KR102437103B1 - 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼 - Google Patents

뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼 Download PDF

Info

Publication number
KR102437103B1
KR102437103B1 KR1020220031665A KR20220031665A KR102437103B1 KR 102437103 B1 KR102437103 B1 KR 102437103B1 KR 1020220031665 A KR1020220031665 A KR 1020220031665A KR 20220031665 A KR20220031665 A KR 20220031665A KR 102437103 B1 KR102437103 B1 KR 102437103B1
Authority
KR
South Korea
Prior art keywords
order
information
time point
client
module
Prior art date
Application number
KR1020220031665A
Other languages
English (en)
Inventor
박영일
Original Assignee
주식회사 글로벌미트플랫폼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 글로벌미트플랫폼 filed Critical 주식회사 글로벌미트플랫폼
Priority to KR1020220098470A priority Critical patent/KR20220118364A/ko
Priority to KR1020220098469A priority patent/KR20220118363A/ko
Application granted granted Critical
Publication of KR102437103B1 publication Critical patent/KR102437103B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/64Protecting data integrity, e.g. using checksums, certificates or signatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0633Lists, e.g. purchase orders, compilation or processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/50Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using hash chains, e.g. blockchains or hash trees

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • General Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Marketing (AREA)
  • General Engineering & Computer Science (AREA)
  • Educational Administration (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Security & Cryptography (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

실시예들은 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법과 축산물 유통 메타버스 플랫폼을 제공한다. 실시예에 따른 뉴럴 네트워크 기반의 축산물 유통 시스템은, 제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 복수의 주문 정보는 각각 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 주문 분석 모듈; 프로세서; 상기 프로세서의 제어에 의해 알림 신호를 생성하여 상기 알림 신호를 상기 제1 클라이언트에 송신하는 알림 모듈; 및 상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하는 데이터베이스;를 포함하되, 상기 주문 분석 모듈은, 제1 시점에서, 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서, 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고, 상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 가능성 및 주문 예상 시기에 관한 분석 결과를 포함하는 제1 주문 예측 정보를 생성하고, 상기 제1 주문 예측 정보를 상기 데이터베이스에 저장하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작 시점으로 하고 상기 제3 시점에 후속하는 제4 시점을 종료 시점으로 하는 제1 주문 예상 구간을 포함하고, 상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 상기 알림 신호 생성 여부를 결정할 수 있다.

Description

뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼{LIVESTOCK PRODUCT DISTRIBUTION SYSTEM AND METHOD BASED ON NEURAL NETWORK AND LIVESTOCK PRODUCT DISTRIBUTION METAVERSE PLATFORM}
본 발명의 실시예들은 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법과 축산물 유통 메타버스 플랫폼에 관한 것으로, 보다 구체적으로는 Twin Meat Factory로 구현되어, 실시간으로 등급별 및 품목별로 생산 및 재고 현황과 주문 가격(offer Price), 그리고 TFID 칩을 이용하여 실시간 물류 흐름을 체크할 수 있도록 구현되는 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법과 축산물 유통 메타버스 플랫폼에 대한 것이다.
통신 기술의 발전에 따라 세계 각국 간의 무역이 폭발적으로 증가하게 되었다. 이에 따라 다양한 품목들의 소비량이 크게 증가하였는데, 축산물 소비량 또한 그러하다. 통계청이 발표한 '통계로 본 축산업 구조 변화' 자료에 따르면 소고기와 돼지, 닭 등 육류 공급량은 1980년부터 연평균 5% 증가해 2018년에는 281만9000톤을 기록했다. 이는 한-미 FTA 등 다양한 무역 협약에 따라 육류 수입량이 크게 증가한 것이 원인으로 꼽히고 있다.
이와 같이, 세계 각국에서 다양한 품질의 축산물이 수입되어 국내 유통되고 있으나, 축산물의 종류, 품질, 가격 등의 정보를 가공하여 제공하는 플랫폼의 필요성이 대두되고 있다. 특히, 최근 4차 산업혁명기술을 이용하여 뉴럴 네트워크와 빅테이터 그리고 메타버스를 활용하여 축산물에 관한 다양한 정보를 가공하여 이를 기초로 생산자와 무역유통업자 및 소비자의 합리적인 축산물 소비를 도울 수 있는 플랫폼이 필요하게 되었다.
세계 각국에서는 제4차 산업혁명이 일어나면서 한 시대를 지배하던 패러다임이 완전히 사라지고 상호 간 보완과 경쟁 관계에 있던 패러다임이 새로운 패러다임으로 자리를 대신하고 있다. 제4차 산업혁명은 현실세계에서 데이터를 수집하여(데이터 확보), 가상세계에서 이를 분석하여 지식을 추출하고(데이터분석), 이를 다시 현실세계에 활용(현실에 적용)하는 가치창출 방식에 주목하면서, 종전의 정보통신기술(ICT)을 넘어서는 다양한 SW분야로서 AI, 빅데이터, IoT, 블록체인, 클라우드 컴퓨팅, 모바일 등에 관한 지능정보기술의 개발이 진행되고 있다. 특히 제4차 산업혁명의 중심지표는 기술적으로 발전한 각종 기술들이 상호 간 융합하면서 컴퓨터의 소프트웨어(SW)를 기반으로 한 AI가 가장 중요한 지위에 있다.
위에서 설명한 배경기술은 발명자가 본원의 개시 내용을 도출하는 과정에서 보유하거나 습득한 것으로서, 반드시 본 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.
실시예들은, 뉴럴 네트워크 기반 축산물 유통 시스템 및 방법, 그리고 축산물 유통 메타버스 플랫폼을 제공한다. 본 발명의 몇몇 실시예에 따른 축산물 유통 시스템(플랫폼)에서는 상품의 거래 뿐만 아니라 거래대금결제를 위한 파이낸싱 기능, 그리고 물류의 추적(TFID)기능 등이 제공된다.
실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 발명의 일 실시예에 따른 뉴럴 네트워크 기반의 축산물 유통 시스템은, 제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 복수의 주문 정보는 각각 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 주문 분석 모듈; 프로세서; 상기 프로세서의 제어에 의해 알림 신호를 생성하여 상기 알림 신호를 상기 제1 클라이언트에 송신하는 알림 모듈; 및 상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하는 데이터베이스;를 포함하되, 상기 주문 분석 모듈은, 제1 시점에서, 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서, 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고, 상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 가능성 및 주문 예상 시기에 관한 분석 결과를 포함하는 제1 주문 예측 정보를 생성하고, 상기 제1 주문 예측 정보를 상기 데이터베이스에 저장하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작 시점으로 하고 상기 제3 시점에 후속하는 제4 시점을 종료 시점으로 하는 제1 주문 예상 구간을 포함하고, 상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 상기 알림 신호 생성 여부를 결정할 수 있다.
상기 주문 분석 모듈이 상기 제4 시점에 선행하는 제5 시점에 상기 제1 클라이언트로부터 상기 제3 주문 정보를 수신하지 않는 경우, 상기 알림 모듈은 상기 알림 신호를 생성하여 상기 제4 시점에 후속하는 제6 시점에 상기 제1 클라이언트에 상기 알림 신호를 송신할 수 있다.
상기 주문 분석 모듈은, 상기 제1 주문 예상 구간에 포함되는 제5 시점에서, 상기 제1 클라이언트로부터 상기 제3 주문 정보를 수신하는 경우, 상기 제1 주문 예측 정보와 상기 제3 주문 정보를 기초로 제2 주문 예측 정보를 생성하고, 상기 데이터베이스에 상기 제2 주문 예측 정보를 저장할 수 있다.
상기 제2 주문 예측 정보는 상기 제1 주문 예상 구간과는 다른 제2 주문 예상 구간을 포함하고, 상기 주문 분석 모듈은, 상기 제3 시점과 상기 제5 시점 사이의 간격과 상기 제5 시점과 상기 제4 시점 사이의 간격을 기초로 상기 제2 주문 예상 구간을 생성할 수 있다.
[수학식]
Figure 112022027497681-pat00001
상기 주문 분석 모듈은 상기 수학식을 이용하여 상기 제2 주문 예상 구간을 생성하고, 상기 수학식에서, k는 고유 보정 계수, t3은 상기 제3 시점, t4는 상기 제4 시점, t5는 상기 제5 시점, t'3은 상기 제3 시점이 보정된 제7 시점, t'4는 상기 제4 시점이 보정된 제8 시점, t는 경과 시간을 의미할 수 있다.
상기 주문 분석 모듈은 보정 모델을 이용하여 상기 제2 주문 예측 정보를 생성하고, 상기 보정 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함하고, 상기 제1 주문 예측 정보에 관한 복수의 학습 데이터는 상기 보정 모델의 상기 입력 레이어에 입력되어 상기 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터를 출력하고, 상기 출력 벡터는 상기 출력 레이어에 연결된 손실함수 레이어에 입력되고, 상기 손실함수 레이어는 상기 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고, 상기 보정 모델의 파라미터는 상기 손실값이 작아지는 방향으로 학습될 수 있다.
본 발명의 다른 실시예에 따른 뉴럴 네트워크 기반의 축산물 유통 서비스 방법은, 주문 분석 모듈에 의해, 제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 복수의 주문 정보는 각각 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하고, 데이터베이스에 의해, 상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하고, 상기 주문 분석 모듈에 의해, 제1 시점에서, 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서, 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고, 상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 가능성 및 주문 예상 시기에 관한 분석 결과를 포함하는 제1 주문 예측 정보를 생성하여 상기 데이터베이스에 저장하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작 시점으로 하고 상기 제3 시점에 후속하는 제4 시점을 종료 시점으로 하는 제1 주문 예상 구간을 포함하고, 상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 상기 알림 신호 생성 여부를 결정하는 것을 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 뉴럴 네트워크 기반의 축산물 유통 시스템은, 제1 클라이언트로부터 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 제1 주문 정보를 수신하고, 제2 클라이언트로부터 상기 제1 주문 정보에 대한 제1 판매 정보를 수신하고, 상기 제1 판매 정보를 기초로 제1 판매 관련 정보를 추출하되, 상기 제1 판매 관련 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보를 포함하는, 추출 모듈; 상기 제1 주문 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말에 대한 고유 식별 정보를 포함하는 제1 사용자 정보를 생성하는 사용자 관리 모듈; 및 상기 제1 사용자 정보를 기초로 제1 암호화 블록을 생성하고, 상기 제1 판매 관련 정보를 기초로 제2 암호화 블록을 생성하는 보안 모듈;을 포함할 수 있다.
상기 보안 모듈은, 상기 제1 사용자 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말의 고유 식별 정보에 대한 제1 입력 데이터와, 상기 제1 클라이언트에 연결된 주문자 단말의 상기 주문 정보에 대한 제2 입력 데이터를 추출하고, 상기 제1 입력 데이터와 상기 제2 입력 데이터를 가상 공간에 벡터화하고, 상기 제1 입력 데이터와 상기 제2 입력 데이터 간의 상기 가상 공간에서의 거리를 기초로 상기 제1 암호화 블록을 생성할 수 있다.
[수학식]
Figure 112022027497681-pat00002
상기 보안 모듈은, 상기 수학식을 이용하여 상기 제1 암호화 블록을 생성하고, 상기 수학식에서, K는 커널 함수, W는 매개 변수, α는 W에 대한 종속 변수, x_i는 상기 가상 공간의 제1 입력 데이터, y_i는 상기 가상 공간의 제2 입력 데이터, σ는 대역폭 파라미터를 의미할 수 있다.
상기 서버는, 상기 제1 암호화 블록 및 상기 제2 암호화 블록을 기초로 대체 불가 토큰(Non-Fungible Token; NFT)을 생성하는 블록체인 모듈;을 더 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 축산물 유통 메타버스 플랫폼은, 서버; 메타버스 구현 장치;를 포함하고, 상기 서버는, 프로세서; 제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 제1 주문 정보는 제1 주문 시점, 제1 주문 제품, 제1 주문 수량, 제1 주문 가격을 포함하는 주문 분석 모듈; 상기 프로세서의 제어에 의해 알림 신호를 생성하여 상기 제1 클라이언트에 송신하는 알림 모듈; 상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하는 데이터베이스; 및 축산물에 관한 이미지, 축산물 정보, 축산물 거래 정보 등을 포함하는 객체 데이터를 수집하는 객체 데이터 수집 모듈;을 포함하되, 상기 주문 분석 모듈은, 제1 시점에서 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고, 상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 패턴에 관한 분석 정보를 포함하는 제1 주문 예측 정보를 생성하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작점으로 하고 상기 제3 시점에 후속하는 제4 시점을 끝점으로 하는 제1 주문 예상 구간을 포함하고, 상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 상기 알림 신호 생성 여부를 결정하고, 상기 메타버스 구현 장치는, 상기 객체 데이터 수집 모듈로부터 제공받은 객체 데이터를 기초로 축산물 유통 플랫폼에 관한 AR(augmented reality) 영상을 출력하는 증강현실 구현 모듈을 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 축산물 유통 메타버스 플랫폼은, 서버; 및 메타버스 구현 장치;를 포함하고, 상기 서버는, 제1 클라이언트로부터 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 제1 주문 정보를 수신하고, 제2 클라이언트로부터 상기 제1 주문 정보에 대한 제1 판매 정보를 수신하고, 상기 제1 판매 정보를 기초로 제1 판매 관련 정보를 추출하되, 상기 제1 판매 관련 정보는 품종, 등급, 수량, 브랜드, 가격 정보를 포함하는, 추출 모듈; 상기 제1 주문 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말에 대한 고유 식별 정보를 포함하는 제1 사용자 정보를 생성하는 사용자 관리 모듈; 상기 제1 사용자 정보를 기초로 제1 암호화 블록을 생성하고, 상기 제1 판매 관련 정보를 기초로 제2 암호화 블록을 생성하는 보안 모듈; 축산물에 관한 이미지, 축산물 정보 등을 포함하는 객체 데이터를 수집하는 객체 데이터 수집 모듈;을 포함하고, 상기 메타버스 구현 장치는, 상기 객체 데이터 수집 모듈로부터 제공받은 객체 데이터를 기초로 축산물 유통 플랫폼에 관한 AR(augmented reality) 영상을 생성하는 증강현실 구현 모듈을 포함할 수 있다.
상기 서버는, 상기 제1 암호화 블록 및 상기 제2 암호화 블록을 기초로 대체 불가 토큰(Non-Fungible Token; NFT)을 생성하는 블록체인 모듈;을 더 포함하고, 상기 증강현실 구현 모듈은, 상기 블록체인 모듈에서 생성된 대체 불가 토큰을 기초로 AR 영상을 생성할 수 있다.
실시예들에 따르면, 복수의 주문 정보를 기초로 주문자 단말로부터 제1 클라이언트를 통해 향후 수신이 예상되는 주문 정보를 예측하고, 이에 대응하는 정보를 제2 클라이언트에 제공하여 제2 클라이언트에 연결된 판매자 단말에 축산물을 미리 준비할 수 있도록 정보를 제공할 수 있다. 또한, 상기 주문자 단말이 추가 주문을 할 시기를 예상하여 알림 신호를 전송하여, 상기 주문자 단말이 원활하게 축산물을 주문할 수 있도록 도울 수 있다.
다른 실시예에 따르면, 주문자 단말과 판매자 단말로부터 수신하는 데이터를 암호화하여 안전하게 처리함으로써 거래 신뢰도를 높일 수 있다. 또한, 상기 시스템은 주문자 단말로부터 수신한 주문 정보와 판매자 단말로부터 수신한 판매 정보를 암호화하여 제1 암호화 블록과 제2 암호화 블록을 생성하고, 제1 암호화 블록과 제2 암호화 블록을 기초로 대체 불가 토큰을 생성하여, 상기 주문자 단말과 상기 판매자 단말의 거래 정보에 대한 대체 불가 토큰을 생성할 수 있다. 이러한 대체 불가 토큰은 블록체인 노드에 분산 저장되어 해킹이나 공격에 대해 안전하다. 따라서 이러한 대체 불가 토큰을 기초로 상기 시스템은 상기 판매자 단말과 주문자 단말 사이의 신용을 보장하는 에스크로 서비스를 제공할 수 있다.
또 다른 실시예에 따르면, 축산물 거래 정보에 관한 AR 영상을 출력하여 축산물 유통 메타버스 플랫폼을 구현할 수 있다. 또한, 주문자 단말과 판매자 단말 간의 거래 내역이 저장된 대체 불가 토큰을 축산물 유통 메타버스 플랫폼에 구현하여, 주문자와 판매자 간의 신뢰를 보장함과 동시에 사실감 있는 거래 환경을 조성할 수 있다.
실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.
실시예들에 대한 이해를 돕기 위해 상세한 설명의 일부로 포함된, 첨부 도면은 다양한 실시예들을 제공하고, 상세한 설명과 함께 다양한 실시예들의 기술적 특징을 설명한다.
도 1은 본 발명의 일 실시예에 따른 전자 장치의 구성을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 프로그램의 구성을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 축산물 유통 시스템을 개략적으로 도시한 도면이다.
도 4는 도 3의 서버(310)의 구조를 설명하기 위한 블록도이다.
도 5는 본 발명의 일 실시예에 따른 서버(310)의 동작을 설명하기 위한 흐름도이다.
도 6은 도 5의 동작을 설명하기 위한 도면이다.
도 7은 본 발명의 다른 실시예에 따른 축산물 유통 시스템을 개략적으로 도시한 도면이다.
도 8은 도 7의 서버(410)의 구조를 설명하기 위한 블록도이다.
도 9는 본 발명의 다른 실시예에 따른 서버(410)의 동작을 설명하기 위한 흐름도이다.
도 10은 본 발명의 또 다른 실시예에 따른 축산물 유통 시스템을 개략적으로 나타내는 도면이다.
도 11은 도 10의 서버(510) 및 메타버스 구현 장치(540)를 설명하기 위한 블록도이다.
이하의 실시예들은 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 다양한 실시예들을 구성할 수도 있다. 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
이하, 다양한 실시예들에 따른 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 다양한 실시예들에서 사용되는 특정(特定) 용어들은 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 본 발명의 일 실시예에 따른 전자 장치의 구성을 나타내는 도면이다.
도 1은, 다양한 실시예들에 따른, 네트워크 환경(100) 내의 전자 장치(101)의 블록도이다. 도 1을 참조하면, 네트워크 환경(100)에서 전자 장치(101)는 제 1 네트워크(198)(예: 근거리 무선 통신 네트워크)를 통하여 전자 장치(102)와 통신하거나, 또는 제 2 네트워크(199)(예: 원거리 무선 통신 네트워크)를 통하여 전자 장치(104) 또는 서버(108) 중 적어도 하나와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 서버(108)를 통하여 전자 장치(104)와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 프로세서(120), 메모리(130), 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 연결 단자(178), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 포함할 수 있다. 어떤 실시예에서는, 전자 장치(101)에는, 이 구성요소들 중 적어도 하나(예: 연결 단자(178))가 생략되거나, 하나 이상의 다른 구성요소가 추가될 수 있다. 어떤 실시예에서는, 이 구성요소들 중 일부들(예: 센서 모듈(176), 카메라 모듈(180), 또는 안테나 모듈(197))은 하나의 구성요소(예: 디스플레이 모듈(160))로 통합될 수 있다. 전자 장치(101)는 클라이언트, 단말기 또는 피어로 지칭될 수도 있다.
프로세서(120)는, 예를 들면, 소프트웨어(예: 프로그램(140))를 실행하여 프로세서(120)에 연결된 전자 장치(101)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 일실시예에 따르면, 데이터 처리 또는 연산의 적어도 일부로서, 프로세서(120)는 다른 구성요소(예: 센서 모듈(176) 또는 통신 모듈(190))로부터 수신된 명령 또는 데이터를 휘발성 메모리(132)에 저장하고, 휘발성 메모리(132)에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리(134)에 저장할 수 있다. 일실시예에 따르면, 프로세서(120)는 메인 프로세서(121)(예: 중앙 처리 장치 또는 어플리케이션 프로세서) 또는 이와는 독립적으로 또는 함께 운영 가능한 보조 프로세서(123)(예: 그래픽 처리 장치, 신경망 처리 장치(NPU: neural processing unit), 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서)를 포함할 수 있다. 예를 들어, 전자 장치(101)가 메인 프로세서(121) 및 보조 프로세서(123)를 포함하는 경우, 보조 프로세서(123)는 메인 프로세서(121)보다 저전력을 사용하거나, 지정된 기능에 특화되도록 설정될 수 있다. 보조 프로세서(123)는 메인 프로세서(121)와 별개로, 또는 그 일부로서 구현될 수 있다.
보조 프로세서(123)는, 예를 들면, 메인 프로세서(121)가 인액티브(예: 슬립) 상태에 있는 동안 메인 프로세서(121)를 대신하여, 또는 메인 프로세서(121)가 액티브(예: 어플리케이션 실행) 상태에 있는 동안 메인 프로세서(121)와 함께, 전자 장치(101)의 구성요소들 중 적어도 하나의 구성요소(예: 디스플레이 모듈(160), 센서 모듈(176), 또는 통신 모듈(190))와 관련된 기능 또는 상태들의 적어도 일부를 제어할 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 이미지 시그널 프로세서 또는 커뮤니케이션 프로세서)는 기능적으로 관련 있는 다른 구성요소(예: 카메라 모듈(180) 또는 통신 모듈(190))의 일부로서 구현될 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 신경망 처리 장치)는 인공지능 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 인공지능 모델은 기계 학습을 통해 생성될 수 있다. 이러한 학습은, 예를 들어, 인공지능 모델이 수행되는 전자 장치(101) 자체에서 수행될 수 있고, 별도의 서버(예: 서버(108))를 통해 수행될 수도 있다. 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다.
메모리(130)는, 전자 장치(101)의 적어도 하나의 구성요소(예: 프로세서(120) 또는 센서 모듈(176))에 의해 사용되는 다양한 데이터를 저장할 수 있다. 데이터는, 예를 들어, 소프트웨어(예: 프로그램(140)) 및, 이와 관련된 명령에 대한 입력 데이터 또는 출력 데이터를 포함할 수 있다. 메모리(130)는, 휘발성 메모리(132) 또는 비휘발성 메모리(134)를 포함할 수 있다.
프로그램(140)은 메모리(130)에 소프트웨어로서 저장될 수 있으며, 예를 들면, 운영 체제(142), 미들 웨어(144) 또는 어플리케이션(146)을 포함할 수 있다.
입력 모듈(150)은, 전자 장치(101)의 구성요소(예: 프로세서(120))에 사용될 명령 또는 데이터를 전자 장치(101)의 외부(예: 사용자)로부터 수신할 수 있다. 입력 모듈(150)은, 예를 들면, 마이크, 마우스, 키보드, 키(예: 버튼), 또는 디지털 펜(예: 스타일러스 펜)을 포함할 수 있다.
음향 출력 모듈(155)은 음향 신호를 전자 장치(101)의 외부로 출력할 수 있다. 음향 출력 모듈(155)은, 예를 들면, 스피커 또는 리시버를 포함할 수 있다. 스피커는 멀티미디어 재생 또는 녹음 재생과 같이 일반적인 용도로 사용될 수 있다. 리시버는 착신 전화를 수신하기 위해 사용될 수 있다. 일실시예에 따르면, 리시버는 스피커와 별개로, 또는 그 일부로서 구현될 수 있다.
디스플레이 모듈(160)은 전자 장치(101)의 외부(예: 사용자)로 정보를 시각적으로 제공할 수 있다. 디스플레이 모듈(160)은, 예를 들면, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 일실시예에 따르면, 디스플레이 모듈(160)은 터치를 감지하도록 설정된 터치 센서, 또는 상기 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 압력 센서를 포함할 수 있다.
오디오 모듈(170)은 소리를 전기 신호로 변환시키거나, 반대로 전기 신호를 소리로 변환시킬 수 있다. 일실시예에 따르면, 오디오 모듈(170)은, 입력 모듈(150)을 통해 소리를 획득하거나, 음향 출력 모듈(155), 또는 전자 장치(101)와 직접 또는 무선으로 연결된 외부 전자 장치(예: 전자 장치(102))(예: 스피커 또는 헤드폰)를 통해 소리를 출력할 수 있다.
센서 모듈(176)은 전자 장치(101)의 작동 상태(예: 전력 또는 온도), 또는 외부의 환경 상태(예: 사용자 상태)를 감지하고, 감지된 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 일실시예에 따르면, 센서 모듈(176)은, 예를 들면, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 근접 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서를 포함할 수 있다.
인터페이스(177)는 전자 장치(101)가 외부 전자 장치(예: 전자 장치(102))와 직접 또는 무선으로 연결되기 위해 사용될 수 있는 하나 이상의 지정된 프로토콜들을 지원할 수 있다. 일실시예에 따르면, 인터페이스(177)는, 예를 들면, HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, SD카드 인터페이스, 또는 오디오 인터페이스를 포함할 수 있다.
연결 단자(178)는, 그를 통해서 전자 장치(101)가 외부 전자 장치(예: 전자 장치(102))와 물리적으로 연결될 수 있는 커넥터를 포함할 수 있다. 일실시예에 따르면, 연결 단자(178)는, 예를 들면, HDMI 커넥터, USB 커넥터, SD 카드 커넥터, 또는 오디오 커넥터(예: 헤드폰 커넥터)를 포함할 수 있다.
햅틱 모듈(179)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(예: 진동 또는 움직임) 또는 전기적인 자극으로 변환할 수 있다. 일실시예에 따르면, 햅틱 모듈(179)은, 예를 들면, 모터, 압전 소자, 또는 전기 자극 장치를 포함할 수 있다.
카메라 모듈(180)은 정지 영상 및 동영상을 촬영할 수 있다. 일실시예에 따르면, 카메라 모듈(180)은 하나 이상의 렌즈들, 이미지 센서들, 이미지 시그널 프로세서들, 또는 플래시들을 포함할 수 있다.
전력 관리 모듈(188)은 전자 장치(101)에 공급되는 전력을 관리할 수 있다. 일실시예에 따르면, 전력 관리 모듈(188)은, 예를 들면, PMIC(power management integrated circuit)의 적어도 일부로서 구현될 수 있다.
배터리(189)는 전자 장치(101)의 적어도 하나의 구성요소에 전력을 공급할 수 있다. 일실시예에 따르면, 배터리(189)는, 예를 들면, 재충전 불가능한 1차 전지, 재충전 가능한 2차 전지 또는 연료 전지를 포함할 수 있다.
통신 모듈(190)은 전자 장치(101)와 외부 전자 장치(예: 전자 장치(102), 전자 장치(104), 또는 서버(108)) 간의 직접(예: 유선) 통신 채널 또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 통신 모듈(190)은 프로세서(120)(예: 어플리케이션 프로세서)와 독립적으로 운영되고, 직접(예: 유선) 통신 또는 무선 통신을 지원하는 하나 이상의 커뮤니케이션 프로세서를 포함할 수 있다. 일실시예에 따르면, 통신 모듈(190)은 무선 통신 모듈(192)(예: 셀룰러 통신 모듈, 근거리 무선 통신 모듈, 또는 GNSS(global navigation satellite system) 통신 모듈) 또는 유선 통신 모듈(194)(예: LAN(local area network) 통신 모듈, 또는 전력선 통신 모듈)을 포함할 수 있다. 이들 통신 모듈 중 해당하는 통신 모듈은 제 1 네트워크(198)(예: 블루투스, WiFi(wireless fidelity) direct 또는 IrDA(infrared data association)와 같은 근거리 통신 네트워크) 또는 제 2 네트워크(199)(예: 레거시 셀룰러 네트워크, 5G 네트워크, 차세대 통신 네트워크, 인터넷, 또는 컴퓨터 네트워크(예: LAN 또는 WAN)와 같은 원거리 통신 네트워크)를 통하여 외부의 전자 장치(104)와 통신할 수 있다. 이런 여러 종류의 통신 모듈들은 하나의 구성요소(예: 단일 칩)로 통합되거나, 또는 서로 별도의 복수의 구성요소들(예: 복수 칩들)로 구현될 수 있다. 무선 통신 모듈(192)은 가입자 식별 모듈(196)에 저장된 가입자 정보(예: 국제 모바일 가입자 식별자(IMSI))를 이용하여 제 1 네트워크(198) 또는 제 2 네트워크(199)와 같은 통신 네트워크 내에서 전자 장치(101)를 확인 또는 인증할 수 있다.
무선 통신 모듈(192)은 4G 네트워크 이후의 5G 네트워크 및 차세대 통신 기술, 예를 들어, NR 접속 기술(new radio access technology)을 지원할 수 있다. NR 접속 기술은 고용량 데이터의 고속 전송(eMBB(enhanced mobile broadband)), 단말 전력 최소화와 다수 단말의 접속(mMTC(massive machine type communications)), 또는 고신뢰도와 저지연(URLLC(ultra-reliable and low-latency communications))을 지원할 수 있다. 무선 통신 모듈(192)은, 예를 들어, 높은 데이터 전송률 달성을 위해, 고주파 대역(예: mmWave 대역)을 지원할 수 있다. 무선 통신 모듈(192)은 고주파 대역에서의 성능 확보를 위한 다양한 기술들, 예를 들어, 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO(multiple-input and multiple-output)), 전차원 다중입출력(FD-MIMO: full dimensional MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 또는 대규모 안테나(large scale antenna)와 같은 기술들을 지원할 수 있다. 무선 통신 모듈(192)은 전자 장치(101), 외부 전자 장치(예: 전자 장치(104)) 또는 네트워크 시스템(예: 제 2 네트워크(199))에 규정되는 다양한 요구사항을 지원할 수 있다. 일실시예에 따르면, 무선 통신 모듈(192)은 eMBB 실현을 위한 Peak data rate(예: 20Gbps 이상), mMTC 실현을 위한 손실 Coverage(예: 164dB 이하), 또는 URLLC 실현을 위한 U-plane latency(예: 다운링크(DL) 및 업링크(UL) 각각 0.5ms 이하, 또는 라운드 트립 1ms 이하)를 지원할 수 있다.
안테나 모듈(197)은 신호 또는 전력을 외부(예: 외부의 전자 장치)로 송신하거나 외부로부터 수신할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 서브스트레이트(예: PCB) 위에 형성된 도전체 또는 도전성 패턴으로 이루어진 방사체를 포함하는 안테나를 포함할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다. 이런 경우, 제 1 네트워크(198) 또는 제 2 네트워크(199)와 같은 통신 네트워크에서 사용되는 통신 방식에 적합한 적어도 하나의 안테나가, 예를 들면, 통신 모듈(190)에 의하여 상기 복수의 안테나들로부터 선택될 수 있다. 신호 또는 전력은 상기 선택된 적어도 하나의 안테나를 통하여 통신 모듈(190)과 외부의 전자 장치 간에 송신되거나 수신될 수 있다. 어떤 실시예에 따르면, 방사체 이외에 다른 부품(예: RFIC(radio frequency integrated circuit))이 추가로 안테나 모듈(197)의 일부로 형성될 수 있다.
다양한 실시예에 따르면, 안테나 모듈(197)은 mmWave 안테나 모듈을 형성할 수 있다. 일실시예에 따르면, mmWave 안테나 모듈은 인쇄 회로 기판, 상기 인쇄 회로 기판의 제 1 면(예: 아래 면)에 또는 그에 인접하여 배치되고 지정된 고주파 대역(예: mmWave 대역)을 지원할 수 있는 RFIC, 및 상기 인쇄 회로 기판의 제 2 면(예: 윗 면 또는 측 면)에 또는 그에 인접하여 배치되고 상기 지정된 고주파 대역의 신호를 송신 또는 수신할 수 있는 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다.
상기 구성요소들 중 적어도 일부는 주변 기기들간 통신 방식(예: 버스, GPIO(general purpose input and output), SPI(serial peripheral interface), 또는 MIPI(mobile industry processor interface))을 통해 서로 연결되고 신호(예: 명령 또는 데이터)를 상호간에 교환할 수 있다.
일실시예에 따르면, 명령 또는 데이터는 제 2 네트워크(199)에 연결된 서버(108)를 통해서 전자 장치(101)와 외부의 전자 장치(104)간에 송신 또는 수신될 수 있다. 외부의 전자 장치(102, 또는 104) 각각은 전자 장치(101)와 동일한 또는 다른 종류의 장치일 수 있다. 일실시예에 따르면, 전자 장치(101)에서 실행되는 동작들의 전부 또는 일부는 외부의 전자 장치들(102, 104, 또는 108) 중 하나 이상의 외부의 전자 장치들에서 실행될 수 있다. 예를 들면, 전자 장치(101)가 어떤 기능이나 서비스를 자동으로, 또는 사용자 또는 다른 장치로부터의 요청에 반응하여 수행해야 할 경우에, 전자 장치(101)는 기능 또는 서비스를 자체적으로 실행시키는 대신에 또는 추가적으로, 하나 이상의 외부의 전자 장치들에게 그 기능 또는 그 서비스의 적어도 일부를 수행하라고 요청할 수 있다. 상기 요청을 수신한 하나 이상의 외부의 전자 장치들은 요청된 기능 또는 서비스의 적어도 일부, 또는 상기 요청과 관련된 추가 기능 또는 서비스를 실행하고, 그 실행의 결과를 전자 장치(101)로 전달할 수 있다. 전자 장치(101)는 상기 결과를, 그대로 또는 추가적으로 처리하여, 상기 요청에 대한 응답의 적어도 일부로서 제공할 수 있다. 이를 위하여, 예를 들면, 클라우드 컴퓨팅, 분산 컴퓨팅, 모바일 에지 컴퓨팅(MEC: mobile edge computing), 또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다. 전자 장치(101)는, 예를 들어, 분산 컴퓨팅 또는 모바일 에지 컴퓨팅을 이용하여 초저지연 서비스를 제공할 수 있다. 다른 실시예에 있어서, 외부의 전자 장치(104)는 IoT(internet of things) 기기를 포함할 수 있다. 서버(108)는 기계 학습 및/또는 신경망을 이용한 지능형 서버일 수 있다. 일실시예에 따르면, 외부의 전자 장치(104) 또는 서버(108)는 제 2 네트워크(199) 내에 포함될 수 있다. 전자 장치(101)는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예: 스마트 홈, 스마트 시티, 스마트 카, 또는 헬스 케어)에 적용될 수 있다.
서버(108)는 전자 장치(101)가 접속되며, 접속된 전자 장치(101)로 서비스를 제공할 수 있다. 또한, 서버(108)는 회원 가입 절차를 진행하여 그에 따라 회원으로 가입된 사용자의 각종 정보를 저장하여 관리하고, 서비스에 관련된 각종 구매 및 결제 기능을 제공할 수도 있다. 또한, 서버(108)는, 사용자 간에 서비스를 공유할 수 있도록, 복수의 전자 장치(101) 각각에서 실행되는 서비스 애플리케이션의 실행 데이터를 실시간으로 공유할 수도 있다. 이러한 서버(108)는 하드웨어적으로는 통상적인 웹 서버(Web Server) 또는 왑 서버(WAP Server)와 동일한 구성을 가질 수 있다. 그러나, 소프트웨어적으로는, C, C++, Java, Visual Basic, Visual C 등 여하한 언어를 통하여 구현되어 여러 가지 기능을 하는 프로그램 모듈(Module)을 포함할 수 있다. 또한, 서버(108)는 일반적으로 인터넷과 같은 개방형 컴퓨터 네트워크를 통하여 불특정 다수 클라이언트 및/또는 다른 서버와 연결되어 있고, 클라이언트 또는 다른 서버의 작업수행 요청을 접수하고 그에 대한 작업 결과를 도출하여 제공하는 컴퓨터 시스템 및 그를 위하여 설치되어 있는 컴퓨터 소프트웨어(서버 프로그램)를 뜻하는 것이다. 또한, 서버(108)는, 전술한 서버 프로그램 이외에도, 서버(108) 상에서 동작하는 일련의 응용 프로그램(Application Program)과 경우에 따라서는 내부 또는 외부에 구축되어 있는 각종 데이터베이스(DB: Database, 이하 "DB"라 칭함)를 포함하는 넓은 개념으로 이해되어야 할 것이다. 따라서, 서버(108)는, 회원 가입 정보와, 게임에 대한 각종 정보 및 데이터를 분류하여 DB에 저장시키고 관리하는데, 이러한 DB는 서버(108)의 내부 또는 외부에 구현될 수 있다. 또한, 서버(108)는, 일반적인 서버용 하드웨어에 도스(DOS), 윈도우(windows), 리눅스(Linux), 유닉스(UNIX), 매킨토시(Macintosh) 등의 운영체제에 따라 다양하게 제공되고 있는 서버 프로그램을 이용하여 구현될 수 있으며, 대표적인 것으로는 윈도우 환경에서 사용되는 웹사이트(Website), IIS(Internet Information Server)와 유닉스환경에서 사용되는 CERN, NCSA, APPACH등이 이용될 수 있다. 또한, 서버(108)는, 서비스의 사용자 인증이나 서비스와 관련된 구매 결제를 위한 인증 시스템 및 결제 시스템과 연동할 수도 있다.
제1 네트워크(198) 및 제2 네트워크(199)는 단말들 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조 또는 서버(108)와 전자 장치들(101, 104)을 연결하는 망(Network)을 의미한다. 제1 네트워크(198) 및 제2 네트워크(199)는 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 3G, 4G, LTE, 5G, Wi-Fi 등이 포함되나 이에 한정되지는 않는다. 제1 네트워크(198) 및 제2 네트워크(199)는 LAN, WAN 등의 폐쇄형 제1 네트워크(198) 및 제2 네트워크(199)일 수도 있으나, 인터넷(Internet)과 같은 개방형인 것이 바람직하다. 인터넷은 TCP/IP 프로토콜 및 그 상위계층에 존재하는 여러 서비스, 즉 HTTP(HyperText Transfer Protocol), Telnet, FTP(File Transfer Protocol), DNS(Domain Name System), SMTP(Simple Mail Transfer Protocol), SNMP(Simple Network Management Protocol), NFS(Network File Service), NIS(Network Information Service)를 제공하는 전 세계적인 개방형 컴퓨터 제1 네트워크(198) 및 제2 네트워크(199) 구조를 의미한다.
데이터베이스는 데이터베이스 관리 프로그램(DBMS)을 이용하여 컴퓨터 시스템의 저장공간(하드디스크 또는 메모리)에 구현된 일반적인 데이터구조를 가질 수 가질 수 있다. 데이터베이스는 데이터의 검색(추출), 삭제, 편집, 추가 등을 자유롭게 행할 수 있는 데이터 저장형태를 가질 수 있다. 데이터베이스는 오라클(Oracle), 인포믹스(Infomix), 사이베이스(Sybase), DB2와 같은 관계형 데이타베이스 관리 시스템(RDBMS)이나, 겜스톤(Gemston), 오리온(Orion), O2 등과 같은 객체 지향 데이타베이스 관리 시스템(OODBMS) 및 엑셀론(Excelon), 타미노(Tamino), 세카이주(Sekaiju) 등의 XML 전용 데이터베이스(XML Native Database)를 이용하여 본 개시의 일 실시예의 목적에 맞게 구현될 수 있고, 자신의 기능을 달성하기 위하여 적당한 필드(Field) 또는 엘리먼트들을 가질 수 있다.
도 2는 본 발명의 일 실시예에 따른 프로그램의 구성을 나타내는 도면이다.
도 2은 다양한 실시예에 따른 프로그램(140)을 예시하는 블록도(200)이다. 일실시예에 따르면, 프로그램(140)은 전자 장치(101)의 하나 이상의 리소스들을 제어하기 위한 운영 체제(142), 미들웨어(144), 또는 상기 운영 체제(142)에서 실행 가능한 어플리케이션(146)을 포함할 수 있다. 운영 체제(142)는, 예를 들면, AndroidTM, iOSTM, WindowsTM, SymbianTM, TizenTM, 또는 BadaTM를 포함할 수 있다. 프로그램(140) 중 적어도 일부 프로그램은, 예를 들면, 제조 시에 전자 장치(101)에 프리로드되거나, 또는 사용자에 의해 사용 시 외부 전자 장치(예: 전자 장치(102 또는 104), 또는 서버(108))로부터 다운로드되거나 갱신될 수 있다. 프로그램(140)의 전부 또는 일부는 뉴럴 네트워크를 포함할 수 있다.
운영 체제(142)는 전자 장치(101)의 하나 이상의 시스템 리소스들(예: 프로세스, 메모리, 또는 전원)의 관리(예: 할당 또는 회수)를 제어할 수 있다. 운영 체제(142)는, 추가적으로 또는 대체적으로, 전자 장치(101)의 다른 하드웨어 디바이스, 예를 들면, 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 구동하기 위한 하나 이상의 드라이버 프로그램들을 포함할 수 있다.
미들웨어(144)는 전자 장치(101)의 하나 이상의 리소스들로부터 제공되는 기능 또는 정보가 어플리케이션(146)에 의해 사용될 수 있도록 다양한 기능들을 어플리케이션(146)으로 제공할 수 있다. 미들웨어(144)는, 예를 들면, 어플리케이션 매니저(201), 윈도우 매니저(203), 멀티미디어 매니저(205), 리소스 매니저(207), 파워 매니저(209), 데이터베이스 매니저(211), 패키지 매니저(213), 커넥티비티 매니저(215), 노티피케이션 매니저(217), 로케이션 매니저(219), 그래픽 매니저(221), 시큐리티 매니저(223), 통화 매니저(225), 또는 음성 인식 매니저(227)를 포함할 수 있다.
어플리케이션 매니저(201)는, 예를 들면, 어플리케이션(146)의 생명 주기를 관리할 수 있다. 윈도우 매니저(203)는, 예를 들면, 화면에서 사용되는 하나 이상의 GUI 자원들을 관리할 수 있다. 멀티미디어 매니저(205)는, 예를 들면, 미디어 파일들의 재생에 필요한 하나 이상의 포맷들을 파악하고, 그 중 선택된 해당하는 포맷에 맞는 코덱을 이용하여 상기 미디어 파일들 중 해당하는 미디어 파일의 인코딩 또는 디코딩을 수행할 수 있다. 리소스 매니저(207)는, 예를 들면, 어플리케이션(146)의 소스 코드 또는 메모리(130)의 메모리의 공간을 관리할 수 있다. 파워 매니저(209)는, 예를 들면, 배터리(189)의 용량, 온도 또는 전원을 관리하고, 이 중 해당 정보를 이용하여 전자 장치(101)의 동작에 필요한 관련 정보를 결정 또는 제공할 수 있다. 일실시예에 따르면, 파워 매니저(209)는 전자 장치(101)의 바이오스(BIOS: basic input/output system)(미도시)와 연동할 수 있다.
데이터베이스 매니저(211)는, 예를 들면, 어플리케이션(146)에 의해 사용될 데이터베이스를 생성, 검색, 또는 변경할 수 있다. 패키지 매니저(213)는, 예를 들면, 패키지 파일의 형태로 배포되는 어플리케이션의 설치 또는 갱신을 관리할 수 있다. 커넥티비티 매니저(215)는, 예를 들면, 전자 장치(101)와 외부 전자 장치 간의 무선 연결 또는 직접 연결을 관리할 수 있다. 노티피케이션 매니저(217)는, 예를 들면, 지정된 이벤트(예: 착신 통화, 메시지, 또는 알람)의 발생을 사용자에게 알리기 위한 기능을 제공할 수 있다. 로케이션 매니저(219)는, 예를 들면, 전자 장치(101)의 위치 정보를 관리할 수 있다. 그래픽 매니저(221)는, 예를 들면, 사용자에게 제공될 하나 이상의 그래픽 효과들 또는 이와 관련된 사용자 인터페이스를 관리할 수 있다.
시큐리티 매니저(223)는, 예를 들면, 시스템 보안 또는 사용자 인증을 제공할 수 있다. 통화(telephony) 매니저(225)는, 예를 들면, 전자 장치(101)에 의해 제공되는 음성 통화 기능 또는 영상 통화 기능을 관리할 수 있다. 음성 인식 매니저(227)는, 예를 들면, 사용자의 음성 데이터를 서버(108)로 전송하고, 그 음성 데이터에 적어도 일부 기반하여 전자 장치(101)에서 수행될 기능에 대응하는 명령어(command), 또는 그 음성 데이터에 적어도 일부 기반하여 변환된 문자 데이터를 서버(108)로부터 수신할 수 있다. 일 실시예에 따르면, 미들웨어(244)는 동적으로 기존의 구성요소를 일부 삭제하거나 새로운 구성요소들을 추가할 수 있다. 일 실시예에 따르면, 미들웨어(144)의 적어도 일부는 운영 체제(142)의 일부로 포함되거나, 또는 운영 체제(142)와는 다른 별도의 소프트웨어로 구현될 수 있다.
어플리케이션(146)은, 예를 들면, 홈(251), 다이얼러(253), SMS/MMS(255), IM(instant message)(257), 브라우저(259), 카메라(261), 알람(263), 컨택트(265), 음성 인식(267), 이메일(269), 달력(271), 미디어 플레이어(273), 앨범(275), 와치(277), 헬스(279)(예: 운동량 또는 혈당과 같은 생체 정보를 측정), 또는 환경 정보(281)(예: 기압, 습도, 또는 온도 정보 측정) 어플리케이션을 포함할 수 있다. 일실시예에 따르면, 어플리케이션(146)은 전자 장치(101)와 외부 전자 장치 사이의 정보 교환을 지원할 수 있는 정보 교환 어플리케이션(미도시)을 더 포함할 수 있다. 정보 교환 어플리케이션은, 예를 들면, 외부 전자 장치로 지정된 정보 (예: 통화, 메시지, 또는 알람)를 전달하도록 설정된 노티피케이션 릴레이 어플리케이션, 또는 외부 전자 장치를 관리하도록 설정된 장치 관리 어플리케이션을 포함할 수 있다. 노티피케이션 릴레이 어플리케이션은, 예를 들면, 전자 장치(101)의 다른 어플리케이션(예: 이메일 어플리케이션(269))에서 발생된 지정된 이벤트(예: 메일 수신)에 대응하는 알림 정보를 외부 전자 장치로 전달할 수 있다. 추가적으로 또는 대체적으로, 노티피케이션 릴레이 어플리케이션은 외부 전자 장치로부터 알림 정보를 수신하여 전자 장치(101)의 사용자에게 제공할 수 있다.
장치 관리 어플리케이션은, 예를 들면, 전자 장치(101)와 통신하는 외부 전자 장치 또는 그 일부 구성 요소(예: 외부 전자장치의 디스플레이 모듈 또는 카메라 모듈)의 전원(예: 턴-온 또는 턴-오프) 또는 기능(예: 밝기, 해상도, 또는 포커스)을 제어할 수 있다. 장치 관리 어플리케이션은, 추가적으로 또는 대체적으로, 외부 전자 장치에서 동작하는 어플리케이션의 설치, 삭제, 또는 갱신을 지원할 수 있다.
도 3은 본 발명의 일 실시예에 따른 축산물 유통 시스템을 개략적으로 도시한 도면이다.
도 3을 참조하면, 서버(310)는 축산물 유통 플랫폼을 구축할 수 있다. 이를 위해, 서버(310)는 제1 클라이언트(320) 및 제2 클라이언트(330)와 데이터를 주고받을 수 있다. 제1 클라이언트(320) 및 제2 클라이언트(330)는 인터넷 환경에 연결되어 있는 웹 서버일 수 있다. 제1 클라이언트(320)에는 복수의 주문자 단말이 연결될 수 있다. 서버(310)에 의해 구축된 축산물 유통 플랫폼을 통해 축산물을 구매하고자 하는 주문자는, 자신의 주문자 단말을 제1 클라이언트(320)에 연결하고, 제1 클라이언트(320)를 통해 서버(310)에 주문 정보를 제공하여 축산물 유통 플랫폼에서 축산물을 주문할 수 있다.
또한, 제2 클라이언트(330)에는 복수의 판매자 단말이 연결될 수 있다. 서버(310)에 의해 구축된 축산물 유통 플랫폼을 통해 축산물을 판매하고자 하는 판매자는, 자신의 판매자 단말을 제2 클라이언트(330)에 연결하고, 제2 클라이언트(330)를 통해 서버(310)에 판매 정보를 제공하여 축산물 유통 플랫폼에서 축산물을 판매할 수 있다.
서버(310)는 제1 클라이언트(320)로부터 복수의 주문 정보를 제공받을 수 있다. 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보, 제3 주문 정보를 포함할 수 있다. 여기서 '제1' 및 '제2'는 주문 정보를 특정하기 위한 수식어로서, 주문 정보의 수신 순서를 한정하는 의미일 수 있다. 즉, 서버(310)가 제1 주문 정보를 수신한 이후, 제2 주문 정보를 수신하고, 제2 주문 정보를 수신한 이후 제3 주문 정보를 수신할 수 있다. 그러나 본 발명의 실시예는 이에 제한되는 것이 아님을 명심하여야 한다. 예를 들면, 제1 주문 정보, 제2 주문 정보, 제3 주문 정보는 제1 클라이언트(320)에 연결된 복수의 주문자 단말로부터 제공받은 주문 정보 각각을 의미하는 것일 수도 있다. 즉, 제2 클라이언트(330)에는 제1 주문자 단말, 제2 주문자 단말, 제3 주문자 단말이 연결되어 있을 수 있고, 제2 클라이언트(330)는 상기 제1 주문자 단말로부터 제1 주문 정보를 제공받고, 상기 제2 주문자 단말로부터 제2 주문 정보를 제공받고, 상기 제3 주문자 단말로부터 제3 주문 정보를 제공받아 제1 내지 제3 주문 정보를 서버(310)에 제공할 수 있다.
그러나, 본 명세서에서는 제1 주문 정보, 제2 주문 정보, 제3 주문 정보에서의 '제1' 및 '제2'는, 우선적으로 제1 클라이언트(320)에 연결된 단일한 주문자 단말(예를 들면 제1 주문자 단말)로부터 수신된 복수의 주문 정보의 수신 순서를 한정하는 것으로 해석되어야 한다. 즉, 본 명세서에서는 제1 클라이언트(320)를 통해 단일한 주문자로부터 수신된 복수의 주문 정보가 순서를 달리하여 서버(310)에 제공되는 것을 가정하여 설명할 것이다.
복수의 주문 정보 각각은 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함할 수 있다. 즉, 제1 주문 정보는 제1 주문 시점, 제1 주문 제품, 제1 주문 수량, 제1 주문 가격에 대응하는 정보들을 포함할 수 있다. 마찬가지로, 제2 주문 정보는 제2 주문 시점, 제2 주문 제품, 제2 주문 수량, 제2 주문 가격에 대응하는 정보들을 포함할 수 있다. 여기서, 제1 주문 정보와 제2 주문 정보가 서로 다른 시점에 서버(310)에 수신된 경우, 제1 주문 시점과 제2 주문 시점은 서로 상이할 수 있다. 반면, 이 경우에도 제1 주문 제품과 제2 주문 제품은 동일할 수 있고, 제1 주문 수량, 제2 주문 수량은 동일할 수 있으며, 제1 주문 가격, 제2 주문 가격은 동일할 수 있다. 즉, 서버(310)가 제1 클라이언트(320)로부터 축산물 주문을 수신하는 경우, 제1 클라이언트(320)로부터 동일한 주문 내용, 예를 들면 동일한 종류 및 등급의 축산물을 동일한 수량과 가격으로 주문한 주문 내용을 서로 다른 시간에 수신할 수 있다.
서버(310)는 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 기초로 주문 예측 정보를 생성할 수 있다. 주문 예측 정보는 제1 클라이언트(320)를 통해 주문 정보를 제공한 주문자 단말의 향후 주문 가능성, 향후 주문 예상 시기 등에 관한 분석 결과를 포함할 수 있다. 예를 들면, 서버(310)가 제1 클라이언트(320)로부터 제1 시점에서 제1 주문자 단말의 제1 주문 정보를 수신하고, 제1 시점으로부터 제1 시간 경과 후 제2 시점에서 제1 주문자 단말의 제2 주문 정보를 수신하고, 제2 시점으로부터 제1 시간 경과 후 제3 시점에서 제1 주문자 단말의 제3 주문 정보를 수신하였다면, 서버(310)는 제3 시점으로부터 제1 시간 경과 후 제4 시점에서, 제1 클라이언트(320)로부터 제1 주문자 단말의 제4 주문 정보를 수신할 것으로 예상할 수 있을 것이다. 또한, 상기 제1 내지 제3 주문 정보에 포함된 주문 제품, 주문 수량, 주문 가격에 대응하는 정보를 기초로 제4 주문 정보에 포함된 주문 제품, 주문 수량, 주문 가격에 대응하는 정보를 결정할 수 있을 것이다.
서버(310)는 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 기초로, 특정 시점에서, 제1 클라이언트(320)에 주문 시기를 알리는 알림 신호를 제공할 수 있다. 서버(310)는 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 기초로 특정 시점을 결정할 수 있다. 구체적으로, 서버(310)는 복수의 주문 정보에 포함된 복수의 주문 시점을 기초로 특정 시점을 결정할 수 있다.
서버(310)는 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 제2 클라이언트(330)에 전달할 수 있다. 서버(310)는 제2 클라이언트(330)로부터 복수의 주문 정보 각각에 대응하는 복수의 판매 정보를 제공받을 수 있다. 복수의 판매 정보는 제1 판매 정보, 제2 판매 정보, 제3 판매 정보를 포함할 수 있다. '제1' 및 '제2'는 판매 정보를 특정하기 위한 수식어로서, 전술한 주문 정보와 마찬가지로 판매 정보의 수신 순서를 한정하는 의미일 수 있다. 즉, 서버(310)가 제1 판매 정보를 수신한 이후, 제2 주문 정보를 수신하고, 제2 주문 정보를 수신한 이후 제3 주문 정보를 수신할 수 있다. 그러나 본 발명의 실시예는 이에 제한되는 것이 아님을 명심하여야 한다. 예를 들면, 제1 판매 정보, 제2 판매 정보, 제3 판매 정보는 제2 클라이언트(330)에 연결된 복수의 판매자 단말로부터 제공받은 판매 정보 각각을 의미하는 것일 수도 있다. 즉, 제2 클라이언트(330)에는 제1 판매자 단말, 제2 판매자 단말, 제3 판매자 단말이 연결되어 있을 수 있고, 제2 클라이언트(330)는 상기 제1 판매자 단말로부터 제1 판매 정보를 제공받고, 상기 제2 판매자 단말로부터 제2 판매 정보를 제공받고, 상기 제3 판매자 단말로부터 제3 판매 정보를 제공받아 제1 내지 제3 판매 정보를 서버(310)에 제공할 수 있다.
복수의 판매 정보 각각은 판매 시점, 판매 제품, 판매 수량, 판매 가격에 대응하는 정보들을 포함할 수 있다. 즉, 복수의 판매 정보는 제2 클라이언트(330)를 통해 서버(310)에 제공되는 축산물 판매에 관한 정보들을 포함할 수 있다. 여기서, '판매 제품'에 대응하는 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보들을 포함할 수 있다. 예를 들면, 판매 제품에 대응하는 정보는 '한우', '채끝살', '1++등급', '대한민국 횡성', '구이 및 스테이크용' 등의 정보를 포함할 수 있다.
서버(310)는 복수의 판매 정보 각각에 기초하여 복수의 판매 관련 정보를 추출할 수 있다. 판매 관련 정보는 전술한 판매 제품에 대응하는 정보를 포함할 수 있다. 예를 들면, 판매 관련 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보를 포함할 수 있다.
또한, 서버(310)는 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 기초로 복수의 사용자 정보를 생성할 수 있다. 복수의 사용자 정보는 제1 사용자 정보, 제2 사용자 정보, 제3 사용자 정보를 포함할 수 있다. 각각의 사용자 정보는 제1 클라이언트(320)에 연결된 하나 이상의 주문자 단말 각각에 대응하는 사용자(주문자)를 식별하기 위한 정보를 포함할 수 있다. 예를 들면, 제1 사용자 정보는 제1 클라이언트(320)에 연결된 제1 주문자 단말을 식별하기 위한 제1 주문자 단말의 고유 식별 정보를 포함할 수 있다. 또한, 제2 사용자 정보는 제1 클라이언트(320)에 연결된 제2 주문자 단말을 식별하기 위한 제2 주문자 단말의 고유 식별 정보를 포함할 수 있다. 이 경우, 제1 주문자 단말의 고유 식별 정보와 제1 주문자 단말의 고유 식별 정보는 서로 상이할 것이기 때문에, 제1 사용자 정보와 제2 사용자 정보는 서로 상이할 수 있다. 각각의 주문자 단말의 고유 식별 정보는, 예를 들면 각각의 주문자 단말의 ID(Identification), 또는 고유 IP(Internet Protocol) 주소 중 어느 하나일 수 있다.
서버(310)는 사용자 정보와 판매 관련 정보를 각각 암호화하여 암호화 블록을 생성할 수 있다. 서버(310)는 또한, 각각의 암호화 블록을 기초로 대체 불가 토큰(Non-Fungible Token; NFT)을 생성할 수 있다. 대체 불가 토큰이란, 블록체인에 저장된 데이터 단위로, 고유하면서 상호 교환할 수 없는 토큰을 의미한다. 대체 불가 토큰은 사진, 비디오, 오디오 및 기타 유형의 디지털 파일을 나타내는데 사용할 수 있다. 대체 불가 토큰은 가상의 진품 증명서 역할을 하므로 대체 불가능하고 사본은 인정되지 않는다.
서버(310)는 하드웨어적으로 통상적인 웹서버(Web Server) 또는 네트워크 서버와 동일한 하드웨어 모듈을 포함할 수 있다. 서버(310)는 웹서버 또는 네트워크 서버의 형태로 구현될 수도 있고, 유형의 저장 장치 내부에 구축되어 있는 각종 데이터베이스를 포함하여 웹서버상에서 동작하는 일련의 응용 프로그램(Application Program)으로 구현될 수도 있다. 따라서 서버(310)는 전술한 내용 중 어느 하나의 형태로 국한되지 않는 넓은 개념으로 이해되어야 할 것이다.
서버(310)는 물리적인 서버를 통해 구현되는 것일 수도 있다. 즉, 서버(310)가 통신 장치를 포함하는 서버로 구현되어, 제2 클라이언트(330) 및 제1 클라이언트(320)로부터 데이터를 수신하고, 또한 제2 클라이언트(330) 및 제1 클라이언트(320)에 데이터를 송신할 수도 있다. 서버(310)는 워크스테이션(workstation), 데이터 센터, 인터넷 데이터 센터(internet data center(IDC)), DAS(direct attached storage) 시스템, SAN(storage area network) 시스템, NAS(network attached storage) 시스템, RAID(redundant array of inexpensive disks, or redundant array of independent disks) 시스템, 및 EDMS(Electronic Document Management) 시스템 중 적어도 하나로 구현될 수 있으나, 본 실시예가 이에 제한되는 것은 아니다.
서버(310)가 물리적인 서버를 통해 구현되는 것인 경우, 서버(310)는 무선 또는 유선으로 연결된 네트워크(340)를 통해 데이터를 송신하거나 수신할 수 있다. 네트워크(340)는 유선 인터넷 기술, 무선 인터넷 기술 및 근거리 통신 기술에 의한 네트워크를 포함할 수 있다. 유선 인터넷 기술은 예를 들어, 근거리 통신망(LAN, Local area network) 및 광역 통신망(WAN, wide area network) 중 적어도 하나를 포함할 수 있다.
무선 인터넷 기술은 예를 들어, 무선랜(Wireless LAN: WLAN), DLNA(Digital Living Network Alliance), 와이브로(Wireless Broadband: Wibro), 와이맥스(World Interoperability for Microwave Access: Wimax), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), IEEE 802.16, 롱 텀 에볼루션(Long Term Evolution: LTE), LTE-A(Long Term Evolution-Advanced), 광대역 무선 이동 통신 서비스(Wireless Mobile Broadband Service: WMBS) 및 5G NR(New Radio) 기술 중 적어도 하나를 포함할 수 있다. 단, 본 실시예가 이에 제한되는 것은 아니다.
서버(310)가 무선 통신 방식으로 데이터를 송/수신하는 경우, 서버(310)는 이동통신을 위한 기술표준 및 표준 통신 방식을 준수할 수 있다. 예를 들어, 표준 통신 방식은 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTEA(Long Term Evolution-Advanced) 및 5G NR(New Radio) 중 적어도 하나를 포함할 수 있다. 단, 본 실시예가 이에 제한되는 것은 아니다.
도 4는 도 3의 서버(310)의 구조를 설명하기 위한 블록도이다.
도 4를 참조하면, 서버(310)는 데이터베이스(311), 주문 분석 모듈(312), 프로세서(313), 알림 모듈(314)을 포함할 수 있다.
데이터베이스(311)는 주문 분석 모듈(312)로부터 주문 정보 및 주문 예측 정보를 제공받고, 주문 정보 및 주문 예측 정보를 저장할 수 있다. 데이터베이스(311)는 데이터베이스 관리 프로그램(DBMS)을 이용하여 서버(310)의 저장공간에 구현된 일반적인 데이터구조를 가질 수 가질 수 있다. 데이터베이스(311)는 데이터베이스 관리 프로그램을 이용하여, 외부 장치 또는 프로세서(313)의 제어 신호에 응답하여, 데이터베이스(311) 내에 저장된 하나 이상의 주문 정보 및 주문 예측 정보 중 어느 하나를 선택할 수 있다. 구체적으로, 데이터베이스(311)는 프로세서(313)의 제어에 기초하여 데이터베이스(311)에 저장된 하나 이상의 주문 정보 및 주문 예측 정보를 선택하여 출력할 수 있다.
주문 분석 모듈(312)은 제1 클라이언트(320)로부터 복수의 주문 정보를 수신하고, 복수의 주문 정보를 기초로 하나 이상의 주문 예측 정보를 생성할 수 있다. 복수의 주문 정보 각각은 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함할 수 있다. 주문 예측 정보는 제1 클라이언트(320)에 연결된 제1 주문자 단말의 향후 주문 가능성, 향후 주문 예상 시기 등에 관한 분석 결과를 포함할 수 있다. 예를 들면, 서버(310)가 제1 클라이언트(320)로부터 제1 시점에서 제1 주문자 단말의 제1 주문 정보를 수신하고, 제1 시점으로부터 제1 시간 경과 후 제2 시점에서 제1 주문자 단말의 제2 주문 정보를 수신하고, 제2 시점으로부터 제1 시간 경과 후 제3 시점에서 제1 주문자 단말의 제3 주문 정보를 수신하였다면, 서버(310)는 제3 시점으로부터 제1 시간 경과 후 제4 시점에서, 제1 클라이언트(320)로부터 제1 주문자 단말의 제4 주문 정보를 수신할 것으로 예상할 수 있을 것이다. 또한, 상기 제1 내지 제3 주문 정보에 포함된 주문 제품, 주문 수량, 주문 가격에 대응하는 정보를 기초로 제4 주문 정보에 포함된 주문 제품, 주문 수량, 주문 가격에 대응하는 정보를 결정할 수 있을 것이다.
또한, 주문 분석 모듈(312)은 제1 주문 예측 정보를 보정하여 제2 주문 예측 정보를 생성할 수 있다. 주문 분석 모듈(312)의 주문 예측 정보 생성 및 보정 동작에 대해서는 상세히 후술한다.
프로세서(313)는, 예를 들면, 미리 저장된 소프트웨어를 실행하여 프로세서(313)에 연결된 서버(310)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다.
알림 모듈(314)은 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 기초로, 특정 시점에서, 제1 클라이언트(320)에 주문 시기를 알리는 알림 신호를 제공할 수 있다. 주문 분석 모듈(312)은 제1 클라이언트(320)로부터 제공받은 복수의 주문 정보를 기초로 특정 시점을 결정할 수 있다. 구체적으로, 주문 분석 모듈(312)은 복수의 주문 정보에 포함된 복수의 주문 시점을 기초로 특정 시점을 결정할 수 있다. 주문 분석 모듈(312)에 의해 특정 시점이 결정되면, 알림 모듈(314)은 프로세서(313)의 제어에 의해 알림 신호를 생성할 수 있다. 생성된 알림 신호는 특정 시점에 제1 클라이언트(320)로 전송될 수 있다.
일 실시예에서, 주문 분석 모듈(312)은 보정 모델을 이용하여 제1 주문 예측 정보를 기초로 제2 주문 예측 정보를 생성할 수 있다. 이를 위해, 보정 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함할 수 있다. 보정 모델은 학습 과정을 통해 제1 주문 예측 정보를 기초로 제2 주문 예측 정보를 정확하게 생성할 수 있도록 미리 학습될 수 있다. 이를 위하여, 학습 과정에서 제1 주문 예측 정보에 관한 복수의 학습 데이터는 보정 모델의 입력 레이어에 입력되어 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터가 출력될 수 있다. 출력 벡터는 출력 레이어에 연결된 손실함수 레이어에 입력될 수 있다. 손실함수 레이어는 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력할 수 있다. 보정 모델의 파라미터는 손실값이 작아지는 방향으로 학습될 수 있다.
Figure 112022027497681-pat00003
예를 들어, 손실 함수는 [수학식 1]을 따라 손실 값을 계산할 수 있다. [수학식 1]에서, N은 복수의 학습 데이터의 수, n은 학습 데이터를 식별하는 자연수, k는 n번째 학습 데이터의 값을 식별하는 자연수, nk는 n번째 학습 데이터의 k번째 값을 의미하고, t는 정답 데이터를 의미하고, y는 출력 벡터를 의미하고, E는 손실값을 의미할 수 있다.
Figure 112022027497681-pat00004
또는, 손실 함수는 [수학식 2]를 따라 손실 값을 계산할 수 있다. [수학식 2]에서, n은 클래스 별 학습 데이터의 수, y와 j는 클래스를 나타내는 식별자, C는 상수값, M은 클래스의 개수, x_y는 학습 데이터가 클래스 y에 속할 확률값, x_j는 학습 데이터가 클래스 j에 속할 확률값, L은 손실값을 의미할 수 있다.
이를 위해, 주문 분석 모듈(312)은 인공지능 기계학습 모델을 포함할 수 있다. 서버(310)가 하드웨어로 구현되는 경우, 주문 분석 모듈(312)은 기계학습 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 기계학습 모델은 인공지능 기계 학습을 통해 생성될 수 있다.
기계 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다.
서버(310)에 포함된 각 구성요소는 장치 내부의 소프트웨어적인 모듈 또는 하드웨어적인 모듈을 연결하는 통신 경로에 연결되어 상호 간에 유기적으로 동작할 수 있다. 이러한 구성요소는 하나 이상의 통신 버스 또는 신호선을 이용하여 통신할 수 있다. 서버(310)의 각 구성요소는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 소프트웨어적인 모듈, 하드웨어적인 모듈 또는 소프트웨어와 하드웨어의 결합으로 구현될 수 있다.
도 4에 도시된 서버(310)의 구성은 반드시 필수적인 것은 아니고, 필요에 따라 몇몇 구성을 생략하거나, 도 4에 도시되지 않은 다른 구성을 추가할 수 있을 것이다. 즉, 도 4에 도시된 구성은 설명의 편의를 위한 것이지, 실시예들이 이에 제한되는 것은 아니다. 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 본 발명의 실시예들을 변형하여 실시할 수 있을 것이다.
도 5는 본 발명의 일 실시예에 따른 서버(310)의 동작을 설명하기 위한 흐름도이다. 도 6은 도 5의 동작을 설명하기 위한 도면이다.
도 5를 참조하면, 먼저 주문 분석 모듈(312)은 제1 클라이언트(320)로부터 제1 주문 정보와 제2 주문 정보를 포함하는 복수의 주문 정보를 수신할 수 있다(S510). 복수의 주문 정보 각각은 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함할 수 있다. 즉, 제1 주문 정보는 제1 주문 시점, 제1 주문 제품, 제1 주문 수량, 제1 주문 가격에 대응하는 정보들을 포함할 수 있다. 마찬가지로, 제2 주문 정보는 제2 주문 시점, 제2 주문 제품, 제2 주문 수량, 제2 주문 가격에 대응하는 정보들을 포함할 수 있다.
일 실시예에서, 도 6을 추가로 참조하면, 주문 분석 모듈(312)은 제1 시점(t1)에서, 제1 클라이언트(320)로부터 제1 주문 정보를 수신할 수 있다. 주문 분석 모듈(312)은 제2 시점(t2)에서, 제1 클라이언트(320)로부터 제2 주문 정보를 수신할 수 있다. 즉, 제1 주문 정보에 포함된 제1 주문 시점에 대응하는 정보는 제1 시점(t1)에 대응하는 시간 정보일 수 있고, 제2 주문 정보에 포함된 제2 주문 시점에 대응하는 정보는 제2 시점(t2)에 대응하는 시간 정보일 수 있다.
주문 분석 모듈(312)은 제1 주문 정보와 제2 주문 정보를 기초로 제1 주문 예측 정보를 출력할 수 있다(S520). 주문 예측 정보는 제1 클라이언트(320)를 통해 주문 정보를 제공한 주문자 단말의 향후 주문 가능성, 향후 주문 예상 시기 등에 관한 분석 결과를 포함할 수 있다. 주문 분석 모듈(312)이 제1 시점(t1)에서 제1 주문 정보를 수신하고, 제2 시점(t2)에서 제2 주문 정보를 수신한 경우, 주문 분석 모듈(312)은 제1 주문 정보에 포함된 제1 시점(t1)에 대응하는 시간 정보와 제2 주문 정보에 포함된 제2 시점(t2)에 대응하는 시간 정보를 기초로 제3 주문 정보를 수신할 것으로 예상되는 특정 시점을 예측할 수 있다. 여기서, 제3 주문 정보는 제1 주문 정보와 제2 주문 정보에 후속하고 제1 클라이언트(320)에 연결된 주문자 단말을 통해 주문자가 입력한 축산물 주문 정보를 포함하는 것일 수 있다.
주문 분석 모듈(312)은 제1 클라이언트(320)로부터 제3 주문 정보를 수신할 것으로 예상되는 제1 주문 예상 구간(D)을 포함하는 제1 주문 예측 정보를 생성할 수 있다. 제1 주문 예상 구간(D)은 제2 시점(t2)에 후속하는 제3 시점(t3)을 시작 시점으로 하고, 제3 시점(t3)에 후속하는 제4 시점(t4)을 종료 시점으로 할 수 있다. 즉, 주문 분석 모듈(312)은 제3 시점(t3)과 제4 시점(t4) 사이의 제1 주문 예상 구간(D)에서 제1 클라이언트(320)로부터 제3 주문 정보를 수신할 것으로 예측할 수 있다. 주문 분석 모듈(312)은 제1 시점(t1)과 제2 시점(t2)을 기초로 제3 시점(t3)을 산출할 수 있다. 또한, 주문 분석 모듈(312)은 제1 시점(t1)과 제2 시점, 및 제3 시점(t3)을 기초로 제4 시점(t4)을 산출할 수 있다. 주문 분석 모듈(312)은 생성한 제1 주문 예측 정보를 데이터베이스(311)에 저장할 수 있다.
프로세서(313)는, 제1 주문 예상 구간(D)에 포함되는 제5 시점(t5)에, 주문 분석 모듈(312)의 제1 클라이언트(320)로부터 제3 주문 정보 수신 여부에 기초하여 알림 모듈(314)의 알림 신호 생성 여부를 결정할 수 있다(S530). 즉, 제5 시점(t5)은 제3 시점(t3)에 후속하고, 제4 시점(t4)에 선행할 수 있다.
주문 분석 모듈(312)이 제1 주문 예상 구간(D)에서 제1 클라이언트(320)로부터 제3 주문 정보를 수신하지 않는 경우, 알림 모듈(314)은 프로세서(313)의 제어에 의해 제1 클라이언트(320)에 알림 신호를 송신할 수 있다(S540). 여기서, 알림 신호는 제1 클라이언트(320)에 연걸된 주문자 단말에 주문 시기를 알리는 신호를 의미할 수 있다. 일 실시예에서, 알림 모듈(314)은 제4 시점(t4)에 후속하는 제6 시점(t6)에서 제1 클라이언트(320)에 알림 신호를 송신할 수 있다. 주문 분석 모듈(312)은 제1 시점(t1), 제2 시점(t2), 제3 시점(t3), 제4 시점(t4)을 기초로 제6 시점(t6)을 산출할 수 있다.
주문 분석 모듈(312)이 제1 주문 예상 구간(D)에서 제1 클라이언트(320)로부터 제3 주문 정보를 수신하는 경우, 주문 분석 모듈(312)은 제1 주문 예측 정보와 제3 주문 정보를 기초로 제1 주문 예측 정보를 보정하여 제2 주문 예측 정보를 생성할 수 있다(S550). 또는, 주문 분석 모듈(312)이 제3 시점(t3) 이전에 제1 클라이언트(320)로부터 제3 주문 정보를 수신하는 경우, 마찬가지로 주문 분석 모듈(312)은 제1 주문 예측 정보와 제3 주문 정보를 기초로 제1 주문 예측 정보를 보정하여 제2 주문 예측 정보를 생성할 수 있다.
제1 주문 예측 정보를 보정하는 것은 제1 주문 예측 정보에 포함된 제1 주문 예상 구간(D)을 변경하는 동작을 포함할 수 있다. 즉, 제2 주문 예측 정보는 제1 주문 예측 정보에 포함된 제1 주문 예상 구간(D)이 변경된 제2 주문 예상 구간(D')을 포함할 수 있다. 제1 주문 예상 구간(D)이 변경되는 것은 제1 주문 예상 구간(D)의 시작 시점인 제3 시점(t3)과, 제1 주문 예상 구간(D)의 종료 시점인 제4 시점(t4) 각각이 변경되는 것일 수 있다. 즉 제2 주문 예측 정보는 제3 시점(t3)이 변경된 제7 시점(t'3)을 시작 시점으로 하고, 제4 시점(t4)이 변경된 제8 시점(t'4)을 종료 시점으로 하는 제2 주문 예상 구간(D')을 포함할 수 있다.
주문 분석 모듈(312)은 제3 시점(t3)과 제5 시점(t5) 사이의 간격과, 제5 시점(t5)과 제4 시점 사이의 간격을 기초로 제2 주문 예상 구간(D')을 생성할 수 있다. 제3 시점(t3)과 제5 시점(t5) 사이의 간격은 제3 시점(t3)으로부터 제5 시점(t5)에 도달할 때까지 경과한 시간을 의미할 수 있다. 마찬가지로, 제5 시점(t5)과 제4 시점 사이의 간격은 제5 시점(t5)으로부터 제4 시점(t4)에 도달할 때까지 경과한 시간을 의미할 수 있다.
Figure 112022027497681-pat00005
주문 분석 모듈(312)은 [수학식 3]을 이용하여 제2 주문 예상 구간(D')을 산출할 수 있다. 상기 수학식에서, k는 고유 보정 계수, t3은 상기 제3 시점(t3), t4는 상기 제4 시점(t4), t5는 상기 제5 시점(t5), t'3은 상기 제3 시점이 보정된 제7 시점(t'3), t'4는 상기 제4 시점이 보정된 제8 시점(t'4), t는 경과 시간을 의미할 수 있다.
주문 분석 모듈(312)은 생성한 제2 주문 예측 정보를 데이터베이스(311)에 저장할 수 있다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 축산물 유통 시스템은 제1 클라이언트(320)에 연결된 주문자 단말로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하여 상기 주문자 단말로부터 제1 클라이언트(320)를 통해 향후 수신이 예상되는 주문 정보를 예측할 수 있다. 이러한 예측을 통해 축산물 유통 시스템은 예상되는 주문 정보에 대응하는 주문 정보를 제2 클라이언트(330)에 제공하여 제2 클라이언트(330)에 연결된 판매자 단말에 축산물을 미리 준비할 수 있도록 정보를 제공할 수 있다. 또한, 상기 주문자 단말이 추가 주문을 할 시기를 예상하여 알림 신호를 전송하여, 상기 주문자 단말이 원활하게 축산물을 주문할 수 있도록 도울 수 있다.
도 7은 본 발명의 다른 실시예에 따른 축산물 유통 시스템을 개략적으로 도시한 도면이다. 도 7에 도시된 서버(410), 제1 클라이언트(420), 제2 클라이언트(430)는 도 3에 도시된 서버(310), 제1 클라이언트(320), 제2 클라이언트(330)와 각각 동일하거나 유사할 수 있다. 이하에서는 도 3과의 차이점을 중심으로 설명한다.
도 7을 참조하면, 서버(410)는 축산물 유통 플랫폼을 구축할 수 있다. 이를 위해, 서버(410)는 제1 클라이언트(420) 및 제2 클라이언트(430)와 데이터를 주고받을 수 있다. 제1 클라이언트(420) 및 제2 클라이언트(430)는 인터넷 환경에 연결되어 있는 웹 서버일 수 있다. 제1 클라이언트(420)에는 복수의 주문자 단말이 연결될 수 있다. 서버(410)에 의해 구축된 축산물 유통 플랫폼을 통해 축산물을 구매하고자 하는 주문자는, 자신의 주문자 단말을 제1 클라이언트(420)에 연결하고, 제1 클라이언트(420)를 통해 서버(410)에 주문 정보를 제공하여 축산물 유통 플랫폼에서 축산물을 주문할 수 있다.
또한, 제2 클라이언트(430)에는 복수의 판매자 단말이 연결될 수 있다. 서버(410)에 의해 구축된 축산물 유통 플랫폼을 통해 축산물을 판매하고자 하는 판매자는, 자신의 판매자 단말을 제2 클라이언트(430)에 연결하고, 제2 클라이언트(430)를 통해 서버(410)에 판매 정보를 제공하여 축산물 유통 플랫폼에서 축산물을 판매할 수 있다.
만약 제1 클라이언트(420)에 연결된 복수의 주문자 단말과 제2 클라이언트(430)에 연결된 복수의 판매자 단말 사이에 축산물을 거래하는 경우, 서버(410)는 주문자 단말과 판매자 단말 사이의 신용 거래를 위한 에스크로(escrow) 서비스를 제공할 수 있다. 에스크로는 상거래 시에, 판매자와 구매자의 사이에 신뢰할 수 있는 중립적인 제3자가 중개하여 금전 또는 물품을 거래를 하도록 하는 것을 의미한다. 이러한 에스크로 서비스를 위해서는 판매자와 구매자 간 주고받는 거래 데이터의 보안이 확보되어야 한다. 이를 위해, 서버(410)는 제1 클라이언트(420)로부터 제공받는 복수의 주문 정보와, 제2 클라이언트(430)로부터 제공받는 복수의 판매 정보를 암호화하여 데이터를 처리할 수 있다.
서버(410)는 제1 클라이언트(420)로부터 복수의 주문 정보 외에도 파이낸싱 정보를 더 제공받을 수 있다. 파이낸싱 정보는 제1 클라이언트(420)에 연결된 주문자 단말로부터 제공되는 금융 정보, 예를 들면 송금 금액에 관한 정보, 결제 수단에 관한 정보, 신용 거래에 관한 정보 등을 포함할 수 있다. 신용 거래에 관한 정보는 제1 클라이언트에 연결된 주문자 단말의 신용 정보를 포함할 수 있다. 일 실시예에서, 제1 주문자는 제1 클라이언트(420)를 통해 서버(410)에 예치금을 위탁할 수 있다. 즉, 서버(410)는 제1 클라이언트(420)에 연결된 제1 주문자 단말로부터 예치금을 수신할 수 있다. 이후 제1 주문자는 제1 클라이언트(420)를 통해 서버(410)에 주문 정보를 송신하는 경우, 상기 위탁한 예치금을 이용하여 상기 주문 정보에 대한 결제 대금을 지불할 수 있다. 또한, 제1 주문자는 제1 클라이언트(420)를 통해 서버(410)에 신용 거래에 관한 정보를 포함하는 파이낸싱 정보를 송신할 수 있다. 제1 주문자는 제1 클라이언트(420)를 통해 서버(410)에 주문 정보를 송신하는 경우, 상기 파이낸싱 정보에 포함된 신용 거래에 관한 정보에 기초하여, 주문 정보에 대한 결제 대금을 나중에 지불할 수 있다.
삭제
도 8은 도 7의 서버(410)의 구조를 설명하기 위한 블록도이다.
도 8을 참조하면, 서버(410)는 추출 모듈(411), 보안 모듈(412), 블록체인 모듈(413), 사용자 관리 모듈(414)을 포함할 수 있다.
추출 모듈(411)은, 제1 클라이언트(420) 및 제2 클라이언트(430)로부터 데이터를 수신하여 수신한 데이터를 처리할 수 있다. 추출 모듈(411)은 제1 클라이언트(420)로부터 제1 주문 정보를 수신할 수 있다. 제1 주문 정보는 도 3 내지 도 6을 참조하여 설명한 제1 주문 정보와 동일하거나 유사할 수 있다.
또한, 추출 모듈(411)은 제2 클라이언트(430)로부터 제1 주문 정보에 대응하는 제1 판매 정보를 수신할 수 있다. 제1 판매 정보는 제1 판매 시점, 제1 판매 제품, 제1 판매 수량, 제1 판매 가격에 대응하는 정보들을 포함할 수 있다. 즉, 제1 판매 정보는 제2 클라이언트(430)를 통해 서버(410)에 제공되는 축산물 판매에 관한 정보들을 포함할 수 있다. 여기서, '판매 제품'에 대응하는 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보들을 포함할 수 있다. 예를 들면, 판매 제품에 대응하는 정보는 '한우', '채끝살', '1++등급', '대한민국 횡성', '구이 및 스테이크용' 등의 정보를 포함할 수 있다.
추출 모듈(411)은 제1 판매 정보를 기초로 제1 판매 관련 정보를 추출할 수 있다. 제1 판매 관련 정보는 전술한 '제1 판매 제품'에 대응하는 정보를 포함할 수 있다. 예를 들면, 제1 판매 관련 정보는, 제1 판매 정보에 포함된 품종, 등급, 수량, 브랜드, 가격 정보를 포함할 수 있다. 또는, 제1 판매 관련 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보를 포함할 수 있다.
사용자 관리 모듈(414)은 제1 클라이언트(420)로부터 제1 주문 정보를 제공받을 수 있다. 사용자 관리 모듈(414)은, 제1 주문 정보를 기초로 제1 클라이언트(420)에 연결된 주문자 단말에 대한 고유 식별 정보를 포함하는 제1 사용자 정보를 생성할 수 있다. 즉, 제1 주문 정보가 제1 클라이언트(420)에 연결된 제1 주문자 단말로부터 제공받은 주문자 정보인 경우, 제1 주문 정보는 제1 주문자 단말에 대한 고유 식별 정보를 포함할 수 있다. 사용자 관리 모듈(414)은 상기 고유 식별 정보를 기초로 제1 사용자 정보를 생성할 수 있다.
예를 들면, 제1 사용자 정보는 제1 클라이언트(420)에 연결된 제1 주문자 단말을 식별하기 위한 제1 주문자 단말의 고유 식별 정보를 포함할 수 있다. 또한, 제2 사용자 정보는 제1 클라이언트(420)에 연결된 제2 주문자 단말을 식별하기 위한 제2 주문자 단말의 고유 식별 정보를 포함할 수 있다. 이 경우, 제1 주문자 단말의 고유 식별 정보와 제1 주문자 단말의 고유 식별 정보는 서로 상이할 것이기 때문에, 제1 사용자 정보와 제2 사용자 정보는 서로 상이할 수 있다. 각각의 주문자 단말의 고유 식별 정보는, 예를 들면 각각의 주문자 단말의 ID(Identification), 또는 고유 IP(Internet Protocol) 주소 중 어느 하나일 수 있다.
보안 모듈(412)은 사용자 관리 모듈(414)로부터 제1 사용자 정보를 제공받을 수 있다. 보안 모듈(412)은 제1 사용자 정보를 기초로 제1 암호화 블록을 생성할 수 있다.
일 실시예에서, 보안 모듈(412)은, 제1 사용자 정보를 기초로 제1 클라이언트(420)에 연결된 제1 주문자 단말의 고유 식별 정보에 대한 제1 입력 데이터를 추출할 수 있다. 보안 모듈(412)은 제1 클라이언트(420)에 연결된 제1 주문자 단말의 제1 주문 정보에 대한 제2 입력 데이터를 추출할 수 있다. 보안 모듈(412)은 제1 입력 데이터와 제2 입력 데이터를 가상 공간에 벡터화할 수 있다. 보안 모듈(412)은 제1 입력 데이터와 제2 입력 데이터 간의 가상 공간에서의 거리를 기초로 제1 암호화 블록을 생성할 수 있다.
또한, 보안 모듈(412)은 추출 모듈(411)로부터 제1 판매 관련 정보를 제공받을 수 있다. 보안 모듈(412)은 제1 판매 관련 정보를 기초로 제2 암호화 블록을 생성할 수 있다.
블록체인 모듈(413)은 제1 암호화 블록 및 제2 암호화 블록을 기초로 대체 불가 토큰(Non-Fungible Token; NFT)을 생성할 수 있다.
본 명세서에서 블록체인이란, 블록 생성시 신규 거래기록이 모든 노드에 분산 저장되는 기술로서, 거래의 모든 당사자가 거래 장부를 분리 보관함으로써 거래의 투명성을 확보하는 분산형 데이터베이스 관리시스템(DBMS)을 의미한다. 데이터베이스의 기저를 형성하는 스마트 계약(Smart Contraction)은 합의 프로세스를 자동화한 컴퓨터 프로그램이며, 코드가 곧 법칙(Code is law)이라는 코드원칙에 따라 코드에 적힌 계약조건이 만족되면 그 즉시 성립되는 체계이다.
블록체인은 복수의 노드에 분산 저장되는 데이터를 의미할 수 있다. 즉, 블록체인 모듈(413)은 복수의 노드에 분산 저장되는 데이터 블록을 생성하여 상기 복수의 노드에 분산 저장시킬 수 있다. 또한, 대체 불가 토큰이란, 블록체인에 저장된 데이터 단위로, 고유하면서 상호 교환할 수 없는 토큰을 의미한다. 즉, 블록체인 모듈(413)은 제1 암호화 블록 및 제2 암호화 블록을 기초로 제1 클라이언트(420)에 연결된 제1 주문자 단말과 제2 클라이언트(430)에 연결된 제1 판매자 단말 간의 고유한 거래 내역에 대한 대체 불가 토큰을 생성할 수 있다.
도 9는 본 발명의 다른 실시예에 따른 서버(410)의 동작을 설명하기 위한 흐름도이다.
도 9를 참조하면, 먼저 서버(410)는 제1 클라이언트(420)로부터 제1 주문 정보를 수신할 수 있다(S911). 제1 주문 정보는 서버(410)의 추출 모듈(411)과 사용자 관리 모듈(414)에 각각 입력될 수 있다.
사용자 관리 모듈(414)은 제1 주문 정보를 기초로 제1 사용자 정보를 생성할 수 있다(S913). 제1 사용자 정보는 제1 클라이언트(420)에 연결된 제1 주문자 단말의 고유 식별 정보를 포함할 수 있다.
사용자 관리 모듈(414)은 제1 사용자 정보를 보안 모듈(412)에 제공할 수 있다(S915).
보안 모듈(412)은 제1 사용자 정보를 암호화하여 제1 암호화 블록을 생성할 수 있다(S917). 일 실시예에서, 보안 모듈(412)은, 제1 사용자 정보를 기초로 제1 클라이언트(420)에 연결된 제1 주문자 단말의 고유 식별 정보에 대한 제1 입력 데이터를 추출할 수 있다. 보안 모듈(412)은 제1 클라이언트(420)에 연결된 제1 주문자 단말의 제1 주문 정보에 대한 제2 입력 데이터를 추출할 수 있다. 보안 모듈(412)은 제1 입력 데이터와 제2 입력 데이터를 가상 공간에 벡터화할 수 있다. 보안 모듈(412)은 제1 입력 데이터와 제2 입력 데이터 간의 가상 공간에서의 거리를 기초로 제1 암호화 블록을 생성할 수 있다.
Figure 112022027497681-pat00006
보안 모듈(412)은 [수학식 4]를 이용하여 제1 암호화 블록을 생성할 수 있다.
[수학식 4]에서, K는 커널 함수, W는 매개 변수, α는 W에 대한 종속 변수, x_i는 상기 가상 공간의 제1 입력 데이터, y_i는 상기 가상 공간의 제2 입력 데이터, σ는 대역폭 파라미터를 의미할 수 있다.
또한, 추출 모듈(411)은 제1 주문 정보를 제2 클라이언트(430)에 전달할 수 있다(S919). 제2 클라이언트(430)는 제1 주문 정보를 입력받고, 제1 주문 정보에 대응하는 제1 판매 정보를 추출 모듈(411)에 전달할 수 있다(S921). 추출 모듈(411)은 제1 판매 정보에서 제1 판매 관련 정보를 추출할 수 있다(S923). 제1 판매 관련 정보는 전술한 '제1 판매 제품'에 대응하는 정보를 포함할 수 있다. 예를 들면, 제1 판매 관련 정보는, 제1 판매 정보에 포함된 품종, 등급, 수량, 브랜드, 가격 정보를 포함할 수 있다. 또는, 제1 판매 관련 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보를 포함할 수 있다.
추출 모듈(411)은 제1 판매 관련 정보를 보안 모듈(412)에 전달할 수 있다(S925). 보안 모듈(412)은 제1 판매 관련 정보를 암호화하여 제2 암호화 블록을 생성할 수 있다(S927). 보안 모듈(412)이 제1 판매 관련 정보를 암호화하는 방법은 다양할 수 있다. 예를 들면, 보안 모듈(412)은 대칭키 암호 방식 또는 공개키 암호 방식을 이용하여 제1 판매 관련 정보를 암호화할 수 있다. 공개키 암호 방식은 공개적으로 배포되는 공개키와 사용자만이 알고 있는 개인키를 이용하는 암호 방식으로, 대칭키 암호에 비해 보안성이 우수하지만 계산 과정이 복잡하여 연산에 상대적으로 많은 시간이 소모되는 단점이 있다.
보안 모듈(412)은 생성한 제1 암호화 블록과 제2 암호화 블록을 블록체인 모듈(413)에 전달할 수 있다(S929). 블록체인 모듈(413)은 제1 암호화 블록과 제2 암호화 블록을 기초로 대체 불가 토큰을 생성할 수 있다(S931).
전술한 바와 같이, 본 발명의 다른 실시예에 따른 축산물 유통 시스템은 서버(410)에 연결된 제1 클라이언트(420) 및 제2 클라이언트를 통해 축산물 주문자 단말과 판매자 단말을 연결하되, 주문자 단말과 판매자 단말로부터 수신하는 데이터를 암호화하여 안전하게 처리함으로써 거래 신뢰도를 높일 수 있다. 또한, 상기 시스템은 주문자 단말로부터 수신한 주문 정보와 판매자 단말로부터 수신한 판매 정보를 암호화하여 제1 암호화 블록과 제2 암호화 블록을 생성하고, 제1 암호화 블록과 제2 암호화 블록을 기초로 대체 불가 토큰을 생성하여, 상기 주문자 단말과 상기 판매자 단말의 거래 정보에 대한 대체 불가 토큰을 생성할 수 있다. 이러한 대체 불가 토큰은 블록체인 노드에 분산 저장되어 해킹이나 공격에 대해 안전하다. 따라서 이러한 대체 불가 토큰을 기초로 상기 시스템은 상기 판매자 단말과 주문자 단말 사이의 신용을 보장하는 에스크로 서비스를 제공할 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 축산물 유통 시스템을 개략적으로 나타내는 도면이다. 도 10에 도시된 서버(510), 제1 클라이언트(520), 제2 클라이언트(530)는 도 3에 도시된 서버(310), 제1 클라이언트(320), 제2 클라이언트(330)와 각각 동일하거나 유사할 수 있다. 또는, 도 10에 도시된 서버(510), 제1 클라이언트(520), 제2 클라이언트(530)는 도 7에 도시된 서버(410), 제1 클라이언트(420), 제2 클라이언트(430)와 각각 동일하거나 유사할 수 있다. 즉, 도 10에 도시된 서버(510)는 도 3 및 도 7에 각각 도시된 서버와 동일하거나 유사하게 구성을 포함할 수 있다. 이하에서는 도 3 및 도 7에 도시된 서버와는 다르게 추가적으로 부가된 구성을 중심으로 설명한다.
도 10을 참조하면, 서버(510)는 메타버스 구현 장치(540)와 연결되어 축산물 유통 플랫폼을 구축할 수 있다. 서버(510)는 제1 클라이언트(520), 제2 클라이언트(530), 및 메타버스 구현 장치(540)와 데이터를 주고받을 수 있다. 제1 클라이언트(520) 및 제2 클라이언트(530)는 인터넷 환경에 연결되어 있는 웹 서버일 수 있다. 제1 클라이언트(520)에는 복수의 주문자 단말이 연결될 수 있다. 서버(510)에 의해 구축된 축산물 유통 플랫폼을 통해 축산물을 구매하고자 하는 주문자는, 자신의 주문자 단말을 제1 클라이언트(520)에 연결하고, 제1 클라이언트(520)를 통해 서버(510)에 주문 정보를 제공하여 축산물 유통 플랫폼에서 축산물을 주문할 수 있다.
또한, 제2 클라이언트(530)에는 복수의 판매자 단말이 연결될 수 있다. 서버(510)에 의해 구축된 축산물 유통 플랫폼을 통해 축산물을 판매하고자 하는 판매자는, 자신의 판매자 단말을 제2 클라이언트(530)에 연결하고, 제2 클라이언트(530)를 통해 서버(510)에 판매 정보를 제공하여 축산물 유통 플랫폼에서 축산물을 판매할 수 있다.
메타버스 구현 장치(540)는 서버(510)로부터 제공받은 데이터를 기초로 메타버스를 구현할 수 있다. 메타버스 구현 장치(540)가 구현하는 메타버스는 축산물 유통 메타버스 플랫폼에 관한 것일 수 있다. 즉, 메타버스 구현 장치(540)는 제1 클라이언트(520)에 연결된 주문자 단말로부터 제공받은 주문 정보와, 제2 클라이언트(530)에 연결된 판매자 단말로부터 제공받은 판매 정보를 기초로 축산물 거래에 대한 메타버스를 구현할 수 있다.
도 11은 도 10의 서버(510) 및 메타버스 구현 장치(540)를 설명하기 위한 블록도이다.
도 11을 참조하면, 서버(510)는 추출 모듈(511), 사용자 관리 모듈(512), 보안 모듈(513), 블록체인 모듈(514), 객체 데이터 수집 모듈(515)를 포함할 수 있다. 도 11의 추출 모듈(511), 사용자 관리 모듈(512), 보안 모듈(513), 블록체인 모듈(514)은 도 8의 추출 모듈(411), 사용자 관리 모듈(414), 보안 모듈(412), 블록체인 모듈(413)과 동일하거나 유사할 수 있다.
객체 데이터 수집 모듈(515)는 축산물에 관한 이미지, 축산물 정보, 축산물 거래 정보 등을 포함하는 객체 데이터를 수집할 수 있다. 이를 위해, 객체 데이터 수집 모듈(515)은 하나 이상의 카메라를 포함할 수 있다. 즉, 객체 데이터 수집 모듈(515)은 하나 이상의 카메라를 이용하여 축산물을 촬영하거나 축산물이 거래에 제공되는 환경 등을 촬영하여 객체 데이터를 생성할 수 있다. 객체 데이터 수집 모듈(515)은 촬영한 축산물, 축산물이 거래에 제공되는 환경 등의 이미지 및/또는 영상을 기초로 객체 데이터를 생성할 수 있다. 이를 위해, 객체 데이터 수집 모듈(515)은 인공지능 기계학습 모델을 포함할 수 있다. 객체 데이터 수집 모듈(515)은 기계학습 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 기계학습 모델은 인공지능 기계 학습을 통해 생성될 수 있다. 객체 데이터 수집 모듈(515)은 생성한 객체 데이터를 데이터베이스(미도시)에 저장할 수 있다.
상기 객체 데이터는, 예를 들면 트윈 팩토리(Twin Factory)로 구현되는 데이터일 수 있다. 객체 데이터 수집 모듈(515)은 전 세계의 육류공장의 외관을 촬영하여, 육류공장에 관한 객체 데이터를 생성할 수 있다. 상기 육류공장에 관한 객체 데이터는 육류공장으로부터 생산되는 다양한 육류에 관한 가격 정보, 외형 정보, 포장 이미지 정보 등을 포함할 수 있다.
메타버스 구현 장치(540)는 증강현실 구현 모듈(541), 영상 출력부(542), 증강현실 증강현실 프로세서(543), 피드백 처리부(335)를 포함할 수 있다.
증강현실 구현 모듈(541)은 전술한 주문 분석 모듈(313)과 마찬가지로 기계학습 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다.
증강현실 구현 모듈(541)은 전처리 모듈 및 딥러닝 모듈을 포함할 수 있다. 전처리 모듈은 주문 정보 및 판매 정보를 포함하는 객체 데이터를 전처리(preprocessing)하여 객체 데이터에서 객체 이미지를 생성할 수 있다. 전처리 모듈은 증강현실 프로세서(543)의 제어에 의해, 데이터베이스(미도시)로부터 객체 데이터를 수신할 수 있다. 즉, 객체 데이터는 데이터베이스(미도시)로부터 제공될 수 있다. 전처리 모듈은 객체 데이터를 전처리(preprocessing)하여 객체 데이터에서 객체 이미지를 생성할 수 있다.
또한, 증강현실 구현 모듈(541)은 증강현실 프로세서(543)의 제어에 의해, 서버(510)의 블록체인 모듈(514)로부터 대체 불가 토큰을 객체 데이터로서 수신할 수 있다. 즉, 객체 데이터는 대체 불가 토큰을 포함할 수 있다.
딥러닝 모듈은 추출된 객체 이미지 특성 벡터를 이용하여, 축산물 거래 정보에 관한 AR 영상을 생성할 수 있다. 딥러닝 모듈은 제공받은 객체 이미지에 대한 특성 벡터를 추출할 수 있다. 딥러닝 모듈은 데이터베이스(미도시)에 저장된 객체 데이터를 기초로 미리 학습된 것일 수 있다. 즉, 딥러닝 모듈은 객체 인식을 통해, 객체 이미지를 특성별로 분류할 수 있다.
딥러닝 모듈은 추출된 객체 이미지 특성 벡터를 이용하여, 축산물 거래 정보에 관한 AR 영상을 생성할 수 있다. 즉, 딥러닝 모듈은 객체 이미지에서 객체의 모양, 형태, 움직임을 참조하여 객체와 유사한 가상 객체 이미지를 생성할 수 있다.
딥러닝 모듈은 특성 벡터의 위치를 고려하여 가상 객체 이미지와 객체 이미지를 조합할 수 있다. 즉, 딥러닝 모듈은 객체 이미지 특성 벡터를 이용하여 생성한 가상 객체 이미지와, 데이터베이스(미도시)에 저장된 객체 데이터를 조합하여 객체 이미지 영상을 축산물 거래 정보에 관한 AR 영상으로 생성할 수 있다. 딥러닝 모듈은 생성한 축산물 거래 정보에 관한 AR 영상을 영상 출력부(542)에 제공할 수 있다.
증강현실 구현 모듈(541)은, 객체 데이터를 기초로 축산물 거래 정보에 관한 AR 영상을 생성할 수 있다. 예를 들면, 증강현실 구현 모듈(541)은 트윈 팩토리(Twin Factory)로 구현되는 객체 데이터를 기초로 축산물 거래 정보에 관한 AR 영상을 생성할 수 있다. 즉, 증강현실 구현 모듈(541)은 육류공장에 관한 객체 데이터를 기초로 육류공장으로부터 생산되는 다양한 육류에 관한 가격 정보, 외형 정보, 포장 이미지 정보 등을 포함하는 축산물 거래 정보에 관한 AR 영상을 생성할 수 있다.
영상 출력부(542)는 증강현실 구현 모듈(541)로부터 축산물 거래 정보에 관한 AR 영상을 제공받아, 홀로그램 영상을 출력할 수 있다. 홀로그램 영상이란, 홀로그래피 원리를 이용하여 만들어지는 3차원 영상으로, 실물과 똑같이 입체적으로 보이는 영상을 의미할 수 있다. 홀로그래피의 원리는 레이저에서 나온 광선을 2개로 나눠 하나의 빛은 직접 스크린을 비추게 하고, 다른 하나의 빛은 우리가 보려고 하는 물체에 비추는 것이다.
이를 위해, 영상 출력부(542)는 프로젝터를 포함할 수 있으나, 실시예들이 이에 제한되지는 않는다. 영상 출력부(542)는 실제 환경에 대해 축산물 거래 정보에 관한 홀로그램 영상을 출력할 수 있으며, 이를 통해 시각적 효과를 증가시킴으로써, 사용자에게 실제 백화점, 정육점 등의 배경에 축산물이 전시된 것과 같은 시각적 효과를 제공할 수 있다.
증강현실 프로세서(543)는 메타버스 구현 장치(520)에 연결된 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 예를 들면, 증강현실 프로세서(543)는 증강현실 구현 모듈(541)로부터 출력된 축산물 거래 정보에 관한 AR 영상을 출력하도록 영상 출력부(542)를 제어할 수 있다.
일 실시예에서, 증강현실 프로세서(543)는 중앙 처리 장치, 그래픽 처리 장치, 신경망 처리 장치(NPU: neural processing unit), 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서를 포함할 수 있다.
피드백 처리부(544)는 영상 출력부(542)에 의해 출력된 AR 영상에 반응하는 사람의 동작을 촬영하여 피드백 이미지를 수집할 수 있다. 피드백 처리부(544)는 미리 학습된 동작 인식 모델을 사용하여 피드백 이미지를 기초로 피드백 정보를 생성할 수 있다. 이 경우, 증강현실 프로세서(543)는 데이터베이스(미도시)에 미리 저장된 트리거 정보 중 상기 피드백 정보에 대응하는 트리거 정보를 선택하고, 트리거 정보를 기초로 상기 축산물 거래 정보에 관한 AR 영상을 생성하도록 증강현실 구현 모듈(541)을 제어할 수 있다. 피드백 정보에 대응하는 트리거 정보란, 피드백 정보에 저장된 사람의 특정한 동작이나 행동과 관련한 특정 이벤트에 관한 정보를 의미할 수 있다. 즉, 영상 출력부(542)에 의해 출력된 AR 영상을 보고 이에 대응하여 행동하는 사람의 동작과, 트리거 정보에 저장된 '사람의 동작'이 일치하는 경우, 그 트리거 정보는 피드백 정보에 대응하는 것으로 이해될 수 있다.
도 11에 도시된 서버(510) 및 메타버스 구현 장치(540)의 하드웨어 구성은 반드시 필수적인 것은 아니고, 필요에 따라 몇몇 하드웨어 구성을 생략하거나, 도 11에 도시되지 않은 다른 하드웨어 구성을 추가할 수 있을 것이다. 즉, 도 11에 도시된 하드웨어 구성은 설명의 편의를 위한 것이지, 실시예들이 이에 제한되는 것은 아니다. 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 본 발명의 실시예들을 변형하여 실시할 수 있을 것이다.
전술한 바와 같이, 본 발명의 또 다른 실시예에 따른 축산물 유통 시스템은 축산물 거래 정보에 관한 AR 영상을 보고 반응하는 사람의 동작을 인식하여 새로운 축산물 거래 정보에 관한 AR 영상을 출력할 수 있다. 이를 통해 축산물 유통 플랫폼에 관한 메타버스를 구현할 수 있다. 즉, 상기 축산물 유통 시스템에 의해 구현되는 축산물 메타버스 플랫폼에서는 주문자가 메타버스로 구현된 각 나라의 육류공장을 방문하여 구매 상담, 가격 네고 등을 할 수 있고, 물류 배송 및 흐름을 체크할 수도 있다. 또한, 주문자 단말과 판매자 단말 간의 거래 내역이 저장된 대체 불가 토큰을 축산물 유통 메타버스 플랫폼에 구현하여, 주문자와 판매자 간의 신뢰를 보장함과 동시에 사실감 있는 거래 환경을 조성할 수 있다.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (10)

  1. 제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 복수의 주문 정보는 각각 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 주문 분석 모듈;
    프로세서;
    상기 프로세서의 제어에 의해 알림 신호를 생성하여 상기 알림 신호를 상기 제1 클라이언트에 송신하는 알림 모듈; 및
    상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하는 데이터베이스;를 포함하되,
    상기 주문 분석 모듈은,
    제1 시점에서, 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서, 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고, 상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 가능성 및 주문 예상 시기에 관한 분석 결과를 포함하는 제1 주문 예측 정보를 생성하고, 상기 제1 주문 예측 정보를 상기 데이터베이스에 저장하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작 시점으로 하고 상기 제3 시점에 후속하는 제4 시점을 종료 시점으로 하는 제1 주문 예상 구간을 포함하고,
    상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 상기 알림 신호 생성 여부를 결정하고,
    상기 주문 분석 모듈은, 상기 제1 주문 예상 구간에 포함되는 제5 시점에서, 상기 제1 클라이언트로부터 상기 제3 주문 정보를 수신하는 경우, 상기 제1 주문 예측 정보와 상기 제3 주문 정보를 기초로 제2 주문 예측 정보를 생성하고, 상기 데이터베이스에 상기 제2 주문 예측 정보를 저장하고,
    상기 제2 주문 예측 정보는 상기 제1 주문 예상 구간과는 다른 제2 주문 예상 구간을 포함하고, 상기 주문 분석 모듈은, 상기 제3 시점과 상기 제5 시점 사이의 간격과 상기 제5 시점과 상기 제4 시점 사이의 간격을 기초로 상기 제2 주문 예상 구간을 생성하고,
    [수학식]
    Figure 112022061095515-pat00018

    상기 주문 분석 모듈은 상기 수학식을 이용하여 상기 제2 주문 예상 구간을 생성하고, 상기 수학식에서, k는 고유 보정 계수, t3은 상기 제3 시점, t4는 상기 제4 시점, t5는 상기 제5 시점, t'3은 상기 제3 시점이 보정된 제7 시점, t'4는 상기 제4 시점이 보정된 제8 시점, t는 경과 시간을 의미하는,
    뉴럴 네트워크 기반의 축산물 유통 시스템.
  2. 삭제
  3. 삭제
  4. 제1항에 있어서,
    상기 주문 분석 모듈은 보정 모델을 이용하여 상기 제2 주문 예측 정보를 생성하고,
    상기 보정 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함하고,
    상기 제1 주문 예측 정보에 관한 복수의 학습 데이터는 상기 보정 모델의 상기 입력 레이어에 입력되어 상기 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터를 출력하고, 상기 출력 벡터는 상기 출력 레이어에 연결된 손실함수 레이어에 입력되고, 상기 손실함수 레이어는 상기 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고, 상기 보정 모델의 파라미터는 상기 손실값이 작아지는 방향으로 학습되는,
    뉴럴 네트워크 기반의 축산물 유통 시스템.
  5. 주문 분석 모듈에 의해, 제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 복수의 주문 정보는 각각 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하고,
    데이터베이스에 의해, 상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하고,
    상기 주문 분석 모듈에 의해, 제1 시점에서, 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서, 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고, 상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 가능성 및 주문 예상 시기에 관한 분석 결과를 포함하는 제1 주문 예측 정보를 생성하여 상기 데이터베이스에 저장하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작 시점으로 하고 상기 제3 시점에 후속하는 제4 시점을 종료 시점으로 하는 제1 주문 예상 구간을 포함하고, 상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 알림 신호 생성 여부를 결정하는 것을 포함하고,
    상기 주문 분석 모듈에 의해, 상기 제1 주문 예상 구간에 포함되는 제5 시점에서, 상기 제1 클라이언트로부터 상기 제3 주문 정보를 수신하는 경우, 상기 제1 주문 예측 정보와 상기 제3 주문 정보를 기초로 제2 주문 예측 정보를 생성하고, 상기 데이터베이스에 상기 제2 주문 예측 정보를 저장하고, 상기 제2 주문 예측 정보는 상기 제1 주문 예상 구간과는 다른 제2 주문 예상 구간을 포함하고, 상기 제3 시점과 상기 제5 시점 사이의 간격과 상기 제5 시점과 상기 제4 시점 사이의 간격을 기초로 상기 제2 주문 예상 구간을 생성하는 것을 더 포함하고,
    [수학식]
    Figure 112022061095515-pat00019

    상기 주문 분석 모듈은 상기 수학식을 이용하여 상기 제2 주문 예상 구간을 생성하고, 상기 수학식에서, k는 고유 보정 계수, t3은 상기 제3 시점, t4는 상기 제4 시점, t5는 상기 제5 시점, t'3은 상기 제3 시점이 보정된 제7 시점, t'4는 상기 제4 시점이 보정된 제8 시점, t는 경과 시간을 의미하는,
    뉴럴 네트워크 기반의 축산물 유통 서비스 방법.
  6. 제1 클라이언트로부터 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 제1 주문 정보를 수신하고, 제2 클라이언트로부터 상기 제1 주문 정보에 대한 제1 판매 정보를 수신하고, 상기 제1 판매 정보를 기초로 제1 판매 관련 정보를 추출하되, 상기 제1 판매 관련 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보를 포함하는, 추출 모듈;
    상기 제1 주문 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말에 대한 고유 식별 정보를 포함하는 제1 사용자 정보를 생성하는 사용자 관리 모듈; 및
    상기 제1 사용자 정보를 기초로 제1 암호화 블록을 생성하고, 상기 제1 판매 관련 정보를 기초로 제2 암호화 블록을 생성하는 보안 모듈;을 포함하되,
    상기 보안 모듈은, 상기 제1 사용자 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말의 고유 식별 정보에 대한 제1 입력 데이터와, 상기 제1 클라이언트에 연결된 주문자 단말의 상기 주문 정보에 대한 제2 입력 데이터를 추출하고,
    상기 제1 입력 데이터와 상기 제2 입력 데이터를 가상 공간에 벡터화하고,
    상기 제1 입력 데이터와 상기 제2 입력 데이터 간의 상기 가상 공간에서의 거리를 기초로 상기 제1 암호화 블록을 생성하고,
    [수학식]
    Figure 112022061095515-pat00020

    상기 보안 모듈은, 상기 수학식을 이용하여 상기 제1 암호화 블록을 생성하고, 상기 수학식에서, K는 커널 함수, W는 매개 변수, α는 W에 대한 종속 변수, x_i는 상기 가상 공간의 제1 입력 데이터, y_i는 상기 가상 공간의 제2 입력 데이터, σ는 대역폭 파라미터를 의미하는,
    뉴럴 네트워크 기반의 축산물 유통 시스템.
  7. 삭제
  8. 제6항에 있어서,
    상기 제1 암호화 블록 및 상기 제2 암호화 블록을 기초로 대체 불가 토큰(Non-Fungible Token; NFT)을 생성하는 블록체인 모듈;을 더 포함하는,
    뉴럴 네트워크 기반의 축산물 유통 시스템.
  9. 축산물 유통 메타버스 플랫폼으로서,
    상기 플랫폼은, 서버; 및 메타버스 구현 장치;를 포함하고,
    상기 서버는,
    프로세서;
    제1 클라이언트로부터 복수의 주문 정보를 수신하고, 상기 복수의 주문 정보를 분석하되, 상기 복수의 주문 정보는 제1 주문 정보, 제2 주문 정보를 포함하고, 상기 제1 주문 정보는 제1 주문 시점, 제1 주문 제품, 제1 주문 수량, 제1 주문 가격을 포함하는 주문 분석 모듈;
    상기 프로세서의 제어에 의해 알림 신호를 생성하여 상기 제1 클라이언트에 송신하는 알림 모듈;
    상기 제1 주문 정보 및 상기 제2 주문 정보를 저장하는 데이터베이스; 및
    축산물에 관한 이미지, 축산물 정보, 축산물 거래 정보 등을 포함하는 객체 데이터를 수집하는 객체 데이터 수집 모듈;을 포함하되,
    상기 주문 분석 모듈은,
    제1 시점에서 상기 제1 클라이언트로부터 상기 제1 주문 정보를 수신하고, 상기 제1 시점에 후속하는 제2 시점에서 상기 제1 클라이언트로부터 상기 제2 주문 정보를 수신하고,
    상기 제1 주문 정보와 상기 제2 주문 정보를 기초로 상기 제1 클라이언트의 주문 패턴에 관한 분석 정보를 포함하는 제1 주문 예측 정보를 생성하되, 상기 제1 주문 예측 정보는 상기 제2 시점에 후속하는 제3 시점을 시작점으로 하고 상기 제3 시점에 후속하는 제4 시점을 끝점으로 하는 제1 주문 예상 구간을 포함하고,
    상기 제1 주문 예상 구간에서 상기 제1 클라이언트로부터 제3 주문 정보 수신 여부에 기초하여 상기 알림 신호 생성 여부를 결정하고,
    상기 주문 분석 모듈은, 상기 제1 주문 예상 구간에 포함되는 제5 시점에서, 상기 제1 클라이언트로부터 상기 제3 주문 정보를 수신하는 경우, 상기 제1 주문 예측 정보와 상기 제3 주문 정보를 기초로 제2 주문 예측 정보를 생성하고, 상기 데이터베이스에 상기 제2 주문 예측 정보를 저장하고,
    상기 제2 주문 예측 정보는 상기 제1 주문 예상 구간과는 다른 제2 주문 예상 구간을 포함하고, 상기 주문 분석 모듈은, 상기 제3 시점과 상기 제5 시점 사이의 간격과 상기 제5 시점과 상기 제4 시점 사이의 간격을 기초로 상기 제2 주문 예상 구간을 생성하고,
    [수학식]
    Figure 112022061095515-pat00021

    상기 주문 분석 모듈은 상기 수학식을 이용하여 상기 제2 주문 예상 구간을 생성하고, 상기 수학식에서, k는 고유 보정 계수, t3은 상기 제3 시점, t4는 상기 제4 시점, t5는 상기 제5 시점, t'3은 상기 제3 시점이 보정된 제7 시점, t'4는 상기 제4 시점이 보정된 제8 시점, t는 경과 시간을 의미하고는,
    상기 메타버스 구현 장치는,
    상기 객체 데이터 수집 모듈로부터 제공받은 객체 데이터를 기초로 축산물 유통 플랫폼에 관한 AR(augmented reality) 영상을 출력하는 증강현실 구현 모듈을 포함하는,
    축산물 유통 메타버스 플랫폼.
  10. 축산물 유통 메타버스 플랫폼으로서,
    상기 플랫폼은, 서버; 및 메타버스 구현 장치;를 포함하고,
    상기 서버는,
    제1 클라이언트로부터 주문 시점, 주문 제품, 주문 수량, 주문 가격에 대응하는 정보들을 포함하는 제1 주문 정보를 수신하고, 제2 클라이언트로부터 상기 제1 주문 정보에 대한 제1 판매 정보를 수신하고, 상기 제1 판매 정보를 기초로 제1 판매 관련 정보를 추출하되, 상기 제1 판매 관련 정보는 축산물에 대한 육종, 부위, 등급, 원산지, 용도, 보관방법, 도축장, 중량 등에 대응하는 정보를 포함하는, 추출 모듈;
    상기 제1 주문 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말에 대한 고유 식별 정보를 포함하는 제1 사용자 정보를 생성하는 사용자 관리 모듈;
    상기 제1 사용자 정보를 기초로 제1 암호화 블록을 생성하고, 상기 제1 판매 관련 정보를 기초로 제2 암호화 블록을 생성하는 보안 모듈; 및
    축산물에 관한 이미지, 축산물 정보 등을 포함하는 객체 데이터를 수집하는 객체 데이터 수집 모듈;을 포함하되,
    상기 보안 모듈은, 상기 제1 사용자 정보를 기초로 상기 제1 클라이언트에 연결된 주문자 단말의 고유 식별 정보에 대한 제1 입력 데이터와, 상기 제1 클라이언트에 연결된 주문자 단말의 상기 주문 정보에 대한 제2 입력 데이터를 추출하고,
    상기 제1 입력 데이터와 상기 제2 입력 데이터를 가상 공간에 벡터화하고,
    상기 제1 입력 데이터와 상기 제2 입력 데이터 간의 상기 가상 공간에서의 거리를 기초로 상기 제1 암호화 블록을 생성하고,
    [수학식]
    Figure 112022061095515-pat00022

    상기 보안 모듈은, 상기 수학식을 이용하여 상기 제1 암호화 블록을 생성하고, 상기 수학식에서, K는 커널 함수, W는 매개 변수, α는 W에 대한 종속 변수, x_i는 상기 가상 공간의 제1 입력 데이터, y_i는 상기 가상 공간의 제2 입력 데이터, σ는 대역폭 파라미터를 의미하고,
    상기 메타버스 구현 장치는,
    상기 객체 데이터 수집 모듈로부터 제공받은 객체 데이터를 기초로 축산물 유통 플랫폼에 관한 AR(augmented reality) 영상을 생성하는 증강현실 구현 모듈을 포함하는,
    축산물 유통 메타버스 플랫폼.
KR1020220031665A 2022-03-14 2022-03-14 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼 KR102437103B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220098470A KR20220118364A (ko) 2022-03-14 2022-08-08 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼
KR1020220098469A KR20220118363A (ko) 2022-03-14 2022-08-08 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220031515 2022-03-14
KR1020220031519 2022-03-14
KR20220031515 2022-03-14
KR20220031519 2022-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020220098470A Division KR20220118364A (ko) 2022-03-14 2022-08-08 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼
KR1020220098469A Division KR20220118363A (ko) 2022-03-14 2022-08-08 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼

Publications (1)

Publication Number Publication Date
KR102437103B1 true KR102437103B1 (ko) 2022-08-30

Family

ID=83114210

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220031665A KR102437103B1 (ko) 2022-03-14 2022-03-14 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼

Country Status (1)

Country Link
KR (1) KR102437103B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102534656B1 (ko) * 2022-11-17 2023-05-26 주식회사 도킹블록 뉴럴 네트워크를 이용하여 특정 지표에 따라 특정 데이터에 대해 리밸런싱을 수행하는 방법 및 장치
KR102557257B1 (ko) * 2022-08-30 2023-07-20 주식회사 어시스트키친 뉴럴 네트워크를 이용하여 예측된 매출액을 기반으로 식재료에 대한 정보를 전송하는 방법 및 장치
KR102562616B1 (ko) * 2022-08-26 2023-08-02 주식회사 금보식품 인공지능에 기반한 닭고기 부위별 판매 시스템
KR102594696B1 (ko) * 2022-10-24 2023-10-27 주식회사 준다 뉴럴 네트워크를 이용하여 가상 자산에 대한 포트폴리오에 대해 리밸런싱 기준 값에 따라 리밸런싱을 수행하는 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200009542A (ko) * 2018-07-19 2020-01-30 한국기술교육대학교 산학협력단 소비자 빅데이터를 기반으로 하는 지능형 쇼핑 플랫폼 관리시스템 및 그 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200009542A (ko) * 2018-07-19 2020-01-30 한국기술교육대학교 산학협력단 소비자 빅데이터를 기반으로 하는 지능형 쇼핑 플랫폼 관리시스템 및 그 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562616B1 (ko) * 2022-08-26 2023-08-02 주식회사 금보식품 인공지능에 기반한 닭고기 부위별 판매 시스템
KR102557257B1 (ko) * 2022-08-30 2023-07-20 주식회사 어시스트키친 뉴럴 네트워크를 이용하여 예측된 매출액을 기반으로 식재료에 대한 정보를 전송하는 방법 및 장치
KR102594696B1 (ko) * 2022-10-24 2023-10-27 주식회사 준다 뉴럴 네트워크를 이용하여 가상 자산에 대한 포트폴리오에 대해 리밸런싱 기준 값에 따라 리밸런싱을 수행하는 방법 및 장치
KR102602516B1 (ko) * 2022-10-24 2023-11-16 주식회사 준다 뉴럴 네트워크를 이용하여 리밸런싱이 수행된 가상 자산에 대한 포트폴리오를 평가하는 방법 및 장치
KR102534656B1 (ko) * 2022-11-17 2023-05-26 주식회사 도킹블록 뉴럴 네트워크를 이용하여 특정 지표에 따라 특정 데이터에 대해 리밸런싱을 수행하는 방법 및 장치

Similar Documents

Publication Publication Date Title
KR102437103B1 (ko) 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼
KR20220118363A (ko) 뉴럴 네트워크 기반의 축산물 유통 시스템 및 방법, 축산물 유통 메타버스 플랫폼
KR102360727B1 (ko) 뉴럴 네트워크를 이용한 차량 추천 방법 및 장치
KR102529607B1 (ko) 인공지능 기반의 사업체 거래 플랫폼 시스템
KR102407241B1 (ko) 렌탈 마켓 시스템
KR102437112B1 (ko) 뉴럴 네트워크 기반의 물류 분산 시스템
KR20240102788A (ko) 뉴럴 네트워크를 이용하여 온라인 마켓에 대한 접근이 허용되는 셀러 단말에게 상품 정보를 제공하는 방법 및 장치
KR102422153B1 (ko) 뉴럴 네트워크를 이용한 상담 가이드 정보 추천 방법 및 장치
KR102468206B1 (ko) 뉴럴 네트워크를 이용한 크리에이팅 보조 방법, 그 방법을 수행하는 서버 및 단말기
KR20240007576A (ko) 뉴럴 네트워크를 이용하여 디지털 파일에 대한 민팅 유형에 따라 블록체인을 통해 수수료를 지불하는 방법 및 장치
KR102607631B1 (ko) 인공지능 기반의 농축산물 직거래 플랫폼 서비스 제공 방법 및 시스템
KR102534638B1 (ko) 소비자 분석 알고리즘을 이용한 인공지능 기반의 전자상거래 수출 플랫폼 시스템
KR102602241B1 (ko) 블록체인 기반의 인공지능 헬스케어 플랫폼 시스템
KR102699604B1 (ko) 축산물 유통 및 소비에 관한 데이터 분석 장치 및 방법
KR102619380B1 (ko) 암호화폐 시장 유동성 공급 장치 및 방법
KR102657690B1 (ko) 거래소 내 제출된 호가의 유효성 검증 방법
KR102619379B1 (ko) 가상자산 거래소에 유동성을 공급하는 방법
KR102644779B1 (ko) 온라인 쇼핑몰의 컨셉에 맞는 상품의 추천 방법
KR102486525B1 (ko) 뉴럴 네트워크를 이용한 nft 발행 방법 및 장치
KR102464057B1 (ko) 인공지능을 이용한 신용점수 기반의 렌탈 서비스 제공 장치 및 방법
KR102465106B1 (ko) 뉴럴 네트워크를 이용한 주식 종목 분석 방법 및 장치
KR102591113B1 (ko) 바이너리 트리 기반의 컨벌루션 신경망을 활용한 의류 이미지 검색 기능을 가진 맞춤형 인터페이스를 제공하는 방법 및 장치
KR102610945B1 (ko) B2b 서비스 통합 관리 방법
KR102488527B1 (ko) 뉴럴 네트워크 기반의 비건 제품 유통 플랫폼
KR102579810B1 (ko) 인공지능 기반 가정용 건강 보조 기기 유통 플랫폼 시스템

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant