KR102436132B1 - Surface treatment method of heat exchanger fins with water repellency and antibacterial function - Google Patents

Surface treatment method of heat exchanger fins with water repellency and antibacterial function Download PDF

Info

Publication number
KR102436132B1
KR102436132B1 KR1020200183195A KR20200183195A KR102436132B1 KR 102436132 B1 KR102436132 B1 KR 102436132B1 KR 1020200183195 A KR1020200183195 A KR 1020200183195A KR 20200183195 A KR20200183195 A KR 20200183195A KR 102436132 B1 KR102436132 B1 KR 102436132B1
Authority
KR
South Korea
Prior art keywords
heat exchanger
weight
parts
zinc oxide
exchanger fins
Prior art date
Application number
KR1020200183195A
Other languages
Korean (ko)
Other versions
KR20220091951A (en
Inventor
김희준
Original Assignee
주식회사 인트켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트켐 filed Critical 주식회사 인트켐
Priority to KR1020200183195A priority Critical patent/KR102436132B1/en
Publication of KR20220091951A publication Critical patent/KR20220091951A/en
Application granted granted Critical
Publication of KR102436132B1 publication Critical patent/KR102436132B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • C25D11/246Chemical after-treatment for sealing layers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명의 열교환기 핀의 발수 및 항균/항곰팡이 표면처리방법은, 열교환기 핀의 표면에 잔류된 유기물을 분해하는 탈지단계; 유기물이 제거된 열교환기 핀의 표면에 잔류된 이물질을 제거하는 에칭단계; 이물질이 제거된 열교환기 핀의 표면에 잔류하는 스머트(smut)를 제거하는 디스머트 단계; 디스머트 처리된 열교환기 핀 표면을 양극산화시키는 양극산화단계; 산화된 열교환기 핀의 다공질 기공내에 산화아연을 침적시키는 봉공처리(SEALING)단계; 봉공처리(SEALING)된 열교환기 핀의 다공질 기공내의 산화아연을 시드로 하여 나노사이즈의 나노로드를 성장시키는 나노로드 성장단계(S6);가 순차적으로 진행되는 것을 요지로 한다.The water repellent and antibacterial/anti-mildew surface treatment method of a heat exchanger fin of the present invention includes a degreasing step of decomposing organic matter remaining on the surface of the heat exchanger fin; an etching step of removing foreign substances remaining on the surface of the heat exchanger fins from which organic substances have been removed; a desmut step of removing smut remaining on the surface of the heat exchanger fins from which foreign substances have been removed; anodizing step of anodizing the desmut-treated heat exchanger fin surface; A sealing step of depositing zinc oxide in the porous pores of the oxidized heat exchanger fins; It is a gist that the nanorod growth step (S6) of growing nano-sized nanorods using zinc oxide in the porous pores of the sealed heat exchanger fin as a seed is performed sequentially.

Description

발수 및 항균/항곰팡이 기능을 갖는 열교환기 핀의 표면처리방법 {Surface treatment method of heat exchanger fins with water repellency and antibacterial function}{Surface treatment method of heat exchanger fins with water repellency and antibacterial function}

본 발명은 열교환기 핀의 표면처리방법에 관한 것으로서, 구체적으로는 열교환기 핀의 표면에 산화아연으로 나노사이즈의 나노로드를 생성시켜 발수기능 및 항균 및 항곰팡이 기능을 구현하는 열교환기 핀의 표면처리방법에 관한 것이다.The present invention relates to a method for surface treatment of a heat exchanger fin, and more specifically, a surface of a heat exchanger fin that realizes water repellency and antibacterial and antifungal functions by generating nano-sized nanorods with zinc oxide on the surface of the heat exchanger fin. It's about processing.

일반적으로 에어컨의 열교환기는 핀관식이 널리 이용되고 있다. 핀관식 열교환기는 주로 원형 동관과 알루미늄 핀으로 구성되어 있고, 열교환기 핀과 밀착하는 동관내에는 냉매가 흐르고, 냉매의 유동 방향과 직각 방향으로 공기가 핀 사이를 흐른다. In general, a fin tube type heat exchanger of an air conditioner is widely used. The finned tube heat exchanger is mainly composed of a circular copper tube and aluminum fins, and refrigerant flows in the copper tube in close contact with the heat exchanger fins, and air flows between the fins in a direction perpendicular to the flow direction of the refrigerant.

이러한 열교환기가 증발기로 사용되는 경우, 동관 내에는 8℃정도로 냉각된 냉매가 흐르고 있고, 20℃이상의 공기가 유입하면 열교환기 핀 사이의 상대습도가 높아진다. 열교환기 핀 표면의 온도는 10℃정도로 유지 되지만, 열교환기 핀 표면온도가 유입공기의 노점보다 낮아져 열교환기 핀 표면에 응축수가 맺히게 된다. 열교환기의 핀 표면적은 매우 크고, 여기에 습기가 항상 잔류하므로, 세균 및 곰팡이가 서식하기 좋은 상태가 된다. When such a heat exchanger is used as an evaporator, a refrigerant cooled to about 8°C flows in the copper tube, and when air of 20°C or higher flows in, the relative humidity between the heat exchanger fins increases. The surface temperature of the heat exchanger fins is maintained at about 10°C, but the surface temperature of the heat exchanger fins is lower than the dew point of the inlet air, and condensed water forms on the surface of the heat exchanger fins. The fin surface area of the heat exchanger is very large, and moisture always remains there, so it is a good condition for bacteria and mold to inhabit.

이러한 이유에서, 에어컨을 운전하면, 곰팡이의 악취가 발생과 응축수와 외부에서 유입된 먼지등이 오염원들이 뭉쳐 열교환기 핀의 표면에 층을 형성하며 열교환 성능 저하시키는 경우가 있어 문제시되고 있다.For this reason, when the air conditioner is operated, mold odor is generated, and condensed water and dust introduced from the outside collect contaminants to form a layer on the surface of the heat exchanger fins, thereby reducing heat exchange performance.

이상 언급한 바와 같이 에어컨의 증발기에 있어서 기술개발 목적인 발수기능과 항균 및 항곰팡이성을 부여하기 위하여 지속성 및 내식성을 어떻게 유지하는가가 중요하다. As mentioned above, it is important how to maintain durability and corrosion resistance in order to impart water repellency, antibacterial and antifungal properties, which are the purpose of technology development in the evaporator of air conditioners.

항균 및 항곰팡이성을 부여하기 위해서는, 기존의 친수화 코팅 시스템에 항균 및 항곰팡이제를 첨가하는 방법이 취해졌으며, 예를 들면 일본 특허평 1-240688호는 Al합금판 표면에 내식성 처리피막을 형성하고 그 위에 벤즈이미다졸계 화합물 함유 친수피막을 형성하는 것에 의해 얻어지는 표면에 곰팡이가 발생하지 않는 열교환기용 Al핀재에 대해서 개시하고 있다.In order to impart antibacterial and antifungal properties, a method of adding antibacterial and antifungal agents to the existing hydrophilic coating system has been taken. An Al fin material for a heat exchanger that does not cause mold on the surface obtained by forming a hydrophilic film containing a benzimidazole-based compound thereon is disclosed.

일본 특허평 2-101395호는 친수성 피막에 속효성(速效性)을 가지는 제1항균제를, 내식성 피막에 지효성(遲效成)을 가지는 제2항균제를 각각 포함시키는 것에 의해 얻어지는, 물이 부착하여 곰팡이가 발생하기 시작하는 때에 항균효과를 발휘시키는 A1핀재에 대해서 개시하고 있다. Japanese Patent Hei 2-101395 discloses that a water-adhering mold obtained by including a first antibacterial agent having fast-acting properties in a hydrophilic film and a second antibacterial agent having a sustained-acting property in a corrosion-resistant film, respectively. Disclosed is an A1 fin material that exhibits an antibacterial effect when it starts to occur.

상기 기술은 모두 친수성을 부여하고 핀표면의 결로수가 수막이 되기 쉬운 상태를 유지해가면서 항균 및 항곰팡이 효과도 얻는 것을 목적으로 하는 것이다.All of the above techniques are intended to provide hydrophilicity and to obtain antibacterial and antifungal effects while maintaining a state where dew condensation on the surface of the pin tends to become a water film.

이들 종래기술은, 모두 어떠한 형태든 항균 및 항곰팡이제를 핀표면처리 피막 중에 존재시키는 방법을 취하고 있지만, 일본 특개평 1-240688호와 같이 친수성피막중에 항균 및 항곰팡이제를 함유시킨 경우, 고레벨로 친수성 또는 항균 및 항곰팡이성을 장기에 걸쳐 유지하는 것이 어렵다. All of these prior art methods take any form of an antibacterial and antifungal agent in the pin surface treatment film, but when an antibacterial and antifungal agent is contained in the hydrophilic film as in Japanese Patent Application Laid-Open No. 1-240688, a high level Therefore, it is difficult to maintain hydrophilicity or antibacterial and antifungal properties over a long period of time.

즉 소수성(疏水性)이 큰 항균 및 항곰팡이제를 첨가한 경우 친수성의 열화는 피할 수 없고, 친수성이 큰 항균 및 항곰팡이제를 첨가한 경우는 결로수 중에 용출되어 항균 및 항곰팡이성을 조기에 잃어버리기 쉽다. In other words, when an antibacterial and antifungal agent with high hydrophobicity is added, hydrophilicity deterioration is unavoidable. easy to lose in

일본 특개평 2-101395호는 이 점을 개선하여, 친수성 피막이 함유하는 항균 및 항곰팡이제가 결로수 중에 용출한 뒤에도 내식성 피막이 함유하는 지효성의 제2항균제가 효과를 발휘하기 시작하기 때문에 항균 및 항곰팡성의 장기에 걸친 유지가 가능하게 되었지만, 제2항균제가 효과를 발휘하기 시작한 때에는 친수성 피막의 대부분이 흘러없어진 상태가 되고, 따라서 장기에 걸쳐 유지할 수가 없었다.Japanese Patent Application Laid-Open No. 2-101395 improves on this point, and even after the antibacterial and antifungal agent contained in the hydrophilic film is eluted in dew water, the long-acting second antibacterial agent contained in the corrosion-resistant film begins to exert its effect. Although it became possible to maintain the sex over a long period of time, when the second antibacterial agent began to exert its effect, most of the hydrophilic film was in a state in which it was lost, and therefore it was not possible to maintain it over a long period of time.

일본 특개평 1-240688호(1989.09.26. 공개)Japanese Unexamined Patent Publication No. 1-240688 (published on September 26, 1989) 일본 특개평 2-101395호(1990.04.13. 공개)Japanese Unexamined Patent Publication No. 2-101395 (published on April 13, 1999)

본 발명은 상기의 문제점을 해결하기 위한 것으로서, 열교환기 핀의 표면에 산화아연의 나노로드를 형성시켜 발수기능 및 항균/항곰팡이 기능을 갖는 열교환기 핀의 표면처리방법을 제공하고자 함이다.The present invention is to solve the above problems, and to provide a method for surface treatment of a heat exchanger fin having a water repellent function and an antibacterial/anti-fungal function by forming nanorods of zinc oxide on the surface of the heat exchanger fin.

본 발명의 열교환기 핀의 발수 및 항균/항곰팡이 표면처리방법은, 열교환기 핀의 표면에 잔류된 유기물을 분해하는 탈지단계; 유기물이 제거된 열교환기 핀의 표면에 잔류된 이물질을 제거하는 에칭단계; 이물질이 제거된 열교환기 핀의 표면에 잔류하는 스머트(smut)를 제거하는 디스머트 단계; 디스머트 처리된 열교환기 핀 표면을 양극산화시키는 양극산화단계; 산화된 열교환기 핀의 다공질 기공내에 산화아연을 침적시키는 봉공처리(SEALING)단계; 봉공처리(SEALING)된 열교환기 핀의 다공질 기공내의 산화아연을 시드로 하여 나노사이즈의 산화아연 나노로드를 성장시키는 나노로드 성장단계(S6);가 순차적으로 진행되는 것을 특징으로 한다.The method for surface treatment of water repellent and antibacterial/anti-mold of a heat exchanger fin of the present invention includes a degreasing step of decomposing organic matter remaining on the surface of the heat exchanger fin; an etching step of removing foreign substances remaining on the surface of the heat exchanger fins from which organic substances have been removed; a desmut step of removing smut remaining on the surface of the heat exchanger fins from which foreign substances have been removed; anodizing step of anodizing the desmut-treated heat exchanger fin surface; A sealing step of depositing zinc oxide in the porous pores of the oxidized heat exchanger fins; A nanorod growth step (S6) of growing nano-sized zinc oxide nanorods by using the zinc oxide in the porous pores of the sealed heat exchanger fin as a seed; characterized in that it proceeds sequentially.

또한, 상기 탈지단계는, 가성소다(NaOH) 10~15중량부, 비이온성 계면활성제(Polysorbate 60) 5 ~ 10중량부, 물 75 ~ 85중량부의 용액을 40 ~ 50℃ 온도에서 5분 동안 침적 후 수세를 수행하여 탈지하는 것을 특징으로 한다.In addition, in the degreasing step, a solution of 10 to 15 parts by weight of caustic soda (NaOH), 5 to 10 parts by weight of a nonionic surfactant (Polysorbate 60), and 75 to 85 parts by weight of water is immersed at a temperature of 40 to 50° C. for 5 minutes. It is characterized in that it is degreased by performing water washing afterward.

또한, 상기 에칭단계는, 상기 에칭단계는, 가성소다(NaOH) 10~30중량부, 물 70~90중량부의 용액에서 5분 동안 침적시켜 열교환기 핀 표면을 화학연마 후 수세하여 에칭하는 것을 특징으로 한다.In addition, in the etching step, the etching step is characterized in that the surface of the heat exchanger fin is chemically polished and then washed with water by immersing it in a solution of 10 to 30 parts by weight of caustic soda (NaOH) and 70 to 90 parts by weight of water for 5 minutes. do it with

또한, 디스머트(Desmut)단계는, 질산(HNO3) 10 ~ 15중량부, 물 85 ~ 90중량부의 혼합물을 25℃ 또는 상온에서 30초 ~ 5분 동안 침적 세정 후 수세하는 것을 특징으로 한다.In addition, in the desmut step, 10 to 15 parts by weight of nitric acid (HNO3) and 85 to 90 parts by weight of water are immersed and washed at 25° C. or room temperature for 30 seconds to 5 minutes, followed by washing with water.

또한, 상기 양극산화단계는, 황산(H2SO4)액 70 ~ 80중량부, 옥실산(H2C2O4) 10 ~ 30중량부, 황산알루미늄칼륨(KAl(SO4)2) 8 ~ 12중량부가 혼합된 혼합액을 사용하여 40 ~ 60℃에서 15 ~ 30분간 정전압 10 ~ 25V에서 양극산화시키는 것을 특징으로 한다.In addition, in the anodizing step, 70 to 80 parts by weight of a sulfuric acid (H2SO4) solution, 10 to 30 parts by weight of oxylic acid (H2C2O4), and 8 to 12 parts by weight of potassium aluminum sulfate (KAl(SO4)2) A mixed solution is used. It is characterized by anodizing at a constant voltage of 10 to 25V for 15 to 30 minutes at 40 to 60°C.

또한, 상기 활성화단계는, 황산(H2SO4)액 30 ~ 35중량부, 황산망간(MnSO4) 1 ~ 5중량부, 질산철(Fe(NO3)2) 60 ~ 65 중량부, 황산구리(CuSO) 1 ~ 3중량부가 혼합된 혼합액을 사용하여 40 ~ 60℃에서 5 ~ 15분간 정전압 10v에서 활성화시키는 것을 특징으로 한다.In addition, the activation step, 30 to 35 parts by weight of sulfuric acid (H2SO4) solution, 1 to 5 parts by weight of manganese sulfate (MnSO4), 60 to 65 parts by weight of iron nitrate (Fe(NO3)2), 1 to copper sulfate (CuSO) It is characterized in that it is activated at a constant voltage of 10v for 5 to 15 minutes at 40 to 60° C. using a mixed solution mixed with 3 parts by weight.

또한 상기 봉공처리(SEALING)단계에서 봉공에 침적되는 산화아연은 산화아연 25 ~ 30중량부, 첨가제 1 ~ 5중량부, 계면활성제 1 ~ 5중량부, 분산제 1 ~ 5중량부를 용매인 물 55 ~ 67중량부에 투입하여 30분이상 교반하여 액상의 용매에 산화아연을 적신후, 상온에서 1 ~ 2시간 균질화시켜 분산처리된 산화아연용액인 것을 특징으로 한다.In addition, the zinc oxide deposited in the sealing in the sealing step is 25 to 30 parts by weight of zinc oxide, 1 to 5 parts by weight of additives, 1 to 5 parts by weight of surfactant, 1 to 5 parts by weight of dispersant, 55 to water as a solvent. It is characterized in that it is a zinc oxide solution dispersed by adding 67 parts by weight, stirring for 30 minutes or more, soaking zinc oxide in a liquid solvent, and homogenizing it at room temperature for 1 to 2 hours.

또한, 상기 봉공처리(SEALING)단계에서 봉공처리액은, 상기 분산처리된 산화아연용액 20 ~ 50중량부, 구연산 1 ~ 2중량부, 초산나트륨 1 ~ 5중량부, 계면활성제 2 ~ 8중량부를 용매인 물에 투입시킨 봉공처리액인 것을 특징으로 한다.In addition, in the sealing treatment (SEALING) step, the sealing solution is 20 to 50 parts by weight of the dispersed zinc oxide solution, 1 to 2 parts by weight of citric acid, 1 to 5 parts by weight of sodium acetate, and a surfactant It is characterized in that it is a sealing solution in which 2 to 8 parts by weight are added to water as a solvent.

또한, 나노로드 성장단계(S6)는 용매로서 에탄올 12중량부와, 메탄올 64중량부, 이소프로필알코올 20중량부를 사용하고, 산화아연을 활성화시키기 위해 염산수용액 0.37중량부, 메틸에틸케톤 1중량부, 글리세롤 1중량부를 사용하고, 나노로드 생성의 방향성을 위해 다이메틸포름아마이드 2중량부를 혼합한 나노로드 조성액에 봉공처리된 열교환기 핀을 침적하는 것을 특징으로 한다.In addition, the nanorod growth step (S6) uses 12 parts by weight of ethanol, 64 parts by weight of methanol, and 20 parts by weight of isopropyl alcohol as a solvent, and 0.37 parts by weight of an aqueous hydrochloric acid solution, 1 part by weight of methyl ethyl ketone to activate zinc oxide , characterized in that the sealed heat exchanger fins are immersed in a nanorod composition solution in which 1 part by weight of glycerol is used and 2 parts by weight of dimethylformamide is mixed for the directionality of nanorod generation.

본 발명의 열교환기 핀 표면에 존재하고 일부가 표면으로 노출해 있는 나노사이즈의 산화아연 나노로드에 의해 양호한 항균 및 항곰팡이성을 나타낸다.Good antibacterial and antifungal properties are exhibited by the nano-sized zinc oxide nanorods present on the surface of the heat exchanger fin of the present invention and partially exposed to the surface.

또한 본 발명에 의한 표면처리에 의해 생성된 산화아연 나노로드가 불용성입자의 형태로 존재하기 때문에 응축수에 용해되지 않고 발수기능을 유지할 수 있다.In addition, since the zinc oxide nanorods generated by the surface treatment according to the present invention exist in the form of insoluble particles, they are not dissolved in condensed water and can maintain a water repellent function.

또한 에어컨 증발기의 실사용 환경하에 열교환기 핀 표면에 응축수 부착되지 않기 때문에, 양호한 항균 및 항곰팡이성과 발수기능이 장기에 결쳐 지속하는 것이 가능한 뛰어난 효과가 있다.In addition, since condensed water does not adhere to the surface of the heat exchanger fins under the actual use environment of the air conditioner evaporator, there is an excellent effect that good antibacterial and antifungal properties and water repellency can be maintained for a long time.

도 1은 본 발명의 일실시예에 따른 열교환기 핀의 표면처리방법 순서를 나타나내는 순서도
도 2는 본 발명의 일실시예에 따른 열교환기 핀의 형태를 예시로 나타낸 사진
도 3은 본 발명의 일실시예에 따른 양극산화단계 후 열교환기 핀에 형성된 상태의 현미경 사진으로 열교환기 핀에 다공질 기공이 균일하게 형성된 상태를 나타낸 사진
도 4는 본 발명의 일실시예에 따른 산화아연분말을 분산시킨 후의 산화아연의 입도분포를 나타낸 그래프
도 5는 본 발명의 일실시예에 따른 산화아연을 분산시켜 입도가 작아진 산화아연이 양극산화시 형성된 다공질 기공내에 채워지는 봉공(SEALING) 상태를 나타내는 이미지 및 성분분석 스펙트럼
도 6은 봉공되어 열교환기 핀의 다공질 기공에 채워진 산화아연이 나노사이즈의 크기로 나노로드 상태로 성장한 상태를 나타내는 사진
도 7은 나노로드 상태로 성장한 열교환기 핀의 항균시험데이터
1 is a flowchart illustrating a method for surface treatment of a heat exchanger fin according to an embodiment of the present invention;
2 is a photograph showing as an example the shape of a heat exchanger fin according to an embodiment of the present invention;
3 is a photomicrograph of a state formed in a heat exchanger fin after an anodizing step according to an embodiment of the present invention, and is a photograph showing a state in which porous pores are uniformly formed in the heat exchanger fin;
4 is a graph showing the particle size distribution of zinc oxide after dispersing zinc oxide powder according to an embodiment of the present invention;
5 is an image and component analysis spectrum showing a sealing state in which zinc oxide having a smaller particle size by dispersing zinc oxide according to an embodiment of the present invention is filled in porous pores formed during anodization.
6 is a photograph showing a state in which zinc oxide, which is sealed and filled in the porous pores of the heat exchanger fin, has grown in a nano-rod state to a nano size;
7 is an antibacterial test data of a heat exchanger fin grown in a nanorod state.

본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다. 참고로, 본 발명을 설명하는데 참조하는 도면에 도시된 구성요소의 크기, 선의 두께 등은 이해의 편의상 다소 과장되게 표현되어 있을 수 있다. A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. For reference, sizes of components, thicknesses of lines, etc. shown in the drawings referenced to describe the present invention may be expressed somewhat exaggeratedly for convenience of understanding.

또, 본 발명의 설명에 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의한 것이므로 사용자, 운용자 의도, 관례 등에 따라 달라질 수 있다. 따라서, 이 용어에 대한 정의는 본 명세서의 전반에 걸친 내용을 토대로 내리는 것이 마땅하다.In addition, the terms used in the description of the present invention are defined in consideration of functions in the present invention, and thus may vary according to user, operator intention, custom, and the like. Therefore, the definition of this term should be made based on the content throughout the present specification.

그리고 본 출원에서, '포함하다', '가지다' 등의 용어는 명세서 상에 기재된 특정의 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지칭하는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.And in the present application, terms such as 'comprise' and 'have' refer to the existence of specific numbers, steps, operations, components, parts, or combinations thereof described in the specification, but one or more other It is to be understood that this does not preclude the possibility of addition or presence of features or numbers, steps, operations, components, parts, or combinations thereof.

또한, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.In addition, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only this embodiment makes the disclosure of the present invention complete, and the scope of the invention to those of ordinary skill in the art It is provided for complete disclosure.

그러므로, 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 구현 예(態樣, aspect)(또는 실시 예)들을 명세서에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 기술적 사상에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 하고, 본 명세서에서 사용한 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. Therefore, the present invention can be made various changes and can have various forms, implementation examples (態樣, aspects) (or embodiments) will be described in detail in the specification. However, this is not intended to limit the present invention to a specific disclosed form, and it should be understood to include all changes, equivalents or substitutes included in the technical spirit of the present invention, and the expression in the singular used herein is clearly different from the context. Unless otherwise indicated, plural expressions are included.

다만, 본 발명을 설명함에 있어서, 주지 또는 공지된 기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.However, in describing the present invention, detailed descriptions of well-known or well-known functions or configurations will be omitted in order to clarify the gist of the present invention.

이하에서 본 발명의 구체적인 실시 예를 도면을 참고하여 설명한다.Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

도 1은 본 발명의 일실시예에 따른 열교환기 핀의 표면처리방법을 나타내는 순서도이고, 도 2는 본 발명의 일실시예에 따른 열교환기 핀의 형태를 예시로 나타낸 사진이고, 도 3은 본 발명의 일실시예에 따른 양극산화단계 후 열교환기 핀에 다공질 기공이 균일하게 형성된 상태를 나타낸 현미경 사진이고, 도 4는 본 발명의 일실시예에 따른 산화아연분말을 분산시킨 후의 산화아연의 입도분포를 나타낸 그래프이고, 도 5는 본 발명의 일실시예에 따른 산화아연을 분산시켜 입도가 작아진 산화아연이 양극산화시 형성된 다공질 기공내에 채워지는 봉공처리(SEALING) 상태를 나타내는 이미지 및 성분분석 스펙트럼이고, 도 6은 봉공처리되어 열교환기 핀의 다공질 기공에 채워진 산화아연이 나노사이즈의 나노로드 상태로 성장한 상태를 나타내는 사진이다.1 is a flowchart showing a method for surface treatment of a heat exchanger fin according to an embodiment of the present invention, FIG. 2 is a photograph showing the form of a heat exchanger fin according to an embodiment of the present invention as an example, and FIG. It is a photomicrograph showing a state in which porous pores are uniformly formed in the heat exchanger fins after the anodizing step according to an embodiment of the present invention, and FIG. 4 is a particle size of zinc oxide after dispersing the zinc oxide powder according to an embodiment of the present invention. It is a graph showing the distribution, and FIG. 5 is an image and component analysis showing a sealing state in which zinc oxide having a smaller particle size by dispersing zinc oxide according to an embodiment of the present invention is filled in the porous pores formed during anodization. spectrum, and FIG. 6 is a photograph showing a state in which zinc oxide filled in the porous pores of the heat exchanger fins after sealing has grown into nano-sized nanorods.

도 1 내지 6에 도시된 바와 같이, 본 발명은 열교환기 핀의 표면처리기술을 통하여, 산화아연을 나노사이즈의 나노로드로 성장시켜 성장된 나노로드에 의해 발수 기능이 발현되고, 나노로드를 이루는 산화아연으로 인하여 항균 및 항곰팡이 기능을 갖도록 하는 열교환기 핀의 표면처리방법에 관한 것으로, 탈지 단계와, 에칭 단계와, 디스머트단계와, 양극산화단계와, 봉공처리 단계와, 나노로드 성장단계와, 건조단계를 포함한다.As shown in FIGS. 1 to 6, in the present invention, a water repellency function is expressed by the grown nanorods by growing zinc oxide into nano-sized nanorods through a surface treatment technology of a heat exchanger fin, and the nanorods are formed. It relates to a method for surface treatment of a heat exchanger fin to have antibacterial and antifungal functions due to zinc oxide, comprising a degreasing step, an etching step, a desmut step, an anodizing step, a sealing step, and a nanorod growth step and a drying step.

본 발명의 열교환기 핀의 소재로는 내식성, 표면처리성이 우수한 성질을 갖는 알루미늄 순도 99% 이상의 1000계를 사용한다.As a material of the heat exchanger fin of the present invention, 1000 series aluminum having a purity of 99% or more having excellent corrosion resistance and surface treatment properties is used.

본 발명의 일실시예에서의 탈지 단계(S1)는 열교환기 핀 표면의 묻어 있는 각종 유분 및 오염물을 제거하는 단계로 가성소다(NaOH) 10 ~ 15중량부, 비이온성 계면활성제(Polysorbate 60) 5 ~ 10중량부, 물 75 ~ 85중량부의 용액을 40 ~ 50℃ 온도에서 5분간 동안 침적 후 2회 수세를 수행하여 열교환기 핀 표면 유분 및 이물질을 제거한다. In an embodiment of the present invention, the degreasing step (S1) is a step of removing various oils and contaminants on the surface of the heat exchanger fins. 10 to 15 parts by weight of caustic soda (NaOH), 5 parts by weight of a nonionic surfactant (Polysorbate 60) ~ 10 parts by weight of a solution of 75 ~ 85 parts by weight of water is immersed at a temperature of 40 ~ 50 ℃ for 5 minutes, and then washed with water twice to remove oil and foreign substances on the surface of the heat exchanger fins.

다음 에칭단계(S2)는 열교환기 핀 표면에 존재하는 이물질, 스크레치 등의 표면 불순물을 제거하기 위한 단계로 가성소다(NaOH) 10 ~ 30중량부, 물 70 ~ 90중량부의 용액에서 5분간 침적시켜 열교환기 핀 표면을 화학연마 후 2회 수세하여 열교환기 핀 표면에 존재하는 이물질, 스크레치 등의 표면 불순물을 제거한다. The next etching step (S2) is a step for removing surface impurities such as foreign substances and scratches present on the surface of the heat exchanger fin. It is immersed in a solution of 10 to 30 parts by weight of caustic soda (NaOH) and 70 to 90 parts by weight of water for 5 minutes. The surface of the heat exchanger fin is washed twice after chemical polishing to remove surface impurities such as foreign substances and scratches on the surface of the heat exchanger fin.

아래는 에칭단계에서의 반응과정을 나타낸 것이다.The following shows the reaction process in the etching step.

2Al + 2NaOH + H2O -> 2NaAlO2 + 2H22Al + 2NaOH + H2O -> 2NaAlO2 + 2H2

2NaAlO2 + 4H2O -> 2NaOH + 2Al(OH)32NaAlO2 + 4H2O -> 2NaOH + 2Al(OH)3

2Al(OH)3 -> Al2O3·3H2O2Al(OH)3 -> Al2O3·3H2O

다음 디스머트단계(S3)는 상기 에칭 후 열교환기 핀 표면에 생성된 산화물인 스머트(smut)를 제거하기 위한 단계로서, 질산 또는 과산화수소 혼합물을 이용하여 열교환기 핀 표면을 세정하는 방법으로 수행된다. 디스머트 세정액은 질산(HNO3) 10 ~ 15중량부, 물 85 ~ 90중량부의 혼합물을 25℃ 또는 상온에서 30초 ~ 5분간 침적 세정 후 2회 수세하여 열교환기 핀 표면에 생성된 산화물인 스머트(smut)를 제거한다. The next desmut step (S3) is a step for removing smut, which is an oxide generated on the surface of the heat exchanger fins after the etching, and is performed by cleaning the surface of the heat exchanger fins using a mixture of nitric acid or hydrogen peroxide. . The desmut cleaning solution is smut, which is an oxide generated on the surface of the heat exchanger fins, by washing with water twice after immersion cleaning of a mixture of 10 to 15 parts by weight of nitric acid (HNO3) and 85 to 90 parts by weight of water at 25°C or room temperature for 30 seconds to 5 minutes. (smut) is removed.

상기와 같이 탈지단계(S1), 에칭단계(S2), 디스머트단계(S3) 순으로 진행되는 이물질 제거단계는 반드시 진행되어야 하는 것은 아니며, 필요에 따라 선택적으로 진행할 수 있다. 또한 각 단계별 약품농도, 온도, 침적시간은 다양하게 변경하여 실시할 수 있다. As described above, the step of removing foreign substances in the order of the degreasing step (S1), the etching step (S2), and the desmut step (S3) is not necessarily performed, but may be selectively performed as necessary. In addition, the chemical concentration, temperature, and immersion time for each stage can be changed in various ways.

상기와 같이 열교환기 핀 표면의 이물질을 제거한 후 양극산화(Anodizing)기법을 활용한 산화피막 및 다공질 표면을 형성하기 위한 양극산화단계(S4)를 수행한다. As described above, after removing foreign substances from the surface of the heat exchanger fins, an anodizing step (S4) for forming an oxide film and a porous surface using an anodizing technique is performed.

상기 양극산화단계(S4)의 용매는 물이며, 용질인 황산(H2SO4) 70~80중량부, 옥살산(H2C2O4) 10~30중량부, 황산알루미늄칼륨(KAl(SO4)2) 8~12중량부를 용매인 물에 혼합하여 전해액을 제조하고, 전해액을 40 ~ 60℃에서 열교환기 핀을 양극으로 하고, 흑연을 음극으로 배치하며, 10~25V의 정전압을 15~30분간 통전하여 0.8~2.5A/dm2의 전류밀도로 아노다이징하여 양극은 산화반응(dAl → Al3+ + 3e-), 음극은 환원반응(H20 → O2- + H2)을 일으킴으로써 Al3+와 O2-가 반응하여 열교환기 핀의 표면에 절연성을 갖는 산화물 층이 형성된다.The solvent of the anodizing step (S4) is water, 70 to 80 parts by weight of sulfuric acid (H2SO4) as a solute, 10 to 30 parts by weight of oxalic acid (H2C2O4), 8 to 12 parts by weight of potassium aluminum sulfate (KAl(SO4)2) Prepare an electrolyte solution by mixing it with water, a solvent, and place the electrolyte at 40 to 60°C with a heat exchanger fin as an anode, graphite as a cathode, and a constant voltage of 10 to 25 V for 15 to 30 minutes to energize 0.8 to 2.5 A/ Anodizing with a current density of dm2 causes an oxidation reaction (dAl → Al3+ + 3e-) at the anode and a reduction reaction (H20 → O2- + H2) at the cathode. An oxide layer with

상기 전해액은 바람직하게는 45 ~ 55℃ 이다.The electrolytic solution is preferably 45 ~ 55 ℃.

양극산화단계에서의 반응은 아래와 같고,The reaction in the anodization step is as follows,

Al2O3 + H20 -> 2AlO(OH) + Al2O3·H2O (1)Al2O3 + H20 -> 2AlO(OH) + Al2O3 H2O (1)

상기 반응식(1)에서 생성된 표면은 Al2O3의 산화물 상태이고, 다공질 기공내는 2AlO(OH)로 불안정한 상태이다.The surface generated in Reaction Formula (1) is an oxide state of Al2O3, and the inside of the porous pores is in an unstable state with 2AlO(OH).

본 발명에서의 열교환기 핀 표면의 산화피막 두께는 10~30um, 다공질 기공의 직경은 500nm 이하이다. The thickness of the oxide film on the surface of the heat exchanger fin in the present invention is 10 to 30 μm, and the diameter of the porous pores is 500 nm or less.

용질로서 상기 황산의 사용은 산화피막의 두께를 충분히 높이기 위함이며, 80중량부 초과시 산화피막을 충분히 높이기 어렵다. The use of sulfuric acid as a solute is to sufficiently increase the thickness of the oxide film, and when it exceeds 80 parts by weight, it is difficult to sufficiently increase the oxide film.

용질로서 상기 옥살산의 사용은 산화피막의 형성속도 높이기 위함으로 10중량부 미만시 속도가 저하되고 30중량부 초과시에도 산화피막의 형성속도가 저하될 수 있다. The use of the oxalic acid as a solute is used to increase the rate of oxide film formation. When the amount is less than 10 parts by weight, the rate is lowered, and when it exceeds 30 parts by weight, the rate of formation of the oxide film can be reduced.

용질로서 상기 황산알루미늄칼륨의 사용은, 산회피막의 내식성과 내전압성을 향상시킨다. 전류와 전압 상황에 따라 보충 첨가할 수 있으며, 보충시 0.5중량% 이하로 첨가하는 것이 바람직하다. The use of the potassium aluminum sulfate as a solute improves the corrosion resistance and voltage resistance of the acid ash film. It may be supplemented depending on the current and voltage conditions, and it is preferable to add 0.5% by weight or less when supplementing.

상기와 양극산화단계(S4)에서 표면처리된 열교환기 핀은 다공질 기공을 갖는다. 이 다공질 기공은 그대로 방치해 두면, 공기속의 가스 등을 흡착하여 결국은 불활성(오염상태로)이 되기 때문에 안정된 산화피막을 얻기 위해 봉공처리(SEALING)한다.The heat exchanger fins surface-treated in the above and anodizing step (S4) have porous pores. If the porous pores are left as they are, they will adsorb gas in the air and eventually become inactive (contaminated). Therefore, sealing is performed to obtain a stable oxide film.

본 발명에서 표면처리된 열교환기 핀에 항균 및 항곰팡이, 발수 기능에 부여하기 위하여 내식성이 우수하고 잘 분해 또는 변질되지 않고, 핀 표면에 존재해도 인체에 대한 안정적이며, 살균물질로 등록되고 인체에 무해하여 화장품 재료로 사용되고 있는 산화아연(CAS NO001314-13-2)을 봉공처리단계에서 침적한다.In order to impart antibacterial, antifungal and water repellent functions to the surface-treated heat exchanger fin in the present invention, it has excellent corrosion resistance and is not easily decomposed or deteriorated, is stable to the human body even if it is present on the fin surface, and is registered as a sterilizing material and is not harmful to the human body. Zinc oxide (CAS NO001314-13-2), which is harmless and used as a cosmetic material, is deposited in the sealing step.

시중에서 구입되는 산화아연 입자는 1 ~ 3㎛의 입자크기인 반면, 표면처리된 열교환기 핀은 다공질 기공 500nm 이하이므로, 구입된 산화아연을 바로 사용할 수 없다.While commercially available zinc oxide particles have a particle size of 1 to 3 μm, surface-treated heat exchanger fins have porous pores of 500 nm or less, so purchased zinc oxide cannot be used directly.

따라서 산화아연의 크기를 표면처리된 열교환기 핀의 다공질 기공 500nm 내에 침적될 수 있는 크기로 분산하여야 한다.Therefore, the size of zinc oxide should be dispersed to a size that can be deposited within 500 nm of the porous pores of the surface-treated heat exchanger fin.

본 발명에 의한 산화아연의 분산방법은 산화아연 25~30중량부, 첨가제 1 ~ 5중량부, 계면활성제 1 ~ 5중량부, 분산제 1 ~ 5중량부를 용매인 물 55 ~ 67중량부에 투입하여 30분이상 교반하여 액상의 용매에 산화아연을 적신후, 상온에서 1 ~ 2시간 균질화시켜 추후 진행되는 봉공처리에 적합한 사이즈로 분산시킨다.The method of dispersing zinc oxide according to the present invention is performed by adding 25 to 30 parts by weight of zinc oxide, 1 to 5 parts by weight of an additive, 1 to 5 parts by weight of a surfactant, and 1 to 5 parts by weight of a dispersant to 55 to 67 parts by weight of water as a solvent. After stirring for 30 minutes or more, the zinc oxide is soaked in a liquid solvent, homogenized at room temperature for 1 to 2 hours, and dispersed to a size suitable for the sealing process to be carried out later.

본 발명에서는 첨가제로서 카르복시메틸세루로오스나트륨(sodium carboxymethyl cellulose)을 사용할 수 있고, 계면활성제로서 Tween80을 사용할 수있으며, 분산제로서 BYK-Disper190를 사용할 수 있다. In the present invention, sodium carboxymethyl cellulose may be used as an additive, Tween80 may be used as a surfactant, and BYK-Disper190 may be used as a dispersant.

상기 산화아연 분산시 투입되는 산화아연은 25중량부 미만은 추후 진행된 봉공처리시 요구되는 산화아연의 량으로서는 부족하고, 산화아연은 30중량부 초과는 원하는 크기로의 분산이 어렵다.When the zinc oxide is dispersed, less than 25 parts by weight of zinc oxide is insufficient as the amount of zinc oxide required for the subsequent sealing process, and when the amount of zinc oxide exceeds 30 parts by weight, it is difficult to disperse it to a desired size.

상기 분산방법에 의한 분산 후 산화아연 입자 크기는 40 ~ 400nm 범위를 나타내는 것을 도 4에 의해 확인할 수 있다. It can be seen from FIG. 4 that the zinc oxide particle size after dispersion by the dispersion method is in the range of 40 to 400 nm.

상기 분산방법에 의해 분산된 산화아연이 열교환기 핀의 다공질 기공에 침적시 산화아연이 활성화된 열교환기 핀의 기공내에서 원활하게 침적되도록 봉공처리액을 제조한다.When the zinc oxide dispersed by the dispersion method is deposited in the porous pores of the heat exchanger fins, a sealing solution is prepared so that the zinc oxide is smoothly deposited in the pores of the activated heat exchanger fins.

본 발명에 의한 봉공처리액은 상기 분산처리된 산화아연용액 20 ~ 50중량부, pH 조절용 구연산 1 ~ 2중량부, 초산나트륨 1 ~ 5중량부, 계면활성제 2 ~ 8중량부를 용매인 물에 투입하여 봉공처리액을 제조한다. 봉공처리액은 40℃에서 200rpm으로 20분간 교반하며, pH 3.5 ~ 4.8 를 유지한다.The sealing solution according to the present invention contains 20 to 50 parts by weight of the dispersed zinc oxide solution, 1 to 2 parts by weight of citric acid for pH adjustment, 1 to 5 parts by weight of sodium acetate, and a surfactant. By adding 2 to 8 parts by weight of water as a solvent, a sealing solution is prepared. The sealing solution is stirred at 40° C. at 200 rpm for 20 minutes, maintaining a pH of 3.5 to 4.8.

봉공처리액에서 계면활성제로 Polysorbate 80와 Polysorbate 60을 사용할 수 있다.Polysorbate 80 and Polysorbate 60 can be used as surfactants in the sealing solution.

상기 봉공처리단계(S5)는, 제조된 봉공처리액 80 ~ 100℃, pH3.5 ~ 4.8 상태에서 양극산화처리된 열교환기 핀을 투입하여 5 ~ 15분 동안 침지한다.In the sealing step (S5), the anodized heat exchanger fins are put in the prepared sealing solution at 80 to 100° C. and pH 3.5 to 4.8 and immersed for 5 to 15 minutes.

양극산화처리된 아노다이징 피막은 다공질 기공은 2AlO(OH)와 같이 불안정한 상태을 갖으며 다공질 기공은 흡착성이 있는데 봉공처리액 내의 나노사이즈를 갖는 산화아연이 상기 다공질 기공의 2AlO(OH)와 이온결합의 느슨한 결합을 하면서 기공을 채우게 된다. 이때 다공질 기공의 2AlO(OH)와 산화아연이 결합되면서 체적이 팽창해서 미세 다공질 기공을 채우게 된다.In the anodized anodized film, the porous pores have an unstable state like 2AlO(OH), and the porous pores have adsorption properties. During bonding, the pores are filled. At this time, as 2AlO(OH) and zinc oxide in the porous pores are combined, the volume expands to fill the microporous pores.

상기 봉공처리(SEALING)단계에서 얻어진 열교환기 핀의 다공질 기공내에 침적된 산화아연을 시드로 하여 기공주위 표면에 부착되어 있는 주변의 산화아연은 나노로드로 성장시키기 위한 산화아연의 공급역할을 한다. The zinc oxide deposited in the porous pores of the heat exchanger fin obtained in the sealing step is used as a seed and the surrounding zinc oxide attached to the surface around the pores serves as a supply of zinc oxide for growing into nanorods.

도 5에는 본 발명의 봉공처리(SEALING)단계를 수행한 후, 현미경이미지와 스펙트럼 분석을 통해 확인한 산소, 아연, 알루미늄이 검출되었다는 것을 확인할 수 있다.In FIG. 5 , it can be confirmed that oxygen, zinc, and aluminum confirmed through a microscope image and spectrum analysis were detected after the sealing step of the present invention was performed.

이후 봉공처리(SEALING)된 열교관기 핀을 봉공처리액에서 분리하여 산화아연을 나노사이즈로 성장시켜 나노로드를 생성하기 위한 나노로드 성장단계(S6)를 진행한다.Thereafter, the nanorod growth step (S6) for generating nanorods by separating the sealing-treated heat exchanger pins from the sealing solution and growing zinc oxide to a nano size is performed.

나노로드 성장단계(S6)는 나노로드 조성액에 봉공처리(SEALING)된 열교관기 핀을 침지시켜 진행하는데, 나노로드 조성액은 용매로서 에탄올 12중량부와, 메탄올 64중량부, 이소프로필알코올 20중량부를 사용하고, 산화아연을 활성화시키기 위해 염산수용액 0.37중량부, 메틸에틸케톤 1중량부, 글리세롤 1중량부를 사용하고, 나노로드 생성의 방향성을 위해 다이메틸포름아마이드 2중량부를 혼합한 나노로드 조성액을 제조한다. 상기 나노로드 조성액을 상온에서 4시간 교반 후 60℃ 로 승온시켜 봉공처리(SEALING)된 열교관기 핀을 2시간동안 침적시켜 나노로드가 생성되도록 반응시킨다. The nanorod growth step (S6) proceeds by immersing the sealing-treated heat exchanger fins in the nanorod composition solution, and the nanorod composition solution contains 12 parts by weight of ethanol, 64 parts by weight of methanol, and 20 parts by weight of isopropyl alcohol as a solvent. To activate zinc oxide, 0.37 parts by weight of hydrochloric acid solution, 1 part by weight of methyl ethyl ketone, and 1 part by weight of glycerol are used, and 2 parts by weight of dimethylformamide is mixed for the directionality of nanorod generation to prepare a nanorod composition solution do. After stirring the nanorod composition solution at room temperature for 4 hours, the temperature was raised to 60° C., and the sealed heat exchanger fins were deposited for 2 hours to react to generate nanorods.

도 6은 본 발명의 나노로드 성장단계에서 성장시킨 산화아연의 나노로드의 현미경 사진으로 다수의 나노로드가 성장되어 돌기를 형성함으로써, 연꽃잎과 같은 발수 기능을 수행할 수 있음을 확인할 수 있다.6 is a micrograph of the zinc oxide nanorods grown in the nanorod growth stage of the present invention, and it can be confirmed that a plurality of nanorods are grown to form protrusions, thereby performing a water repellent function like a lotus petal.

도 7은 나노로드 상태로 성장한 열교환기 핀의 항균시험데이터이다. 상기 시험데이터는 산화아연이 나노로드 상태로 성장한 열교환기 핀의 항균시험결과 99.9% 항균처리되었음을 알 수 있다.7 is an antibacterial test data of a heat exchanger fin grown in a nanorod state. From the test data, it can be seen that as a result of an antibacterial test of a heat exchanger fin in which zinc oxide was grown in a nanorod state, 99.9% of the antibacterial treatment was performed.

이상, 실시예를 들어 본 발명을 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 여러 가지 다양한 형태로 변형될 수 있으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다. 또한, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.As described above, the present invention has been described by way of example, but the present invention is not limited to the above embodiment, and may be modified in various forms, and within the technical spirit of the present invention, those of ordinary skill in the art It is clear that many variations are possible. In addition, various types of substitution, modification and change will be possible by those skilled in the art within the scope not departing from the technical spirit of the present invention described in the claims, and it is said that this also falls within the scope of the present invention. will be.

Claims (5)

열교환기 핀의 표면에 잔류된 유기물을 분해하는 탈지단계;
유기물이 제거된 열교환기 핀의 표면에 잔류된 이물질을 제거하는 에칭단계;
이물질이 제거된 열교환기 핀의 표면에 잔류하는 스머트(smut)를 제거하는 디스머트 단계;
디스머트 처리된 열교환기 핀 표면을 양극산화시키는 양극산화단계;
산화된 열교환기 핀의 다공질 기공내에 산화아연을 침적시키는 봉공처리(SEALING)단계;
봉공처리(SEALING)된 열교환기 핀의 다공질 기공내의 산화아연을 시드로 하여 나노사이즈의 산화아연 나노로드를 성장시키는 나노로드 성장단계(S6);를 포함하며,
나노로드 성장단계(S6)는 용매로서 에탄올 12중량부와, 메탄올 64중량부, 이소프로필알코올 20중량부를 사용하고, 산화아연을 활성화시키기 위해 염산수용액 0.37중량부, 메틸에틸케톤 1중량부, 글리세롤 1중량부를 사용하고, 나노로드 생성의 방향성을 위해 다이메틸포름아마이드 2중량부를 혼합한 나노로드 조성액에 봉공처리된 열교환기 핀을 침적하는 것을 특징으로 하는 열교환기 핀의 발수 및 항균/항곰팡이 표면처리방법.
a degreasing step of decomposing organic matter remaining on the surface of the heat exchanger fins;
an etching step of removing foreign substances remaining on the surface of the heat exchanger fins from which organic substances have been removed;
a desmut step of removing smut remaining on the surface of the heat exchanger fins from which foreign substances have been removed;
anodizing step of anodizing the desmut-treated heat exchanger fin surface;
A sealing step of depositing zinc oxide in the porous pores of the oxidized heat exchanger fins;
Nanorod growth step (S6) of growing nano-sized zinc oxide nanorods by using zinc oxide in the porous pores of the sealed heat exchanger fin as a seed;
The nanorod growth step (S6) uses 12 parts by weight of ethanol, 64 parts by weight of methanol, and 20 parts by weight of isopropyl alcohol as a solvent, and 0.37 parts by weight of an aqueous hydrochloric acid solution, 1 part by weight of methyl ethyl ketone, and glycerol to activate zinc oxide Water-repellent and antibacterial/anti-mold surface of a heat exchanger fin, characterized in that 1 part by weight is used and the sealed heat exchanger fin is immersed in a nanorod composition solution in which 2 parts by weight of dimethylformamide is mixed for the direction of nanorod generation processing method.
청구항 1에 있어서,
상기 양극산화단계는, 황산(H2SO4)액 70 ~ 80중량부, 옥실산(H2C2O4) 10~30중량부, 황산알루미늄칼륨(KAl(SO4)2) 8~12중량부가 혼합된 혼합액을 사용하여 40 ~ 60℃에서 15~30분간 정전압 10~25V에서 양극산화시키는 것을 특징으로 하는 열교환기 핀의 발수 및 항균/항곰팡이 표면처리방법.
The method according to claim 1,
In the anodizing step, 70 to 80 parts by weight of a sulfuric acid (H2SO4) solution, 10 to 30 parts by weight of oxylic acid (H2C2O4), and 8 to 12 parts by weight of potassium aluminum sulfate (KAl(SO4)2) are mixed with 40 parts by weight. Water-repellent and antibacterial/anti-fungal surface treatment method for heat exchanger fins, characterized in that anodization is carried out at a constant voltage of 10 to 25V at ~60°C for 15 to 30 minutes.
삭제delete 삭제delete 삭제delete
KR1020200183195A 2020-12-24 2020-12-24 Surface treatment method of heat exchanger fins with water repellency and antibacterial function KR102436132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200183195A KR102436132B1 (en) 2020-12-24 2020-12-24 Surface treatment method of heat exchanger fins with water repellency and antibacterial function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200183195A KR102436132B1 (en) 2020-12-24 2020-12-24 Surface treatment method of heat exchanger fins with water repellency and antibacterial function

Publications (2)

Publication Number Publication Date
KR20220091951A KR20220091951A (en) 2022-07-01
KR102436132B1 true KR102436132B1 (en) 2022-08-25

Family

ID=82396817

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200183195A KR102436132B1 (en) 2020-12-24 2020-12-24 Surface treatment method of heat exchanger fins with water repellency and antibacterial function

Country Status (1)

Country Link
KR (1) KR102436132B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004083A (en) * 2013-06-19 2015-01-08 奥野製薬工業株式会社 Sealing liquid for anodic oxidation film of aluminum alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240688A (en) 1988-03-18 1989-09-26 Kobe Steel Ltd Aluminum fin material for heat exchanger
JP2683812B2 (en) 1988-10-05 1997-12-03 昭和アルミニウム株式会社 Heat exchanger with aluminum fins
JPH09125284A (en) * 1995-11-01 1997-05-13 Yasuda Kinzoku Kogyo Kk Antibacterial aluminum material
US20150008428A1 (en) * 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR20200130592A (en) * 2019-05-10 2020-11-19 금오공과대학교 산학협력단 Substrate including Superhydrophobic Hybrid Structure based on ZnO and Manufacturing Method therof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004083A (en) * 2013-06-19 2015-01-08 奥野製薬工業株式会社 Sealing liquid for anodic oxidation film of aluminum alloy

Also Published As

Publication number Publication date
KR20220091951A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
CN109023319B (en) Method for preparing copper oxide super-hydrophobic coating with dendritic micro-nano structure
JP5370014B2 (en) Method for sealing anodized film
CN107740167B (en) A kind of ambient stable high-efficiency aluminum and aluminium alloy environmental protection sealer
CN108129885B (en) Modified coating sealer of hydroxyl graphene and preparation method thereof
CN107747096B (en) A kind of method of stainless steel surface roughening treatment
CN1195893C (en) Non-chromated oxide coating for aluminum substrates
EP3793939A1 (en) A method for the manufacture of reduced graphene oxide from kish graphite
CN107245732B (en) A method of high-strength corrosion-resisting cadmium tin titanium alloy being electroplated in 304 or 316L stainless steel surface
CN106400079A (en) Preparation method of multiple super-hydrophobic composite film layers on aluminium alloy surface
CN111604032A (en) Janus nitrogen-doped carbon nanofiber film and preparation method and application thereof
CN107937960A (en) A kind of aluminium alloy anode oxide technique
CN109082695A (en) A kind of aluminum alloy electric heater anode oxide film and preparation method thereof
KR102436132B1 (en) Surface treatment method of heat exchanger fins with water repellency and antibacterial function
KR20150061765A (en) Fin for evaporator with water-repellent coating layer And process for producing the same
KR101177605B1 (en) Oxide coating on magnesium alloy with anti-corrosion and anti-microbial properties and Manufacturing method thereof
JP5995144B2 (en) Aluminum member repair method, repair solution, aluminum material and method for manufacturing the same
CN110965087B (en) Cyanide-free zinc dipping solution and preparation method and application thereof
TWI489008B (en) Metal substrate having wear resistance and lubricity and method for manufacturing the same
JPH11181596A (en) Antibacterial anodic oxidation treated aluminum
JP2008150644A (en) Aluminum alloy for semiconductor or liquid crystal production device, and method for producing the same
CN111020591B (en) Preparation method of aluminum alloy with polished hydrophobic surface
CN113073322A (en) Magnesium alloy surface corrosion-resistant super-hydrophobic film layer and preparation method and application thereof
CN113981499A (en) Preparation method of aluminum-silicon alloy surface film layer
JP4285649B2 (en) Surface treatment composition and treatment method for removing silicon component and reducing metal salt generated during etching of aluminum die casting material
JPH05311455A (en) Stainless steel member for semiconductor production device and surface treatment thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant