KR102439397B1 - A LNG-powered ship cold energy utilization system based on a new integrated IFV - Google Patents

A LNG-powered ship cold energy utilization system based on a new integrated IFV Download PDF

Info

Publication number
KR102439397B1
KR102439397B1 KR1020210040973A KR20210040973A KR102439397B1 KR 102439397 B1 KR102439397 B1 KR 102439397B1 KR 1020210040973 A KR1020210040973 A KR 1020210040973A KR 20210040973 A KR20210040973 A KR 20210040973A KR 102439397 B1 KR102439397 B1 KR 102439397B1
Authority
KR
South Korea
Prior art keywords
lng
heat exchange
ifv
pipeline
exchange chamber
Prior art date
Application number
KR1020210040973A
Other languages
Korean (ko)
Other versions
KR20220060451A (en
Inventor
서우광 야오
멍디 왕
Original Assignee
지앙수 유니버시티 오브 사이언스 앤드 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지앙수 유니버시티 오브 사이언스 앤드 테크놀로지 filed Critical 지앙수 유니버시티 오브 사이언스 앤드 테크놀로지
Publication of KR20220060451A publication Critical patent/KR20220060451A/en
Application granted granted Critical
Publication of KR102439397B1 publication Critical patent/KR102439397B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/05Regasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

본 발명은 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템에 관한 것이고, 신규 일체형 IFV를 기반으로 하고, 먼저 랭킨 사이클 발전을 통해 LNG 연료 고품위 냉 에너지를 회수하고 이를 전기 에너지로 변환시킨 다음, 냉매를 이용하여 LNG 연료 저품위 냉 에너지를 회수하여, 발전 또는 해수 담수화에 사용하며, 마지막으로 쟈켓워터를 이용하여 NG를 메인 엔진 기체 유입 희망 온도까지 가열한다. 본 발명은 냉 에너지 활용 기능을 구비하는 신규 일체형 IFV를 결합하여, 그 구조가 콤팩트하고 시스템의 복합도, 차지하는 면적을 효과적으로 감소하고, 시스템의 경제성을 높이며; 선박의 해수 담수화 또는 발전 요구에 따라 상응하게 조절하여 두 가지 기능의 전환이 가능하다는 장점이 있다.The present invention relates to an LNG-powered ship cooling energy utilization system based on a new integrated IFV, based on the new integrated IFV, first recovering LNG fuel high-grade cooling energy through Rankine cycle power generation, and converting it into electric energy, , using refrigerant to recover low-grade cooling energy from LNG fuel and use it for power generation or seawater desalination, and finally, using jacket water, heat NG to the desired temperature for inflow of main engine gas. The present invention combines a novel integrated IFV having a cooling energy utilization function, so that the structure is compact, the complexity of the system and the area occupied are effectively reduced, and the economic feasibility of the system is increased; It has the advantage of being able to switch between the two functions by adjusting it accordingly according to the desalination or power generation needs of the ship.

Description

신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템{A LNG-powered ship cold energy utilization system based on a new integrated IFV}LNG-powered ship cold energy utilization system based on a new integrated IFV

본 발명은 LNG 냉 에너지 활용 분야에 관한 것이고, 특히 신규 일체형 IFV를 기반으로 한 LNG 냉 에너지 활용 시스템에 관한 것이다.The present invention relates to the field of LNG cold energy utilization, and more particularly, to an LNG cold energy utilization system based on a novel integrated IFV.

LNG는 높은 발열량과 낮은 연소 오염의 특성을 지닌 고품질 에너지원이다. LNG 터미널의 주요 기능은 원양 수송선이 수송해온 LNG를 받아 저장하고 기화시켜 기체 상태의 천연 가스(NG) 제품을 얻고, 천연 가스 파이프라인 네트워크를 통해 도시 주민 및/또는 산업 사용자에게 공급하는 것이다.LNG is a high-quality energy source with high calorific value and low combustion pollution. The main function of the LNG terminal is to receive, store, and vaporize LNG transported by ocean carriers to obtain gaseous natural gas (NG) products and supply them to city residents and/or industrial users via a network of natural gas pipelines.

LNG는 약 -162 ℃의 저온에서 액체 상태로 존재하는 천연 가스로 기화 과정에 대량의 열원이 필요하다. 일반적으로 LNG 터미널의 기화 설비에는 주로 오픈랙 해수 일체형 IFV(ORV), 중간 매체 해수 일체형 IFV(IFV) 및 수중 연소식 일체형 IFV(SCV)가 있다. LNG 터미널은 바다 근처에 건설되고 해수는 천연 열원이며 일반적으로 기화를 위해 해수를 사용하여 가열한다.LNG is a natural gas that exists in a liquid state at a low temperature of about -162 ℃, and a large amount of heat source is required for the vaporization process. In general, gasification facilities at LNG terminals mainly include open rack seawater integrated IFV (ORV), intermediate medium seawater integrated IFV (IFV), and underwater combustion type integrated IFV (SCV). LNG terminals are built near the sea and seawater is a natural heat source and is usually heated using seawater for vaporization.

선박 동력 장치에 대한 배출 요구가 높아짐에 따라, 운송 선박들은 동력 장치의 원료로 기존의 디젤유 또는 중유 대신 액화 천연 가스(LNG)를 사용하는 것이 불가피한 추세가 되었다. LNG는 기화 과정에서 약 800 kJ/kg의 냉 에너지를 방출하는데 이를 사용하지 않을 경우 대량의 냉 에너지 낭비가 초래될 뿐만 아니라 항로 주변 해역 환경에 일정한 영향을 미친다. LNG 동력 선박의 냉방 요구에 맞는 냉 에너지 활용 시스템을 설계하면, 에너지 활용 효율을 높일 수 있을 뿐만 아니라 압축 냉동 사이클에서 소비되는 전력도 절약할 수 있는데 이는 현재 LNG 활용 기술에서의 최전선 문제 중 하나이다.As the emission requirements for ship power units increase, it has become an inevitable trend for transport ships to use liquefied natural gas (LNG) as a raw material for power units instead of conventional diesel or heavy oil. LNG emits about 800 kJ/kg of cooling energy during the gasification process, and if it is not used, not only a large amount of cooling energy is wasted, but also has a certain effect on the environment around sea routes. Designing a cooling energy utilization system that meets the cooling needs of LNG-powered ships not only increases energy utilization efficiency, but also saves power consumed in the compression refrigeration cycle, which is one of the front-line issues in current LNG utilization technology.

현재 LNG 냉 에너지 활용 시스템은 주로 엑서지 효율을 지표로 사용하고, 냉방, 해수 담수화 등 방식으로 활용하고 있다. “온도 일치, 계단식 활용” 원칙에 따라, LNG 냉 에너지 활용 방안은 일반적으로 다단계 냉방 또는 발전 순환을 사용한다. 단일 단계 시스템에 비해, 다단계 냉 에너지 활용 시스템은 비록 엑서지 효율이 높기는 하지만 시스템 크기가 크고 설비가 복잡하다는 단점도 있다. 기존의 일체형 IFV는 기능이 단일하기에, LNG 냉 에너지를 충분히 활용할 수 있는 동시에 냉 에너지 활용 시스템의 LNG일체형 IFV를 단순화하면서 시스템의 소형화와 경제성을 효과적으로 향상시키는 것은 설비 배치 공간이 제한된 선박에서 특히 중요하다.Currently, LNG cooling energy utilization systems mainly use exergy efficiency as an index, and are used in cooling and seawater desalination methods. In accordance with the “temperature matching, cascading” principle, LNG cooling energy utilization schemes generally use multi-stage cooling or power generation cycles. Compared to the single-stage system, the multi-stage cooling energy utilization system has disadvantages in that the system size is large and the equipment is complex, although the exergy efficiency is high. Since the existing all-in-one IFV has a single function, it is especially important for ships with limited installation space to fully utilize LNG cold energy while simplifying the LNG-integrated IFV of the cold energy utilization system and effectively improving the system's miniaturization and economic feasibility. do.

상기 문제에 대해, 본 발명은 신규 일체형 IFV를 기반으로 하여 메인 엔진의 쟈켓워터를 열원으로 하여 LNG 냉 에너지 다단계 활용 시스템을 설계하였다.In response to the above problem, the present invention designed an LNG cold energy multi-stage utilization system using the jacket water of the main engine as a heat source based on a novel integrated IFV.

본 발명이 사용하는 구체적인 과제의 해결 수단은 아래와 같다.The means for solving the specific problems used by the present invention are as follows.

신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템에 있어서, 상기 시스템은 신규 일체형 IFV를 기반으로 하고, 먼저 랭킨 사이클 발전을 통해 LNG 연료 고품위 냉 에너지를 회수하고 이를 전기 에너지로 변환시킨 다음, 냉매를 이용하여 LNG 연료 저품위 냉 에너지를 회수하여, 발전 또는 해수 담수화에 사용하며, 마지막으로 쟈켓워터를 이용하여 NG를 메인 엔진 기체 유입 희망 온도까지 가열한다.In the LNG-powered ship cooling energy utilization system based on the new integrated IFV, the system is based on the new integrated IFV, and first recovers LNG fuel high-grade cooling energy through Rankine cycle power generation and converts it into electrical energy, The refrigerant is used to recover low-grade cold energy from LNG fuel and use it for power generation or seawater desalination.

본 발명에 대한 개선으로서, 상기 시스템은 신규 일체형 IFV, 증압 펌프, 열교환기, 터빈, 축열기, 밸브, 증발기를 포함하고, 일체형 IFV의 내부는 용접된 배플 플레이트를 통해 3개의 열교환 챔버로 나뉘며, 상층에서 하층까지 각각 LNG 열교환 챔버, 중간 매체 열교환 챔버 및 열유체 열교환 챔버이고, 일체형 IFV 내의 열교환은 좌측단, 중앙, 우측단 챔버의 3세트의 히트 파이프를 통해 LNG의 냉 에너지를 중간 매체 및 열유체에 전달한다.As an improvement on the present invention, the system comprises a novel integral IFV, a booster pump, a heat exchanger, a turbine, a regenerator, a valve and an evaporator, the interior of the integral IFV being divided into three heat exchange chambers through a welded baffle plate, The upper and lower floors are respectively an LNG heat exchange chamber, an intermediate medium heat exchange chamber, and a thermal fluid heat exchange chamber. The heat exchange in the integrated IFV transfers the cold energy of LNG to the intermediate medium and heat through three sets of heat pipes in the left, center, and right end chambers. transfer to the fluid.

본 발명에 대한 개선으로서, 일체형 IFV의 LNG 열교환 챔버의 우측에는 LNG 입구가 설치되고, 이는 파이프라인을 통해 LNG 저장 탱크에 연결되어 LNG을 입력하며, 일체형 IFV의 LNG 열교환 챔버의 좌측에는 NG 출구가 설치되고, 이는 파이프라인에 연결되어 NG를 출력하며, LNG는 파이프라인을 통해 LNG 입구로부터 신규 IFV에 유입되고, 3세트의 히트 파이프를 통해 순차적으로 중간 매체 및 열유체의 열량을 흡수하여 기화되어, NG로 변하고 NG 출구로부터 출력되며 파이프라인을 통해 하나의 열교환기 내에 들어가며, 상기 열교환기를 제1 열교환기로 설치하고, 제1 열교환기는 파이프라인을 통해 하나의 터빈에 연결되며, 상기 터빈을 제1 터빈으로 설치하고, 제1 터빈은 파이프라인을 통해 중간 매체 열교환 챔버의 우측단 입구에 연결되며, 중간 매체 열교환 챔버의 좌측단 출구는 또한 파이프라인을 통해 제1 열교환기에 연결된다.As an improvement on the present invention, an LNG inlet is installed on the right side of the LNG heat exchange chamber of the integrated IFV, which is connected to an LNG storage tank through a pipeline to input LNG, and an NG outlet is located on the left side of the LNG heat exchange chamber of the integrated IFV. installed, it is connected to the pipeline to output NG, and the LNG flows into the new IFV from the LNG inlet through the pipeline, and is vaporized by sequentially absorbing heat from the intermediate medium and thermal fluid through three sets of heat pipes. , NG and output from the NG outlet and enters one heat exchanger through a pipeline, the heat exchanger is installed as a first heat exchanger, the first heat exchanger is connected to one turbine through a pipeline, and the turbine is connected to a first Installed as a turbine, the first turbine is connected to the right end inlet of the intermediate medium heat exchange chamber through a pipeline, and the left end outlet of the intermediate medium heat exchange chamber is also connected to the first heat exchanger through the pipeline.

본 발명에 대한 개선으로서, LNG 열교환 챔버의 우측에 설치된 LNG 입구와 LNG 저장 탱크의 연결 파이프라인에는 증압 펌프가 설치되고, 상기 증압 펌프는 제1 증압 펌프로 설치된다.As an improvement on the present invention, a booster pump is installed in the pipeline connecting the LNG inlet and the LNG storage tank installed on the right side of the LNG heat exchange chamber, and the booster pump is installed as the first booster pump.

본 발명에 대한 개선으로서, 중간 매체 열교환 챔버의 우측 가열 챔버 내 동작 유체는 파이프라인을 통해 인출되고, 파이프라인에는 증압 펌프가 설치되며, 상기 증압 펌프는 제2 증압 펌프로 설치되고, 파이프라인은 또한 중간 매체 열교환 챔버 내의 인접한 좌측 가열 챔버 내에 인입된다.As an improvement on the present invention, the working fluid in the right heating chamber of the intermediate medium heat exchange chamber is drawn out through a pipeline, and a booster pump is installed in the pipeline, the booster pump is installed as a second booster pump, the pipeline is It is also drawn into the adjacent left heating chamber in the intermediate medium heat exchange chamber.

본 발명에 대한 개선으로서, 열유체 열교환 챔버 우측 챔버의 우측단은 파이프라인에 연결되고, 파이프라인에는 증압 펌프가 설치되며, 상기 증압 펌프는 제3 증압 펌프로 설치되고, 파이프라인은 또한 하나의 열교환기에 연결되며, 상기 열교환기는 제2 열교환기로 설치되고, 제2 열교환기는 또한 파이프라인을 통해 하나의 터빈에 연결되며, 상기 터빈은 제2 터빈으로 설치되고, 제2 터빈은 파이프라인을 통해 열유체 열교환 챔버 우측 챔버의 좌측 입구에 연결된다.As an improvement on the present invention, the right end of the right side chamber of the thermal fluid heat exchange chamber is connected to a pipeline, the pipeline is provided with a booster pump, the booster pump is installed as a third booster pump, and the pipeline also includes one connected to a heat exchanger, the heat exchanger being installed as a second heat exchanger, the second heat exchanger also connected to one turbine via a pipeline, the turbine being installed as a second turbine, and the second turbine being installed as a heat exchanger via the pipeline The fluid heat exchange chamber is connected to the left inlet of the right chamber.

본 발명에 대한 개선으로서, 열유체 열교환 챔버 좌측 챔버의 우측 출구는 파이프라인을 통해 인출되어 하나의 증압 펌프에 연결되어, 상기 증압 펌프는 제4 증압 펌프로 설치되며, 파이프라인은 또한 하나의 삼방 밸브에 들어가고, 상기 삼방 밸브는 제1 밸브로 설치되며, 제1 밸브의 하나의 포트는 파이프라인을 통해 하나의 증발기에 연결되고, 제1 밸브의 다른 하나의 포트는 파이프라인을 통해 하나의 축열기에 연결되며, 증발기의 출구 위치는 파이프라인을 통해 다른 하나의 삼방 밸브에 연결되고, 상기 삼방 밸브는 제2 밸브로 설치되며, 제2 밸브의 하나의 포트는 파이프라인을 통해 열유체 열교환 챔버의 좌측단에 연결되고, 축열기의 출구 위치는 파이프라인을 통해 제1 열교환기에 연결된 후 하나의 터빈을 경유하며, 상기 터빈은 제3 터빈으로 설치되고, 제3 터빈의 출구 위치는 파이프라인을 통해 축열기에 연결된 후 제2 밸브를 경유하여 열유체 열교환 챔버 좌측 챔버의 좌측단에 들어간다.As an improvement on the present invention, the right outlet of the left chamber of the thermal fluid heat exchange chamber is drawn out through a pipeline and connected to one booster pump, the booster pump is installed as a fourth booster pump, and the pipeline is also one three-way into the valve, the three-way valve is installed as a first valve, one port of the first valve is connected to one evaporator through a pipeline, and the other port of the first valve is connected to one shaft through a pipeline connected to the hot air, the outlet position of the evaporator is connected to the other three-way valve through a pipeline, the three-way valve is installed as a second valve, and one port of the second valve is connected to the thermal fluid heat exchange chamber through the pipeline is connected to the left end of the accumulator, and the outlet position of the regenerator is connected to the first heat exchanger through a pipeline and then passes through one turbine, the turbine is installed as a third turbine, and the outlet position of the third turbine is connected to the pipeline After being connected to the regenerator through the second valve, the thermal fluid enters the left end of the heat exchange chamber on the left side of the chamber.

본 발명이 제공하는 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템은 아래와 같은 장점을 구비한다.The LNG-powered ship cooling energy utilization system based on the novel integrated IFV provided by the present invention has the following advantages.

1. 냉 에너지 활용 기능을 구비하는 신규 일체형 IFV를 결합하여, 그 구조가 콤팩트하고 시스템의 복합도, 차지하는 면적을 효과적으로 감소하고, 시스템의 경제성을 높인다.1. By combining the new integrated IFV with cooling energy utilization function, the structure is compact, the complexity of the system and the area occupied are effectively reduced, and the economic feasibility of the system is increased.

2. 선박의 해수 담수화 또는 발전 요구에 따라 상응하게 조절하여 두 가지 기능의 전환이 가능하다.2. It is possible to switch between the two functions by adjusting accordingly according to the desalination or power generation needs of the ship.

도 1은 본 발명에 따른 시스템의 모식도이다.
도 2는 본 발명 중 신규 일체형 IFV의 구조 모식도이다.
도 3은 본 발명의 실시예에 따른 시스템의 모식도이다.
1 is a schematic diagram of a system according to the present invention.
2 is a structural schematic diagram of a novel integrated IFV in the present invention.
3 is a schematic diagram of a system according to an embodiment of the present invention.

본 발명에 대한 이해를 돕기 위해 첨부된 도면 및 실시예를 참조하여 본 발명을 더욱 상세하게 설명한다. 실시예는 본 발명을 설명하기 위한 것 일뿐 본 발명의 보호 범위를 제한하지 않는다. The present invention will be described in more detail with reference to the accompanying drawings and examples to help the understanding of the present invention. The examples are only for illustrating the present invention, and do not limit the protection scope of the present invention.

아래 도면 및 구체적인 실시예를 참조하여 본 발명을 더 상세히 설명한다. The present invention will be described in more detail with reference to the drawings and specific examples below.

도 1 및 도 2에 도시된 바와 같이, 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템에 있어서, 상기 시스템은 신규 일체형 IFV1, 증압 펌프, 열교환기, 터빈, 축열기, 밸브, 증발기를 포함하고, 일체형 IFV의 내부는 용접된 배플 플레이트를 통해 3개의 열교환 챔버로 나뉘며, 상층에서 하층까지 각각 LNG 열교환 챔버(101), 중간 매체 열교환 챔버(102) 및 열유체 열교환 챔버(103)이다. 여기서 일체형 IFV의 LNG 열교환 챔버(101)의 우측에는 LNG 입구가 설치되고, 이는 파이프라인을 통해 LNG 저장 탱크에 연결되어 LNG을 입력하며, 일체형 IFV의 LNG 열교환 챔버(101)의 좌측에는 NG 출구가 설치되고, 이는 파이프라인에 연결되어 NG를 출력하며, LNG는 파이프라인을 통해 LNG 입구로부터 신규 IFV에 유입되고, 3세트의 히트 파이프를 통해 순차적으로 중간 매체 및 열유체의 열량을 흡수하여 기화되어, NG로 변하고 NG 출구로부터 출력되며 파이프라인을 통해 하나의 열교환기 내에 들어가며, 상기 열교환기를 제1 열교환기(3)로 설치하고, 제1 열교환기는 파이프라인을 통해 하나의 터빈에 연결되며, 상기 터빈을 제1 터빈(4)으로 설치하고, 제1 터빈(4)은 파이프라인을 통해 중간 매체 열교환 챔버(102)의 우측단 입구에 연결되며, 중간 매체 열교환 챔버(102)의 좌측단 출구는 또한 파이프라인을 통해 제1 열교환기(3)에 연결된다. LNG 열교환 챔버(101)의 우측에 설치된 LNG 입구와 LNG 저장 탱크의 연결 파이프라인에는 증압 펌프가 설치되고, 상기 증압 펌프는 제1 증압 펌프(2)로 설치된다. 중간 매체 열교환 챔버(102)의 우측 가열 챔버 내 동작 유체는 파이프라인을 통해 인출되고, 파이프라인에는 증압 펌프가 설치되며, 상기 증압 펌프는 제2 증압 펌프(11)로 설치되고, 파이프라인은 또한 중간 매체 열교환 챔버(102) 내의 인접한 좌측 가열 챔버 내에 인입된다. 열유체 열교환 챔버 우측 챔버(103)의 우측단은 파이프라인에 연결되고, 파이프라인에는 증압 펌프가 설치되며, 상기 증압 펌프는 제3 증압 펌프(12)로 설치되고, 파이프라인은 또한 하나의 열교환기에 연결되며, 상기 열교환기는 제2 열교환기(13)로 설치되고, 제2 열교환기는 또한 파이프라인을 통해 하나의 터빈에 연결되며, 상기 터빈은 제2 터빈(5)으로 설치되고, 제2 터빈(5)은 파이프라인을 통해 열유체 열교환 챔버(103) 우측 챔버의 좌측 입구에 연결된다. 열유체 열교환 챔버 좌측 챔버(103)의 우측 출구는 파이프라인을 통해 인출되어 하나의 증압 펌프에 연결되어, 상기 증압 펌프는 제4 증압 펌프(9)로 설치되며, 파이프라인은 또한 하나의 삼방 밸브에 들어가고, 상기 삼방 밸브는 제1 밸브(7)로 설치되며, 제1 밸브(7)의 하나의 포트는 파이프라인을 통해 하나의 증발기(8)에 연결되고, 제1 밸브(7)의 다른 하나의 포트는 파이프라인을 통해 하나의 축열기(6)에 연결되며, 증발기(8)의 출구 위치는 파이프라인을 통해 다른 하나의 삼방 밸브에 연결되고, 상기 삼방 밸브는 제2 밸브(14)로 설치되며, 제2 밸브(14)의 하나의 포트는 파이프라인을 통해 열유체 열교환 챔버(103)의 좌측단에 연결되고, 축열기(6)의 출구 위치는 파이프라인을 통해 제1 열교환기(3)에 연결된 후 하나의 터빈을 경유하며, 상기 터빈은 제3 터빈(10)으로 설치되고, 제3 터빈(10)의 출구 위치는 파이프라인을 통해 축열기(6)에 연결된 후 제2 밸브(14)를 경유하여 열유체 열교환 챔버(103) 좌측 챔버의 좌측단에 들어간다.1 and 2, in the LNG-powered ship cold energy utilization system based on the new integrated IFV, the system includes the new integrated IFV1, a booster pump, a heat exchanger, a turbine, a regenerator, a valve, and an evaporator. The interior of the integrated IFV is divided into three heat exchange chambers through a welded baffle plate, and from the upper layer to the lower layer is an LNG heat exchange chamber 101, an intermediate medium heat exchange chamber 102, and a thermal fluid heat exchange chamber 103, respectively. Here, an LNG inlet is installed on the right side of the LNG heat exchange chamber 101 of the integrated IFV, which is connected to an LNG storage tank through a pipeline to input LNG, and an NG outlet is located on the left side of the LNG heat exchange chamber 101 of the integrated IFV. installed, it is connected to the pipeline to output NG, and the LNG flows into the new IFV from the LNG inlet through the pipeline, and is vaporized by sequentially absorbing heat from the intermediate medium and thermal fluid through three sets of heat pipes. , NG and output from the NG outlet and enters one heat exchanger through a pipeline, the heat exchanger is installed as a first heat exchanger 3, the first heat exchanger is connected to one turbine through a pipeline, and the The turbine is installed as a first turbine 4, the first turbine 4 is connected to the right end inlet of the intermediate medium heat exchange chamber 102 through a pipeline, and the left end outlet of the intermediate medium heat exchange chamber 102 is It is also connected to the first heat exchanger 3 via a pipeline. A booster pump is installed in the pipeline connecting the LNG inlet installed on the right side of the LNG heat exchange chamber 101 and the LNG storage tank, and the booster pump is installed as the first booster pump 2 . The working fluid in the right heating chamber of the intermediate medium heat exchange chamber 102 is withdrawn through a pipeline, and a booster pump is installed in the pipeline, the booster pump is installed as a second booster pump 11, and the pipeline is also The intermediate medium is drawn into the adjacent left heating chamber in the heat exchange chamber 102 . The right end of the chamber 103 on the right side of the thermal fluid heat exchange chamber is connected to a pipeline, and a booster pump is installed in the pipeline, the booster pump is installed as a third booster pump 12, and the pipeline is also one heat exchange connected to the machine, said heat exchanger being installed as a second heat exchanger (13), the second heat exchanger also being connected to one turbine via a pipeline, said turbine being installed as a second turbine (5), a second turbine (5) is connected to the left inlet of the right chamber of the thermal fluid heat exchange chamber 103 through a pipeline. The right outlet of the left chamber 103 of the thermal fluid heat exchange chamber is drawn out through a pipeline and connected to one booster pump, the booster pump is installed as a fourth booster pump 9, and the pipeline also has one three-way valve into, the three-way valve is installed as a first valve 7 , and one port of the first valve 7 is connected to one evaporator 8 through a pipeline, and the other of the first valve 7 . One port is connected to one regenerator (6) through a pipeline, the outlet position of the evaporator (8) is connected to the other three way valve through a pipeline, said three way valve is connected to the second valve (14) One port of the second valve 14 is connected to the left end of the thermal fluid heat exchange chamber 103 through a pipeline, and the outlet position of the regenerator 6 is the first heat exchanger through the pipeline After being connected to (3) via one turbine, the turbine is installed as a third turbine 10, and the outlet location of the third turbine 10 is the second after being connected to the regenerator 6 through a pipeline. The thermal fluid heat exchange chamber (103) enters the left end of the left side chamber via the valve (14).

실시예 1: 도 3에 도시된 바와 같이 밸브(F1)가 순환 매체(R-2, R-3')를 연통시키고, 밸브(F2)가 순환 매체(R-4', R-6)를 연통시킬 경우 Example 1: As shown in Fig. 3, the valve F1 communicates the circulation medium R-2 and R-3', and the valve F2 connects the circulation medium R-4' and R-6. If you communicate

LNG 열교환 챔버: 저장 탱크로부터 나온 LNG를 1200 kPa로 가압하고 온도는 -162 ℃이며, 가압 후의 LNG-1은 일체형 IFV 우측단 입구 위치로부터 일체형 IFV-2에 들어가고, 우측 제1 세트 히트 파이프를 통해 먼저 중간 매체(C-6)와 열교환을 진행하여 -109.3 ℃로 승온 후, 중간 제2 세트 및 우측 제3 세트 히트 파이프를 통해 발전 동작 유체(Y-4), 순환 매체(R-6)와 열교환을 진행하여 압력이 1170 kPa, 온도가 -8.932℃인 천연 가스로 완전히 기화한 다음, 마지막으로 NG-out를 일체형 IFV 좌측단으로부터 유출시키고, 쟈켓워터(CW)에 의해 온도를 5 ℃로 조절하여 메인 엔진에 들여보내 연소시킨다.LNG heat exchange chamber: LNG from the storage tank is pressurized to 1200 kPa and the temperature is -162 ° C. After pressurization, the LNG-1 enters the integral IFV-2 from the right end inlet position of the integral IFV, and through the right first set heat pipe First, heat exchange with the intermediate medium (C-6) is carried out to raise the temperature to -109.3 ℃, and then the power generation working fluid (Y-4) and the circulating medium (R-6) through the middle second set and the right third set heat pipe After heat exchange is carried out to completely vaporize the natural gas with a pressure of 1170 kPa and a temperature of -8.932℃, finally, the NG-out is discharged from the left end of the integrated IFV, and the temperature is adjusted to 5℃ by the jacket water (CW). It is fed into the main engine for combustion.

중간 매체 열교환 챔버: 기체 상태 중간 매체(C-6)가 일체형 IFV 우측단으로 중간 매체 열교환 챔버(102)의 우측 챔버에 들어가고, 응축 후의 C-1이 증압 펌프에 의해 3020 kPa의 C-2로 증압된 후, C-2가 일체형 IFV의 중간 매체 열교환 챔버(102)의 좌측 챔버에 들어가 순서에 따라 발전 동작 유체(Y-4), 순환 매체(R-6)와 각각 열교환을 진행하여 기화되고, 그 압력은 3000 kPa, 온도는 -10 ℃이며, 완전히 기화된 중간 매체(C-4)가 마지막으로 열교환기에서 쟈켓워터(CW)에 의해 가열되고, 또한 과열도가 더 높아진 후 온도가 68.89 ℃인 C-5가 터빈(Turbine-1)에 들어가 발전을 진행하며, 배기가스(C-6)가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료된다.Intermediate medium heat exchange chamber: The gaseous intermediate medium (C-6) enters the right side chamber of the intermediate medium heat exchange chamber 102 at the right end of the integral IFV, and the C-1 after condensation is converted to C-2 of 3020 kPa by the pressure booster pump. After the pressure is increased, C-2 enters the left chamber of the intermediate medium heat exchange chamber 102 of the integrated IFV and heat exchanges with the power generation working fluid (Y-4) and the circulating medium (R-6) in order, respectively, and is vaporized , the pressure is 3000 kPa, the temperature is -10 ℃, the fully vaporized intermediate medium (C-4) is finally heated by the jacket water (CW) in the heat exchanger, and the temperature is 68.89 after the superheating degree is higher C-5, which is ℃, enters the turbine (Turbine-1) to generate power, and when the exhaust gas (C-6) enters the integrated IFV again, one cycle is completed.

열유체 열교환 챔버: 열유체 열교환 챔버(103)의 우측 챔버 내에 유기 동작 유체 랭킨 사이클을 설정하고, 압력이 364.7 kPa, 온도가 -60.99 ℃인 기체 상태 순환 매체(Y-4)가 일체형 IFV의 열유체 열교환 챔버(103)의 우측 챔버에 들어가 중간 매체 및 LNG의 냉 에너지를 흡수하여 액화된 후 일체형 IFV 우측단 출구로부터 유출되며, 응축 후 압력이 354.7 kPa, 온도가 -70 ℃인 Y-1가 증압 펌프(P2)에 의해 압력이 8767 kPa인 Y-2로 증압된 후, 열교환기(YX-1)에 들어가 쟈켓워터와 열교환을 진행하여 Y-3로 기화되고, 온도는 80.2 ℃로 상승하며, 그 다음 터빈(Turbine-2)에 들어가 발전을 진행하며, 배기가스(Y-4)가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료된다. 열유체 열교환 챔버(103)의 좌측 챔버 내에 해수 담수화 순환을 형성하고, 압력이 100.3 kPa, 온도가 -5 ℃인 순환 매체(R-6)가 일체형 IFV 좌측단에서 열유체 열교환 챔버(103)의 좌측 챔버에 들어가 중간 매체 및 LNG와 열교환을 진행하여 응축되고, 온도가 -27 ℃로 하강하며 일체형 IFV에서 유출된 액체 상태 R-1가 증압 펌프(P3)에 의해 110.3 kPa로 증압된 R-2가 증발기(E-1)에 들어가 냉동법 해수 담수화를 진행하고 온도가 -5 ℃의 R-4'로 상승하며, 고온 R-6가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료된다. Thermo-fluid heat exchange chamber: Set up an organic working fluid Rankine cycle in the right chamber of the thermo-fluid heat exchange chamber 103, the gaseous circulating medium (Y-4) having a pressure of 364.7 kPa and a temperature of -60.99 ° C. After entering the right chamber of the fluid heat exchange chamber 103, it absorbs the cooling energy of the intermediate medium and LNG and liquefies it, and flows out from the right end outlet of the integrated IFV. After condensation, Y-1 with a pressure of 354.7 kPa and a temperature of -70 ℃ After the pressure is increased to Y-2, which is 8767 kPa, by the pressure booster pump (P2), it enters the heat exchanger (YX-1) to exchange heat with the jacket water to vaporize it to Y-3, and the temperature rises to 80.2 ℃. , then enters the turbine (Turbine-2) to generate power, and when the exhaust gas (Y-4) enters the integrated IFV again, one cycle is completed. A circulating medium (R-6) having a pressure of 100.3 kPa and a temperature of -5 ℃ is formed in the left side chamber of the thermal fluid heat exchange chamber 103, and the thermal fluid heat exchange chamber 103 is integrated at the left end of the IFV. It enters the left chamber and undergoes heat exchange with the intermediate medium and LNG to be condensed, and the temperature drops to -27 ℃. enters the evaporator (E-1) and proceeds with the freezing method desalination, the temperature rises to R-4' of -5 ℃, and when the high-temperature R-6 enters the integrated IFV again, one cycle is completed.

실시예 2: 밸브(F1)가 순환 매체(R-2, R-2')를 연통시키고, 밸브(F2)가 순환 매체(R-5', R-6)를 연통시킬 경우Example 2: When the valve F1 communicates the circulation medium R-2, R-2' and the valve F2 communicates the circulation medium R-5', R-6

LNG 열교환 챔버: 저장 탱크로부터 나온 LNG를 1200 kPa로 가압하고 온도는 -162 ℃이며, 가압 후의 LNG-1은 일체형 IFV 우측단 입구 위치로부터 일체형 IFV-2에 들어가고, 우측 제1 세트 히트 파이프를 통해 먼저 중간 매체(C-6)와 열교환을 진행하여 -109.3 ℃로 승온 후, 중간 제2 세트 및 우측 제3 세트 히트 파이프를 통해 발전 동작 유체(Y-4), 순환 매체(R-6)와 열교환을 진행하여 압력이 1170 kPa, 온도가 -10.28 ℃인 천연 가스로 완전히 기화한 다음, 마지막으로 NG-out를 일체형 IFV 좌측단으로부터 유출시키고, 쟈켓워터(CW)에 의해 온도를 5 ℃로 조절하여 메인 엔진에 들여보내 연소시킨다. LNG heat exchange chamber: LNG from the storage tank is pressurized to 1200 kPa and the temperature is -162 ° C. After pressurization, the LNG-1 enters the integral IFV-2 from the right end inlet position of the integral IFV, and through the right first set heat pipe First, heat exchange with the intermediate medium (C-6) is carried out to raise the temperature to -109.3 ℃, and then the power generation working fluid (Y-4) and the circulating medium (R-6) through the middle second set and the right third set heat pipe After heat exchange is performed to completely vaporize natural gas with a pressure of 1170 kPa and a temperature of -10.28 ℃, finally, the NG-out is discharged from the left end of the integrated IFV, and the temperature is adjusted to 5 ℃ by the jacket water (CW). It is fed into the main engine for combustion.

중간 매체 열교환 챔버: 기체 상태 중간 매체(C-6)가 일체형 IFV 우측단으로 중간 매체 열교환 챔버(102)의 우측 챔버에 들어가고, 응축 후의 C-1이 증압 펌프에 의해 3258 kPa의 C-2로 증압된 후, C-2가 일체형 IFV의 중간 매체 열교환 챔버(102)의 좌측 챔버에 들어가 순서에 따라 발전 동작 유체(Y-4), 순환 매체(R-6)와 각각 열교환을 진행하여 기화되고, 그 압력은 3238 kPa, 온도는 -10.28 ℃이며, 완전히 기화된 중간 매체(C-4)가 마지막으로 열교환기에서 쟈켓워터(CW)에 의해 가열되고, 또한 과열도가 더 높아진 후 온도가 74.93 ℃인 C-5가 터빈(Turbine-1)에 들어가 발전을 진행하며, 배기가스(C-6)가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료된다.Intermediate medium heat exchange chamber: The gaseous intermediate medium (C-6) enters the right side chamber of the intermediate medium heat exchange chamber 102 at the right end of the integral IFV, and the C-1 after condensation is converted to C-2 of 3258 kPa by the booster pump. After the pressure is increased, C-2 enters the left chamber of the intermediate medium heat exchange chamber 102 of the integrated IFV and heat exchanges with the power generation working fluid (Y-4) and the circulating medium (R-6) in order, respectively, and is vaporized , the pressure is 3238 kPa, the temperature is -10.28 ℃, the fully vaporized intermediate medium (C-4) is finally heated by the jacket water (CW) in the heat exchanger, and the temperature is 74.93 after the superheating degree is higher C-5, which is ℃, enters the turbine (Turbine-1) to generate power, and when the exhaust gas (C-6) enters the integrated IFV again, one cycle is completed.

열유체 열교환 챔버: 열유체 열교환 챔버(103)의 우측 챔버 내에 유기 동작 유체 랭킨 사이클을 설정하고, 압력이 371.4 kPa, 온도가 -60.53 ℃인 기체 상태 순환 매체(Y-4)가 일체형 IFV의 열유체 열교환 챔버(103)의 우측 챔버에 들어가 중간 매체 및 LNG의 냉 에너지를 흡수하여 액화된 후 일체형 IFV 우측단 출구로부터 유출되며, 응축 후 압력이 361.4 kPa, 온도가 -70 ℃인 Y-1가 증압 펌프(P2)에 의해 압력이 9677 kPa인 Y-2로 증압된 후, 열교환기(YX-1)에 들어가 쟈켓워터와 열교환을 진행하여 Y-3로 기화되고, 온도는 85.58 ℃로 상승하며, 그 다음 터빈(Turbine-2)에 들어가 발전을 진행하며, 배기가스(Y-4)가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료된다. 열유체 열교환 챔버(103)의 좌측 챔버 내에 해수 담수화 순환을 형성하고, 압력이 94.29 kPa, 온도가 -0.282 ℃인 순환 매체(R-6)가 일체형 IFV 좌측단에서 열유체 열교환 챔버(103)의 좌측 챔버에 들어가 중간 매체 및 LNG와 열교환을 진행하여 응축되고, 온도가 -5.282 ℃로 하강하며 일체형 IFV에서 유출된 액체 상태 R-1가 증압 펌프(P3)에 의해 발전 압력 1009 kPa로 승압되고, 고압 액체 상태 순환 매체(R-2')가 먼저 축열기(RX-1) 및 터빈(Turbine-3)에 들어가 출구의 저압 저온 R-5와 열교환을 진행하여 12.79 ℃로 승온되고, 그 다음 R-3이 열교환기(CX-1)에 들어가 쟈켓워터(CW)에 의해 가열되어 78.85 ℃로 증발하며 터빈(Turbine-3)에 들어가 발전을 진행하고, 온도가 23.94 ℃로 하강하고, 배기가스(R-5)가 축열기(RX-1)에 들어가 온도가 하강하며, 마지막으로 R-6가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료된다. Thermo-fluid heat exchange chamber: Set up an organic working fluid Rankine cycle in the right chamber of the thermo-fluid heat exchange chamber 103, the gaseous circulating medium (Y-4) having a pressure of 371.4 kPa and a temperature of -60.53 ° C. After entering the right chamber of the fluid heat exchange chamber 103, it absorbs the cooling energy of the intermediate medium and LNG, and flows out from the right end outlet of the integrated IFV. After the pressure is boosted to Y-2 with a pressure of 9677 kPa by the booster pump (P2), it enters the heat exchanger (YX-1) to exchange heat with jacket water to vaporize into Y-3, and the temperature rises to 85.58 ℃. , then enters the turbine (Turbine-2) to generate power, and when the exhaust gas (Y-4) enters the integrated IFV again, one cycle is completed. A circulating medium (R-6) having a pressure of 94.29 kPa and a temperature of -0.282 ° C, forming a seawater desalination circulation in the left chamber of the thermal fluid heat exchange chamber 103, is integrated in the left end of the thermal fluid heat exchange chamber 103 at the left end of the IFV. It enters the left chamber and undergoes heat exchange with the intermediate medium and LNG to be condensed, the temperature drops to -5.282 ℃, and the liquid R-1 leaked from the integrated IFV is boosted to a power generation pressure of 1009 kPa by the booster pump (P3), The high-pressure liquid circulating medium (R-2') first enters the regenerator (RX-1) and the turbine (Turbine-3) and heat-exchanges with the low-pressure low-temperature R-5 at the outlet to increase the temperature to 12.79 ℃, then R -3 enters the heat exchanger (CX-1), is heated by the jacket water (CW), evaporates to 78.85 ℃, enters the turbine-3, generates power, the temperature drops to 23.94 ℃, and the exhaust gas ( R-5) enters the regenerator (RX-1) and the temperature drops, and finally, when R-6 enters the integrated IFV again, one cycle is completed.

본 발명의 기본 원리, 주요 특징 및 이점은 위에서 보여지고 설명되었다. 당업자라면 본 발명이 전술한 실시예에 의해 제한되지 않는다는 것을 이해할 것이고, 전술한 실시예 및 설명은 본 발명의 원리를 예시할 뿐이며, 본 발명의 사상 및 범위를 벗어나지 않고 다양한 변경 및 개선이 있을 수 있으며, 이러한 변경 및 개선은 모두 본 발명의 보호 범위에 속한다. 본 발명의 보호범위는 첨부된 청구범위 및 그 등가물에 의해 정의된다.The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the art will understand that the present invention is not limited by the foregoing embodiments, and the foregoing embodiments and descriptions only illustrate the principles of the present invention, and various changes and improvements may be made without departing from the spirit and scope of the present invention. and all such changes and improvements fall within the protection scope of the present invention. The protection scope of the present invention is defined by the appended claims and their equivalents.

1: 일체형 IFV;
2: 제1 증압 펌프;
3: 제1 열교환기;
4: 제1 터빈;
5: 제2 터빈;
6: 축열기;
7: 제1 밸브;
8: 증발기;
9: 제4 증압 펌프;
10: 제3 터빈;
11: 제2 증압 펌프;
12: 제3 증압 펌프;
13: 제2 열교환기;
14: 제2 밸브;
101: LNG 열교환 챔버;
102: 중간 매체 열교환 챔버;
103: 열유체 열교환 챔버.
1: integral IFV;
2: first booster pump;
3: first heat exchanger;
4: first turbine;
5: second turbine;
6: Regenerator;
7: first valve;
8: evaporator;
9: Fourth booster pump;
10: third turbine;
11: second booster pump;
12: third booster pump;
13: second heat exchanger;
14: second valve;
101: LNG heat exchange chamber;
102: medium medium heat exchange chamber;
103: thermal fluid heat exchange chamber.

Claims (8)

신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템에 있어서,
상기 시스템은 신규 일체형 IFV를 기반으로 하고, 먼저 랭킨 사이클 발전을 통해 LNG 연료 고품위 냉 에너지를 회수하고 이를 전기 에너지로 변환시킨 다음, 냉매를 이용하여 LNG 연료 저품위 냉 에너지를 회수하여, 발전 또는 해수 담수화에 사용하며, 마지막으로 쟈켓워터를 이용하여 NG를 메인 엔진 기체 유입 희망 온도까지 가열하고,
상기 시스템은 신규 일체형 IFV, 증압 펌프, 열교환기, 터빈, 축열기, 밸브, 증발기를 포함하고, 상기 일체형 IFV의 내부는 용접된 배플 플레이트를 통해 3개의 열교환 챔버로 나뉘며, 상층에서 하층까지 각각 LNG 열교환 챔버, 중간 매체 열교환 챔버 및 열유체 열교환 챔버이고, 상기 일체형 IFV 내의 열교환은 좌측단, 중앙, 우측단 챔버의 3세트의 히트 파이프를 통해 LNG의 냉 에너지를 중간 매체 및 열유체에 전달하고,
상기 일체형 IFV의 LNG 열교환 챔버의 우측에는 LNG 입구가 설치되고, 이는 파이프라인을 통해 LNG 저장 탱크에 연결되어 LNG을 입력하며, 상기 일체형 IFV의 LNG 열교환 챔버의 좌측에는 NG 출구가 설치되고, 이는 파이프라인에 연결되어 NG를 출력하며, LNG는 파이프라인을 통해 LNG 입구로부터 신규 IFV에 유입되고, 3세트의 히트 파이프를 통해 순차적으로 중간 매체 및 열유체의 열량을 흡수하여 기화되어, NG로 변하고 NG 출구로부터 출력되며 파이프라인을 통해 제1 열교환기 내에 들어가며,
상기 제1 열교환기는 파이프라인을 통해 제1 터빈에 연결되며,
상기 제1 터빈은 파이프라인을 통해 상기 중간 매체 열교환 챔버의 우측단 입구에 연결되며, 상기 중간 매체 열교환 챔버의 좌측단 출구는 또한 파이프라인을 통해 상기 제1 열교환기에 연결되고,
상기 열유체 열교환 챔버 우측 챔버의 우측단은 파이프라인에 연결되고, 파이프라인에는제3 증압 펌프가 설치되고 파이프라인은 제2 열교환기에 연결되며,
상기 제2 열교환기는 또한 파이프라인을 통해 제2 터빈에 연결되며,
상기 제2 터빈은 파이프라인을 통해 상기 열유체 열교환 챔버 우측 챔버의 좌측 입구에 연결되고,
상기 열유체 열교환 챔버 좌측 챔버의 우측 출구는 파이프라인을 통해 인출되어 제4 증압 펌프에 연결되고,
파이프라인은 또한 삼방 밸브인 제1 밸브에 들어가고,
상기 제1 밸브의 하나의 포트는 파이프라인을 통해 하나의 증발기에 연결되고, 상기 제1 밸브의 다른 하나의 포트는 파이프라인을 통해 하나의 축열기에 연결되며,
상기 증발기의 출구 위치는 파이프라인을 통해 삼방 밸브인 제2 밸브에 연결되고, 상기 제2 밸브의 하나의 포트는 파이프라인을 통해 상기 열유체 열교환 챔버의 좌측단에 연결되고, 상기 축열기의 출구 위치는 파이프라인을 통해 상기 제1 열교환기에 연결된 후 제3 터빈을 경유하며, 상기 제3 터빈의 출구 위치는 파이프라인을 통해 상기 축열기에 연결된 후 상기 제2 밸브를 경유하여 상기 열유체 열교환 챔버 좌측 챔버의 좌측단에 들어가는 것을 특징으로 하는 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템.
In the LNG-powered ship cooling energy utilization system based on the new integrated IFV,
The system is based on a new integrated IFV, first recovers LNG fuel high-grade cold energy through Rankine cycle power generation, converts it into electrical energy, and then recovers low-grade LNG fuel low-grade cold energy using a refrigerant for power generation or seawater desalination Finally, using jacket water, the NG is heated to the desired temperature for the inlet of the main engine gas,
The system includes a new integrated IFV, a booster pump, a heat exchanger, a turbine, a regenerator, a valve, and an evaporator, and the interior of the integrated IFV is divided into three heat exchange chambers through a welded baffle plate, each of LNG from upper to lower floors a heat exchange chamber, an intermediate medium heat exchange chamber and a thermal fluid heat exchange chamber, wherein the heat exchange in the integrated IFV transfers the cooling energy of LNG to the intermediate medium and the thermal fluid through three sets of heat pipes of the left end, center, and right end chambers,
An LNG inlet is installed on the right side of the LNG heat exchange chamber of the integrated IFV, which is connected to an LNG storage tank through a pipeline to input LNG, and an NG outlet is installed on the left side of the LNG heat exchange chamber of the integrated IFV, which is a pipe It is connected to the line to output NG, and the LNG flows into the new IFV from the LNG inlet through the pipeline, and through three sets of heat pipes, it sequentially absorbs the heat of the intermediate medium and the thermal fluid and vaporizes it, turning into NG and NG It is output from the outlet and enters the first heat exchanger through the pipeline,
The first heat exchanger is connected to the first turbine through a pipeline,
the first turbine is connected to the right end inlet of the intermediate medium heat exchange chamber through a pipeline, and the left end outlet of the intermediate medium heat exchange chamber is also connected to the first heat exchanger through a pipeline;
The right end of the chamber on the right side of the thermal fluid heat exchange chamber is connected to a pipeline, a third booster pump is installed in the pipeline, and the pipeline is connected to a second heat exchanger,
the second heat exchanger is also connected to a second turbine via a pipeline;
the second turbine is connected to the left inlet of the right chamber of the thermal fluid heat exchange chamber through a pipeline;
The right outlet of the left chamber of the thermal fluid heat exchange chamber is drawn out through a pipeline and connected to a fourth booster pump,
The pipeline also enters the first valve, which is a three-way valve,
One port of the first valve is connected to one evaporator through a pipeline, and the other port of the first valve is connected to one regenerator through a pipeline,
The outlet position of the evaporator is connected to a second valve which is a three-way valve through a pipeline, and one port of the second valve is connected to the left end of the thermal fluid heat exchange chamber through a pipeline, and the outlet of the regenerator The position is connected to the first heat exchanger via a pipeline and then via a third turbine, and the outlet position of the third turbine is connected to the regenerator via a pipeline and then via the second valve to the thermal fluid heat exchange chamber An LNG-powered ship cooling energy utilization system based on a new integrated IFV, characterized in that it enters the left end of the left chamber.
제1항에 있어서,
상기 LNG 열교환 챔버의 우측에 설치된 LNG 입구와 LNG 저장 탱크의 연결 파이프라인에는 제1 증압 펌프가 설치되는 것을 특징으로 하는 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템.
According to claim 1,
An LNG-powered ship cold energy utilization system based on a new integrated IFV, characterized in that a first booster pump is installed in the pipeline connecting the LNG inlet installed on the right side of the LNG heat exchange chamber and the LNG storage tank.
제2항에 있어서,
상기 중간 매체 열교환 챔버의 우측 가열 챔버 내 동작 유체는 파이프라인을 통해 인출되고, 파이프라인에는 제2 증압 펌프가 설치되며,
파이프라인은 또한 상기 중간 매체 열교환 챔버 내의 인접한 좌측 가열 챔버 내에 인입되는 것을 특징으로 하는 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템.
3. The method of claim 2,
The working fluid in the right heating chamber of the intermediate medium heat exchange chamber is withdrawn through a pipeline, and a second booster pump is installed in the pipeline,
A new integrated IFV based LNG powered vessel cold energy utilization system, characterized in that the pipeline is also introduced into the adjacent left heating chamber in the intermediate medium heat exchange chamber.
제3항에 있어서,
구체적은 기능은
LNG 열교환: LNG가 일체형 IFV의 LNG 열교환 챔버의 우측단 입구 위치로부터 일체형 IFV 내에 들어가고, 우측 제1 세트 히트 파이프를 통해 먼저 중간 매체와 열교환을 진행하여 승온 후, 중간 제2 세트 및 우측 제3 세트 히트 파이프를 통해 발전 동작 유체, 순환 매체와 열교환을 진행하여 완전히 기화한 다음, 마지막으로 NG를 일체형 IFV의 LNG 열교환 챔버 좌측단으로부터 유출시키고, 제1 열교환기 중의 쟈켓워터에 의해 온도를 조절하여 메인 엔진에 들여보내 연소시키는 단계;
중간 매체 열교환: 기체 상태 중간 매체가 일체형 IFV의 중간 매체 열교환 챔버 우측단으로 들어가고, 응축 후의 중간 매체가 제2 증압 펌프에 의해 소정 압력의 중간 매체로 증압된 후 다시 일체형 IFV의 중간 매체 열교환 챔버에 들어가 순서에 따라 발전 동작 유체, 순환 매체와 각각 열교환을 진행하여 기화되고, 완전히 기화된 중간 매체가 마지막으로 제1 열교환기에서 쟈켓워터에 의해 가열되고, 또한 과열도가 더 높아진 중간 매체가 제1 터빈에 들어가 발전을 진행하며, 배기가스 중간 매체가 다시 일체형 IFV에 들어가면 한 번의 순환이 완료되는 단계;
열유체 열교환: 열유체 열교환 챔버 우측 챔버 내에 유기 동작 유체 랭킨 사이클을 설정하고, 기체 상태 순환 매체가 일체형 IFV의 열유체 열교환 챔버에 들어가 중간 매체 및 LNG의 냉 에너지를 흡수하여 액화된 후 일체형 IFV 우측단 출구로부터 유출되며, 응축 후의 발전 동작 유체는 제3 증압 펌프에 의해 소정 압력의 발전 동작 유체로 증압된 후, 열교환기에 들어가 쟈켓워터와 열교환을 진행하여 발전 동작 유체로 기화되고, 제2 터빈에 들어가 발전을 진행하며, 배기가스 발전 동작 유체는 다시 일체형 IFV에 들어가면 한 번의 순환이 완료되는 단계를 포함하여 구현되고,
제1 밸브 및 제2 밸브의 전환 성황에 따라, 열유체 열교환 챔버 좌측 챔버 내에 해수 담수화 순환 또는 유기 동작 유체 랭킨 사이클을 형성하고, 순환 매체는 중간 매체 및 LNG의 냉 에너지를 흡수하여 해수 담수화 또는 발전에 사용하는 것을 특징으로 하는 신규 일체형 IFV를 기반으로 한 LNG 동력 선박 냉 에너지 활용 시스템.
4. The method of claim 3,
the specific function
LNG heat exchange: LNG enters the integrated IFV from the right-end inlet position of the LNG heat exchange chamber of the integrated IFV, and first heat exchanges with the intermediate medium through the right first set heat pipe to increase the temperature, then the middle second set and the right third set After heat-exchange with the power generation working fluid and circulating medium through the heat pipe, it is completely vaporized, and finally, NG is discharged from the left end of the LNG heat exchange chamber of the integrated IFV, and the temperature is controlled by the jacket water in the first heat exchanger. entering the engine for combustion;
Intermediate medium heat exchange: The gaseous intermediate medium enters the right end of the intermediate medium heat exchange chamber of the integral IFV, and the intermediate medium after condensation is pressurized to the intermediate medium of a predetermined pressure by the second booster pump, and then back to the intermediate medium heat exchange chamber of the integral IFV. In the order of entry, heat exchange with the power generation working fluid and the circulating medium is performed, respectively, and vaporized, the fully vaporized intermediate medium is finally heated by the jacket water in the first heat exchanger, and the intermediate medium with a higher degree of superheat is the first Entering the turbine to generate power, and when the exhaust gas intermediate medium enters the integrated IFV again, one cycle is completed;
Thermal fluid heat exchange: set up the organic working fluid Rankine cycle in the right chamber of the thermal fluid heat exchange chamber, and the gaseous circulating medium enters the thermal fluid heat exchange chamber of the integral IFV, absorbs the intermediate medium and the cooling energy of the LNG to be liquefied, and then the integral IFV right However, the power generation working fluid flows out from the outlet and after being condensed is pressurized to a power generating working fluid of a predetermined pressure by the third booster pump, enters the heat exchanger to exchange heat with the jacket water, and is vaporized into the power generating working fluid, and to the second turbine It enters and generates power, and when the exhaust gas power generation working fluid enters the integrated IFV again, it is implemented including a step in which one cycle is completed,
According to the switching status of the first valve and the second valve, a seawater desalination circulation or organic working fluid Rankine cycle is formed in the left chamber of the thermal fluid heat exchange chamber, and the circulation medium absorbs the cooling energy of the intermediate medium and LNG to desalinate or generate seawater. LNG-powered ship cooling energy utilization system based on a new integrated IFV, characterized in that it is used for
삭제delete 삭제delete 삭제delete 삭제delete
KR1020210040973A 2020-11-03 2021-03-30 A LNG-powered ship cold energy utilization system based on a new integrated IFV KR102439397B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011209064.4A CN112302748B (en) 2020-11-03 2020-11-03 LNG power ship cold energy utilization system based on novel integral IFV
CN202011209064.4 2020-11-03

Publications (2)

Publication Number Publication Date
KR20220060451A KR20220060451A (en) 2022-05-11
KR102439397B1 true KR102439397B1 (en) 2022-09-02

Family

ID=74333881

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210040973A KR102439397B1 (en) 2020-11-03 2021-03-30 A LNG-powered ship cold energy utilization system based on a new integrated IFV

Country Status (2)

Country Link
KR (1) KR102439397B1 (en)
CN (1) CN112302748B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115075988B (en) * 2022-06-28 2023-09-15 江苏科技大学 Large-scale low-power-consumption LNG power ship tail gas carbon capture system and operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102059128B1 (en) * 2018-09-20 2019-12-24 한국해양대학교 산학협력단 refrigeration and power generation system for LNG fuelled refrigerated cargo carrier using LNG cold energy
KR102059124B1 (en) * 2018-09-20 2019-12-24 한국해양대학교 산학협력단 cooling system for ship using cold energy of liquefied natural gas and control method for thereof
KR102132082B1 (en) * 2018-07-27 2020-07-09 한국조선해양 주식회사 Boil-off gas cooling system and ship having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110080846A (en) * 2018-04-23 2019-08-02 江苏科技大学 A kind of the monoblock type intermediate medium vaporizer and electricity generation system of band LNG cold energy use function
CN109268095B (en) * 2018-08-15 2021-09-07 江苏科技大学 LNG fuel cold energy comprehensive utilization method and system for dual-fuel power ship
CN109184837B (en) * 2018-08-15 2021-02-09 江苏科技大学 Fuel cold energy full-power generation cascade utilization system and method for LNG power ship
CN109113824B (en) * 2018-08-15 2021-04-27 江苏科技大学 Comprehensive utilization method and system for cold energy of fuel of LNG power ship
CN110761864B (en) * 2019-11-08 2021-12-07 江苏科技大学 Novel cold energy comprehensive utilization system of liquefied natural gas power container ship

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132082B1 (en) * 2018-07-27 2020-07-09 한국조선해양 주식회사 Boil-off gas cooling system and ship having the same
KR102059128B1 (en) * 2018-09-20 2019-12-24 한국해양대학교 산학협력단 refrigeration and power generation system for LNG fuelled refrigerated cargo carrier using LNG cold energy
KR102059124B1 (en) * 2018-09-20 2019-12-24 한국해양대학교 산학협력단 cooling system for ship using cold energy of liquefied natural gas and control method for thereof

Also Published As

Publication number Publication date
KR20220060451A (en) 2022-05-11
CN112302748A (en) 2021-02-02
CN112302748B (en) 2022-08-19

Similar Documents

Publication Publication Date Title
KR20110023856A (en) Gas supply systems for gas engines
WO2015000200A1 (en) Cryogenic energy storage-based nuclear power peak load regulation system
CN109184837A (en) LNG Power Vessel fuel cold energy generates electricity gradient utilization system and using method entirely
CN109268095B (en) LNG fuel cold energy comprehensive utilization method and system for dual-fuel power ship
WO2019114536A1 (en) Constructed cold source energy recovery system, heat engine system and energy recovery method
CN102628412A (en) Waste heat power generation system of marine diesel engine based on organic Rankine cycle
CN113309985A (en) LNG fuel power ship cold energy waste heat comprehensive cascade utilization system with zero carbon emission
CN108533344B (en) Nested LNG two-stage parallel cold energy power generation and ice making method and system thereof
Yao et al. Design and optimization of LNG vaporization cold energy comprehensive utilization system based on a novel intermediate fluid vaporizer
WO2019205509A1 (en) Integral intermediate medium vaporiser with lng cold energy utilisation function, and power-generating system
KR102439397B1 (en) A LNG-powered ship cold energy utilization system based on a new integrated IFV
CN106194302B (en) A kind of LNG cold energy utilization system and method
CN109356676B (en) Fuel gasification and combined cooling heating power supply system and method for LNG power ship
Yao et al. Design and optimization of LNG-powered ship cold energy and waste heat integrated utilization system based on novel intermediate fluid vaporizer
KR102530054B1 (en) Ship waste heat power generation system using waste heat of lng engine ship recovered through economizer
KR20140042323A (en) Energy saving system for using waste heat of ship
CN215633192U (en) LNG cold energy utilization device
CN209976590U (en) Steam condensing system and power generation system
CN110107368B (en) Steam condensing method, steam condensing system and power generation system
CN203298552U (en) Device capable of utilizing cold capacity of liquefied natural gas with high efficiency
CN113309591A (en) LNG cold energy utilization device
WO2022188188A1 (en) Integrated intermediate fluid vaporizer having cold energy utilization function and power generation system composed of same
CN106150700B (en) Seawater is cooling, mixes the efficient combustion engine inlet gas cooling device of low-temperature receiver
CN114251643B (en) Multi-energy complementary comprehensive energy system
CN115650345B (en) Ship combined cooling heating power coupling sea water desalination system

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant