KR102441028B1 - System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst - Google Patents

System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst Download PDF

Info

Publication number
KR102441028B1
KR102441028B1 KR1020210125583A KR20210125583A KR102441028B1 KR 102441028 B1 KR102441028 B1 KR 102441028B1 KR 1020210125583 A KR1020210125583 A KR 1020210125583A KR 20210125583 A KR20210125583 A KR 20210125583A KR 102441028 B1 KR102441028 B1 KR 102441028B1
Authority
KR
South Korea
Prior art keywords
exhaust gas
urea
catalyst
filter
coated
Prior art date
Application number
KR1020210125583A
Other languages
Korean (ko)
Inventor
이강홍
남승하
신병선
서필원
오형석
김종국
정관형
Original Assignee
(주)세라컴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세라컴 filed Critical (주)세라컴
Priority to KR1020210125583A priority Critical patent/KR102441028B1/en
Priority to PCT/KR2022/011768 priority patent/WO2023048398A1/en
Application granted granted Critical
Publication of KR102441028B1 publication Critical patent/KR102441028B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The present invention provides an exhaust gas post-treatment system including a denitrification catalyst-coated filter. The exhaust gas post-treatment system including a diesel oxidation catalyst (DOC) and mounted on an exhaust pipe of a combustion engine to oxidize hydrocarbon (HC) or carbon monoxide (CO) included in exhaust gas or to oxidize a soluble organic fraction (SOF) included in a particulate matter, further comprises a selective catalyst reduction on diesel particulate filter (SCR on DPF) coated with a denitrification catalyst for purifying nitrogen oxide (NO_x) on a diesel particulate matter filter (DPF) for purifying exhaust gas by collecting the particulate matter, wherein the diesel particulate matter filter is coated with the denitrification catalyst in a slurry state having a particle size of 2-4 ㎛, a pH of 5-7, and a viscosity of 150-300 cp. Therefore, provided is an exhaust gas post-treatment system for a diesel engine including a denitrification catalyst-coated filter, wherein back pressure increase and total nitrogen oxide emission can be minimized.

Description

탈질촉매가 코팅된 필터를 포함한 디젤엔진용 배기가스 후처리 시스템 {SYSTEM FOR AFTER-TREATMENT OF EXHAUST GAS FOR DIESEL ENGINE INCLUDING THE FILTER COATED WITH DENITRIFICATION CATALYST}Exhaust gas aftertreatment system for diesel engine including filter coated with denitrification catalyst {SYSTEM FOR AFTER-TREATMENT OF EXHAUST GAS FOR DIESEL ENGINE INCLUDING THE FILTER COATED WITH DENITRIFICATION CATALYST}

본 발명은 탈질촉매가 코팅된 필터를 포함한 디젤엔진용 배기가스 후처리 시스템에 관한 것으로, 더욱 상세히는 특히 중대형 운행 자동차의 디젤엔진에서 배출되는 배기가스를 정화하기 위해 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템에 관한 것이다.The present invention relates to an exhaust gas post-treatment system for a diesel engine including a filter coated with a denitration catalyst, and more particularly, including a filter coated with a denitration catalyst for purifying exhaust gas discharged from a diesel engine of a medium-to-large operating vehicle It relates to an exhaust gas aftertreatment system.

디젤 엔진은 연소반응에 의해 일산화탄소(CO), 미연소 탄화수소(HC), 입자상물질(PM; Particulate Matter), 질소산화물(NOX)등의 유해 배출가스 물질을 배출한다. 디젤엔진에서 배출되는 유해가스 배출량을 감소시키기 위해, 환경규제가 점점 강화되고 있으며, 규제가 강화됨에 따라 디젤 엔진에서 배출되는 배출가스를 저감할 수 있는 배기가스 후처리 시스템이 장착되고 있다. Diesel engines emit harmful exhaust gas substances such as carbon monoxide (CO), unburned hydrocarbons (HC), particulate matter (PM), and nitrogen oxides (NO X ) by combustion reaction. In order to reduce the emission of harmful gas emitted from the diesel engine, environmental regulations are being strengthened, and as the regulation is strengthened, an exhaust gas after-treatment system capable of reducing exhaust gas emitted from the diesel engine is being installed.

일 예로, 현재 디젤 엔진을 장착한 차량의 경우, 배기가스에 포함된 탄화수소(HC)나 일산화탄소(CO)를 산화시키거나 입자상 물질에 포함된 용해성유기성분(SOF; Soluble Organic Fraction)을 산화시키는 디젤산화촉매장치(DOC; Diesel Oxidation Catalyst), 미립자(PM)를 포집하기 위한 미립자포집장치(DPF; Diesel Particulate matter Filter), 질소 산화물(NOx)을 정화하기 위한 선택적촉매환원장치(SCR; Selective Catalyst Reduction), 및/또는 암모니아를 산화하여 정화시키기 위한 암모니아슬립촉매장치(AOC; Ammonia Oxidation Catalyst)를 포함한 배기가스 후처리 시스템을 추가로 장착하고 있는 상황이다.For example, in the case of a vehicle currently equipped with a diesel engine, diesel that oxidizes hydrocarbon (HC) or carbon monoxide (CO) contained in exhaust gas or oxidizes soluble organic fraction (SOF) contained in particulate matter Diesel Oxidation Catalyst (DOC), Diesel Particulate Matter Filter (DPF) to collect particulates (PM), Selective Catalyst (SCR) to purify nitrogen oxides (NO x ) Reduction), and / or an ammonia slip catalyst device (Ammonia Oxidation Catalyst) for purifying ammonia is additionally equipped with an exhaust gas after-treatment system including.

최근 환경규제는 질소산화물 저감에 관한 규제가 점차 강화되고 있으며, 이로 인해 선택적환원촉매가 코팅된 미립자포집장치가 차량에 적용되고 있다. 이러한 선택적환원촉매가 코팅된 미립자포집장치는 차량의 신규제작시 새로운 엔진기술과 더불어 3,000cc 이하의 소형엔진과 함께 적용되고 있으나, EURO-6 이전의 중대형 차량의 엔진에의 적용은 현재 전무(全無)한 상태이다. Recently, environmental regulations have been tightening regulations on nitrogen oxide reduction, and for this reason, a particulate collection device coated with a selective reduction catalyst is being applied to vehicles. The particulate collection device coated with this selective reduction catalyst is applied with a small engine of 3,000cc or less along with new engine technology when newly manufacturing a vehicle. is in non-existent state.

디젤엔진 차량에 선택적환원촉매가 코팅된 미립자포집장치를 적용할 경우, 질소산화물을 저감할 수 있는 선택적환원촉매가 엔진에 인접하게 되며, 엔진에 인접한 선택적환원촉매는 엔진으로부터 발생하는 엔진열에 의해 반응온도 도달시점이 빨라지게 되므로 질소산화물 저감율이 증가하게 되는 이점이 있다.When a particulate collection device coated with a selective reduction catalyst is applied to a diesel engine vehicle, a selective reduction catalyst capable of reducing nitrogen oxides is adjacent to the engine, and the selective reduction catalyst adjacent to the engine reacts with engine heat generated from the engine. Since the temperature is reached faster, there is an advantage in that the reduction rate of nitrogen oxides is increased.

또한, 기존에 미립자포집장치와, 선택적촉매환원장치가 별개로 마련된 배기가스 후처리 시스템과 대비하여볼 때, 촉매장치의 부피를 감소시킬 수 있는 효과가 있으며, 이에 따라 배기가스 후처리 시스템의 비용을 감소시킬 수 있는 장점이 있다. 하지만, EURO-6 이전의 디젤엔진이 장착되어 있는 중대형 차량의 경우, 다량의 미립자(PM) 발생과, 배출되는 미립자와 질소산화물의 비율(PM/NOX 비율) 등 배기가스 특성 차이점으로 인해 배압의 상승 및 미립자(PM)의 자연재생이 어려운 단점이 있다.In addition, compared to the exhaust gas post-treatment system in which the particulate collection device and the selective catalytic reduction device are separately provided in the prior art, there is an effect of reducing the volume of the catalyst device, and thus the cost of the exhaust gas post-treatment system has the advantage of reducing However, in the case of mid- to large-sized vehicles equipped with diesel engines prior to EURO-6, back pressure due to differences in exhaust gas characteristics, such as the generation of a large amount of particulate matter (PM) and the ratio of emitted particulates and nitrogen oxides (PM/NO X ratio) There are disadvantages in that it is difficult to rise and naturally regenerate particulates (PM).

따라서, 배기가스 후처리 시스템에 선택적환원촉매가 코팅된 미립자포집장치를 적용하기 위해서는 선택적환원촉매의 코팅으로 인한 배압 상승을 최소화하여야 하며, 다양한 종류의 차량에 적용할 수 있도록 범용성을 가진 배기가스 후처리 시스템의 개발이 필요하다. Therefore, in order to apply the particulate collection device coated with the selective reduction catalyst to the exhaust gas post-treatment system, it is necessary to minimize the increase in back pressure due to the coating of the selective reduction catalyst, and to apply the exhaust gas after treatment to various types of vehicles. It is necessary to develop a processing system.

KRUS 10-1195799 10-1195799 B1B1 KRUS 10-1369651 10-1369651 B1B1 KRUS 10-2122849 10-2122849 B1B1 KRUS 10-2028423 10-2028423 B1B1

본 발명은, 배압상승 및 질소산화물 배출 총량을 최소화할 수 있는 탈질촉매가 코팅된 필터를 포함한 디젤엔진용 배기가스 후처리 시스템을 제공하기 위한 것이다.An object of the present invention is to provide an exhaust gas post-treatment system for a diesel engine including a filter coated with a denitration catalyst capable of minimizing an increase in back pressure and a total amount of nitrogen oxide emission.

상기 과제를 해결하기 위하여, 본 발명은 내연기관의 배기관에 장착되어, 배기가스에 포함된 탄화수소(HC)나 일산화탄소(CO)를 산화시키거나 입자상 물질에 포함된 용해성유기성분(SOF; Soluble Organic Fraction)을 산화시키는 디젤산화촉매장치(DOC; Diesel Oxidation Catalyst)를 포함하는 배기가스 후처리 시스템에 있어서, 입자상물질을 포집하여 배기가스를 정화하는 미립자포집장치(DPF; Diesel Particulate matter Filter)에 질소 산화물(NOx)을 정화하기 위한 탈질촉매가 코팅된 SDPF(SCR on DPF; Selective Catalyst Reduction - on - Diesel Particulate Filter)를 더 포함하되, 상기 탈질촉매는 입도 2~4 ㎛, pH 5~7, 그리고 점도 150~300 cp의 슬러리(slurry) 상태로 상기 미립자포집장치에 코팅되는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템을 제공한다.In order to solve the above problems, the present invention is mounted on the exhaust pipe of an internal combustion engine to oxidize hydrocarbons (HC) or carbon monoxide (CO) contained in exhaust gas or soluble organic components (SOF) contained in particulate matter; ), in the exhaust gas post-treatment system including a Diesel Oxidation Catalyst (DOC) that oxidizes nitrogen oxides in a Diesel Particulate Matter Filter (DPF) that collects particulate matter and purifies the exhaust gas (NO x ) A denitration catalyst coated SDPF (SCR on DPF; Selective Catalyst Reduction - on - Diesel Particulate Filter) for purifying further comprises, wherein the denitration catalyst has a particle size of 2 to 4 μm, pH 5 to 7, and It provides an exhaust gas post-treatment system including a filter coated with a denitration catalyst, characterized in that it is coated on the particle collecting device in a slurry state of a viscosity of 150 to 300 cp.

일 실시예에 따라, 상기 미립자포집장치는, 코디어라이트 또는 실리콘카바이드로 이루어지되, 상기 배기가스가 유입되는 상류측과 상기 배기가스가 유출되는 하류측의 셀의 크기가 서로 동일한 대칭형 필터일 수 있다.According to an embodiment, the particle collecting device may be a symmetrical filter made of cordierite or silicon carbide, in which the size of the cells on the upstream side through which the exhaust gas flows and on the downstream side through which the exhaust gas flows out are the same. have.

일 실시예에 따라, 상기 미립자포집장치는, 코디어라이트 또는 실리콘카바이드로 이루어지되, 상기 배기가스가 유입되는 상류측과 상기 배기가스가 유출되는 하류측의 셀의 크기가 서로 상이한 비대칭형 필터일 수 있다.According to an embodiment, the particle collecting device is an asymmetric filter made of cordierite or silicon carbide, wherein the size of the cells on the upstream side through which the exhaust gas flows and on the downstream side through which the exhaust gas flows out are different from each other. can

일 실시예에 따라, 질소 산화물(NOx)을 정화하기 위한 선택적촉매환원장치(SCR; Selective Catalyst Reduction)를 더 포함할 수 있다.According to an embodiment, a selective catalytic reduction device (SCR; Selective Catalyst Reduction) for purifying nitrogen oxides (NO x ) may be further included.

일 실시예에 따라, 상기 SDPF의 후단에 위치하여, 상기 SDPF에서 유출된 암모니아를 산화하여 정화시키기 위한 암모니아슬립촉매장치(AOC; Ammonia Oxidation Catalyst)를 더 포함할 수 있다.According to an embodiment, it may further include an ammonia slip catalyst device (AOC; Ammonia Oxidation Catalyst) disposed at the rear end of the SDPF to oxidize and purify ammonia leaked from the SDPF.

일 실시예에 따라, 상기 디젤산화촉매장치와 상기 SDPF 사이에 위치하여, 우레아수용액과 상기 배기가스를 혼합하는 우레아믹서를 더 포함하되, 상기 우레아믹서는, 링 형의 몸체와, 상기 몸체의 내주면을 따라 서로 이격하도록 마련된 복수 개의 블레이드를 포함하되, 상기 블레이드는, 상기 몸체의 내주면에서 내측을 향하여 연장된 연장편과, 상기 연장편의 말단부에서 시계 또는 반시계 방향으로 굽어진 날개편을 포함할 수 있다.According to an embodiment, it is located between the diesel oxidation catalyst device and the SDPF, further comprising a urea mixer for mixing the urea aqueous solution and the exhaust gas, wherein the urea mixer, a ring-shaped body and an inner circumferential surface of the body a plurality of blades provided to be spaced apart from each other along have.

일 실시예에 따라, 상기 배기가스를 가열하여 승온시키기 위한 버너, 및 상기 SDPF 전단에 위치하여, 우레아를 분사시키기 위한 우레아인젝터를 더 포함할 수 있다.According to an embodiment, a burner for heating and raising the temperature of the exhaust gas, and a urea injector positioned in front of the SDPF to inject urea may be further included.

일 실시예에 따라, 상기 디젤산화촉매장치를 포함한 제1 용기와, 상기 SDPF를 포함한 제2 용기와, 상기 제1 및 제2 용기 사이에 상기 배기가스가 유동하는 배기가스유동관로는 서로 병렬로 연결되되, 상기 우레아믹서는, 상기 배기가스유동관로의 내부에 마련되되, 상기 우레아인젝터는, 상기 우레아믹서의 전단에 우레아를 분사시킬 수 있다.According to an embodiment, a first vessel including the diesel oxidation catalyst device, a second vessel including the SDPF, and an exhaust gas flow pipe through which the exhaust gas flows between the first and second vessels are parallel to each other Doedoe, the urea mixer, doedoe provided in the exhaust gas flow pipe, the urea injector, may inject urea to the front end of the urea mixer.

일 실시예에 따라, 상기 디젤산화촉매장치 전단에 위치하여, 우레아수용액이 도입되는 우레아도입부, 및 상기 디젤산화촉매장치를 관통하여 마련되되, 상기 우레아도입부를 통해 도입된 상기 우레아수용액이 통과하는 우레아유동관로를 더 포함하되, 상기 우레아믹서는, 상기 우레아유동관로의 하류측단부에 마련될 수 있다.According to an embodiment, it is located in front of the diesel oxidation catalyst device, is provided through the urea introduction part into which the aqueous urea solution is introduced, and the diesel oxidation catalyst device, the urea solution introduced through the urea introduction part passes through the urea. Further comprising a flow pipe, the urea mixer may be provided at a downstream end of the urea flow pipe.

일 실시예에 따라, 상기 우레아도입부는, 상기 우레아수용액이 상기 우레아유동관로를 통과할 수 있도록 고압의 공기와 함께 도입될 수 있다.According to an embodiment, the urea introduction unit may be introduced together with high-pressure air so that the urea aqueous solution can pass through the urea flow pipe.

본 발명에 따른 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템은, 탈질촉매가 코팅된 미립자포집장치를 이용함으로써, 배기가스 후처리 시스템의 배압상승 및 질소산화물 배출 총량을 최소화할 수 있다.The exhaust gas post-treatment system including the filter coated with the denitration catalyst according to the present invention can minimize the back pressure increase and the total amount of nitrogen oxide emission of the exhaust gas post-treatment system by using the particulate collecting device coated with the denitration catalyst.

또한, 우레아수용액이 외부에서 도입되어 유동하는 우레아유동관로가 디젤산화촉매장치를 관통함으로써, 디젤산화촉매장치의 반응시 발생하는 열에 의해 우레아수용액이 가열되기 때문에, 가수분해를 원활하게 할 수 있는 효과가 있다.In addition, since the aqueous urea solution is heated by the heat generated during the reaction of the diesel oxidation catalyst device as the urea flow pipe through which the urea solution is introduced and flows from the outside passes through the diesel oxidation catalyst device, the effect of smoothing the hydrolysis there is

도 1은 본 발명의 일 실시예에 따른 배기가스 후처리 시스템의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 SDPF의 외관을 나타낸 도면이다.
도 3a는 본 발명의 또 다른 일 실시예에 따른 배기가스 후처리 시스템의 구성도이다.
도 3b는 본 발명의 또 다른 일 실시예에 따른 배기가스 후처리 시스템의 구성도이다.
도 4는 본 발명의 또 다른 일 실시예에 따른 배기가스 후처리 시스템의 외관을 나타낸 도면이다.
도 5는 도 4의 배기가스 후처리 시스템에서 유동하는 배기가스를 도식화한 모습을 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 우레아믹서와, 비교예에 따른 우레아믹서를 나타낸 도면이다.
도 7은 본 발명의 일 실시예에 따른 우레아믹서를 다각도에서 바라본 모습을 나타낸 도면이다.
도 8은 도 7의 우레아믹서의 어느 한 블레이드를 나타낸 도면이다.
1 is a block diagram of an exhaust gas post-treatment system according to an embodiment of the present invention.
2 is a view showing the appearance of an SDPF according to an embodiment of the present invention.
3A is a block diagram of an exhaust gas post-treatment system according to another embodiment of the present invention.
3B is a block diagram of an exhaust gas post-treatment system according to another embodiment of the present invention.
4 is a view showing the appearance of an exhaust gas post-treatment system according to another embodiment of the present invention.
FIG. 5 is a diagram illustrating a state of the exhaust gas flowing in the exhaust gas post-treatment system of FIG. 4 .
6 is a view showing a urea mixer according to an embodiment of the present invention and a urea mixer according to a comparative example.
7 is a view showing the urea mixer according to an embodiment of the present invention viewed from multiple angles.
8 is a view showing any one blade of the urea mixer of FIG.

이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성 요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the embodiments disclosed in the present specification will be described in detail with reference to the accompanying drawings, but the same or similar components are assigned the same reference numerals regardless of reference numerals, and redundant description thereof will be omitted. The suffixes "module" and "part" for the components used in the following description are given or mixed in consideration of only the ease of writing the specification, and do not have distinct meanings or roles by themselves. In addition, in describing the embodiments disclosed in the present specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed herein is not limited by the accompanying drawings, and all changes included in the spirit and scope of the present invention , should be understood to include equivalents or substitutes.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is referred to as being “connected” or “connected” to another component, it may be directly connected or connected to the other component, but it is understood that other components may exist in between. it should be On the other hand, when it is said that a certain element is "directly connected" or "directly connected" to another element, it should be understood that the other element does not exist in the middle.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The singular expression includes the plural expression unless the context clearly dictates otherwise.

본 명세서에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present specification, terms such as "comprises" or "have" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, but one or more other features It is to be understood that this does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.

도 1은 본 발명의 일 실시예에 따른 배기가스 후처리 시스템의 구성도이다.1 is a block diagram of an exhaust gas post-treatment system according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 본 발명의 일 실시예에 따른 디젤엔진용 배기가스 후처리 시스템은, 내연기관의 배기관에 장착되어, 엔진(1)으로부터 발생된 배기가스에 포함된 탄화수소(HC)나 일산화탄소(CO)를 산화시키거나 입자상 물질에 포함된 용해성유기성분(SOF; Soluble Organic Fraction)을 산화시키는 디젤산화촉매장치(DOC; Diesel Oxidation Catalyst)(21)와, 입자상물질을 포집하여 배기가스를 정화하는 미립자포집장치(DPF; Diesel Particulate matter Filter)에 질소 산화물(NOx)을 정화하기 위한 탈질촉매가 코팅된 SDPF(SCR on DPF; Selective Catalyst Reduction - on - Diesel Particulate Filter)(41)를 포함할 수 있다.As shown in FIG. 1 , the exhaust gas after-treatment system for a diesel engine according to an embodiment of the present invention is mounted on an exhaust pipe of an internal combustion engine, and hydrocarbon (HC) contained in exhaust gas generated from the engine 1 . Diesel Oxidation Catalyst (DOC) 21 that oxidizes carbon monoxide (CO) or oxidizes soluble organic fraction (SOF) contained in particulate matter, and exhaust gas by collecting particulate matter SDPF (SCR on DPF; Selective Catalyst Reduction - on - Diesel Particulate Filter) (41) coated with a denitration catalyst to purify nitrogen oxides (NO x ) was installed in the Diesel Particulate Matter Filter (DPF) that purifies the may include

다만, 도 1에 도시한 구성요소들이 필수적인 것은 아니어서, 그보다 많은 구성요소들을 갖거나 그보다 적은 구성요소들을 갖는 배기가스 후처리 시스템이 구현될 수 있음은 물론이다.However, since the components shown in FIG. 1 are not essential, an exhaust gas aftertreatment system having more or fewer components may be implemented.

이하, 각 구성요소들에 대해 살펴보기로 한다.Hereinafter, each component will be described.

엔진(1)으로부터 배출된 배기가스가 통과하는 배기관에 장착되는 제1 용기(20)에는, 배기가스에 포함된 탄화수소(HC)나 일산화탄소(CO)를 산화시키거나 입자상물질(PM; Particulate Matter)에 포함된 용해성유기성분(SOF; Souluble Organic Fraction)을 산화시키기 위해 디젤산화촉매장치(DOC; Diesel Oxidation Catalyst)(21)를 포함할 수 있다.In the first container 20 mounted on the exhaust pipe through which the exhaust gas discharged from the engine 1 passes, hydrocarbon (HC) or carbon monoxide (CO) contained in the exhaust gas is oxidized or particulate matter (PM). It may include a diesel oxidation catalyst (DOC; Diesel Oxidation Catalyst) 21 to oxidize the soluble organic component (SOF; Souluble Organic Fraction) contained in the.

디젤산화촉매장치(21)는, 코디어라이트 등을 원료로 한 세라믹스로 구성된 허니컴 구조의 담지체 등에 백금(Pt), 팔라듐(Pd), 로듐(Rh) 등의 귀금속을 코팅한 촉매로서, 배기가스 중의 산소(O2)를 이용하여 배기가스 중에 포함된 탄화수소(HC)나 일산화탄소(CO)를 산화하거나 입자상 물질에 포함된 용해성유기성분(SOF; Souluble Organic Fraction)을 산화시켜, 물(H2O)과 이산화탄소(CO2)로 바꾸는 촉매장치이다.The diesel oxidation catalyst device 21 is a catalyst coated with a noble metal such as platinum (Pt), palladium (Pd), or rhodium (Rh) on a support of a honeycomb structure made of ceramics using cordierite or the like as a raw material. Oxygen (O 2 ) in the gas is used to oxidize hydrocarbons (HC) or carbon monoxide (CO) contained in exhaust gas or to oxidize soluble organic fractions (SOF) contained in particulate matter, so that water (H 2 It is a catalyst device that converts O) and carbon dioxide (CO 2 ).

또한, 디젤산화촉매장치(21)는 일산화질소(NO)를 산화시켜 이산화질소(NO2)를 생성하고 산화된 이산화질소(NO2)가 미립자포집장치 내 포집된 카본(carbon)과 산화반응을 일으키도록 한다.In addition, the diesel oxidation catalyst device 21 oxidizes nitrogen monoxide (NO) to generate nitrogen dioxide (NO 2 ), and the oxidized nitrogen dioxide (NO 2 ) causes an oxidation reaction with the carbon captured in the particle collecting device. do.

디젤산화촉매장치(21)에서 일어나는 화학반응식은 하기 화학식 1과 같다.The chemical reaction formula occurring in the diesel oxidation catalyst device 21 is as shown in the following formula (1).

[화학식 1][Formula 1]

HC(SOF) + O2 → CO2 + H2OHC(SOF) + O 2 → CO 2 + H 2 O

HC, CO + O2 → CO2 + H2O(CO from Engine)HC, CO + O 2 → CO 2 + H 2 O(CO from Engine)

NO + O2 → NO2 NO + O 2 → NO 2

또한, 본 발명의 일 실시예에 따른 배기가스 후처리 시스템은, 엔진(1)으로부터 배출되는 배기가스에 포함된 입자상 물질의 대부분을 포집하여, 배기관을 통해 외부로 배출되는 배기가스를 정화할 수 있다.In addition, the exhaust gas post-treatment system according to an embodiment of the present invention can collect most of the particulate matter included in the exhaust gas discharged from the engine 1 and purify the exhaust gas discharged to the outside through the exhaust pipe. have.

이때, 미립자포집장치(DPF)는 상기 디젤산화촉매장치(21)의 후단에 위치할 수 있으며, 구체적으로 상기 제1 용기(20)와 연통 가능하도록 연결된 제2 용기(40) 내에 마련될 수 있다.At this time, the particulate collection device (DPF) may be located at the rear end of the diesel oxidation catalyst device 21, specifically, it may be provided in the second container 40 connected to communicate with the first container 20. .

미립자포집장치(DPF)는 배기가스에 포함된 입자상 물질을 포집하기 위하여, 일 예로 다공성의 세라믹 허니컴 구조이거나, 또 다른 예로 다공성의 세라믹 허니컴 셀의 입구와 출구를 교번하여 플러깅된 필터, 즉 Wall Flow Monoliths Type 일 수 있다. 배기가스는 플러깅되지 않은 셀의 입구로 유입되어, 플러깅되어 있지 않은 인접한 셀과의 경계에 형성된 입자상 물질(PM) 포집용 셀 벽을 통과하고, 상기 플러깅되지 않은 셀의 출구로 유출되는 과정에서, 셀 벽이 입자상 물질(PM)을 포집하게 되며, 입자상 물질의 그을음(soot) 입자는 벽면에 케이크(cake) 형태로 포집되게 된다.In order to collect particulate matter contained in exhaust gas, the DPF is a porous ceramic honeycomb structure, for example, or a filter plugged by alternating the inlet and outlet of the porous ceramic honeycomb cell, that is, the Wall Flow. It can be Monoliths Type. Exhaust gas flows into the inlet of the unplugged cell, passes through the particulate matter (PM) collection cell wall formed at the boundary with the unplugged adjacent cell, and flows out to the outlet of the unplugged cell, The cell wall collects particulate matter (PM), and soot particles of the particulate matter are collected on the wall in the form of a cake.

또한, 미립자포집장치(DPF)는 필터에 포집된 그을음(soot)(carbon)과의 산화반응을 시켜 이산화탄소와 물로 전환시켜 그을음(soot)을 재생(산화)시키게 된다.In addition, the particle collection device (DPF) causes an oxidation reaction with soot (carbon) collected in the filter to convert carbon dioxide and water to regenerate (oxidize) soot.

미립자포집장치(DPF)에서 일어나는 화학반응식은 하기 화학식 2와 같다.The chemical reaction formula occurring in the particle collecting device (DPF) is as shown in the following formula (2).

[화학식 2][Formula 2]

C(Soot) + O2 → CO/CO2 C(Soot) + O 2 → CO/CO 2

C(Soot) + NO2 → CO/CO2 + NOC(Soot) + NO 2 → CO/CO 2 + NO

미립자포집장치(DPF)는 엔진(1)의 배기가스 중 입자상 물질을, 필터를 이용하여 물리적으로 포집하지만 포집할 수 있는 포집량에는 한계가 있기 때문에, 미립자포집장치(DPF)에 고온의 배기가스를 통과시켜 포집된 입자상 물질을 연소 제거하는 강제 재생을 통해, 입자상 물질의 포집 능력을 회복시킬 수 있다.The particle collection device (DPF) physically collects particulate matter in the exhaust gas of the engine 1 using a filter, but there is a limit to the amount of collection that can be collected. Through forced regeneration, which burns and removes the captured particulate matter through the

다만, 배기가스의 온도는 내연기관 엔진의 운전패턴에 따라 차이가 발생하므로 배기가스의 온도를 이용한 입자상 물질의 산화반응은 주기가 불규칙하며 저속/저부하 조건과 같은 배기가스 온도가 낮을 때에는 재생이 불가능하므로 보조 열원을 통한 매연재생이 필요하다.However, since the temperature of the exhaust gas varies depending on the operation pattern of the internal combustion engine, the oxidation reaction of particulate matter using the temperature of the exhaust gas is irregular in cycle, and regeneration is not possible when the exhaust gas temperature is low such as under low speed/low load conditions. Since it is impossible, soot regeneration through an auxiliary heat source is required.

이를 위해, 미립자포집장치(DPF)의 상류측에는 버너(23)가 위치하여, 미립자포집장치(DPF)로 유입되는 배기가스를 가열하여 승온시킬 수 있다.To this end, a burner 23 is positioned on the upstream side of the particle collection device (DPF), and the exhaust gas flowing into the particle collection device (DPF) can be heated to increase the temperature.

구체적인 예로, 제1 용기(20)에는 버너(23)가 마련되어, 버너(23)에서 발생된 화염이나 열기는 엔진(1)으로부터 유입되는 배기가스의 온도를 승온시킬 수 있다. 여기서, 배기가스를 가열하기 위한 버너(23)는 경유 따위와 같은 연료는 물론, 이 이외에 전기, 또는 마이크로파 등을 이용할 수 있으나, 그 종류를 특별히 한정하지 않는다.As a specific example, the burner 23 is provided in the first container 20 , and the flame or heat generated by the burner 23 may increase the temperature of the exhaust gas flowing from the engine 1 . Here, the burner 23 for heating the exhaust gas may use not only fuel such as light oil, but also electricity, microwave, etc., but the type is not particularly limited.

전술한 바와 같이, 배기가스가 저온인 경우 촉매에 의한 입자상 물질(PM)의 연소속도가 엔진(1)에서 발생되는 입자상 물질(PM)의 생성 속도보다 느려서 결국 후단에 위치한 미립자포집장치에 입자상 물질(PM)이 쌓여 배압이 상승하게 된다. 결국, 촉매에 의한 자연재생방식만으로는 한계가 있고, 연료를 사용하는 버너(23)를 이용하여 배기온도를 상승시킴으로써 미립자포집장치에 축적된 입자상 물질(PM)을 태워 강제재생함으로써, 매연을 저감시킬 수 있다.As described above, when the exhaust gas is low temperature, the combustion rate of particulate matter (PM) by the catalyst is slower than the rate of generation of particulate matter (PM) generated in the engine 1, so that the particulate matter is eventually stored in the particulate collecting device located at the rear end. (PM) accumulates and the back pressure rises. After all, there is a limit to only the natural regeneration method using a catalyst, and by increasing the exhaust temperature using a fuel-using burner 23, the particulate matter (PM) accumulated in the particulate collection device is burned for forced regeneration, thereby reducing soot. can

한편, 전술한 본 발명의 일 실시예에 따른 미립자포집장치(DPF)는 탈질촉매가 코팅된 SDPF(41)인 것이 바람직하다.On the other hand, it is preferable that the particle collecting device (DPF) according to the embodiment of the present invention described above is the SDPF 41 coated with a denitration catalyst.

구체적으로, 미립자포집장치(DPF)는 기공율 48~55%, 그리고 기공사이즈 12~20 ㎛의 다공성의 실리콘카바이드(SiC)나 코디어라이트(Cordierite) 등을 재질로 한 허니컴 셀 구조를 가진 필터(도 2 참조)일 수 있고, 여기에 코팅되는 탈질촉매는 높은 내황성 및 탈질성능 확보를 위하여 V2O5-WO3/TiO2계 탈질촉매를 사용하며 조성은 V2O5 1~10 wt%, WO3 1~15 wt%, SiO2 1~10 wt%, TiO2 65~97 wt%의 조성으로 구성될 수 있다. 또한, 조촉매로 Mo, Ce, Fe, Cu 등의 전이금속산화물이 하나 이상 사용될 수 있으며, 상기 조성에서 0.5 ~ 5% 포함될 수 있다.Specifically, the particle collection device (DPF) is a filter ( 2), and the denitration catalyst coated therein uses a V 2 O 5 -WO 3 /TiO 2 denitration catalyst to ensure high sulfur resistance and denitrification performance, and the composition is V 2 O 5 1 to 10 wt. %, WO 3 1-15 wt%, SiO 2 1-10 wt%, TiO 2 65-97 wt%. In addition, one or more transition metal oxides such as Mo, Ce, Fe, Cu, etc. may be used as the co-catalyst, and 0.5 to 5% may be included in the composition.

또 다른 실시예에 따라, 미립자포집장치(DPF)에 코팅되는 탈질촉매는 제올라이트(zeolite)계 탈질촉매를 사용할 수 있으며, 제올라이트에 이온교환된 전이금속은 Cu, Fe 중 1종을 사용할 수 있으며, 이온교환된 전이금속의 함량은 제올라이트의 총함량의 1~5%를 사용할 수 있다.According to another embodiment, the denitration catalyst coated on the particle collection device (DPF) may use a zeolite-based denitration catalyst, and the ion-exchanged transition metal to the zeolite may use one of Cu and Fe, The content of the ion-exchanged transition metal may be 1 to 5% of the total content of the zeolite.

이때, 탈질촉매를 미립자포집장치(DPF)에 코팅하기 위해 탈질촉매의 슬러리(slurry) 특성은 매우 중요하다. 왜냐하면 동일한 촉매와 동일한 촉매 담지량을 적용하더라도 촉매 슬러리 특성으로 인해, 코팅이 균일하지 않다면, 배압 상승과 성능저하가 발생하기 때문이다. 따라서 본 발명의 일 실시예에 따른 탈질촉매는 입도 2~4 ㎛, pH 5~7, 그리고 점도 150~300 cp의 슬러리(slurry) 상태로 미립자포집장치에 코팅되는 것이 바람직하다(이하 실시예 1이라 약칭한다).At this time, in order to coat the denitration catalyst on the particle collection device (DPF), the slurry characteristics of the denitration catalyst are very important. This is because even if the same catalyst and the same catalyst loading amount are applied, if the coating is not uniform due to the characteristics of the catalyst slurry, an increase in back pressure and a decrease in performance occur. Therefore, the denitration catalyst according to an embodiment of the present invention is preferably coated on the particle collecting device in a slurry state having a particle size of 2 to 4 μm, a pH of 5 to 7, and a viscosity of 150 to 300 cp (hereinafter, Example 1). is abbreviated).

본 발명의 실시예 1에 따른 탈질촉매를 코팅한 미립자포집장치를, 탈질촉매를 코팅하지 않은 미립자포집장치(비교예 1)와, 그리고 또 다른 물성(입도 4~8 ㎛, pH 3~5, 그리고 점도 500~800 cp)을 가진 슬러리로 코팅한 미립자포집장치(비교예 2)와, 비교하여 배압을 테스트한 결과는 다음 표 1과 같다. 여기서, 미립자포집장치는 코디어라이트(cordierite)를 재질로 한 기공율 48~50%, 기공사이즈 12~15 ㎛의 허니컴 구조의 필터를 사용하였다.The particle collection device coated with the denitration catalyst according to Example 1 of the present invention, the particle collection device not coated with the denitration catalyst (Comparative Example 1), and other physical properties (particle size 4-8 μm, pH 3-5, And the results of testing the back pressure in comparison with the particle collecting device (Comparative Example 2) coated with a slurry having a viscosity of 500 to 800 cp) are shown in Table 1 below. Here, as the particle collecting device, a honeycomb filter having a porosity of 48 to 50% and a pore size of 12 to 15 μm made of cordierite was used.

  미립자포집장치에
탈질촉매 적용 유무
in the particle collection device
Whether or not a denitrification catalyst is applied
탈질촉매의 물성Physical properties of denitrification catalyst 배압 테스트 결과 (CFM)Back Pressure Test Results (CFM)
입도(㎛)Particle size (㎛) pHpH 점도(cp)Viscosity (cp) 비교예 1Comparative Example 1 미립자포집장치Particle collection device -- -- -- 11.511.5 비교예 2Comparative Example 2 탈질촉매가 코팅된 미립자포집장치Particle collecting device coated with denitrification catalyst 4~84-8 3~53-5 500~800500-800 16.816.8 실시예 1Example 1 탈질촉매가 코팅된 미립자포집장치Particle collecting device coated with denitrification catalyst 2~42-4 5~75-7 150~300150-300 13.813.8

본 발명의 실시예 1에 따른 탈질촉매는 제조시 입도사이즈 2~4㎛로 조절하였고, pH는 5~7로 조절하되, 이때 pH 조절은 질산, 초산 또는 암모니아수를 이용하여 조절하였다. 또한, 미립자포집장치에 코팅전 슬러리 상태의 탈질촉매의 점도는 150~300 cp로 조절하였다.The denitration catalyst according to Example 1 of the present invention was prepared to have a particle size of 2 to 4 μm, and the pH was adjusted to 5 to 7, but the pH was adjusted using nitric acid, acetic acid or aqueous ammonia. In addition, the viscosity of the denitration catalyst in the slurry state before coating on the particle collecting device was adjusted to 150-300 cp.

배압 테스트 결과, 본 발명의 실시예 1에 따른 탈질촉매가 코팅된 미립자포집장치의 배압은 13.8 CFM으로, 이는 탈질촉매를 코팅하지 않은 미립자포집장치의 배압 11.5 CFM 보다 2.3 CFM이 높지만, 비교예 2의 입도 4~8 ㎛, pH 3~5, 점도 500~800 cp의 탈질촉매가 코팅된 미립자포집장치보다는 배압이 3 CFM이 낮은 것을 확인할 수 있었다.As a result of the back pressure test, the back pressure of the particle collecting device coated with the denitration catalyst according to Example 1 of the present invention was 13.8 CFM, which is 2.3 CFM higher than the back pressure of 11.5 CFM of the particle collecting device without the denitration catalyst coated, but Comparative Example 2 It was confirmed that the back pressure was 3 CFM lower than the particle collecting device coated with the denitration catalyst with a particle size of 4-8 μm, pH 3-5, and viscosity of 500-800 cp.

또한, 본 발명의 실시예 1에 따른 탈질촉매가 코팅된 미립자포집장치를 적용한 중대형 후처리 장치를 제작하여 실제 엔진에 장착하여 동력계 성능 시험을 실시하였다. 시험엔진은 현재 운행차에 많이 적용되고 있는 D6DB 엔진을 사용하였고, 6600cc의 D6DB 엔진에 장착하여 ND-13 Mode 시험을 수행하였다.In addition, a medium-to-large post-processing device to which the particle collecting device coated with the denitration catalyst according to Example 1 of the present invention is applied was manufactured and mounted on an actual engine to perform a dynamometer performance test. As the test engine, the D6DB engine, which is widely applied to current vehicles, was used, and the ND-13 Mode test was performed by installing it on a 6600cc D6DB engine.

ND-13 Mode 테스트한 결과는 다음 표 2와 같다. The results of the ND-13 Mode test are shown in Table 2 below.

  미립자포집장치에
탈질촉매 적용 유무
in the particle collection device
Whether or not a denitrification catalyst is applied
탈질촉매의 물성Physical properties of denitrification catalyst ND-13 Mode Test 결과ND-13 Mode Test Result
입도(㎛)Particle size (㎛) pHpH 점도(cp)Viscosity (cp) 최대출력 배압(mbar)Maximum output back pressure (mbar) NOX 배출 총량(g/kwh)Total NO X emissions (g/kwh) 비교예 2Comparative Example 2 탈질촉매가 코팅된 미립자포집장치Particle collecting device coated with denitrification catalyst 4~84-8 3~53-5 500~800500-800 280.3280.3 1.2871.287 실시예 1Example 1 탈질촉매가 코팅된 미립자포집장치Particle collecting device coated with denitrification catalyst 2~42-4 5~75-7 150~300150-300 269269 0.450.45

실험 결과 비교예 2의 물성을 갖는 탈질촉매를 코팅한 미립자포집장치를 적용하였을 때, 최대출력 배압은 280.3 mbar, NOX 총배출량은 1.287g/kwh로 확인되었고, 본 발명의 실시예 1의 물성을 갖는 탈질촉매를 코팅한 미립자포집장치를 적용하였을 때 실험결과는, 최대 출력 배압 269 mbar, NOX 총 배출량 0.45g/kwh로 측정되어, 실시예 1의 필터가 비교예 2의 필터에 비해 배압 감소효과 및 질소산화물 제거 효율이 큰 것을 확인할 수 있었다.As a result of the experiment, when the particle collecting device coated with the denitration catalyst having the physical properties of Comparative Example 2 was applied, the maximum output back pressure was 280.3 mbar and the total NO X emission was 1.287 g/kwh, and the physical properties of Example 1 of the present invention When the particle collecting device coated with the denitration catalyst having It was confirmed that the reduction effect and the nitrogen oxide removal efficiency were large.

한편, 본 발명의 실시예 1과 동일한 탈질촉매를 여러 종류의 미립자포집장치에 코팅하여, 엔진 동력계 성능 시험을 수행하였고, 그 결과는 다음 표 3과 같았다.On the other hand, the same denitration catalyst as in Example 1 of the present invention was coated on various types of particulate collection devices, and engine dynamometer performance tests were performed, and the results are shown in Table 3 below.

구체적으로, 코디어라이트 재질의 허니컴 셀 구조를 가진 미립자포집장치에 대하여, 배기가스가 유입되는 상류측의 셀크기와 배기가스가 배출되는 하류측의 셀크기가 서로 동일한 대칭형 필터(실시예 2)로 테스트하였고, 또 상기 실시예 2와 동일한 대칭형 필터지만, 코디어라이트가 아닌 SiC 재질이 적용된 필터(실시예 3)로 테스트하였으며, 또 상기 실시예 1과 동일한 코디어라이트 재질의 허니컴 셀 구조를 가진 미립자포집장치를 사용하였지만, 배기가스가 유입되는 상류측의 셀크기와 배기가스가 배출되는 하류측의 셀크기가 서로 다른 비대칭형 필터, 일 예로 상류측 셀크기가 하류측 셀크기보다 1.2배 더 큰 필터(실시예 4)로 테스트하였다.Specifically, with respect to the particle collecting device having a honeycomb cell structure made of cordierite, a symmetrical filter in which the cell size of the upstream side through which exhaust gas is introduced and the cell size of the downstream side through which exhaust gas is discharged are identical to each other (Example 2) was tested with the same symmetric filter as in Example 2, but was tested with a filter (Example 3) to which a SiC material, not cordierite, was applied, and a honeycomb cell structure made of the same cordierite material as in Example 1 An asymmetrical filter, in which the cell size of the upstream side through which exhaust gas is introduced and the cell size of the downstream side through which exhaust gas is discharged, is different, for example, an upstream cell size is 1.2 times larger than that of the downstream side. A larger filter (Example 4) was tested.

  미립자포집장치의
종류
Particle collection device
type
탈질촉매의 물성Physical properties of denitrification catalyst ND-13 Mode Test 결과ND-13 Mode Test Result
입도(㎛)Particle size (㎛) pHpH 점도(cp)Viscosity (cp) 최대출력 배압(mbar)Maximum output back pressure (mbar) NOX 배출 총량(g/kwh)Total NO X emissions (g/kwh) 실시예 2Example 2 탈질촉매가 코팅된 미립자포집장치
(코디어라이트 대칭 필터)
Particle collecting device coated with denitrification catalyst
(Cordierite Symmetric Filter)
2~42-4 5~75-7 150~300150-300 269269 0.450.45
실시예 3Example 3 탈질촉매가 코팅된 미립자포집장치
(SiC 필터)
Particle collecting device coated with denitrification catalyst
(SiC filter)
2~42-4 5~75-7 150~300150-300 273273 0.6130.613
실시예 4Example 4 탈질촉매가 코팅된 미립자포집장치
(코디어라이트 비대칭 필터)
Particle collecting device coated with denitrification catalyst
(cordierite asymmetric filter)
2~42-4 5~75-7 150~300150-300 277277 0.4470.447

실험 결과, 코디어라이트 재질의 대칭 미립자포집장치(실시예 2)가 가장 배압 및 NOx 배출량 측면에서 우수한 효과를 갖고 있지만, 실시예 2 내지 4의 SDPF는 미립자포집장치의 재질을 SiC로 하거나(실시예 3), 코디어라이트 재질의 미립자포집장치가 대칭이 아닌 비대칭(실시예 4)이라고 하더라도, 비교예 1 및 2에 비하여 배압 및 NOx 배출량 측면에서 우수한 효과가 있음을 확인할 수 있었다.As a result of the experiment, the symmetrical particle collecting device made of cordierite (Example 2) has the most excellent effect in terms of back pressure and NO x emission, but the SDPF of Examples 2 to 4 uses SiC as the material of the particle collecting device ( In Example 3), even if the particle collecting device made of cordierite was asymmetric rather than symmetrical (Example 4), it was confirmed that there was an excellent effect in terms of back pressure and NO x emission compared to Comparative Examples 1 and 2.

한편, 본 발명의 일 실시예에 따른 SDPF(41)는 코팅된 탈질촉매에 의해 환원제인 우레아(urea)(또는 요소수)가 배기가스의 열에 의해 암모니아로 전환되고, 탈질촉매(또는 선택적환원촉매)에 의하여 배기가스 중의 질소산화물(NOx)과 암모니아(NH3)의 촉매반응으로서 질소산화물을 질소가스(N2)와 물(H2O)로 환원시키도록 한다.On the other hand, in the SDPF 41 according to an embodiment of the present invention, urea (or urea water) as a reducing agent is converted into ammonia by the heat of exhaust gas by the coated denitration catalyst, and the denitration catalyst (or selective reduction catalyst) ) as a catalytic reaction of nitrogen oxides (NO x ) and ammonia (NH 3 ) in the exhaust gas to reduce nitrogen oxides into nitrogen gas (N 2 ) and water (H 2 O).

이렇게 질소산화물을 제거하기 위해서, 질소산화물과 반응할 수 있는 환원제와의 반응성이 매우 중요하다. 따라서, 요소수의 기화 및 배기가스와의 균일한 혼합을 위해 우레아믹서(mixer)의 설계가 중요하다.In order to remove nitrogen oxides in this way, reactivity with a reducing agent capable of reacting with nitrogen oxides is very important. Therefore, it is important to design a urea mixer for vaporization of urea water and uniform mixing with exhaust gas.

본 발명의 일 실시예에 따른 우레아믹서(32)는 디젤산화촉매장치(21)를 포함한 제1 용기(20)와 SDPF(41)를 포함한 제2 용기(40) 사이에 연통 가능하도록 연결하기 위한 배기가스유동관로(30) 내에 마련되어, 디젤산화촉매장치(21)를 통과한 배기가스와 우레아인텍터(31)를 통해 내부로 유입된 우레아수용액을 혼합시킬 수 있다. 여기서, 우레아인젝터(31)는 배기가스유동관로(30)의 내부에 우레아를 분사시킬 수 있도록, 배기가스유동관로(30)의 배관 일측에 마련되되, 우레아믹서(32) 전단에 마련될 수 있다(도 3a 참조).The urea mixer 32 according to an embodiment of the present invention is for communication between the first container 20 including the diesel oxidation catalyst device 21 and the second container 40 including the SDPF 41. It is provided in the exhaust gas flow pipe 30, it is possible to mix the exhaust gas that has passed through the diesel oxidation catalyst device 21 and the urea solution introduced into the urea solution through the urea inductor 31. Here, the urea injector 31 is provided on one side of the pipe of the exhaust gas flow pipe 30 so as to inject urea into the exhaust gas flow pipe 30, and may be provided at the front end of the urea mixer 32. (see Fig. 3a).

우레아믹서(32)는 다양한 형상을 가질 수 있으나, 본 발명의 일 실시예에 따른 우레아믹서(32)는, 도 7(b) 및 8에 도시한 바와 같이, 고리 모양인 링(ring) 형의 몸체(321)와, 몸체(321)의 내주면을 따라 서로 이격하도록 마련된 복수의 블레이드블레이드(323)를 포함하되, 블레이드(323)는 상기 몸체(321)의 내주면에서 내측을 향하여 연장 형성된 연장편(3231)과, 연장편의 내측 말단부에서 시계 또는 반시계 방향으로 굽어진 날개편(3232)을 포함하는 것이 바람직하다.The urea mixer 32 may have various shapes, but the urea mixer 32 according to an embodiment of the present invention is of a ring-shaped ring type, as shown in FIGS. 7( b ) and 8 . A body 321 and a plurality of blade blades 323 provided to be spaced apart from each other along the inner circumferential surface of the body 321, wherein the blade 323 is an extension formed extending inward from the inner circumferential surface of the body 321 ( 3231) and a wing piece 3232 bent clockwise or counterclockwise at the inner distal end of the extension piece.

즉, 날개편(3232)은 SDPF(41) 방향을 향하여 굽어지도록 연장 형성되어, 블레이드(323)는 비틀어진 스크류 형태를 가져 스크류성 기류를 유도할 수 있다.That is, the blade piece 3232 is formed to extend to be bent toward the SDPF 41 direction, and the blade 323 has a twisted screw shape to induce a screw airflow.

도 7(a)는 본 발명의 일 실시예에 따른 우레아믹서(32)의 사시도이고, 도 7(b)는 저면도이며, 도 7(c)는 측면도이다.Figure 7 (a) is a perspective view of the urea mixer 32 according to an embodiment of the present invention, Figure 7 (b) is a bottom view, Figure 7 (c) is a side view.

즉, 도 7에 도시한 바와 같이, 본 발명의 일 실시예에 따른 우레아믹서(32)는 링 형의 몸체(321)와, 몸체(321)의 내주면 중 적어도 어느 한 부분에서 중심을 향하여 연장형성되어 몸체(321)의 내주면을 가로지르는 적어도 하나의 가로대를 가진 리브(322)와, 상기 몸체(321)의 내주면에서 내측을 향하여 연장 형성된 블레이드(323)를 포함할 수 있다.That is, as shown in FIG. 7 , the urea mixer 32 according to an embodiment of the present invention extends from at least one of the ring-shaped body 321 and the inner circumferential surface of the body 321 toward the center. It may include a rib 322 having at least one crossbar crossing the inner circumferential surface of the body 321 , and a blade 323 extending inwardly from the inner circumferential surface of the body 321 .

이때, 블레이드(323)는, 도 8에 도시한 바와 같이, 편평한 대략 사다리꼴형의 연장편(3231)과, 연장편(3231)의 자유단부, 즉 연장편(3231) 중 몸체(321)의 내측을 항하여 연장된 단부에서 어느 한 방향으로 굽은 날개편(3232)을 포함할 수 있다. 상기 연장편(3231)의 일단부(3231b)는 몸체(321)의 내주면에 고정되고, 상기 연장편(3231)의 또 다른 일단부(3231a)는 상기 리브(322)에 고정되며, 또 다른 단부는 상기 날개편(3232)이 마련될 수 있다.At this time, the blade 323 is, as shown in FIG. 8 , a flat, substantially trapezoidal extension 3231 and a free end of the extension 3231 , that is, the inner side of the body 321 of the extension 3231 . It may include a wing piece 3232 bent in either direction at the end extending toward the . One end 3231b of the extension piece 3231 is fixed to the inner circumferential surface of the body 321 , and another end 3231a of the extension piece 3231 is fixed to the rib 322 , and the other end The wing piece 3232 may be provided.

또한, 연장편(3231)의 내측 말단부에서 어느 한 방향으로 굽은 날개편(3232)은 판 상의 대략 플래그(flag) 형상 또는 사다리꼴 형상일 수 있으며, 이때, 날개편(3232)의 일부가, 도 7(c)에 도시한 바와 같이, 우레아믹서(32)의 몸체(321) 밖으로 돌출되도록 연장 형성될 수 있고, 이때 특별히 한정하지 않으나, 상기 날개편(3232) 자유단의 모서리부분은 둥글게 형성되도록 모따기될 수 있다.In addition, the wing piece 3232 bent in either direction at the inner end of the extension piece 3231 may have an approximately flag shape or a trapezoidal shape on a plate, and at this time, a portion of the wing piece 3232 is shown in FIG. 7 . As shown in (c), it may be formed to extend to protrude out of the body 321 of the urea mixer 32, but is not particularly limited at this time, but the corner portion of the free end of the wing piece 3232 is chamfered to form a round shape. can be

본 발명의 일 실시예에 따른 우레아믹서(32)(도 6(b) 참조)를 공지의 다른 형상의 우레아믹서(320)(도 6(a) 참조)와 배압변화 등을 비교해보았고, 그 결과는 다음 표 4와 같았다.The urea mixer 32 (see Fig. 6(b)) according to an embodiment of the present invention was compared with a urea mixer 320 (see Fig. 6(a)) of a different shape known in the art and the back pressure change, and the like, and the result is shown in Table 4 below.

참고로, 도 6(a)에 도시한 비교 대상인 우레아믹서(320)는 고리 모양인 링 형의 몸체(3201)와, 몸체(3201)의 어느 일 단부에서 내측을 향해 연장 형성되되, 어느 한 방향으로 기울어진 판 형의 블레이드(3202)를 여러개 포함할 수 있다.For reference, the urea mixer 320 as a comparison object shown in Fig. 6(a) has a ring-shaped body 3201 and a ring-shaped body 3201 extending inward from any one end of the body 3201, in any one direction It may include several inclined plate-shaped blades 3202.

  미립자포집장치 종류Particle collection device type Mixer 형상Mixer shape 선택적 환원 촉매 특성Selective reduction catalyst properties ND-13 Mode Test 결과ND-13 Mode Test Result 입도(㎛)Particle size (㎛) pHpH 점도(cp)Viscosity (cp) 최대출력 배압(mbar)Maximum output back pressure (mbar) NOX 배출 총량(g/kwh)Total NO X emissions (g/kwh) 비교예 3Comparative Example 3 탈질촉매가 코팅된 미립자포집장치(코디어라이트 비대칭 필터)Particle collecting device coated with denitrification catalyst (Cordealite asymmetric filter) 도 6(a)Fig. 6(a) 2~42-4 5~75-7 150~300150-300 277277 0.4470.447 실시예 5Example 5 탈질촉매가 코팅된 미립자포집장치(코디어라이트 비대칭 필터)Particle collecting device coated with denitrification catalyst (Cordealite asymmetric filter) 도 6(b)Figure 6(b) 2~42-4 5~75-7 150~300150-300 262262 0.3790.379

우레아믹서(32)의 형상만 변경한 후 엔진 동력계 상에서 ND-13모드 시험을 수행한 결과 비교예 3에 비해, 본 발명의 일 실시예에 따른 도 6(b)의 형상을 가진 우레아믹서(32)가 최대 출력에서의 배압이 약 15 mbar 감소하였으며, NOX 배출 총량 또한 0.068 g/kwh 감소한 결과가 도출되었다.As a result of performing the ND-13 mode test on the engine dynamometer after changing only the shape of the urea mixer 32, the urea mixer 32 having the shape of FIG. 6(b) according to an embodiment of the present invention compared to Comparative Example 3 ), the back pressure at the maximum output decreased by about 15 mbar, and the total amount of NO X emission was also reduced by 0.068 g/kwh.

한편, 본 발명의 일 실시예에 따른 배기가스 후처리 시스템은, 도 3a에 도시한 바와 같이, 디젤산화촉매장치(21) 및 SDPF(41) 이외에, SDPF(41)의 후단에는 선택적촉매환원장치(42)가 추가로 마련될 수 있다.Meanwhile, in the exhaust gas post-treatment system according to an embodiment of the present invention, as shown in FIG. 3A , in addition to the diesel oxidation catalyst device 21 and the SDPF 41, a selective catalytic reduction device is provided at the rear end of the SDPF 41. (42) may be additionally provided.

선택적촉매환원장치(42)는 상기 SDPF(41)의 탈질촉매와 마찬가지로 철이나 구리가 도핑된 알루미노실리케이트 등의 제올라이트 촉매나 바나듐을 티타니아에 도핑한 바나듐계 촉매를 세라믹 허니컴 등의 담체에 담지시킨 것으로, 환원제인 우레아가 배기가스의 열에 의해 암모니아로 전환되고, 탈질촉매(또는 선택적환원촉매)에 의하여 배기가스 중의 질소산화물(NOx)과 암모니아(NH3)의 촉매반응으로서 질소산화물을 질소가스(N2)와 물(H2O)로 환원시키도록 한다.The selective catalytic reduction device 42, like the denitration catalyst of the SDPF 41, supports a zeolite catalyst such as aluminosilicate doped with iron or copper or a vanadium-based catalyst doped with vanadium titania on a carrier such as a ceramic honeycomb. As a result, urea, a reducing agent, is converted to ammonia by the heat of exhaust gas, and nitrogen oxide is converted into nitrogen gas as a catalytic reaction of nitrogen oxide (NO x ) and ammonia (NH 3 ) in exhaust gas by a denitration catalyst (or selective reduction catalyst) (N 2 ) and water (H 2 O) to reduce.

한편, 본 발명의 일 실시예에 따른 배기가스 후처리 시스템은, 도 3a에 도시한 바와 같이, 디젤산화촉매장치(21) 및 SDPF(41) 이외에, SDPF(41)의 후단에는 암모니아슬립촉매장치(AOC; Ammonia Oxidation Catalyst)(43)를 더 포함하여, 배기가스 중의 암모니아(NH3)를 산화하여 질소(N2)와 물(H2O)로 바꿈으로써, SDPF(41)에서 유출된 암모니아를 정화하여 암모니아가 대기 중으로 유출되는 것을 방지할 수도 있다.Meanwhile, in the exhaust gas post-treatment system according to an embodiment of the present invention, as shown in FIG. 3A , in addition to the diesel oxidation catalyst device 21 and the SDPF 41 , an ammonia slip catalyst device is installed at the rear end of the SDPF 41 . (AOC; Ammonia Oxidation Catalyst) (43) by oxidizing ammonia (NH 3 ) in the exhaust gas and changing it into nitrogen (N 2 ) and water (H 2 O), ammonia leaked from the SDPF (41) It can also be purified to prevent ammonia from escaping into the atmosphere.

여기서, 상기 암모니아슬립촉매장치(43) 역시, 디젤산화촉매장치(21)와 유사하게 코디어라이트 등을 원료로 한 세라믹으로 구성된 허니컴 구조의 담지체 등에 백금(Pt), 팔라듐(Pd), 로듐(Rh) 등의 귀금속을 촉매로서 구성될 수 있다.Here, the ammonia slip catalyst device 43 is also similar to the diesel oxidation catalyst device 21, platinum (Pt), palladium (Pd), rhodium on a honeycomb-structured support made of ceramic using cordierite or the like as a raw material. A noble metal such as (Rh) may be constituted as the catalyst.

한편, 본 발명의 또 다른 일 실시예에 따른 배기가스 후처리 시스템은, 도 3a에 도시한 바와 같이, 배기가스유동관로(30)의 일측에 위치한 우레아인젝터(31)를 통해 우레아가 분사되지 않고, 도 3b에 도시한 바와 같이, 우레아수용액이 도입되는 우레아도입부(11)를 디젤산화촉매장치(21)의 전단에 위치시키고, 우레아도입부(11)를 통해 도입된 우레아수용액이 디젤산화촉매장치(21)를 관통하여 마련된 우레아유동관로(12)를 통과하여, 우레아수용액 및/또는 환원제인 우레아가 배기가스의 열에 의해 가수분해된 암모니아는 SDPF(41)의 일 면에 분사되도록 할 수 있다.On the other hand, in the exhaust gas post-treatment system according to another embodiment of the present invention, as shown in FIG. 3A , urea is not injected through the urea injector 31 located on one side of the exhaust gas flow pipe 30 . , as shown in FIG. 3b, the urea introduction part 11 to which the urea aqueous solution is introduced is located at the front end of the diesel oxidation catalyst device 21, and the urea aqueous solution introduced through the urea introduction part 11 is transferred to the diesel oxidation catalyst device ( Through the urea flow pipe 12 provided through the passage 21), ammonia obtained by hydrolyzing the urea aqueous solution and/or urea as a reducing agent by the heat of the exhaust gas may be injected onto one surface of the SDPF 41 .

우레아도입부(11)를 통해 도입된 우레아수용액이 디젤산화촉매장치(21)의 길이방향을 따라 관통형성된 우레아유동관로(12)를 통과하여 우레아수용액 및/또는 암모니아가 SDPF(41)에 분사될 수 있도록, 우레아저장탱크(112)와 우레아도입부(110) 사이에 마련된 분기관(113)의 일 측에는 공기압축기(111)가 연결될 수 있다. 즉, 공기압축기(111)에 의해 제공된 고압의 공기를 매개로 우레아저장탱크(112)로부터 배출된 우레아수용액은 우레아유동관로(12)에 가압되어 우레아유동관로(12)를 통과할 수 있다.The urea aqueous solution introduced through the urea introduction unit 11 passes through the urea flow pipe 12 formed through the longitudinal direction of the diesel oxidation catalyst device 21, and the urea aqueous solution and/or ammonia can be sprayed to the SDPF 41. So, the air compressor 111 may be connected to one side of the branch pipe 113 provided between the urea storage tank 112 and the urea introduction unit 110 . That is, the aqueous urea solution discharged from the urea storage tank 112 through the high-pressure air provided by the air compressor 111 is pressurized to the urea flow pipe 12 and can pass through the urea flow pipe 12 .

이에 따라, 본 발명의 또 다른 일 실시예에 따른 디젤산화촉매장치(21)는 우레아유동관로(12)가 길이방향으로 삽입 설치될 수 있도록 길이방향으로 관통형성된 관통공을 포함할 수 있다. 즉, 상기 우레아유동관로(12)가 삽입 설치되는 관통공은 디젤산화촉매장치(21)의 중심에 길이방향을 따라 형성되어, 디젤산화촉매장치(21)가 배기가스의 산화로 발열이 일어날때 그 열이 우레아유동관로(12)를 통과하는 우레아수용액에 효과적으로 전달될 수 있도록 하는 것이 바람직하다.Accordingly, the diesel oxidation catalyst device 21 according to another embodiment of the present invention may include a through-hole formed through the longitudinal direction so that the urea flow pipe 12 can be inserted and installed in the longitudinal direction. That is, the through hole into which the urea flow pipe 12 is inserted is formed in the longitudinal direction at the center of the diesel oxidation catalyst device 21, and when the diesel oxidation catalyst device 21 generates heat due to the oxidation of the exhaust gas It is desirable to ensure that the heat can be effectively transferred to the urea aqueous solution passing through the urea flow pipe (12).

디젤산화촉매장치(21)의 관통공에 삽입 설치된 상기 우레아유동관로(12)는 디젤산화촉매장치(21)에서 발행된 열이 잘 전달될 수 있도록 열전도체, 일 예로 금속재(Ag, Cu. Al, Au 등)인 것이 바람직하다.The urea flow pipe 12 inserted and installed in the through hole of the diesel oxidation catalyst device 21 is a heat conductor, for example, a metal material (Ag, Cu. Al) so that the heat emitted from the diesel oxidation catalyst device 21 can be transmitted well. , Au, etc.) is preferred.

결국, 우레아유동관로(12)를 통과하는 우레아수용액은 별도의 승온장치(또는 가열장치)에 의하지 않고, 디젤산화촉매장치(21)의 반응열에 의해 가열되어 가수분해 반응을 원활하게 일으킬 수 있는 효과가 있다.As a result, the urea aqueous solution passing through the urea flow pipe 12 is heated by the reaction heat of the diesel oxidation catalyst device 21 without using a separate temperature increasing device (or heating device) to smoothly cause the hydrolysis reaction. there is

이때, 우레아믹서(32)는 우레아유동관로(12)의 하류측단부에 위치하도록 마련될 수 있다.At this time, the urea mixer 32 may be provided to be located at the downstream end of the urea flow pipe (12).

한편, 도 4는 본 발명의 또 다른 일 실시예에 따른 배기가스 후처리 시스템의 외관을 나타낸 도면이다.Meanwhile, FIG. 4 is a view showing the appearance of an exhaust gas post-treatment system according to another embodiment of the present invention.

본 발명의 일 실시예에 따라, 도 1 등에 도시한 바와 같이, 디젤산화촉매장치(21)를 포함한 제1 용기(20)와, SDPF(41)를 포함한 제2 용기(40)와, 상기 제1 및 제2 용기 사이에 배기가스가 유동하는 배기가스유동관로(30)는 서로 직렬로 연결될 수 있으나, 본 발명은 이에 한하지 않고, 또 다른 일 실시예에 따라, 도 4에 도시한 바와 같이, 제1 용기(20), 배기가스유동관로(30) 및 제2 용기(40)는 서로 병렬로 연결될 수 있다.According to an embodiment of the present invention, as shown in FIG. 1 and the like, the first container 20 including the diesel oxidation catalyst device 21, the second container 40 including the SDPF 41, and the second container The exhaust gas flow pipe 30 through which the exhaust gas flows between the first and second containers may be connected in series with each other, but the present invention is not limited thereto, and according to another embodiment, as shown in FIG. , the first vessel 20, the exhaust gas flow pipe 30 and the second vessel 40 may be connected to each other in parallel.

이때, 제1 용기(20), 배기가스유동관로(30) 및 제2 용기(40)가 서로 병렬로 연결되기 위해, 제1 용기(20)의 타측단부(제1 용기(20) 내 마련된 버너(23)에 연료가 공급되는 일측단부의 반대측단부)와 배기가스유동관로(30)의 일측단부가 서로 연통 가능하도록 연결하기 위해 제1 연결덕트(25)가 마련될 수 있고, 마찬가지로 제2 용기(40)의 타측단부(정화된 배기가스가 배출되는 일측단부의 반대측단부)와 배기가스유동관로(30)의 타측단부가 서로 연통 가능하도록 연결하기 위해 제2 연결덕트(35)가 마련될 수 있다.At this time, in order to connect the first container 20 , the exhaust gas flow pipe 30 and the second container 40 in parallel to each other, the other end of the first container 20 (a burner provided in the first container 20 ) A first connecting duct 25 may be provided to connect the opposite end of the one end to which fuel is supplied to 23) and one end of the exhaust gas flow pipe 30 so as to be able to communicate with each other, and similarly, the second container A second connecting duct 35 may be provided to connect the other end of the 40 (the opposite end of the one end from which the purified exhaust gas is discharged) and the other end of the exhaust gas flow pipe 30 to communicate with each other. have.

여기서, 도 4의 미설명 도면부호 30a는 제1 연결덕트(25)에 관통 형성된 우레아분사구(30a)로서 이를 통해 배기가스유동관로(30)의 내부에 우레아가 주입 분사될 수 있다.Here, the unexplained reference numeral 30a of FIG. 4 denotes a urea injection hole 30a formed through the first connection duct 25 through which urea may be injected and injected into the exhaust gas flow pipe 30 .

또한, 도 4의 미설명 도면부호 20a는 버너(23)가 사용하는 연료가 공급되는 연료유입부를 가리키고, 도면부호 22a는 배기가스유입구로서 엔진(1)으로부터 발생된 배기가스가 유입되는 연결 구멍을 가리키며, 도면부호 40a는 배기가스 후처리 시스템에 의해 정화된 배기가스가 배출되는 배기가스배출구를 가리키고, 도면부호 32a는 내부에 우레아믹서(32)가 내부에 마련된 믹서하우징(32a)을 가리키며, 상기 믹서하우징(32a)은 배기가스유동관로(30)의 중간에 개재될 수 있으나, 본 발명은 이에 한하지 않고, 상기 믹서하우징(32a)은 배기가스유동관로(30)의 앞단에 마련될 수도 있다.In addition, the unexplained reference numeral 20a of FIG. 4 indicates a fuel inlet to which the fuel used by the burner 23 is supplied, and the reference numeral 22a is an exhaust gas inlet and a connection hole through which the exhaust gas generated from the engine 1 is introduced. Reference numeral 40a denotes an exhaust gas outlet through which exhaust gas purified by the exhaust gas post-treatment system is discharged, and reference numeral 32a denotes a mixer housing 32a having a urea mixer 32 therein, the The mixer housing 32a may be interposed in the middle of the exhaust gas flow pipe 30, but the present invention is not limited thereto, and the mixer housing 32a may be provided at the front end of the exhaust gas flow pipe 30. .

이렇게, 본 발명의 또 다른 일 실시예에 따라 제1 용기(20), 배기가스유동관로(30) 및 제2 용기(40)를 직렬로 연결하지 않고, 서로 병렬로 연결하더라도, 도 5에 도시한 바와 같이, 배기가스의 유동을 저해하지 않으며, 전체 배기가스 후처리 시스템의 길이를 축소시켜, 컴팩트화할 수 있는 이점이 있다.In this way, according to another embodiment of the present invention, the first vessel 20, the exhaust gas flow pipe 30 and the second vessel 40 are not connected in series, but are connected in parallel, as shown in FIG. As described above, there is an advantage in that the flow of exhaust gas is not inhibited, and the length of the entire exhaust gas after-treatment system can be reduced to make it compact.

이상으로 본 발명의 바람직한 실시예를 도면을 참고하여 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.As above, preferred embodiments of the present invention have been described in detail with reference to the drawings. The description of the present invention is for illustrative purposes, and those of ordinary skill in the art to which the present invention pertains will understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention.

따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Accordingly, the scope of the present invention is indicated by the claims described below rather than the above detailed description, and all changes or modifications derived from the meaning, scope, and equivalent concept of the claims are included in the scope of the present invention. should be interpreted

1: 엔진 10: 배기가스도입관
11: 우레아도입부 12: 우레아유동관로
111: 공기압축기 112: 우레아저장탱크
113: 분기관 20: 제1 용기
20a: 연료유입부 21: 디젤산화촉매장치
22: 배기가스유입부 22a: 배기가스유입구
23: 버너 25: 제1 연결덕트
30: 배기가스유동관로 30a: 우레아분사구
31: 우레아인젝터 32: 우레아믹서
32a: 믹서하우징 321: 몸체
322: 리브 323: 블레이드
3231: 연장편 3232: 날개편
35: 제2 연결덕트 40: 제2 용기
40a: 배기가스배출구 41: SDPF
42: 선택적환원촉매장치 43: 암모니아슬립촉매장치
320: 우레아믹서 3201: 몸체
3202: 블레이드
1: Engine 10: Exhaust gas inlet pipe
11: Urea introduction part 12: Urea flow pipe
111: air compressor 112: urea storage tank
113: branch pipe 20: first vessel
20a: fuel inlet 21: diesel oxidation catalyst device
22: exhaust gas inlet 22a: exhaust gas inlet
23: burner 25: first connecting duct
30: exhaust gas flow pipe line 30a: urea injection port
31: urea injector 32: urea mixer
32a: mixer housing 321: body
322: rib 323: blade
3231: extension 3232: wings
35: second connection duct 40: second container
40a: exhaust gas outlet 41: SDPF
42: selective reduction catalyst device 43: ammonia slip catalyst device
320: urea mixer 3201: body
3202: Blade

Claims (10)

내연기관의 배기관에 장착되어, 배기가스에 포함된 탄화수소(HC)나 일산화탄소(CO)를 산화시키거나 입자상 물질에 포함된 용해성유기성분(SOF; Soluble Organic Fraction)을 산화시키는 디젤산화촉매장치(DOC; Diesel Oxidation Catalyst)를 포함하는 배기가스 후처리 시스템에 있어서,
입자상물질을 포집하여 배기가스를 정화하는 미립자포집장치(DPF; Diesel Particulate matter Filter)에 질소 산화물(NOx)을 정화하기 위한 탈질촉매가 코팅된 SDPF(SCR on DPF; Selective Catalyst Reduction - on - Diesel Particulate Filter); 및
상기 디젤산화촉매장치와 상기 SDPF 사이에 위치하여, 우레아수용액과 상기 배기가스를 혼합하는 우레아믹서;
를 더 포함하되,
상기 탈질촉매는 입도 2~4 ㎛, pH 5~7, 그리고 점도 150~300 cp의 슬러리(slurry) 상태로 상기 미립자포집장치에 코팅되고,
상기 우레아믹서는, 링 형의 몸체와, 상기 몸체를 가로지르도록 마련된 적어도 하나의 가로대를 가진 리브와, 상기 몸체의 내주면을 따라 서로 이격하도록 마련된 복수 개의 블레이드를 포함하되,
상기 블레이드는, 상기 몸체의 내주면에서 내측을 향하여 상기 가로대를 따라 연장된 사다리꼴형 연장편 - 상기 사다리꼴 연장편은 상기 몸체와 상기 가로대에 고정됨 - 과, 상기 사다리꼴형 연장편의 말단부인 빗변에서 연장 형성되되 일부가 상기 몸체의 높이를 초과하여 돌출되도록 연장 형성되는 날개편을 포함하며,
상기 날개편은, 상기 빗변에서 시계방향 또는 반시계방향으로 소정 각도만큼 굽어지도록 연장 형성되되, 말단이 인접한 상기 블레이드가 고정된 상기 가로대까지 연장 형성되는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
Diesel oxidation catalyst device (DOC) that is installed in the exhaust pipe of an internal combustion engine to oxidize hydrocarbons (HC) or carbon monoxide (CO) contained in exhaust gas or oxidize soluble organic fractions (SOF) contained in particulate matter. In the exhaust gas after-treatment system comprising: Diesel Oxidation Catalyst),
Selective Catalyst Reduction (SCR on DPF; Selective Catalyst Reduction - on - Diesel Particulate) coated with a denitration catalyst to purify nitrogen oxides (NOx) on Diesel Particulate Matter Filter (DPF) that collects particulate matter and purifies exhaust gas Filter); and
a urea mixer positioned between the diesel oxidation catalyst device and the SDPF to mix the urea aqueous solution and the exhaust gas;
further comprising,
The denitration catalyst is coated on the particle collecting device in the form of a slurry having a particle size of 2 to 4 μm, a pH of 5 to 7, and a viscosity of 150 to 300 cp,
The urea mixer includes a ring-shaped body, a rib having at least one crossbar provided to cross the body, and a plurality of blades provided to be spaced apart from each other along the inner circumferential surface of the body,
The blade is a trapezoidal extension extending along the crossbar from the inner circumferential surface of the body inwardly, the trapezoidal extension being fixed to the body and the crosspiece, and extending from the hypotenuse, which is the distal end of the trapezoidal extension. It includes a wing piece that is formed to extend so that a part protrudes beyond the height of the body,
The wing piece is formed to extend from the hypotenuse by a predetermined angle in a clockwise or counterclockwise direction, and the distal end is formed to extend to the crossbar to which the adjacent blade is fixed. Including a filter coated with a denitration catalyst Exhaust gas aftertreatment system.
제 1 항에 있어서,
상기 미립자포집장치는,
코디어라이트 또는 실리콘카바이드로 이루어지되, 상기 배기가스가 유입되는 상류측과 상기 배기가스가 유출되는 하류측의 셀의 크기가 서로 동일한 대칭형 필터인 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
The method of claim 1,
The particle collecting device,
Exhaust including a filter coated with a denitration catalyst, characterized in that it is a symmetrical filter made of cordierite or silicon carbide, wherein the cells on the upstream side through which the exhaust gas flows and on the downstream side through which the exhaust gas flows are the same size. gas aftertreatment system.
제 1 항에 있어서,
상기 미립자포집장치는,
코디어라이트 또는 실리콘카바이드로 이루어지되, 상기 배기가스가 유입되는 상류측과 상기 배기가스가 유출되는 하류측의 셀의 크기가 서로 상이한 비대칭형 필터인 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
The method of claim 1,
The particle collecting device,
Including a filter coated with a denitration catalyst, characterized in that it is an asymmetric filter made of cordierite or silicon carbide, wherein the size of the cells on the upstream side through which the exhaust gas flows and on the downstream side through which the exhaust gas flows out are different from each other Exhaust gas aftertreatment system.
제 1 항에 있어서,
질소 산화물(NOx)을 정화하기 위한 선택적촉매환원장치(SCR; Selective Catalyst Reduction);
를 더 포함하는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
The method of claim 1,
Selective Catalyst Reduction (SCR) for purifying nitrogen oxides (NO x );
Exhaust gas post-treatment system including a filter coated with a denitration catalyst, characterized in that it further comprises.
제 1 항에 있어서,
상기 SDPF의 후단에 위치하여, 상기 SDPF에서 유출된 암모니아를 산화하여 정화시키기 위한 암모니아슬립촉매장치(AOC; Ammonia Oxidation Catalyst)를 더 포함하는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
The method of claim 1,
After exhaust gas including a filter coated with a denitration catalyst, it is located at the rear end of the SDPF, and further comprises an ammonia slip catalyst (AOC) for oxidizing and purifying ammonia leaked from the SDPF. processing system.
삭제delete 제 1 항에 있어서,
상기 배기가스를 가열하여 승온시키기 위한 버너; 및
상기 SDPF 전단에 위치하여, 우레아를 분사시키기 위한 우레아인젝터;
를 더 포함하는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
The method of claim 1,
a burner for heating the exhaust gas to increase the temperature; and
Located in front of the SDPF, a urea injector for injecting urea;
Exhaust gas post-treatment system including a filter coated with a denitration catalyst, characterized in that it further comprises.
제 7 항에 있어서,
상기 디젤산화촉매장치를 포함한 제1 용기와, 상기 SDPF를 포함한 제2 용기와, 상기 제1 및 제2 용기 사이에 상기 배기가스가 유동하는 배기가스유동관로는 서로 병렬로 연결되되,
상기 우레아믹서는, 상기 배기가스유동관로의 내부에 마련되되, 상기 우레아인젝터는, 상기 우레아믹서의 전단에 우레아를 분사시키는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
8. The method of claim 7,
A first container including the diesel oxidation catalyst device, a second container including the SDPF, and an exhaust gas flow pipe through which the exhaust gas flows between the first and second containers are connected in parallel to each other,
The urea mixer, doedoe provided inside the exhaust gas flow pipe, the urea injector, Exhaust gas post-treatment system including a filter coated with a denitration catalyst, characterized in that for injecting urea to the front end of the urea mixer.
제 1 항에 있어서,
상기 디젤산화촉매장치 전단에 위치하여, 우레아수용액이 도입되는 우레아도입부; 및
상기 디젤산화촉매장치를 관통하여 마련되되, 상기 우레아도입부를 통해 도입된 상기 우레아수용액이 통과하는 우레아유동관로;
를 더 포함하되,
상기 우레아믹서는, 상기 우레아유동관로의 하류측단부에 마련된 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
The method of claim 1,
a urea introduction unit located in front of the diesel oxidation catalyst device, into which an aqueous urea solution is introduced; and
a urea flow pipe provided through the diesel oxidation catalyst device, through which the aqueous urea solution introduced through the urea introduction part passes;
further comprising,
The urea mixer, exhaust gas post-treatment system including a filter coated with a denitration catalyst, characterized in that provided at the downstream end of the urea flow pipe.
제 9 항에 있어서,
상기 우레아도입부는, 상기 우레아수용액이 상기 우레아유동관로를 통과할 수 있도록 고압의 공기와 함께 도입되는 것을 특징으로 하는 탈질촉매가 코팅된 필터를 포함한 배기가스 후처리 시스템.
10. The method of claim 9,
The urea introduction unit, Exhaust gas post-treatment system including a filter coated with a denitration catalyst, characterized in that the urea aqueous solution is introduced together with high-pressure air to pass through the urea flow pipe.
KR1020210125583A 2021-09-23 2021-09-23 System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst KR102441028B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210125583A KR102441028B1 (en) 2021-09-23 2021-09-23 System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst
PCT/KR2022/011768 WO2023048398A1 (en) 2021-09-23 2022-08-08 Exhaust gas post-treatment system, for diesel engine, comprising denitrification catalyst-coated filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210125583A KR102441028B1 (en) 2021-09-23 2021-09-23 System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst

Publications (1)

Publication Number Publication Date
KR102441028B1 true KR102441028B1 (en) 2022-09-07

Family

ID=83278460

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210125583A KR102441028B1 (en) 2021-09-23 2021-09-23 System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst

Country Status (2)

Country Link
KR (1) KR102441028B1 (en)
WO (1) WO2023048398A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517568B1 (en) * 2002-06-13 2005-09-28 도요다 지도샤 가부시끼가이샤 Filter catalyst for purifying exhaust gases
JP2009019610A (en) * 2007-07-13 2009-01-29 Hino Motors Ltd Exhaust emission control device
JP2011012564A (en) * 2009-06-30 2011-01-20 Toyota Industries Corp Exhaust gas purification apparatus
KR101195799B1 (en) 2008-03-24 2012-11-05 이비덴 가부시키가이샤 Honeycomb structured body
KR101369651B1 (en) 2012-06-29 2014-03-04 쌍용자동차 주식회사 blade mixer for mixing urea of automobile
US20140133268A1 (en) * 2011-06-20 2014-05-15 Office Metallurgiche G. Cornaglia S.P.A. Static mixer for the treatment of exhaust gases and manufacturing method thereof
KR20150096329A (en) * 2014-02-14 2015-08-24 도이츠 악티엔게젤샤프트 Method for purifying diesel engine exhaust gases
KR102028423B1 (en) 2018-03-15 2019-10-04 주식회사 이알인터내셔널 Selective catalytic reduction system for in-use vehicles
KR102122849B1 (en) 2019-02-08 2020-06-15 주식회사 에코닉스 Selective catalytic reduction(SCR) device for vehicles
KR102293242B1 (en) * 2020-04-14 2021-08-26 한국전력공사 A catalyst filter of a diesel engine for power generation and exhaust gas treatment equipment using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517568B1 (en) * 2002-06-13 2005-09-28 도요다 지도샤 가부시끼가이샤 Filter catalyst for purifying exhaust gases
JP2009019610A (en) * 2007-07-13 2009-01-29 Hino Motors Ltd Exhaust emission control device
KR101195799B1 (en) 2008-03-24 2012-11-05 이비덴 가부시키가이샤 Honeycomb structured body
JP2011012564A (en) * 2009-06-30 2011-01-20 Toyota Industries Corp Exhaust gas purification apparatus
US20140133268A1 (en) * 2011-06-20 2014-05-15 Office Metallurgiche G. Cornaglia S.P.A. Static mixer for the treatment of exhaust gases and manufacturing method thereof
KR101369651B1 (en) 2012-06-29 2014-03-04 쌍용자동차 주식회사 blade mixer for mixing urea of automobile
KR20150096329A (en) * 2014-02-14 2015-08-24 도이츠 악티엔게젤샤프트 Method for purifying diesel engine exhaust gases
KR102028423B1 (en) 2018-03-15 2019-10-04 주식회사 이알인터내셔널 Selective catalytic reduction system for in-use vehicles
KR102122849B1 (en) 2019-02-08 2020-06-15 주식회사 에코닉스 Selective catalytic reduction(SCR) device for vehicles
KR102293242B1 (en) * 2020-04-14 2021-08-26 한국전력공사 A catalyst filter of a diesel engine for power generation and exhaust gas treatment equipment using the same

Also Published As

Publication number Publication date
WO2023048398A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US10316739B2 (en) Method and device for the purification of diesel exhaust gases
US6826906B2 (en) Exhaust system for enhanced reduction of nitrogen oxides and particulates from diesel engines
US6935105B1 (en) Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery
KR100871898B1 (en) Exhaust gas purifying device for diesel engine
KR101631149B1 (en) Diesel engine exhaust gas purification device having ammonia decomposition module
JP4398963B2 (en) Diesel engine exhaust gas purification system with exhaust gas recirculation line
CN105715329A (en) Method For Purification Of Exhaust Gas From A Diesel Engine
EP1864713A1 (en) Oxidation catalyst for exhaust gas purification and exhaust gas purification system using the same
JPWO2011162030A1 (en) Exhaust gas purification catalyst device using selective reduction catalyst, exhaust gas purification method, and diesel vehicle equipped with exhaust gas purification catalyst device
JP3204682U (en) Cold start compatible urea SCR system using bypass flow path
EP2530265A1 (en) Exhaust purification device and exhaust purification method for diesel engine
CN102057139A (en) Exhaust gas purifier and system for exhaust gas purification
ZA200103648B (en) Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery.
CN101732991A (en) Exhaust after treatment system
KR20110024599A (en) Apparatus for after-treatment of exhaust from diesel engine
US20110126525A1 (en) Novel scr catalysts and after-treatment devices for diesel engine exhaust gas
KR101022018B1 (en) Exhaust gas purification system of engine and marine engine with the same
KR102441028B1 (en) System for after-treatment of exhaust gas for diesel engine including the filter coated with denitrification catalyst
JP2012159054A (en) Exhaust gas purification system for internal combustion engine
KR102431789B1 (en) Reductant injection system for after-treatment of exhaust gas of old diesel vehicle
CN219548957U (en) Gas engine aftertreatment system, engine and vehicle
KR102388063B1 (en) Apparatus For Reducing Pollutants From Exhaust Gases OF Small Ships
KR20240009548A (en) System for after-treatment of exhaust gas for diesel engine
EP1612382A2 (en) Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery
KR19990004986A (en) Catalytic converter for diesel engines

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant