을 각각 가열하여 용해시키는 단계는, 70 ~ 75 ℃의 온도에서 1 ~ 10 분 동안 수행할 수 있다.In the present invention, the step of (c) dissolving the first mixed solution of step (a) and the second mixed solution of step (b) by heating, respectively, can be performed at a temperature of 70 to 75 ° C. for 1 to 10 minutes. have.

본 발명에 따르면, 상기 제1 혼합액과 상기 제2 혼합액을 혼합하고 유화시켜 리포좀을 포함하는 조성물을 제조하는 단계(d)는, 호머믹서기에서 상기 제1 혼합액을 상기 제2 혼합액에 투입하여 2,500 ~ 3,500 rpm으로 5 ~ 15 분 동안 수행할 수 있다.According to the present invention, the step (d) of preparing a composition comprising liposomes by mixing and emulsifying the first mixed solution and the second mixed solution is, in a Homer mixer, the first mixed solution is added to the second mixed solution, and 2,500 ~ It can be carried out at 3,500 rpm for 5 to 15 minutes.

상기 pH 조절제는 리포좀을 함유하는 조성물 총 중량%에 대하여 0.001 ~ 0.5 중량%의 양으로 사용할 수 있다.The pH adjusting agent may be used in an amount of 0.001 to 0.5% by weight based on the total weight% of the composition containing the liposome.

상기 pH 조절제는, 알지닌(Arginine) 수산화나트륨(NaOH), 수산화칼륨(KOH), 및 트리에탄올아민(Triethanolamine)으로 이루어진 그룹 중 선택되는 1 종 이상일 수 있으며, 바람직하게는 알지닌일 수 있다.The pH adjusting agent may be at least one selected from the group consisting of arginine, sodium hydroxide (NaOH), potassium hydroxide (KOH), and triethanolamine, and preferably arginine.

구체적으로, 상기 각 원료의 사용량은, 리포좀을 함유하는 조성물 총 중량%에 대하여, 상기 인지질 2 ~ 3 중량%, 상기 콜레스테롤 0.25 ~ 1 중량%, 상기 알코올 10 ~ 20 중량%, 보존제 0.1 ~ 0.5 중량%, pH 조절제 0.05 ~ 0.007 중량% 및 정제수 잔량일 수 있다.Specifically, the amount of each raw material used is, with respect to the total weight% of the composition containing the liposome, 2 to 3% by weight of the phospholipid, 0.25 to 1% by weight of the cholesterol, 10 to 20% by weight of the alcohol, 0.1 to 0.5% by weight of the preservative %, 0.05 to 0.007% by weight of the pH adjuster, and the remaining amount of purified water.

상기 인지질은 레시틴일 수 있으며, 구체적으로, 대두 레시틴, 디스테아로일포스파티딜콜린, 수첨 대두 레시틴, 난(egg) 레시틴, 디올레오일포스파티딜콜린, 수첨 난 레시틴, 디엘라이도일포스파티딜콜린, 디팔미토일포스파티딜콜린 및 디미리스토일포스파티딜콜린으로 이루어진 군에서 선택되는 1 종 이상의 것일 수 있다.The phospholipid may be lecithin, and specifically, soybean lecithin, distearoylphosphatidylcholine, hydrogenated soybean lecithin, egg lecithin, dioleoylphosphatidylcholine, hydrogenated egg lecithin, dielaidoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and It may be at least one selected from the group consisting of dimyristoylphosphatidylcholine.

상기 알코올은 에틸알코올일 수 있으나, 이에 제한되는 것은 아니다.The alcohol may be ethyl alcohol, but is not limited thereto.

상기 바이오틴(Biotion, 화학식: C10H16N2O3S)은, 수용성의 비타민 B 계열로서 비타민 B7(vitamin B7), 비타민 B8(vitamin B8), 비타민 H(vitamin H), 또는 조효소 R(coenzyme R)을 의미한다. 또한, 바이오틴은 국소 제형, 예컨대 샴푸, 컨디셔너, 비누, 목욕 오일 및 염류, 및 메이크업에서 모발 및 피부 컨디셔닝제로서 사용될 수 있으며, 바이오틴은 카르복실산이다.The biotin (Biotion, chemical formula: C 10 H 16 N 2 O 3 S) is a water-soluble vitamin B series, vitamin B7 (vitamin B7), vitamin B8 (vitamin B8), vitamin H (vitamin H), or coenzyme R ( coenzyme R). Biotin can also be used as a hair and skin conditioning agent in topical formulations such as shampoos, conditioners, soaps, bath oils and salts, and makeup, where biotin is a carboxylic acid.

상기 보존제는 이미다졸리디닐우레아, 메칠파라벤, 프로필파라벤 및 부틸파라벤으로 이루어진 군에서 선택되는 1 종의 것을 사용할 수 있다.The preservative may be one selected from the group consisting of imidazolidinyl urea, methylparaben, propylparaben and butylparaben.

상기 알지닌(Arginine, 화학식: C6H14N4O2)은 α-아미노산의 하나로 L-알지닌은 단백질을 구성하는 아미노산의 하나이며, 어류의 정자에 존재하는 단백질 프로타민이다. 또한, 생체 내의 대사경로로서 오르니틴회로의 구성성분이며, 아르지나아제의 작용에 의하여 요소와 오르니틴으로 분해하는 역할을 한다. 염기성 아미노산으로 강한 알카리성을 나타내어 산도조절제 역할을 한다.The arginine (Arginine, chemical formula: C 6 H 14 N 4 O 2 ) is one of α-amino acids, and L-arginine is one of the amino acids constituting the protein, and is a protein protamine present in sperm of fish. In addition, as a metabolic pathway in the body, it is a component of the ornithine cycle, and serves to decompose into urea and ornithine by the action of arginase. As a basic amino acid, it exhibits strong alkalinity and acts as an acidity regulator.

상기한 함량을 벗어나는 경우 바이오틴의 캡슐화율이 저하될 수 있으며, 이에 따라 바이오틴의 경피흡수율이 저하되는 문제점이 있어 상기한 범위가 바람직하다.If the content is out of the above-mentioned range, the encapsulation rate of biotin may be lowered. Accordingly, there is a problem that the transdermal absorption rate of biotin is lowered, so the above range is preferable.

또한, 바이오틴이 리포좀에 의하여 캡슐화되었을 때 안정성이 저하되는 문제점이 있어 상기한 범위가 바람직하다.In addition, when biotin is encapsulated by liposomes, there is a problem that stability is lowered, so the above range is preferable.

본 발명에 따르면, 상기 (d) 단계의 리포좀을 포함하는 조성물을 고압유화 처리하여 나노리포좀을 제조하는 단계(e)는 40 ∼ 45 ℃의 온도, 650 ~ 750 bar의 압력에서 1 ~ 3 회 수행할 수 있으며, 바람직하게는 40 ∼ 45 ℃의 온도, 700 bar의 압력에서 2 회 수행하는 것이 바람직하다.According to the present invention, the step (e) of preparing nanoliposomes by high-pressure emulsification treatment of the composition containing the liposomes of step (d) is performed 1 to 3 times at a temperature of 40 to 45° C. and a pressure of 650 to 750 bar. It can be done, preferably at a temperature of 40 to 45 ℃, it is preferable to carry out twice at a pressure of 700 bar.

상기한 고압유화처리 조건을 벗어나면, 시간이 지남에 따라 탁도가 증가하고, 바이오틴이 석출되며, 입자의 크기가 증가하는 문제점이 있어 상기한 범위가 바람직하다. If the high pressure emulsification treatment conditions are exceeded, the above range is preferable because there are problems in that turbidity increases over time, biotin is precipitated, and the size of particles increases.

본 발명의 다른 실시예에 따른 바이오틴 함유 나노리포좀은, 상기한 방법으로 제조되어, 입자의 크기가 100 ~ 250 nm이고, 다분산지수가 0.2 ~ 0.5 이며, 제타전위가 -80 ~ -30 mV인 것을 특징으로 한다.Biotin-containing nanoliposomes according to another embodiment of the present invention are prepared by the above method, have a particle size of 100 to 250 nm, a polydispersity index of 0.2 to 0.5, and a zeta potential of -80 to -30 mV characterized in that

상기한 범위의 제타전위의 값을 가짐으로 콜로이드 입자간의 반발력이 커져 콜로이드 상태가 안정화된다.By having the zeta potential in the above range, the repulsive force between the colloidal particles increases, and the colloidal state is stabilized.

또한, 나노 분산액의 분산 안정성을 향상시킬 수 있고, 물리적 안정화뿐만 아니라 전기적으로 안정화되는 효과가 있다.In addition, the dispersion stability of the nano-dispersion can be improved, and there is an effect of not only physical stabilization but also electrical stabilization.

본 발명에서 상기 나노리포좀은 내 바이오틴의 캡슐화율이 25% 이상일 수 있다.In the present invention, the nanoliposome may have an encapsulation rate of biotin of 25% or more.

본 발명에서 상기 바이오틴의 경피흡수율이 30% 이상일 수 있다.In the present invention, the transdermal absorption rate of the biotin may be 30% or more.

본 발명의 다른 실시예에 따라 바이오틴 함유 나노리포좀을 포함하는 경피흡수 촉진용 화장료 조성물을 제공한다.According to another embodiment of the present invention, there is provided a cosmetic composition for promoting transdermal absorption comprising biotin-containing nanoliposomes.

본 발명의 일 실시예에 따른 바이오틴 함유 나노리포좀을 포함하는 경피흡수 촉진용 화장료 조성물은, 조성물 총 중량%에 대하여, 상기 바이오틴 함유 나노리포좀을 0.1 내지 20 중량%, 바람직하게는 1 내지 15 중량%를 포함할 수 있다.The cosmetic composition for promoting transdermal absorption comprising biotin-containing nanoliposomes according to an embodiment of the present invention contains 0.1 to 20% by weight of the biotin-containing nanoliposomes, preferably 1 to 15% by weight, based on the total weight of the composition. may include.

상기 바이오틴 함유 나노리포좀을 포함하는 경피흡수 촉진용 화장료 조성물은 유기용매, 용해제, 농축제, 겔화제, 연화제, 항산화제, 현탁화제, 안정화제, 발포제(Foaming agent), 방향제, 계면활성제, 물, 이온형 또는 비이온형 유화제, 충전제, 킬레이트화제, 보존제, 비타민, 차단제, 습윤화제, 필수 오일, 염료, 안료, 친수성 또는 친유성 활성제, 지질소낭 또는 화장품에 통상적으로 사용되는 보조제를 추가적으로 함유할 수 있다.The cosmetic composition for promoting transdermal absorption comprising the biotin-containing nanoliposome is an organic solvent, a solubilizer, a thickening agent, a gelling agent, an emollient, an antioxidant, a suspending agent, a stabilizer, a foaming agent, a fragrance, a surfactant, water, It may additionally contain ionic or nonionic emulsifiers, fillers, chelating agents, preservatives, vitamins, blocking agents, wetting agents, essential oils, dyes, pigments, hydrophilic or lipophilic active agents, lipid vesicles or adjuvants commonly used in cosmetics. have.

또한, 상기 바이오틴 함유 나노리포좀을 포함하는 경피흡수 촉진용 화장료 조성물은, 그 제형에 있어서 특별히 한정되는 바가 없다. 예를 들면, 유연화장수, 수렴화장수, 영양화장수, 영양크림, 마사지크림, 에센스, 아이크림, 아이에센스, 클렌징크림, 클렌징폼, 클렌징워터, 팩, 파우더, 바디로션, 바디크림, 바디오일, 바디에센스, 메이컵 베이스, 파운데이션, 염모제, 샴푸, 린스, 바디 세정제, 연고, 패치 또는 분무제 등의 화장료 조성물로 제형화될 수 있다. 이들 각 제형은 그 제형의 제제화에 필요하고 적절한 각종의 기제와 첨가물을 함유할 수 있다.In addition, the cosmetic composition for promoting transdermal absorption comprising the biotin-containing nanoliposome is not particularly limited in its formulation. For example, softening lotion, astringent lotion, nourishing lotion, nourishing cream, massage cream, essence, eye cream, eye essence, cleansing cream, cleansing foam, cleansing water, pack, powder, body lotion, body cream, body oil, body Essence, makeup base, foundation, hair dye, shampoo, rinse, body wash, ointment, may be formulated as a cosmetic composition such as a patch or spray. Each of these formulations may contain a variety of bases and additives necessary and appropriate for the formulation of the formulation.

이하, 본 발명을 실시예에 의해 보다 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of Examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.

<실시예><Example>

1. 재료의 준비1. Preparation of materials

레시틴(Lipoid S 75-3, Lipoid, Germany), 콜레스테롤(Cholesterol JP, Nippon Fine Chemical Co., LTD, Japan) 및 pH를 조절하기 위해서 알지닌(L-arginine, Ajinomoto, Japan)을 준비하였다.Lecithin (Lipoid S 75-3, Lipoid, Germany), cholesterol (Cholesterol JP, Nippon Fine Chemical Co., LTD, Japan) and arginine (L-arginine, Ajinomoto, Japan) were prepared to control the pH.

용매로 부틸렌글라이콜(1,3-Butylene glycol, Daicel, Japan), 에탄올(Ethyl alcohol, Daejung, Korea)을 준비하였으며, 정제수는 증류수 제조기(Pure RO 130, Human Co., Korea)를 이용하여 제조(< 3 μS/cm)하였다.Butylene glycol (1,3-Butylene glycol, Daicel, Japan) and ethanol (Ethyl alcohol, Daejung, Korea) were prepared as solvents, and purified water was purified using a distilled water maker (Pure RO 130, Human Co., Korea). prepared (< 3 μS /cm).

바이오틴(Biotin, Sigma-Aldrich, MO, USA)은 순도 99% 이상의 HPLC 급으로 준비하였으며, 바이오틴 함량 분석을 위해 HPLC 용매로 사용한 메탄올, 정제수, 아세토나이트릴 및 sodium hexanesulfonate는 Sigma-Aldrich (MO, USA) 제품으로 모두 HPLC 급을 준비하였다.Biotin (Biotin, Sigma-Aldrich, MO, USA) was prepared in HPLC grade with a purity of 99% or higher, and methanol, purified water, acetonitrile and sodium hexanesulfonate used as HPLC solvents for biotin content analysis were Sigma-Aldrich (MO, USA). ) All products were prepared in HPLC grade.

리포좀을 제조하기 위하여 호모믹서(T.K. Auto homomixer mark Ⅱ 2.5, Tokushukika, Japan) 및 고압유화기(Nanodisperser, NLM1000, Ilshin autoclave, Korea)를 이용하였으며, pH 측정을 위해 pH meter(Orion star A111, Thermo scientific, USA)를 이용하였다. 리포좀의 입자크기, 제타전위 및 다분산지수(PDI, polydispersity index) 측정을 위해 제타사이저(Zetasizer Nano ZS system, Malvern Instrument Ltd., UK)를 이용하였으며, 나노리포좀 내 바이오틴 캡슐화율 및 바이오틴을 정량하는데 HPLC(Agilent 1100, Agilent Technologies, USA)를 이용하였다.To prepare liposomes, a homomixer (T.K. Auto homomixer mark Ⅱ 2.5, Tokushukika, Japan) and a high pressure emulsifier (Nanodisperser, NLM1000, Ilshin autoclave, Korea) were used, and a pH meter (Orion star A111, Thermo scientific) was used for pH measurement. , USA) were used. A Zetasizer (Zetasizer Nano ZS system, Malvern Instrument Ltd., UK) was used to measure the particle size, zeta potential and polydispersity index (PDI) of the liposome, and the biotin encapsulation rate and biotin in the nanoliposome were quantified. HPLC (Agilent 1100, Agilent Technologies, USA) was used for this.

2. 리포좀의 제조2. Preparation of liposomes

하기의 표들에 기재된 제조예 #1-1 ~ #4-3은 비교예이며, #4-4는 실시예이다.Preparation Examples #1-1 to #4-3 described in the following tables are comparative examples, and #4-4 is an example.

1) 리포좀 제조 예비실험1) Preliminary experiment for preparing liposomes

① 용매 조건의 나노리포좀 제조 예비실험① Preliminary experiment for preparing nanoliposomes under solvent conditions

나노리포좀을 제조하기 위하여 레시틴, 콜레스테롤, 부틸렌글라이콜 및 에탄올로 구성되는 유상(oil phase)과 수상(water phase)을 각각 70 ∼ 75 ℃로 가온하여 용해시킨 후 수상에 유상을 첨가하면서 호모믹서로 3,000 rpm, 10 min 동안 유화시켜 리포좀을 제조하였다.In order to prepare nanoliposomes, an oil phase and a water phase composed of lecithin, cholesterol, butylene glycol and ethanol are each dissolved by heating to 70 to 75 ° C. 3,000 rpm, and emulsified for 10 min to prepare liposomes.

여기서, 나노리포좀의 형성 여부를 확인하기 위해, 하기 표 1의 조성으로 리포좀을 제조하였으며, 제조된 리포좀을 40 ∼ 45 ℃에서 압력 700 bar, 통과 횟수 2회 조건으로 고압유화 처리하여 나노리포좀을 제조하였다.Here, in order to confirm the formation of nanoliposomes, liposomes were prepared with the composition shown in Table 1 below, and the prepared liposomes were subjected to high pressure emulsification treatment at 40 to 45° C. at a pressure of 700 bar and the number of passes twice to prepare nanoliposomes. did.

성분(wt%)Ingredients (wt%) #1-1#1-1 #1-2#1-2 #1-3#1-3 #1-4#1-4 유상
(Oil phase)
paid
(Oil phase)
레시틴lecithin 2.52.5 2.52.5 2.52.5 2.52.5
콜레스테롤cholesterol 0.50.5 0.50.5 0.50.5 0.50.5 부틸렌글라이콜Butylene Glycol 20.020.0 30.030.0 -- -- 에탄올ethanol -- -- 10.010.0 15.015.0 수상
(Water phase)
Awards
(Water phase)
증류수Distilled water 76.776.7 66.766.7 86.786.7 81.781.7
보존제preservative 0.30.3 0.30.3 0.30.3 0.30.3

② 고압유화 조건에서의 나노리포좀 제조 예비실험② Preliminary experiment for manufacturing nanoliposomes under high pressure emulsification conditions

고압유화 조건을 선정하기 위해, 하기 표 2의 조성 및 고압유화 조건으로 고압유화된 나노리포좀을 제조하였다.In order to select the high-pressure emulsification conditions, high-pressure emulsified nanoliposomes were prepared with the composition and high-pressure emulsification conditions in Table 2 below.

여기서, 리포좀의 예비실험과 동일하게 실시하였다.Here, it was carried out in the same manner as in the preliminary experiment of the liposome.

성분(wt%)Ingredients (wt%) #2-1#2-1 #2-2#2-2 #2-3#2-3 #2-4#2-4 #2-5#2-5 #2-6#2-6 유상
(Oil phase)
paid
(Oil phase)
레시틴lecithin 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5 2.52.5
콜레스테롤cholesterol 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 에탄올ethanol 15.015.0 15.015.0 15.015.0 15.015.0 15.015.0 15.015.0 수상
(Water phase)
Awards
(Water phase)
증류수Distilled water 81.781.7 81.781.7 81.781.7 81.781.7 81.781.7 81.781.7
보존제preservative 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 0.30.3 고압유화기 조건
(압력/횟수)
High pressure emulsifier conditions
(pressure/frequency)
300/1300/1 300/2300/2 500/1500/1 500/2500/2 700/1700/1 700/2700/2

2) 나노리포좀의 제조2) Preparation of nanoliposomes

① 바이오틴 함유 나노리포좀의 제조① Preparation of biotin-containing nanoliposomes

바이오틴 함유 나노리포좀을 제조하기 위해, 하기 표 3의 조성 및 고압유화 조건으로 바이오틴 함유 나노리포좀을 제조하였다.To prepare biotin-containing nanoliposomes, biotin-containing nanoliposomes were prepared under the composition and high pressure emulsification conditions of Table 3 below.

이때, 고압유화 조건은 압력 700 bar 및 통과횟수는 2 회로 실시하였다.At this time, the high-pressure emulsification condition was performed at a pressure of 700 bar and the number of passages twice.

성분(wt%)Ingredients (wt%) #3-1#3-1 #3-2#3-2 #3-3#3-3 #3-4#3-4 유상
(Oil phase)
paid
(Oil phase)
레시틴lecithin 2.52.5 2.52.5 2.52.5 2.52.5
콜레스테롤cholesterol 0.50.5 0.50.5 0.50.5 0.50.5 부틸렌글라이콜Butylene Glycol 20.020.0 30.030.0 -- -- 에탄올ethanol -- -- 10.010.0 15.015.0 수상
(Water phase)
Awards
(Water phase)
증류수Distilled water 76.676.6 66.666.6 86.686.6 81.681.6
바이오틴biotin 0.10.1 0.10.1 0.10.1 0.10.1 보존제preservative 0.30.3 0.30.3 0.30.3 0.30.3

② 알지닌(Arginine)이 첨가된 바이오틴 함유 나노리포좀의 제조② Preparation of biotin-containing nanoliposomes with arginine added

알리진이 첨가된 바이오틴 함유 나노리포좀을 제조하기 위해, 하기 표 4의 조성 및 고압유화 조건으로 알지닌이 첨가된 바이오틴 함유 나노리포좀을 제조하였다.In order to prepare biotin-containing nanoliposomes to which alginine was added, biotin-containing nanoliposomes to which arginine was added were prepared under the composition and high pressure emulsification conditions of Table 4 below.

(리포좀 및 나노리포좀의 제조는 예비실험과 동일하게 진행하였다.)(The preparation of liposomes and nanoliposomes was carried out in the same manner as in the preliminary experiment.)

성분(wt%)Ingredients (wt%) #4-1#4-1 #4-2#4-2 #4-3#4-3 #4-4#4-4 유상
(Oil phase)
paid
(Oil phase)
레시틴lecithin 2.52.5 2.52.5 2.52.5 2.52.5
콜레스테롤cholesterol 0.50.5 0.50.5 0.50.5 0.50.5 에탄올ethanol 15.015.0 15.015.0 15.015.0 15.015.0 수상
(Water phase)
Awards
(Water phase)
증류수Distilled water 81.781.7 81.6481.64 81.681.6 81.5481.54
바이오틴biotin -- -- 0.10.1 0.10.1 알지닌Arginine -- 0.060.06 -- 0.060.06 보존제preservative 0.30.3 0.30.3 0.30.3 0.30.3

<실험예><Experimental example>

1. 리포좀 안정성 평가1. Liposome Stability Assessment

1) 온도별 제형 안정성 관능평가1) Sensory evaluation of formulation stability by temperature

각 제조된 나노리포좀을 각각 실온(25 ℃), 냉온(4 ℃), 항온(40 ℃)에서 보관하여 각각 1 일, 1 주일 1 개월 및 3 개월 날짜별로 경시변화를 측정하였으며, 경시변화는 리포좀의 투명도, 색상, 분리여부 및 바이오틴의 석출(결정화) 여부로 확인하였다.Each of the prepared nanoliposomes was stored at room temperature (25 ℃), cold (4 ℃), and constant temperature (40 ℃), and the change over time was measured for each day, 1 week, 1 month, and 3 months, respectively. was confirmed by the transparency, color, separation and biotin precipitation (crystallization).

2) pH 측정2) pH measurement

각각의 시료 2 g을 정제수 30 mL로 희석하여, 25 ℃에서 pH meter로 나노리포좀의 pH를 측정하였다.2 g of each sample was diluted with 30 mL of purified water, and the pH of the nanoliposome was measured at 25 °C with a pH meter.

3) 입자크기 및 제타전위 측정3) Measurement of particle size and zeta potential

Dynamic light scattering 방식을 활용한 제타사이저를 이용하여 나노리포좀의 평균 입자크기와 제타전위 및 다분산지수 측정하였다.The average particle size, zeta potential, and polydispersity index of nanoliposomes were measured using a zetasizer using a dynamic light scattering method.

이때, 온도는 25 ℃로 일정하게 유지되도록 하였으며 정확성을 위해 원액을 갖고 측정을 진행하였다. 또한 안정성 확인을 위해 1 일, 1 주일 1 개월 및 3 개월 주기로 측정하였다.At this time, the temperature was kept constant at 25 ℃, and the measurement was carried out with the stock solution for accuracy. In addition, in order to confirm the stability, measurements were made at intervals of 1 day, 1 week, 1 month, and 3 months.

4) 바이오틴 함량 분석4) Biotin content analysis

HPLC system으로 바이오틴 함량을 분석하여 정량하였다.Biotin content was analyzed and quantified by HPLC system.

이때, 칼럼은 C18 (150 × 4.6 mm)을 사용하였으며, 검출기는 UV 검출기(200 nm)를 사용하여 유속 1.0 mL/min, 오븐 온도는 40 ℃, 이동상으로는 아세토나이트릴/정제수(0.02% 인산) = 15/85로 혼합한 용매를 사용하여 분석하였다. 바이오틴 표준품 및 바이오틴 함유 나노리포좀은 메탄올(0.05% 인산) 용매로 희석하여 분석하였다.At this time, C18 (150 × 4.6 mm) was used for the column, the detector was a UV detector (200 nm), the flow rate was 1.0 mL/min, the oven temperature was 40° C., and acetonitrile/purified water (0.02% phosphoric acid) as the mobile phase. = 15/85 mixed solvent was used for analysis. Biotin standards and biotin-containing nanoliposomes were analyzed by dilution with methanol (0.05% phosphoric acid) solvent.

2. 리포좀의 캡슐화율 측정2. Measurement of liposome encapsulation rate

DMM(dialysis membrane method)을 이용하여 나노리포좀의 바이오틴 캡슐화율을 측정하였다.The biotin encapsulation rate of nanoliposomes was measured using a dialysis membrane method (DMM).

나노리포좀(1.0 mL)을 분취하여 300 Da 분자량 한계인 Dialysis membrane bag에 넣고 클립으로 완전히 밀봉시켜 준비한 후, 밀봉된 Dialysis membrane bag을 1× PBS buffer(pH 7.4) 200 mL의 담긴 비커에 침지시켜 준비하였다. 5 시간 후 Membrane bag을 투과한 Outer 용액과 투과하지 못한 Inner 용액을 각각 분취하여 준비하였다. 각각의 용액들은 0.45 μm Syringe filter로 여과시켜준 후, HPLC system에서 바이오틴 함량분석 조건과 동일하게 하여 정량하였다. 이를 통해 캡슐화율을 구하기 위해 첫 번째로 Dialysis membrane bag을 투과한 시료에서의 바이오틴 함량과 바이오틴 함유 나노리포좀의 바이오틴 함량을 상대 비교하여 하기의 수학식 1에 의해 계산하였다. 이는 리포좀 내에 캡슐화 되지 않은 바이오틴의 함량으로 확인할 수 있다. 두 번째로 Dialysis membrane bag을 투과하지 못한 시료에서의 바이오틴 함량과 바이오틴 함유 나노리포좀의 바이오틴 함량을 상대 비교하여 하기의 수학식 2에 의해 계산하였다.Prepare by aliquoting nanoliposomes (1.0 mL), putting them in a dialysis membrane bag, which has a molecular weight limit of 300 Da, and sealing it completely with a clip. did. After 5 hours, the outer solution that passed through the membrane bag and the inner solution that did not pass through the membrane bag were prepared by aliquoting, respectively. Each solution was filtered with a 0.45 μm Syringe filter, and then quantified under the same conditions as for biotin content analysis in an HPLC system. In order to obtain the encapsulation rate through this, first, the biotin content in the sample passing through the dialysis membrane bag and the biotin content of the biotin-containing nanoliposome were compared and calculated by Equation 1 below. This can be confirmed by the content of biotin that is not encapsulated in the liposome. Second, the biotin content in the sample that did not pass through the dialysis membrane bag and the biotin content of the biotin-containing nanoliposome were compared and calculated by Equation 2 below.

Figure 112020044593270-pat00001
Figure 112020044593270-pat00001

Figure 112020044593270-pat00002
Figure 112020044593270-pat00002

여기서, A는 막 외부 나노리포좀의 바이오틴 비율(%)이고, B는 막 내부 나노리포좀의 바이오틴 비율(%), C1는 초기 나노리포좀의 바이오틴 양(%), C2는 막 외부 나노리포좀의 바이오틴 양(%), C3는 막 내부 나노리포좀의 바이오틴 양(%)이다. Here, A is the biotin ratio (%) of the nanoliposome outside the membrane, B is the biotin ratio (%) of the nanoliposome inside the membrane, C 1 is the amount of biotin of the initial nanoliposome (%), and C 2 is the biotin ratio of the nanoliposome outside the membrane (%) The amount of biotin (%), C 3 is the amount of biotin (%) of the nanoliposome inside the membrane.

3. In vitro 경피흡수율 측정(Franz diffusion cell method)3. Measurement of in vitro transdermal absorption (Franz diffusion cell method)

Franz diffusion cell system(FDC-6T, Logan Instrument, USA)을 이용하여 바이오틴 함유 나노리포좀의 경피흡수율을 측정하였다.The transdermal absorption rate of biotin-containing nanoliposomes was measured using the Franz diffusion cell system (FDC-6T, Logan Instrument, USA).

경피흡수율 측정은 인공피부(Strat-M membrane, Merck Millipore, USA)를 사용하였으며, 각질층이 위를 향하도록 하여 Donor와 Receptor phase 사이에 Membrane를 고정시켜 준비하였다. Receptor chamber에 50% 에탄올을 채웠으며, 측정이 진행되는 동안 항온수조를 통해 온도를 37 ± 1 ℃로 유지하였다. 24 시간 후 Receptor chamber에서 채취한 시료 내의 바이오틴 함량은 HPLC를 이용하여 측정하였다. 또한, 24 시간 후 Membrane에 남아있는 바이오틴 함량을 측정하기 위해 Membrane을 PBS로 3회에 걸쳐 세척 후 Receptor phase와 닿지 않은 부분을 잘라낸 다음 남은 부분에 대해 가위를 이용하여 세절하였다. 세절한 Membrane을 10 mL의 50% 에탄올에 넣고 1 시간 동안 초음파 세척기를 이용하여 추출 및 처리하여 Membrane에 남아있는 바이오틴 함량을 측정하였다.The transdermal absorption rate was measured using artificial skin (Strat-M membrane, Merck Millipore, USA), and the membrane was prepared by fixing the membrane between the donor and receptor phases with the stratum corneum facing up. 50% ethanol was filled in the receptor chamber, and the temperature was maintained at 37 ± 1 °C through a constant temperature water bath while the measurement was in progress. After 24 hours, the biotin content in the sample collected from the receptor chamber was measured using HPLC. In addition, in order to measure the biotin content remaining in the membrane after 24 hours, the membrane was washed 3 times with PBS, cut off the part that did not come into contact with the receptor phase, and then the remaining part was cut using scissors. The minced membrane was placed in 10 mL of 50% ethanol, extracted and treated using an ultrasonic cleaner for 1 hour to measure the biotin content remaining in the membrane.

4. 바이오틴 함유 나노리포좀의 형성 측정4. Measurement of the formation of biotin-containing nanoliposomes

극저온 투과 전자현미경(TEM, Transmission Electron Microscope, Tecnai F20 G2, FEI Company, USA)을 이용하여 나노리포좀의 형상을 측정하였다.The shape of the nanoliposome was measured using a cryogenic transmission electron microscope (TEM, Transmission Electron Microscope, Tecnai F20 G2, FEI Company, USA).

먼저, 극저온 시스템(Cryo system)을 이용하여 시료를 전처리하여 준비하였다.First, the sample was prepared by pretreatment using a cryo system.

다음으로, Jet freezing device(JFD 030, BALTEC, Pfaffkkon ZH, Switzerland)을 이용하여 2,100 bar 이상의 고압 상태에서 액화 질소 냉매를 사용하여 시료를 급속 동결처리하였다. 동결 고정 방법에 의해 물리적으로 완전히 고정된 상태의 시료를 Freeze-fracture/etching system(MED 020 GBE, BALTEC, Pfaffikon ZH, Switzerland)을 통해 시편을 잘라내고 -90 ℃에서 탈수(etching)시켜 온도를 -120 ℃를 유지하면서 TEM에서 형상을 측정하였다.Next, using a jet freezing device (JFD 030, BALTEC, Pfaffkkon ZH, Switzerland), the sample was rapidly frozen using liquid nitrogen refrigerant at a high pressure of 2,100 bar or higher. The sample in a physically completely fixed state by the freeze-fixing method was cut out through a freeze-fracture/etching system (MED 020 GBE, BALTEC, Pfaffikon ZH, Switzerland) and dehydrated at -90 ° C. The shape was measured in TEM while maintaining 120 °C.

4. 통계적 검증4. Statistical verification

측정 3회 반복 하였으며 측정 결과를 평균 ± 표준편차로 나타내었다. 유의성은 Student's t-test로 진행하였고, 유의성에 따라 *p < 0.05, **p < 0.01로 표시하였다. The measurement was repeated 3 times, and the measurement results were expressed as mean ± standard deviation. Significance was carried out by Student's t -test, and was expressed as * p < 0.05, ** p < 0.01 according to significance.

<결과 및 고찰><Results and considerations>

1. 제형의 안정성 분석1. Stability analysis of formulations

1) 온도별 제형 안정성 및 pH 측정 결과 분석1) Analysis of formulation stability and pH measurement results by temperature

대부분의 나노리포좀 실험품들(#3, #4)이 시간이 지남에 따라 붉어지는 현상이 나타났으며 탁도 또한 증가하는 것을 확인하였다. 붉어지는 현상은 리포좀 제조 시 사용한 레시틴에서 기인하며, 탁도의 증가는 바이오틴의 석출 및 입자크기의 증가에의 의한 것이다.Most of the nanoliposome experimental products (#3, #4) showed a reddening phenomenon over time, and it was confirmed that the turbidity also increased. The reddening phenomenon is due to lecithin used in the preparation of liposomes, and the increase in turbidity is due to precipitation of biotin and increase in particle size.

관능평가 1 주일 후, 바이오틴을 첨가하지 않은 나노리포좀 #1은 모두 석출/침전 현상이 일어나지 않았지만(Data not shown), 바이오틴을 첨가한 나노리포좀 #3에서는 모두 석출 현상이 나타났다. 이를 통해 바이오틴이 나노리포좀 내에서 용매에 상관없이 석출되는 문제점이 있음을 확인하였다.After one week of sensory evaluation, precipitation/precipitation did not occur in all nanoliposomes #1 without biotin (Data not shown), but all of nanoliposomes #3 in which biotin was added showed precipitation. Through this, it was confirmed that there is a problem in that biotin is precipitated in the nanoliposome regardless of the solvent.

그러나, 바이오틴이 첨가된 나노리포좀 #4-4에서는 석출 현상이 나타나지 않았으며, 나노리포좀 #3 및 나노리포좀 #4-3 보다 투명한 것을 확인할 수 있다(도 3 및 도 4).However, the biotin-added nanoliposome #4-4 did not show a precipitation phenomenon, and it was confirmed that the nanoliposome #3 and nanoliposome #4-3 were more transparent ( FIGS. 3 and 4 ).

이는 알지닌을 첨가하여 pH를 증가시킨 나노리포좀 #4-4의 경우, 나노리포좀 내의 바이오틴 석출 현상 및 나노리포좀에서 붉어지는 현상(discoloration)이 완화되어 나노리포좀의 안정성을 향상시키는 것을 확인할 수 있다.It can be confirmed that, in the case of nanoliposome #4-4 in which the pH is increased by adding arginine, biotin precipitation in the nanoliposome and discoloration in the nanoliposome are alleviated, thereby improving the stability of the nanoliposome.

또한, pH 측정결과에서 pH를 증가시킨 바이오틴 함유 나노리포좀이 그렇지 않은 바이오틴 함유 나노리포좀에 비해 더 안정성이 높은 것을 확인하였다.In addition, from the pH measurement results, it was confirmed that the biotin-containing nanoliposomes with increased pH had higher stability than the biotin-containing nanoliposomes that did not.

하기의 표 5는 나노리포좀의 pH 및 관능 평가를 나타낸 것이다.Table 5 below shows the pH and sensory evaluation of nanoliposomes.

샘플(Sample)Sample pHpH 관능 평가(실온에서 1주일 후)Sensory evaluation (after 1 week at room temperature) #3-1#3-1 4.48 ± 0.124.48 ± 0.12 침적(deposition)deposition #3-2#3-2 4.77 ± 0.184.77 ± 0.18 침적(deposition)deposition #3-3#3-3 4.62 ± 0.204.62 ± 0.20 침적(deposition)deposition #3-4#3-4 4.88 ± 0.244.88 ± 0.24 침적(deposition)deposition #4-1#4-1 7.12 ± 0.367.12 ± 0.36 투명(clear)clear #4-2#4-2 9.17 ± 0.189.17 ± 0.18 투명(clear)clear #4-3#4-3 4.88 ± 0.214.88 ± 0.21 침적(deposition)deposition #4-4#4-4 5.62 ± 0.125.62 ± 0.12 투명(clear)clear

2) 입자크기 및 제타전위 분석2) Particle size and zeta potential analysis

① 용매 조건의 나노리포좀 제조 예비실험 결과① Result of preliminary experiment for preparing nanoliposomes under solvent conditions

제타사이저를 이용하여 나노리포좀의 입자크기 및 제타전위를 측정한 결과, 제조에 사용된 용매에 따라 입자크기 및 제타전위가 다른 것을 확인할 수 있었으며, 이중 용매를 에탄올로 사용한 제형이 부틸렌글라이콜을 사용한 제형보다 입자크기가 상대적으로 작았으며 제타전위 절대 값이 커, 상대적으로 입자 간의 정전기적 반발력(electrostatic repulsive force)이 커서 리포좀 입자의 분산 안정성이 좀 더 높은 것을 확인하였다.As a result of measuring the particle size and zeta potential of the nanoliposome using a zetasizer, it was confirmed that the particle size and zeta potential were different depending on the solvent used for the preparation. It was confirmed that the dispersion stability of the liposome particles was higher because the particle size was relatively smaller than that of the formulation using the liposome, the absolute value of the zeta potential was large, and the electrostatic repulsive force between the particles was relatively large.

또한, 시간경과에 따른 관찰에서도 에탄올을 용매로 선정한 나노리포좀이 부틸렌글라이콜을 용매로 선정한 나노리포좀에 비해 입자크기 및 제타전위 평가에서 안정한 경향을 나타냈으며, 이를 통해 이후 나노리포좀 제조 시 에탄올을 용매로 선정하였다.In addition, in observation over time, the nanoliposomes in which ethanol was selected as the solvent showed a stable tendency in particle size and zeta potential evaluation compared to the nanoliposomes in which butylene glycol was selected as the solvent. It was selected as a solvent.

② 고압유화 조건에서의 나노리포좀 제조 예비실험 결과 분석② Analysis of results of preliminary experiment for manufacturing nanoliposomes under high pressure emulsification conditions

고압유화 조건 선정을 위한 실험 결과, 고압유화기의 압력(bar)이 높고, 처리 횟수가 많을수록 전체적으로 입자크기가 감소하였다. 낮은 압력에서는 처리 횟수를 증가시켰을 때(1회→2회) 입자크기의 감소폭이 컸으나(#2-1, #2-2), 압력이 상대적으로 큰 경우는 처리 횟수를 증가시켜도 초기 입자크기의 감소폭이 크지 않았다(#2-3, #2-4, #2-5 및 #2-6). 또한, 시간경과에 따라 입자가 커지는 것을 확인할 수 있었으며, 입자의 크기는 100 ∼ 250 nm였다(도 5).As a result of the experiment for selecting the high pressure emulsification conditions, the high pressure (bar) of the high pressure emulsifier and the more the number of treatments, the overall particle size decreased. At low pressure, when the number of treatments was increased (1→2), the particle size decreased significantly (#2-1, #2-2), but when the pressure was relatively high, even if the number of treatments was increased, the initial particle size decreased. The decrease was not large (#2-3, #2-4, #2-5, and #2-6). In addition, it was confirmed that the particle size increased with the lapse of time, and the particle size was 100 to 250 nm (FIG. 5).

다분산 지수(Polydispersity index, PDI)는 고압유화기의 압력이 높고, 처리 횟수가 많을수록 전체적으로 감소하는 경향을 나타내었다. 입자크기와는 달리, 낮은 압력에서는 처리 횟수를 증가시켰을 때 초기 PDI 감소폭이 적으나(#2-1, #2-2), 압력이 상대적으로 큰 경우 처리횟수를 증가시켰을 때 초기 PDI 감소폭이 좀 더 크게 나타나는 것을 확인할 수 있다(#2-3, #2-4, #2-5, 및 #2-6). 또한, 시간경과에 따라 PDI는 오히려 감소하는 것을 확인할 수 있으며, 다분산 지수(Polydispersity index, PDI)는 0.2 ∼ 0.5 였다(도 6).Polydispersity index (PDI) showed a tendency to decrease overall as the pressure of the high pressure emulsifier was high and the number of treatments increased. Unlike the particle size, at low pressure, when the number of treatments is increased, the initial decrease in PDI is small (#2-1, #2-2), but when the pressure is relatively large, when the number of treatments is increased, the initial decrease in PDI is slightly It can be seen that they appear larger (#2-3, #2-4, #2-5, and #2-6). In addition, it can be seen that the PDI decreases with the lapse of time, and the polydispersity index (PDI) was 0.2 to 0.5 ( FIG. 6 ).

나노 분산액의 분산 안정성을 확인하기 위해 측정된 제타전위 값은 고압유화기의 압력과 처리 횟수에 따라 증가 및 감소 경향을 보이지는 않았다. 또한 시간경과에 따라서도 절대 값이 감소하기도 하며 오히려 증가하기도 하는 오차가 포함된 것으로 확인된다. 다만 나노리포좀 #2에서의 제타전위는 -80 ∼ -30 mV 정도로서 일반적인 안정한 범위의 제타전위 범위인 ± 30 mV 이상으로 측정되어 정전기적으로 안정적임을 확인할 수 있다(도 7). The measured zeta potential value to confirm the dispersion stability of the nano-dispersion did not show a tendency to increase or decrease according to the pressure of the high pressure emulsifier and the number of treatments. Also, it is confirmed that the absolute value decreases or increases with the passage of time, including an error. However, the zeta potential in nanoliposome #2 is about -80 to -30 mV, which is measured to be more than ±30 mV, which is a typical stable range of zeta potential, confirming that it is electrostatically stable (FIG. 7).

고압유화 조건을 선정하기 위해 나노리포좀의 온도별 제형 안정성 관능평가, 입자크기, PDI 및 제타전위를 측정한 결과, 고압유화 시 압력 700 bar, 처리 횟수 2회로 결정하였다.In order to select high-pressure emulsification conditions, sensory evaluation of formulation stability by temperature, particle size, PDI, and zeta potential of the nanoliposomes were measured. As a result, the pressure at high pressure emulsification was 700 bar, and the number of treatments was determined twice.

③ 바이오틴 함유 나노리포좀의 실험 결과 분석③ Analysis of experimental results of biotin-containing nanoliposomes

바이오틴을 첨가한 나노리포좀에서 상대적으로 에탄올을 용매로 선정한 나노리포좀이 부틸렌글라이콜을 용매로 선정한 나노리포좀보다 온도에 따른 시간별 제형 안정성 관능평가, 입자크기 및 제타전위에서 좀 더 양호한 것을 확인할 수 있다.It can be confirmed that the nanoliposome in which ethanol is relatively selected as the solvent in the biotin-added nanoliposome is better than the nanoliposome in which butylene glycol is selected as the solvent in sensory evaluation of formulation stability over time, particle size and zeta potential according to temperature. .

그러나 실온 보관, 1 주일 후 관능평가에서 4개 실험품(#3)에서 모두 바이오틴이 석출되는 현상이 나타났다. 또한, 나노리포좀의 pH는 4.0 ∼ 5.0 정도로 이전 실험품들에 비해 현저하게 pH가 낮음을 확인할 수 있었다. 바이오틴 성분이 나노리포좀 내에서 용해도 감소로 인해 상대적으로 석출되는 속도의 증가로 1 주일 후 바이오틴이 석출되는 것을 확인할 수 있다. 이러한 현상은 냉온 및 항온 실험품에서도 동일하게 확인되었다.However, in sensory evaluation after 1 week of storage at room temperature, biotin was precipitated in all 4 experimental samples (#3). In addition, it was confirmed that the pH of the nanoliposome was significantly lower than that of the previous experimental products in the range of 4.0 to 5.0. It can be confirmed that biotin is precipitated after 1 week due to an increase in the rate at which the biotin component is relatively precipitated due to the decrease in solubility in the nanoliposome. This phenomenon was also confirmed in cold and constant temperature test samples.

④ 알지닌 첨가 바이오틴 함유 나노리포좀 실험 결과 분석④ Analysis of arginine-added biotin-containing nanoliposome experiment results

알지닌을 첨가한 #4-2와 #4-4의 pH를 측정한 결과 pH가 증가하였으며, 특히 바이오틴 함유 나노리포좀 #4-4에서 pH가 5.62으로 바이오틴을 첨가하였음에도 불구하고 실온, 1 주일 후 관능평가에서 바이오틴을 첨가하지 않은 나노리포좀과 같이 석출현상이 나타나지 않는 것을 확인하였다. 또한, 알지닌을 첨가하여 pH를 상승시킨 나노리포좀의 경우 시간이 지나도 붉어지는 현상이 나타나지 않았다. 이는 알지닌은 바이오틴과의 결합으로 바이오틴의 용해도를 증가시키는 것은 물론 레시틴의 성분에도 영향을 나타내는 것을 의미한다.As a result of measuring the pH of #4-2 and #4-4 to which arginine was added, the pH was increased. In particular, the pH was 5.62 in the biotin-containing nanoliposome #4-4, despite the addition of biotin at room temperature, after 1 week. In the sensory evaluation, it was confirmed that the precipitation phenomenon did not appear like nanoliposomes without biotin added. In addition, in the case of nanoliposomes in which the pH was increased by adding arginine, redness did not appear even after time. This means that arginine not only increases the solubility of biotin by binding with biotin, but also has an effect on the components of lecithin.

시간경과에 따른 관찰에서도 바이오틴과 알지닌이 첨가된 나노리포좀(#4-4)의 입자크기가 가장 작은 것을 확인할 수 있다(도 8). 또한 나노리포좀(#2)에서와 같이 시간에 따른 제타전위 값이 감소하기도 하며 오히려 증가하기도 하는 오차가 포함된 것으로 판단되나, 바이오틴 첨가 나노리포좀(#4-3)과 비교 시, 알지닌 첨가 나노리포좀(#4-4)의 제타전위가 더 큰 것으로 확인되었다(도 9).It can be confirmed that the particle size of the nanoliposomes (#4-4) to which biotin and arginine are added is also the smallest in observation over time (FIG. 8). In addition, as in the nanoliposome (#2), the zeta potential value with time decreases or rather increases, but it is judged that an error is included, but when compared with the biotin-added nanoliposome (#4-3), the arginine-added nano It was confirmed that the zeta potential of the liposome (#4-4) was larger ( FIG. 9 ).

따라서 나노리포좀 제조 조건(압력 700 bar, 처리 횟수 2회)에서 바이오틴 0.1%와 알지닌 0.06% 함유 나노리포좀(#4-4)은 시간별 제형 안정성 관능평가, 입자크기, 제타전위 평가에서 가장 안정한 것을 확인할 수 있다.Therefore, nanoliposomes containing 0.1% biotin and 0.06% arginine (#4-4) under the nanoliposome manufacturing conditions (pressure 700 bar, number of times of treatment twice) were the most stable in the time-dependent formulation stability sensory evaluation, particle size, and zeta potential evaluation. can be checked

⑤ 바이오틴 함량 분석⑤ Biotin content analysis

바이오틴이 함유된 나노리포좀에 알지닌이 첨거됨으로써 물성 측면에서 안정성이 향상되었다. 바이오틴에 알지닌 성분이 첨가됨으로써 화학적 안정성이 유지되는지 확인하기 위하여 바이오틴 수용액의 농도별 HPLC 측정과 알지닌 첨가 바이오틴 수용액 의 농도별 HPLC 측정하였다.Stability was improved in terms of physical properties by adding arginine to nanoliposomes containing biotin. In order to check whether chemical stability is maintained by the addition of arginine to biotin, HPLC measurement by concentration of biotin aqueous solution and HPLC measurement by concentration of arginine-added aqueous solution were performed.

바이오틴 수용액의 HPLC 분석 결과와 알지닌 첨가 바이오틴의 HPLC 분석 결과가 유사한 결과값을 나타내었으나, 알지닌을 첨가하는 경우 바이오틴 함량이 약 12 ∼ 14% 정도 감소하는 것을 확인할 수 있었으며, 실험 결과를 하기 표 6에 나타내었다.Although the HPLC analysis result of the biotin aqueous solution and the HPLC analysis result of arginine-added biotin showed similar results, it was confirmed that the biotin content decreased by about 12 to 14% when arginine was added, and the experimental results are shown in the table below. 6 is shown.

수용액 내의 샘플 함량(Sample in water)Sample in water 바이오틴 양(Amount of biotin)Amount of biotin 바이오틴 0.04%Biotin 0.04% 0.0438 ± 0.00120.0438 ± 0.0012 바이오틴 0.02%Biotin 0.02% 0.0211 ± 0.00080.0211 ± 0.0008 바이오틴 0.01%Biotin 0.01% 0.0105 ± 0.00140.0105 ± 0.0014 바이오틴 0.005%Biotin 0.005% 0.0051 ± 0.00010.0051 ± 0.0001 바이오틴 0.001%Biotin 0.001% 0.0010 ± 0.00020.0010 ± 0.0002 바이오틴 0.04% + 알지닌 0.0024%Biotin 0.04% + Arginine 0.0024% 0.0361 ± 0.00210.0361 ± 0.0021 바이오틴 0.02% + 알지닌 0.0012%Biotin 0.02% + Arginine 0.0012% 0.0176 ± 0.00140.0176 ± 0.0014 바이오틴 0.01% + 알지닌 0.0006%Biotin 0.01% + Arginine 0.0006% 0.0087 ± 0.00070.0087 ± 0.0007 바이오틴 0.005% + 알지닌 0.0003%Biotin 0.005% + Arginine 0.0003% 0.0044 ± 0.00050.0044 ± 0.0005 바이오틴 0.001% + 알지닌 0.00006%Biotin 0.001% + Arginine 0.00006% 0.0008 ± 0.00010.0008 ± 0.0001

2. 바이오틴 함유 나노리포좀 캡슐화율 측정 결과 분석2. Analysis of biotin-containing nanoliposome encapsulation rate measurement results

알지닌을 첨가하지 않은 나노리포좀(#4-3)과 알지닌을 첨가한 나노리포좀(#4-4)에서 캡슐화되지 않은 및 캡슐화된 바이오틴 함량은 수학식 1 및 수학식 2로부터 계산할 수 있다.Unencapsulated and encapsulated biotin contents in the nanoliposomes without arginine (#4-3) and arginine-added nanoliposomes (#4-4) can be calculated from Equations 1 and 2.

HPLC 분석을 통해 바이오틴 성분 함량을 각 수학식 1 및 수학식 2에 대입하여 바이오틴의 캡슐화율과 화수율을 계산한 결과, 나노리포좀 #4-3의 경우 캡슐화율은 5.60%, 회수율은 96.29%를 나타내었다. 또한 나노리포좀 #4-4의 경우는 27.64%의 캡슐화율과 110.20%의 회수율을 나타내었다.As a result of calculating the encapsulation rate and conversion yield of biotin by substituting the biotin component content into Equation 1 and Equation 2 through HPLC analysis, in the case of nanoliposome #4-3, the encapsulation rate was 5.60% and the recovery rate was 96.29%. indicated. In addition, nanoliposome #4-4 showed an encapsulation rate of 27.64% and a recovery rate of 110.20%.

하기의 표 7은 Dialysis membrane method 방법에 의한 바이오틴 함유 나노리포좀 캡슐화율을 나타낸 것이다.Table 7 below shows the biotin-containing nanoliposome encapsulation rate by the Dialysis membrane method.

samplesample 양%(Amount)Amount % 캡슐화율%
(Capsulation efficiency)
Encapsulation %
(Capsulation efficiency)
나노리포좀 #4-3(초기)Nanoliposome #4-3 (initial) 0.1072 ± 0.00010.1072 ± 0.0001 5.60 ± 0.175.60 ± 0.17 나노리포좀 #4-3(막 외부)Nanoliposome #4-3 (outside the membrane) 0.0974 ± 0.01870.0974 ± 0.0187 나노리포좀 #4-3(막 내부)Nanoliposome #4-3 (inside membrane) 0.0060 ± 0.00020.0060 ± 0.0002 나노리포좀 #4-4(초기)Nanoliposome #4-4 (initial) 0.1147 ± 0.00010.1147 ± 0.0001 27.64 ± 0.4127.64 ± 0.41 나노리포좀 #4-4(막 외부)Nanoliposome #4-4 (external membrane) 0.0947 ± 0.00030.0947 ± 0.0003 나노리포좀 #4-4(막 내부)Nanoliposome #4-4 (inside membrane) 0.0317 ± 0.00040.0317 ± 0.0004

이를 통해 알지닌을 첨가한 바이오틴 함유 나노리포좀이 첨가하지 않은 바이오틴 함유 나노리포좀에 비하여 바이오틴 캡슐화율이 약 5배 정도 증가하였음을 확인할 수 있었다. 또한, 알지닌 첨가에 따라 바이오틴의 석출 현상 없이 용해도 증가가 바이오틴 함유 나노리포좀을 제조하는 데에 있어 물리적 안정성뿐만 아니라 바이오틴의 캡슐화율을 향상시킬 수 있는 것을 확인할 수 있다.Through this, it was confirmed that the biotin encapsulation rate was increased by about 5 times in the biotin-containing nanoliposome to which arginine was added as compared to the biotin-containing nanoliposome in which the arginine was not added. In addition, it can be confirmed that the solubility increase without precipitation of biotin according to the addition of arginine can improve not only physical stability but also the encapsulation rate of biotin in preparing biotin-containing nanoliposomes.

3. 바이오틴 함유 나노리포좀의 경피흡수율(Skin absorption rate) 결과3. Skin absorption rate results of biotin-containing nanoliposomes

바이오틴의 in vitro 경피흡수율 평가에 알지닌을 첨가한 바오틴 나노리포좀(#4-4)을 이용하여 2회 진행하였다. 인공피부를 이용하여 Franz diffution cell method를 이용하여 24 시간 후에 doner, receptor 및 membrane에서 각각 바이오틴 Giafid을 HPLC를 통해 측정하였다. 측정된 각각의 바이오틴 분석한 결과를 하기의 수학식 3 및 수학식 4를 이용하여 바이오틴의 경피흡수율(%)과 회수율(%)을 계산하였다.The in vitro transdermal absorption rate evaluation of biotin was performed twice using baotin nanoliposomes (#4-4) with arginine added. After 24 hours using the Franz diffution cell method using artificial skin, biotin Giafid was measured by HPLC in doner, receptor, and membrane, respectively. The transdermal absorption rate (%) and recovery rate (%) of biotin were calculated using Equations 3 and 4 below for each of the measured biotin analysis results.

[수학식 3][Equation 3]

Figure 112020044593270-pat00003
Figure 112020044593270-pat00003

[수학식 4][Equation 4]

Figure 112020044593270-pat00004
Figure 112020044593270-pat00004

(여기서, D는 바이오틴의 피부 흡수율(%)이고, E는 바이오틴의 회수율(%)이고, F1은 초기 나노리포좀(#4-4)의 바이오틴 양(㎍)이고, F2는 수용자(Receptor) 상태의 바이오틴 양(㎍)이고, F3은 막(membrane)의 바이오틴 양(㎍)이고, F4는 공여자(donor) 상태의 바이오틴 양(㎍)이다.)(Where D is the skin absorption rate (%) of biotin, E is the recovery rate (%) of biotin, F 1 is the amount of biotin (μg) of the initial nanoliposome (#4-4), and F 2 is the receptor (Receptor) ) is the amount of biotin in the state (㎍), F 3 is the amount of biotin in the membrane (㎍), and F 4 is the amount of biotin in the donor state (㎍).)

하기의 표 8은 바이오틴 함유 나노리포좀(#4-4)의 함량 및 확산률을 나타낸 것이다.Table 8 below shows the content and diffusion rate of biotin-containing nanoliposomes (#4-4).

샘플Sample 샘플링 위치sampling location 양(%)sheep(%) 나노리포좀 #4-4Nanoliposome #4-4 초기 상태
(Original phaes)_F1
initial state
(Original phaes)_F1
95.28 ± 0.4795.28 ± 0.47
공여자 상태
(Donor phase)_F4
donor status
(Donor phase)_F4
50.65 ± 3.2850.65 ± 3.28
막(Membrane)_F3Membrane_F3 -- 수용자 상태(Receptor phase)_F2Receptor phase_F2 32.50 ± 2.5832.50 ± 2.58

Franz diffusion cell method를 통해 바이오틴 함유 나노리포좀(#4-4)의 경피흡수율을 측정한 결과, 24 시간 경과 후 Receptor phase에서 바이오틴이 32.50 ㎍ 검출되었으며, Membrane에서의 잔존 바이오틴은 검출되지 않았다. 이를 통해 바이오틴 함유 나노리포좀의 경피흡수율이 34.11%로 확인되었으며, 회수율은 87.27%로 확인되었다.As a result of measuring the transdermal absorption rate of biotin-containing nanoliposomes (#4-4) through the Franz diffusion cell method, 32.50 μg of biotin was detected in the receptor phase after 24 hours, and residual biotin in the membrane was not detected. Through this, the transdermal absorption rate of the biotin-containing nanoliposome was confirmed to be 34.11%, and the recovery rate was confirmed to be 87.27%.

4. 바이오틴 함유 나노리포좀 형상 분석4. Analysis of the shape of biotin-containing nanoliposomes

바이오틴 함유 나노리포좀의 형상을 관찰하기 위하여 Cryo-TEM을 측정한 결과, 입자크기가 100 ∼ 150 nm 정도로 제타사이저로 측정한 입자크기와 유사하였으며, ULV 형태를 띠는 것을 확인할 수 있었다(도 10).As a result of Cryo-TEM measurement to observe the shape of the biotin-containing nanoliposome, the particle size was similar to the particle size measured with a zetasizer, about 100 to 150 nm, and it was confirmed that it had a ULV shape (FIG. 10). ).

또한, 바이오틴을 캡슐화시킨 나노리포좀의 경우 리포좀 내부와 외부 모두 침상 형상의 바이오틴이 결정 상태로 석출되는 반면, 알지닌을 첨가한 바이오틴 함유 나노리포좀은 바이오틴의 결정상태가 거의 나타나지 않았음을 확인할 수 있다.In addition, in the case of nanoliposomes encapsulating biotin, needle-shaped biotin was precipitated in a crystalline state both inside and outside the liposome, whereas biotin-containing nanoliposomes containing arginine hardly showed a crystalline state of biotin. .

따라서, 본 발명의 의해 제조된 알지닌 첨가 바이오틴 함유 나노리포좀은 바이오틴의 석출 현상없이 안정하다는 것을 확인할 수 있다.Therefore, it can be confirmed that the arginine-added biotin-containing nanoliposomes prepared by the present invention are stable without biotin precipitation.

결과적으로 본 발명의 일 실시예에 따라 제조된 바이오틴 함유 나노리포좀은 입자크기(시간에 따른 입자크기, 3개월)가 100 ∼ 250 nm, 다분산지수 0.2 ∼ 0.5, 제타전위 -80 ∼ -30 mV이며, Cryo-TEM 이미지 측정으로 나노리포좀의 크기는 100 ∼ 150 nm 정도로 100 ∼ 1000 nm의 LUV에서 작은 범위의 ULV 형태의 나노리포좀이 형성되는 것을 확인할 수 있다.As a result, the biotin-containing nanoliposomes prepared according to an embodiment of the present invention have a particle size (particle size over time, 3 months) of 100 to 250 nm, polydispersity index 0.2 to 0.5, zeta potential -80 to -30 mV And, it can be confirmed that the size of the nanoliposome is about 100-150 nm by measuring the cryo-TEM image, and the nanoliposome of the ULV type is formed in a small range in the LUV of 100-1000 nm.

Claims (14)

(a) 인지질, 콜레스테롤 및 에탄올을 혼합하여 제1 혼합액을 제조하는 단계;
(b) 보존제, 바이오틴(Biotin), pH 조절제 및 정제수를 혼합하여 제2 혼합액을 제조하는 단계;
(c) 상기 (a) 단계의 제1 혼합액과 상기 (b) 단계의 제2 혼합액을 각각 가열하여 용해시키는 단계;
(d) 상기 제1 혼합액과 상기 제2 혼합액을 혼합하고 유화시켜 리포좀을 함유하는 조성물을 제조하는 단계; 및
(e) 상기 (d) 단계의 리포좀을 함유하는 조성물을 고압유화 처리하여 나노리포좀을 제조하는 단계를 포함하며,
상기 pH 조절제는 알지닌이고, 상기 조성물 총 중량%에 대하여 0.001~0.5 중량%의 양으로 사용되고,
상기 (e) 단계는, 40 ∼ 45 ℃의 온도, 650 ~ 750 bar의 압력에서 1 ~ 3 회 수행되는,
바이오틴 함유 나노리포좀의 제조방법.
(a) preparing a first mixed solution by mixing phospholipids, cholesterol and ethanol;
(b) preparing a second mixed solution by mixing a preservative, biotin, a pH adjusting agent, and purified water;
(c) heating and dissolving the first mixed solution of step (a) and the second mixed solution of step (b), respectively;
(d) mixing and emulsifying the first mixed solution and the second mixed solution to prepare a composition containing liposomes; and
(e) high-pressure emulsification treatment of the composition containing the liposome of step (d) to prepare a nanoliposome,
The pH adjusting agent is arginine, and is used in an amount of 0.001 to 0.5% by weight based on the total weight% of the composition,
The step (e) is performed 1 to 3 times at a temperature of 40 to 45 ° C, and a pressure of 650 to 750 bar,
Method for producing biotin-containing nanoliposomes.
삭제delete 제1항에 있어서,
상기 인지질은,
레시틴(Lecithin)인 것을 특징으로 하는,
바이오틴 함유 나노리포좀의 제조방법.
According to claim 1,
The phospholipids are
characterized in that lecithin (Lecithin),
Method for producing biotin-containing nanoliposomes.
제1항에 있어서,
상기 (c) 단계는,
70 ~ 75 ℃의 온도에서 1 ~ 10 분 동안 수행하는 것을 특징으로 하는,
바이오틴 함유 나노리포좀의 제조방법.
According to claim 1,
Step (c) is,
characterized in that it is carried out for 1 to 10 minutes at a temperature of 70 to 75 ℃,
Method for producing biotin-containing nanoliposomes.
제1항에 있어서,
상기 (d) 단계는,
호머믹서기에서 상기 제1 혼합액을 상기 제2 혼합액에 투입하여 2,500 ~ 3,500 rpm으로 5 ~ 15 분 동안 수행하는 것을 특징으로 하는,
바이오틴 함유 나노리포좀의 제조방법.
According to claim 1,
Step (d) is,
In a home mixer, the first mixed solution is added to the second mixed solution, characterized in that it is performed for 5 to 15 minutes at 2,500 to 3,500 rpm,
Method for producing biotin-containing nanoliposomes.
삭제delete 삭제delete 제1항에 있어서,
상기 (e) 단계는,
40 ∼ 45 ℃의 온도, 650 ~ 750 bar의 압력에서 1 ~ 3 회 수행하는 것을 특징으로 하는,
바이오틴 함유 나노리포좀의 제조방법.
According to claim 1,
Step (e) is,
Characterized in that the temperature of 40 ~ 45 ℃, performed 1 to 3 times at a pressure of 650 ~ 750 bar,
Method for producing biotin-containing nanoliposomes.
제1항, 제3항, 제4항, 제5항 및 제8항 중 어느 한 항의 방법으로 제조되는,
바이오틴 함유 나노리포좀.
Prepared by the method of any one of claims 1, 3, 4, 5 and 8,
Biotin-containing nanoliposomes.
제9항에 있어서,
상기 나노리포좀은 입자의 크기가 100 ~ 250 nm이고, 다분산지수가 0.2 ~ 0.5 이며, 제타전위가 -80 ~ -30 mV인 것을 특징으로 하는,
바이오틴 함유 나노리포좀.
10. The method of claim 9,
The nanoliposome has a particle size of 100 to 250 nm, a polydispersity index of 0.2 to 0.5, and a zeta potential of -80 to -30 mV,
Biotin-containing nanoliposomes.
제9항에 있어서,
상기 나노리포좀 내 바이오틴의 캡슐화율이 25% 이상인 것을 특징으로 하는,
바이오틴 함유 나노리포좀.
10. The method of claim 9,
characterized in that the encapsulation rate of biotin in the nanoliposome is 25% or more,
Biotin-containing nanoliposomes.
제9항에 있어서,
상기 바이오틴의 경피흡수율이 30% 이상인 것을 특징으로 하는,
바이오틴 함유 나노리포좀.
10. The method of claim 9,
characterized in that the transdermal absorption rate of the biotin is 30% or more,
Biotin-containing nanoliposomes.
제9항의 바이오틴 함유 나노리포좀을 포함하는,
경피흡수 촉진용 화장료 조성물.
Including the biotin-containing nanoliposome of claim 9,
A cosmetic composition for promoting percutaneous absorption.
제13항에 있어서, 상기 화장료 조성물은 조성물 총 중량%에 대하여, 나노리포좀을 0.1 내지 20 중량%로 포함하는 것을 특징으로 하는, 경피흡수 촉진용 화장료 조성물.The cosmetic composition for promoting transdermal absorption according to claim 13, wherein the cosmetic composition comprises 0.1 to 20% by weight of nanoliposomes based on the total weight of the composition.
KR1020200052453A 2020-04-29 2020-04-29 Method for manufacturing biotin-containing nanoliposome KR102449677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200052453A KR102449677B1 (en) 2020-04-29 2020-04-29 Method for manufacturing biotin-containing nanoliposome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200052453A KR102449677B1 (en) 2020-04-29 2020-04-29 Method for manufacturing biotin-containing nanoliposome

Publications (2)

Publication Number Publication Date
KR20210133624A KR20210133624A (en) 2021-11-08
KR102449677B1 true KR102449677B1 (en) 2022-09-29

Family

ID=78497045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200052453A KR102449677B1 (en) 2020-04-29 2020-04-29 Method for manufacturing biotin-containing nanoliposome

Country Status (1)

Country Link
KR (1) KR102449677B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753437B1 (en) * 2007-01-17 2007-09-14 (주)미시앙 Nano-liposomal particles containing red ginseng irradiated with saponin, licorice, biotin, copper peptide, cytokine and cosmetics for hair care
KR101810160B1 (en) 2017-06-30 2018-01-25 주식회사 셀리제코스메틱 Generating method for ethosome with bioactive compounds, ethosome and cosmetic composition including ethosome

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544442B1 (en) * 2004-02-05 2006-01-23 한불화장품주식회사 A stable nanoliposome containing unsaturated lecithin and skin agent composition containing thereof
KR101443180B1 (en) * 2012-11-27 2014-09-22 한국콜마주식회사 Novel Drug Delivery System for Percutaneous Absorption, Composition for External Preparation Preventing Hair Loss, and Cosmetics Using the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753437B1 (en) * 2007-01-17 2007-09-14 (주)미시앙 Nano-liposomal particles containing red ginseng irradiated with saponin, licorice, biotin, copper peptide, cytokine and cosmetics for hair care
KR101810160B1 (en) 2017-06-30 2018-01-25 주식회사 셀리제코스메틱 Generating method for ethosome with bioactive compounds, ethosome and cosmetic composition including ethosome

Also Published As

Publication number Publication date
KR20210133624A (en) 2021-11-08

Similar Documents

Publication Publication Date Title
Firooz et al. Novel drug delivery strategies for improving econazole antifungal action
KR100394770B1 (en) Stabilization method of nano-emulsion using tocopheryl derivatives and external application for skin containing the stabilized nano-emulsion
US9114077B2 (en) Nanocrystals for use in topical cosmetic formulations and method of production thereof
KR102037354B1 (en) Nano-lipid carrier for encapsulation of physiologically active substance and preparation method thereof
US8541010B2 (en) Cosmetic composition comprising double-shell nano-structure
US20050079210A1 (en) Liposomal delivery system for topical pharmaceutical, cosmeceutical, and cosmetic ingredients
HUE027467T2 (en) Liposome of irinotecan or its hydrochloride and preparation method thereof
KR20110076068A (en) Vesicle having self-emulsifying nano liposome and multilayer liquid crystal, a preparation method therof and its use
KR20080106618A (en) Multi-emulsified vesicles comprising a multi lamellar liposome and phospholipid monolayer nanoliposomes
KR20070074223A (en) Base composition encapsulating high concentration of idebenone with nano sizes, its manufacturing method thereof, and cosmetic compositions containing it
US20030017183A1 (en) Dermatological suspensions(micro-matrix)
KR102004147B1 (en) Cosmetic composition contaning lioosome idebenone
Hyeon et al. Skin absorption and physical property of ceramide-added ethosome
KR102190935B1 (en) Nano-lipid carrier for encapsulation of physiologically active substance and preparation method thereof
KR102449677B1 (en) Method for manufacturing biotin-containing nanoliposome
KR20200049592A (en) Water-in-oil type cosmetic composition comprising nano liposome
KR20200094871A (en) Lipid-protein nanocomposites comprising ginsenoside and use thereof
KR20230021435A (en) Oil-in-water cosmetic composition comprising nanovesicles in which poorly soluble ingredients are stabilized
KR20190086829A (en) Method for manufacturing bioactive substance carriers having a multi-layer structure and Functional cosmetic composition comprising the bioactive substance carriers prepared thereof
KR102632679B1 (en) Hyaluronic Acid Loading Nano Particle Complex And A Method For Preparing The Same
WO2024090548A1 (en) Hydroxyapatite-particle-containing material, liposome having enclosed hydroxyapatite, and liposome-containing composition
KR102678046B1 (en) A Stabilized Nano Liposome Delivery Carrier Comprising Nucleic Acid And A Method For Preparing The Same
KR102266329B1 (en) Nano-liposome Comprising Idebenone and Bisabolol
KR100831627B1 (en) Reverse-Phase Multi-Lamella Vesicle Capturing Aqueous Physiologically Active Ingredients
KR20240130643A (en) A nano liposome composition for treating or preventing hair loss with improved stability

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant