KR102430755B1 - Electroplating bath containing trivalent chromium and process for depositing chromium - Google Patents

Electroplating bath containing trivalent chromium and process for depositing chromium Download PDF

Info

Publication number
KR102430755B1
KR102430755B1 KR1020217037970A KR20217037970A KR102430755B1 KR 102430755 B1 KR102430755 B1 KR 102430755B1 KR 1020217037970 A KR1020217037970 A KR 1020217037970A KR 20217037970 A KR20217037970 A KR 20217037970A KR 102430755 B1 KR102430755 B1 KR 102430755B1
Authority
KR
South Korea
Prior art keywords
chromium
iii
electroplating bath
salt
complexing agent
Prior art date
Application number
KR1020217037970A
Other languages
Korean (ko)
Other versions
KR20210147081A (en
Inventor
디에고 달 질리오
잔루이지 스키아본
Original Assignee
코벤티아 에스.피.에이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49989624&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR102430755(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 코벤티아 에스.피.에이. filed Critical 코벤티아 에스.피.에이.
Publication of KR20210147081A publication Critical patent/KR20210147081A/en
Application granted granted Critical
Publication of KR102430755B1 publication Critical patent/KR102430755B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

본 발명은 적어도 하나의 3가 크롬염(trivalent chromium salt), 적어도 하나의 착화제(complexing agent), 적어도 하나의 할로겐 염(halogen salt) 및 선택적으로 추가 첨가제를 포함하는 크롬을 증착시키는 전기도금배스(electroplating bath)에 관한 것이다. 또한, 본 발명은 상기 전기도금배스(electroplating bath)를 이용하여 기판 위에 크롬을 증착시키는 방법에 관한 것이다.The present invention relates to an electroplating bath for depositing chromium comprising at least one trivalent chromium salt, at least one complexing agent, at least one halogen salt and optionally further additives. (electroplating bath). In addition, the present invention relates to a method of depositing chromium on a substrate using the electroplating bath (electroplating bath).

Description

3가 크롬을 포함하는 전기도금배스 및 크롬 증착 공정{ELECTROPLATING BATH CONTAINING TRIVALENT CHROMIUM AND PROCESS FOR DEPOSITING CHROMIUM}Electroplating bath containing trivalent chromium and chromium deposition process

본 발명은 적어도 하나의 3가 크롬염(trivalent chromium salt), 적어도 하나의 착화제(complexing agent), 적어도 하나의 할로겐 염(halogen salt) 및 선택적으로 추가 첨가제를 포함하는 크롬을 증착시키는 전기도금배스(electroplating bath)에 관한 것이다. 또한, 본 발명은 상기 전기도금배스(electroplating bath)를 이용하여 기판 위에 크롬을 증착시키는 방법에 관한 것이다.The present invention relates to an electroplating bath for depositing chromium comprising at least one trivalent chromium salt, at least one complexing agent, at least one halogen salt and optionally further additives. (electroplating bath). In addition, the present invention relates to a method of depositing chromium on a substrate using the electroplating bath (electroplating bath).

3가 크롬 도금 배스(trivalent chrome plating baths)에서의 크롬 도금에 대해 수년 전부터 공지되어 왔고, 선행 기술에 대한 많은 문헌에서 3가 크롬 배스(trivalent chrome bath)에서 도금 증착물을 얻을 수 있다고 기술하고 있다. Chrome plating in trivalent chrome plating baths has been known for many years, and many documents in the prior art state that plating deposits can be obtained in trivalent chrome baths.

현재, 3가 크롬 전해질(trivalent chrome electrolyte)로부터 0.1~1㎛ 두께의 균일한 크롬 코팅체을 제조할 수 있다는 것이 알려졌다. 이런 두께(0.1~1㎛)는 장식 용도에 매우 적합하다. Currently, it is known that a uniform chromium coating body with a thickness of 0.1 to 1 μm can be prepared from a trivalent chrome electrolyte. This thickness (0.1-1㎛) is very suitable for decorative applications.

그러나 위생 설비, 자동차 외부 부품에의 크롬 도금과 같은 높은 내마모성 및/또는 내부식성이 요구되는 용도뿐만 아니라, 로드(rod), 피스톤 또는 랜딩 기어 부품에의 도금과 같은 기능성 용도 등, 많은 분야에서 더 두꺼운 크롬층이 요구된다. 이런 분야에서 요구되는 두께는 0.1 내지 300㎛이다. However, there are many applications where high wear and/or corrosion resistance is required, such as sanitary equipment, chrome plating on exterior parts of automobiles, as well as functional applications such as plating on rods, pistons or landing gear parts. A thick chromium layer is required. The thickness required in this field is 0.1 to 300 μm.

US 4,804,446에서, 크롬의 매끄러운 경화코팅을 전착하는(electrodepositing) 방법에 대해 기술한다. 배스(bath)는 크롬의 소스로서, 염화크롬(III)(chromium(III) chloride), 크롬을 착화시키는 시트르산(citric acid) 및 습윤제(wetting agent) 바람직하게 Triton X 100를 포함한다. 또한, 양극에서의 6가 크롬(hexavalent chromium)의 생성을 방지하기 위해 브롬화물(bromide)이 추가된다. 배스의 pH는 4.0으로, 온도는 약 35℃로 유지된다. 또한, 반응속도(reaction kinetics)를 진행시키기 위해 전해질(electrolyte)은 붕산(boric acid)을 더 포함한다. 그러나 붕산의 독성 및 위험성 때문에, 전기도금배스(electroplating bath)에서 붕산이 없는 것이 바람직할 것이다. In US 4,804,446, a method for electrodepositing a smooth, cured coating of chromium is described. The bath contains, as a source of chromium, chromium(III) chloride, citric acid to complex chromium and a wetting agent, preferably Triton X 100. In addition, bromide is added to prevent generation of hexavalent chromium at the anode. The pH of the bath is maintained at 4.0 and the temperature at about 35°C. In addition, in order to advance the reaction kinetics (electrolyte) further includes boric acid (boric acid). However, because of the toxicity and dangers of boric acid, it would be desirable to be free of boric acid in the electroplating bath.

WO 2009/046181에서, 카르복시산을 함유하고, 2가 황(divalent sulfur)을 위한 소스 및 합금 성분(alloying components)인 탄소, 질소 및 산소의 소스를 포함하는 3가 크롬 배스(trivalent chromium bath)에서 얻은 나노과립상(nanogranular) 결정 기능성 크롬 합금 또는 무정질 기능성 크롬 합금의 증착물을 개시하고 있다. 증착물은 0.05 내지 20wt%의 황을 함유하고 이들 증착물을 도금하는데 이용되는 전착 배스(electrodeposition bath)는 약 0.0001M 내지 0.05M의 농도 범위의 2가 황(divalent sulfur)의 소스를 함유한다. In WO 2009/046181, obtained in a trivalent chromium bath containing carboxylic acid and containing a source for divalent sulfur and a source of carbon, nitrogen and oxygen as alloying components Deposits of nanogranular crystalline functional chromium alloys or amorphous functional chromium alloys are disclosed. The deposits contain 0.05-20 wt % sulfur and the electrodeposition bath used to plate these deposits contains a source of divalent sulfur in a concentration range of about 0.0001M to 0.05M.

US2013/0220819에서, 3가 크롬 도금 배스(trivalent chrome plating bath)에서 밀도가 높은(dense) 크롬 경화 코팅을 생성하는 방법에 대해 기술한다. 코팅은 804KHN에서 1067KHN까지의 미세 경도값(microhardness values)을 가진다. 이런 성질은 3가 크롬 전해질(trivalent chromium electrolyte) 및 파형의 전용 사이클을 가지는 펄스 도금(pulsed plating)을 이용하여 이루어진다. 복잡하고 커다란 표면 부품에 경화 크롬을 전착하기 위해 펄스 전류(pulse current)를 이용하려면 도금장치에 상당한 변형이 요구되어야 한다. 그러나 상술한 두꺼운 크롬층을 증착하기 위해 펄스 전류(pulsed current)를 이용하지 않는 것이 바람직하다. In US2013/0220819, a method for producing a dense chrome cured coating in a trivalent chrome plating bath is described. The coating has microhardness values from 804KHN to 1067KHN. This property is achieved using a trivalent chromium electrolyte and pulsed plating with a dedicated cycle of waveforms. The use of pulse currents to electrodeposit hard chromium on complex and large surface parts requires significant modifications to the plating equipment. However, it is preferable not to use a pulsed current to deposit the thick chromium layer described above.

경화 크롬 분야에 있어 3가 크롬에 펄스 전류 및 펄스 역전류의 이용 및 효과에 대한 많은 발행물이 있다. There are many publications on the use and effect of pulsed current and pulsed reverse current in trivalent chromium in the field of hardened chromium.

발행물, Pulse and pulse reverse plating―Conceptual, advantages and applications, M.S. Chandrasekar, Malathy Pushpavanam Central Electrochemical Research Institute, Karaikudi 630006, TN, India Electrochimica Acta 53 (2008) 3313-3322는 전착(electrodeposition)에 있어서 펄스 기술 및 역펄스 기술에 대한 리뷰에 관한 것으로, 일부 금속 및 합금의 펄스 전착(pulse electrodeposition; PED)이 보고된다. 표면 거칠기(surface roughness)에서 그리고 형태학(morphology)에서의 대량 수송(mass transport), 전기 이중 층 펄스 파라미터(electrical double layer pulse parameters) 및 전류 분포(current distribution)의 효과가 존재하였다. 이론적 측면 및 메커니즘과 함께 PC 및 PRC 기술의 적용, 장점 및 단점에 대해 논의하였다. Publication, Pulse and pulse reverse plating—Conceptual, advantages and applications , MS Chandrasekar, Malathy Pushpavanam Central Electrochemical Research Institute, Karaikudi 630006, TN, India Electrochimica Acta 53 (2008) 3313-3322 Pulse technology and reverse in electrodeposition Regarding a review of pulse technology, pulse electrodeposition (PED) of some metals and alloys is reported. There were effects of mass transport, electrical double layer pulse parameters and current distribution on surface roughness and on morphology. The applications, advantages and disadvantages of PC and PRC technologies along with theoretical aspects and mechanisms are discussed.

발행물, Improving hardness and tribological characteristics of nanocrystalline Cr-C films obtained from Cr(III) plating bath using pulsed electrodeposition, Int. Journal of Refractory Metals and Hard Materials 31 (2012) 281-283에서, 3가 크롬 배스(trivalent chromium bath)에서 얻은 Cr-C 전착물(Cr-C electrodeposit)에 대해, 나노결정 사이즈, 조성물, 경도, 마찰계수(coefficient of friction) 및 내마모성(wear resistance)에 대한 펄스 전착(pulsed electrodeposition)의 효과를 조사하였다. 전착물(electrodeposit)은 약 9%의 탄소를 함유하는 것으로 나타났다. 펄스 전착은 탄소 함량에 상당한 영향을 미치지 않았다. 동시에, 오프-타임 지속시간(off-time duration)이 길어지면 나노결정 사이가 작아졌다. 펄스 전류를 이용할 때 전착물의 경도 및 마모 파라미터가 충분히 향상되었다. 예를 들면, ton = t0ff = 1s에서, 경도가 ~1200÷1300 HV의 값에 도달하였다(반면, 정상 상태 전기분해법(steady-state electrolysis)에서는 850÷950HV에 근접한다).Publication, Improving hardness and tribological characteristics of nanocrystalline Cr-C films obtained from Cr(III) plating bath using pulsed electrodeposition , Int. In Journal of Refractory Metals and Hard Materials 31 (2012) 281-283, for Cr-C electrodeposits obtained in a trivalent chromium bath, nanocrystal size, composition, hardness, friction The effect of pulsed electrodeposition on the coefficient of friction and wear resistance was investigated. The electrodeposit was found to contain about 9% carbon. Pulsed electrodeposition did not significantly affect the carbon content. At the same time, as the off-time duration increased, the nanocrystals became smaller. The hardness and wear parameters of the electrodeposits were sufficiently improved when using the pulsed current. For example, at t on = t 0ff = 1 s, the hardness reached a value of ∼1200 ÷ 1300 HV (while approaching 850 ÷ 950 HV in steady-state electrolysis).

3가 크롬 증착물에 대한 일부 발행물이 있음에도 불구하고, 여전히 밀도가 높고(dense) 균일하며, Cr03 기반 전해질(electrolyte)에서 생성된 증착물과 동등한 내부식성, 경도 및 내마모성을 나타내는, 0.1 내지 300㎛의 두께의 일관된 두꺼운 크롬 증착물을 도금할 수 있는 상업적 시스템에 대한 필요성이 요구된다.Despite some publications on trivalent chromium deposits, it is still dense and uniform, exhibiting corrosion resistance, hardness and abrasion resistance equivalent to deposits produced from Cr0 3 based electrolytes of 0.1 to 300 μm. There is a need for a commercial system capable of plating thick chromium deposits of consistent thickness.

그러므로 본 발명은 높은 내마모성 및/또는 내부식성을 위해 이용될 수 있는 층을 형성하는 두께의 밀도가 높고(dense) 균일한 구조를 가지는 크롬층을 제공하는 전기도금배스(electroplating bath)를 제공하는 것을 목적으로 한다. The present invention therefore seeks to provide an electroplating bath that provides a chromium layer having a dense and uniform structure of thickness forming a layer that can be used for high wear and/or corrosion resistance. The purpose.

이 목적은 청구항 제1항의 특징을 가지는 전기도금배스 및 청구항 제13항의 특징을 가지는 크롬층을 증착시키는 방법에 의해 해결된다.This object is solved by an electroplating bath having the features of claim 1 and a method of depositing a chromium layer having the features of claim 13 .

본 발명에 따르면, 다음을 포함하는 크롬을 증착시키는 전기도금배스(electroplating bath)가 제공된다: According to the present invention, there is provided an electroplating bath for depositing chromium comprising:

a) 100 내지 400g/L의 적어도 하나의 3가 크롬염(trivalent chrome salt),a) from 100 to 400 g/L of at least one trivalent chrome salt,

b) 100 내지 400g/L의 적어도 하나의 착화제(complexing agent),b) from 100 to 400 g/L of at least one complexing agent,

c) 1 내지 50g/L의 적어도 하나의 할로겐 염(halogen salt) 및c) from 1 to 50 g/L of at least one halogen salt and

d) 0 내지 10g/L의 첨가제.d) 0 to 10 g/L of additives.

또한, 전기도금배스의 pH는 4 내지 7이다. 본 발명에서, 전기도금배스가 실질적으로 2가 황 화합물(divalent sulphur compounds) 및 붕산(boric acid) 및/또는 붕산염 및 파생물(derivatives)을 포함하지 않는 것이 필수적이다.In addition, the pH of the electroplating bath is 4 to 7. In the present invention, it is essential that the electroplating bath is substantially free of divalent sulphur compounds and boric acid and/or borates and derivatives.

놀랍게도 혁신적인 전기도금배스로 밀도가 높고(dense) 균일한 구조를 가지는 층을 제공할 수 있다는 것을 알게 되었다. 10 내지 400㎛의 두께의 층이 제공되기 때문에, 높은 내마모성 및/또는 내부식성 분야에서 층을 사용할 수 있다. It has surprisingly been found that an innovative electroplating bath can provide a layer with a dense and uniform structure. Since a layer with a thickness of 10 to 400 μm is provided, it is possible to use the layer in the field of high wear and/or corrosion resistance.

3가 크롬염(trivalent chromium salt)은 바람직하게 산성(acidic) 형태의 크롬(III) 설페이트 또는 알칼리성 형태의 크롬(III) 설페이트, 크롬(III) 클로라이드(chromium(III) chloride), 크롬(III) 아세테이트(chromium(III) acetate), 크롬(III) 하이드록시아세테이트(chromium(III) hydroxyacetate), 크롬(III) 포메이트(chromium(III) formate), 크롬(III) 하이드록시포메이트(chromium(III) hydroxyformate), 크롬(III) 카보네이트(chromium(III) carbonate), 크롬(III) 메탄술포네이트(chromium(III) methanesulfonate), 포타슘 크롬(III) 설페이트(potassium chromium(III) sulphate) 및 그들의 혼합물로 이루어진 그룹에서 선택된다. The trivalent chromium salt is preferably chromium (III) sulfate in acidic form or chromium (III) sulfate in alkaline form, chromium (III) chloride, chromium (III) chromium(III) acetate, chromium(III) hydroxyacetate, chromium(III) formate, chromium(III) hydroxyformate ) hydroxyformate), chromium (III) carbonate, chromium (III) methanesulfonate, potassium chromium (III) sulfate (potassium chromium (III) sulphate) and mixtures thereof selected from the group consisting of

3가 크롬염(trivalent chromium salt)은 100 내지 400g/L의 양, 특히 120 내지 160g/L의 양으로 존재하는 것이 바람직하다. The trivalent chromium salt is preferably present in an amount of 100 to 400 g/L, particularly 120 to 160 g/L.

종래 기술에서 기술된 전해질(electrolyte)과 관련된 주요 단점은 3가 크롬염(trivalent chromium salt)의 반대이온(counterion)의 축적에 관한 것이다. 특히, 표적 두께가 >10㎛의 상부 범위인 경우 그런 배스에서의 매우 많은 Cr(III)이 소비될 수 있다. 그러면 3가 크롬 양이온과 관련된 반대이온이 전해질에 축적되어 배스의 밀도 및 침전의 위험의 증가와 같은 일부 단점이 일어날 것이다. 배스의 건조 함량(dry content)은 용해 한도(solubility limit)로 인하여 3가 크롬염이 더이상 용해될 수 없는 지점까지 증가할 것이다. A major disadvantage associated with the electrolytes described in the prior art relates to the accumulation of counterions of trivalent chromium salts. In particular, very much Cr(III) in such a bath can be consumed when the target thickness is in the upper range of >10 μm. Counterions associated with trivalent chromium cations will then accumulate in the electrolyte, resulting in some disadvantages such as increased bath density and risk of precipitation. The dry content of the bath will increase to the point where the trivalent chromium salt can no longer be dissolved due to solubility limit.

따라서 본 발명의 일 구체예는 (설페이트와 같이) "영구적인(permanent)" 음이온과 같은 정도로 전해질에 축적되지 않을 전기분해적으로(electrolytically) 소비될 수 있는, "일시적인(temporary)" 음이온을 포함하는 3가 크롬염(trivalent chromium salt)의 반대이온을 선택하는 것이다. 이런 일시적인 음이온 중에, 포메이트, 아세테이트, 프로피오네이트, 글리콜레이트, 옥살레이트, 카르보네이트, 시트레이트 및 그들의 조합이 바람직하다. Thus, one embodiment of the present invention includes "temporary" anions that can be consumed electrolytically that will not accumulate in the electrolyte to the same extent as "permanent" anions (such as sulfate). It is to select the counter ion of the trivalent chromium salt. Among these transient anions, formate, acetate, propionate, glycolate, oxalate, carbonate, citrate and combinations thereof are preferred.

혁신적인 전기도금배스는 바람직하게 바나듐(vanadium), 망간(manganese), 철(iron), 코발트(cobalt), 니켈(nickel), 몰리브덴(molybdenum), 텅스텐(tungsten) 및 인듐(indium)으로 이루어진 그룹에서 선택된 합금 형성체(alloy former)를 포함한다. 배스의 유기성분 및 암모니아는 증착되는 동안 합금에 의해 소비되는(taken up) 탄소, 질소 및 산소용 소스이다. 첨가제로서 우레아(urea)가 특히 효율적이다. 바람직하게, 전기도금배스는 특히 적어도 하나의 착화제의 몰 농도(molar concentration) 이하의 몰 농도의 암모니아를 포함한다. 더 바람직하게, 암모니아의 농도는 70g/L 내지 110g/L이다.Innovative electroplating baths are preferably selected from the group consisting of vanadium, manganese, iron, cobalt, nickel, molybdenum, tungsten and indium. selected alloy formers. The organic components of the bath and ammonia are sources for carbon, nitrogen and oxygen taken up by the alloy during deposition. Urea as an additive is particularly effective. Preferably, the electroplating bath comprises ammonia in a molar concentration, in particular below the molar concentration of the at least one complexing agent. More preferably, the concentration of ammonia is between 70 g/L and 110 g/L.

증착의 속도(kinetics) 및 메커니즘에 영향을 주는 배스에서 크롬(III)과 함께 혼합-금속 착화물(mixed-metal complexes)을 형성하기 때문에 알루미늄(aluminium) 및/또는 갈륨(gallium)과 같은, 합금에 함께 증착(codeposite)되지 않는 금속염이 존재하면 유리하다. 그러나 전기도금배스는 상기 금속염이 없을 수도 있다(예를 들면, 알루미늄염). Alloys, such as aluminum and/or gallium, because they form mixed-metal complexes with chromium(III) in the bath, which affects the kinetics and mechanism of deposition. It is advantageous if there are metal salts that are not codeposited together. However, the electroplating bath may be free of such metal salts (eg aluminum salts).

본 발명에 따르면, 착화제(complexing agent)는 바람직하게 카르복시산 및 카르복실레이트 염(carboxylate salt), 바람직하게 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 글리콜산(glycolic acid), 젖산(lactic acid), 옥살산(oxalic acid), 말산(malic acid), 시트르산(citric acid), 타르타르산(tartaric acid), 숙신산(succinic acid), 글루콘산(gluconic acid), 글리신(glycine), 아스파르트산(aspartic acid), 글루탐산(glutamic acid), 및 그들의 혼합물, 또는 그들의 염 및 그들의 염의 혼합물로 이루어진 그룹에서 선택된다. According to the present invention, the complexing agent is preferably carboxylic acid and a carboxylate salt, preferably formic acid, acetic acid, propionic acid, glycolic acid ), lactic acid, oxalic acid, malic acid, citric acid, tartaric acid, succinic acid, gluconic acid, glycine, aspartic acid, glutamic acid, and mixtures thereof, or salts thereof and mixtures of salts thereof.

착화제는 바람직하게 100 내지 300g/L의 양으로, 더 바람직하게 150 내지 250g/L의 양으로 존재한다. 상술한 pH 범위에서 배스가 작동할 수 있고 아크롬산염(chromite)이 아닌 크롬의 증착을 보장하기 위해 3가 크롬염에 대한 착화제의 몰 비율은 8:1 내지 15:1, 바람직하게 10:1 내지 13:1이다. The complexing agent is preferably present in an amount of 100 to 300 g/L, more preferably in an amount of 150 to 250 g/L. The molar ratio of complexing agent to trivalent chromium salt is from 8:1 to 15:1, preferably 10: 1 to 13:1.

전기도금배스에 존재하는 할로겐 염(halogen salt)은 배스에서의 6가 크롬(hexavalent chromium)의 생성에 있어 억제제(suppressor)로서 작용한다. 할로겐 염은 바람직하게 브롬화염(bromide salt), 염화염(chloride salt), 요오드화염(iodide salt), 불화염(fluoride salt) 및 그들의 혼합물로 이루어진 그룹에서 선택된다. 브롬화염(bromide salt)이 더 바람직하고, 특히 브롬화칼륨(potassium bromide), 브롬화나트륨(sodium bromide), 브롬화암모늄(ammonium bromide) 및 그들의 혼합물이 바람직하다. 할로겐 염은 바람직하게 5 내지 50g/L의 양으로 존재한다.A halogen salt present in the electroplating bath acts as a suppressor in the generation of hexavalent chromium in the bath. The halogen salt is preferably selected from the group consisting of bromide salts, chloride salts, iodide salts, fluoride salts and mixtures thereof. A bromide salt is more preferable, and in particular, potassium bromide, sodium bromide, ammonium bromide and mixtures thereof are preferable. The halogen salt is preferably present in an amount of 5 to 50 g/L.

전기도금배스의 첨가제는 폴리아민(polyamine) 또는 4 암모늄 화합물(quaternary ammonium compound)을 포함하는 폴리아민의 혼합물과 같은 광택제(brightener)(US 7964083 특허에서 인용된 것과 같은 광택제(brightening agents)가 바람직하다) 및 전기적성 계면활성제(electroneutral surfactant), 양이온 계면활성제(cationic surfactant) 및 양쪽성 계면활성제(amphoteric surfactant)와 같은 습윤제(wetting agent)로 이루어진 그룹에서 선택된다.Additives to the electroplating bath include brighteners such as polyamines or mixtures of polyamines containing quaternary ammonium compounds (preferably brightening agents such as those recited in US 7964083 patent) and It is selected from the group consisting of a wetting agent such as an electronic surfactant, a cationic surfactant, and an amphoteric surfactant.

특히 바람직하게, 전기도금배스는 (실질적으로) 염화 이온(chloride ion)이 없고 및/또는 (실질적으로) 암모늄 이온(aluminium ion)이 없지만, 배스는 -적어도 하나의 추가 착화제(complexing agent)(리간드)로서 및/또는 적어도 하나의 다른 할로겐 염(halogen salt)으로서- 불화물(fluoride)을 포함할 수 있으며, 배스에서 크롬(III) 착화물의 리간드 교환(ligand exchange)을 돕는다. Particularly preferably, the electroplating bath is (substantially) free of chloride ions and/or (substantially) free of ammonium ions, but the bath is free of at least one further complexing agent ( as a ligand) and/or as at least one other halogen salt - fluoride, which aids in ligand exchange of the chromium(III) complex in the bath.

본 발명에 따르면, 다음의 단계를 포함하는 기판 위에 크롬을 증착시키는 방법이 제공된다:According to the present invention, there is provided a method for depositing chromium on a substrate comprising the steps of:

- 상술한 전기도금배스를 제공하는 단계,- providing the above-described electroplating bath;

- 상기 전기도금배스에 기판을 담그는 단계, 및- immersing the substrate in the electroplating bath, and

- 기판 위에 크롬을 증착시키기 위해 전류를 적용하는 단계.- applying an electric current to deposit chromium on the substrate.

증착하는 동안의 온도는 바람직하게 20 내지 60℃, 더 바람직하게 30 내지 50℃이다.The temperature during deposition is preferably 20 to 60°C, more preferably 30 to 50°C.

전기도금배스는 막(membrane)에 의해, 바람직하게 음이온 교환막(anionic exchange membrane), 양이온 교환막(cationic exchange membrane) 또는 다공성 막(porous membrane)에 의해, 더 바람직하게 양이온 교환막에 의해 양극에서 분리될 수 있다. 양이온 교환막은 음극액(catholyte)에서의 설페이트의 이동을 방지하는 장점을 가진다. The electroplating bath can be separated from the anode by a membrane, preferably by an anionic exchange membrane, a cationic exchange membrane or a porous membrane, more preferably by a cation exchange membrane. have. The cation exchange membrane has the advantage of preventing the migration of sulfate in the catholyte.

증착을 수행하는데 이용되는 양극은 그래파이트(graphite)와 같은 불용성 물질 또는 탄탈룸(Tantalum) 및 이리듐(Iridium)의 산화물로 덮인 티타늄(titanium)과 같은 혼합 산화물 물질(mixed oxides materials)로 형성될 수 있다.The anode used to perform the deposition may be formed of an insoluble material such as graphite or mixed oxides materials such as titanium covered with oxides of tantalum and iridium.

본 발명의 일 구체예에서, 전기도금배스(electroplating bath)의 특정 성분이 양극과 접촉하는 것을 방지하고 원하지 않는 산화 브레이크다운 생성물(oxidation breakdown product)을 가두기 위해, 양극은 양극액(anolyte) 및 음극액(catholyte)으로 정의되는 적당한 물질로 둘러싸일 수 있다. In one embodiment of the present invention, in order to prevent certain components of the electroplating bath from contacting the anode and to trap unwanted oxidation breakdown products, the anode comprises an anolyte and a cathode It may be surrounded by a suitable material, defined as catholyte.

예를 들면, 원하지 않는 생성물의 종류는 Cr(III)의 양극 산화에서 기인하는 Cr(VI)뿐만 아니라 양극에서의 착화제(complexing agent)의 산화 생성물이다. For example, types of unwanted products are oxidation products of complexing agents at the anode as well as Cr(VI) resulting from the anodization of Cr(III).

배스로부터 양극 영역을 분리하는 배리어 물질(barrier material)을 사용하는 다른 장점은 전착되지 않고, 음극액에 퇴적되는, 크롬(III) 설페이트의 보충(replenishment) 등과 같은, 설페이트와 같은 생성물 종류의 퇴적을 방지하는 것이다. Another advantage of using a barrier material to separate the anode region from the bath is that it avoids the deposition of product types such as sulfates, such as replenishment of chromium(III) sulfate, which are deposited in the catholyte without being electrodeposited. is to prevent

배리어(barrier)는 이온 교환막의 종류에서 선택되는 물질일 수 있다. 배리어는 Sybron IONAC material MA 3470 등과 같은 양이온 교환막일 수 있다. 또한, (Du Pont사의) Nafion 막 등과 같은 음이온 교환막이 이용될 수도 있다. 바람직한 음이온 교환막은 N424 막이다. 또한, EP 1 702 090에 기술된 것 등과 같은 다공성 막도 전해질의 나머지로부터 분리되는 양극 구획실(anodic compartment)을 정의하는 적당한 물질로서 고려될 수 있다. The barrier may be a material selected from the type of the ion exchange membrane. The barrier may be a cation exchange membrane such as Sybron IONAC material MA 3470 or the like. In addition, an anion exchange membrane such as a Nafion membrane (manufactured by Du Pont) may be used. A preferred anion exchange membrane is an N424 membrane. In addition, porous membranes, such as those described in EP 1 702 090, can also be considered as suitable materials for defining an anodic compartment separated from the rest of the electrolyte.

양극 구획실(anodic compartment)은 전해질과 양립되는 모든 전도 물질(conducting substance)로 채워질 수 있다. 양극 구획실은 산성(acidic) 또는 알칼리성(alkaline)일 수 있다. 모 음극액(parent catholyte)의 약산성 pH 때문에, 양극액(anolyte)에 있어서 산성 pH가 바람직할 것이다. 포름산(formic acid), 아세트산(acetic acid), 프로피온산(propionic acid), 글리콜산(glycolic acid), 시트르산(citric acid)뿐만 아니라 H2S04, H3P04와 같은 무기산(mineral acid)이 채용될 수 있다. 크롬(III) 설페이트 용액도 양극액(anolyte)으로 이용될 수 있다. 또는, 수산화나트륨(sodium hydroxide), 수산화칼륨(potassium hydroxide), 수산화리튬(lithium hydroxide) 또는 CMR 성질이 없는 모든 종류의 알칼리성 용액이 본 발명의 방법에서의 양극액으로 이용될 수 있다. The anodic compartment may be filled with any conducting substance compatible with the electrolyte. The anode compartment may be acidic or alkaline. Because of the slightly acidic pH of the parent catholyte, an acidic pH will be preferred for the anolyte. Formic acid, acetic acid, propionic acid, glycolic acid, citric acid, as well as mineral acids such as H 2 S0 4 and H 3 P0 4 are employed can be Chromium(III) sulfate solution may also be used as an anolyte. Alternatively, sodium hydroxide, potassium hydroxide, lithium hydroxide or any kind of alkaline solution without CMR properties may be used as the anolyte in the method of the present invention.

전해질에 적용되는 전류는 직류(direct current)일 수 있고 또는 펄스 전류(pulsed current)일 수 있다. 펄스 전류 시퀀스를 사용하면 계면(interface)에서의 수소 축적으로 인한 크랙(crack) 형성에 덜 민감한 증착물(deposit)을 도금할 수 있는 성질을 제공한다. The current applied to the electrolyte may be a direct current or a pulsed current. The use of a pulsed current sequence provides the ability to plate deposits that are less susceptible to crack formation due to hydrogen accumulation at the interface.

펄스 시퀀스는 계면으로부터 수소를 제거하는데 도움이 되기 위해 펄스 시퀀스는 음극상(cathodic phase)에 이어 T 오프(T off)로 구성될 수 있고 또는 결국 양극상(anodic phase)이 계면에서 수소를 산화하는데 이용될 수 있다.The pulse sequence may consist of a cathodic phase followed by T off to help remove hydrogen from the interface, or eventually the anodic phase will oxidize hydrogen at the interface. can be used.

본 발명을 다음의 도면 및 실시예에 의해 더 설명할 것이다. 그러나 본 발명은 이런 특정 실시예로 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 양극 셋업(anodic setup)의 대략적인 도면을 나타낸다.
도 2는 다른 전기도금 시스템에 있어서 설페이트 농도의 변화(development)를 나타내는 그래프를 도시한다.
The present invention will be further illustrated by the following drawings and examples. However, the present invention is not limited to these specific embodiments.
1 shows a schematic diagram of an anodic setup according to an embodiment of the present invention.
2 shows a graph showing the development of sulfate concentration in different electroplating systems.

도 1에 도시된 실시예 1은 Cr(III) 이온의 저장소(reservoir)로서 역할을 할 수 있는 양극액(7)을 이용한다. 크롬 설페이트와 같은 3가 크롬염의 용액 또는 10-50g/L의 3가 크롬(trivalent chromium) 및 30-140g/L의 설페이트 음이온(sulfate anions) 또는 다른 음이온을 포함하는, 다른 크롬염의 용액이 도 1에서 양극액(7)의 구성요소로 이용된다. 이온 교환막(3)이 포함되거나 이온 교환막이 캐리어(carrier; 2)에 결합될 수 있고 바람직하게 이온 교환막은 상술한 Nafion N424과 같은 양이온 교환막으로 선택될 것이다. 음극액(5)은 다음의 예 2에서 기술하는 것처럼 본 발명의 3가 크롬 전해질(trivalent chrome electrolyte)로 이루어진다. 양극(6)은 그래파이트 물질(graphite material)로 형성된다. 도금될 샘플 일부가 음극(4)으로서 배치된다. 양극액으로 크롬(III) 설페이트 형태로 크롬염이 보충된다. Example 1 shown in FIG. 1 uses an anolyte 7 that can serve as a reservoir for Cr(III) ions. A solution of a trivalent chromium salt such as chromium sulfate or a solution of another chromium salt comprising 10-50 g/L of trivalent chromium and 30-140 g/L of sulfate anions or other anions is shown in FIG. used as a component of the anolyte (7). An ion exchange membrane 3 may be included or an ion exchange membrane may be coupled to a carrier 2 and preferably the ion exchange membrane will be selected as a cation exchange membrane such as Nafion N424 described above. The catholyte 5 is made of the trivalent chrome electrolyte of the present invention as described in Example 2 below. The anode 6 is formed of a graphite material. A part of the sample to be plated is placed as the cathode 4 . The anolyte is supplemented with a chromium salt in the form of chromium(III) sulfate.

도 2에서, 그래프는 다른 전기도금 시스템에서 설페이트 농도의 시간-의존도(time-dependence)를 증명한다. 막이 없는 Cr(III) 설페이트를 가지는 배스에 기반을 둔 전기도금 시스템에서 설페이트 농도가 빠르게 증가하는 반면, "일시적인(temporary)" 음이온을 이용하는 본 발명에 따른 제1 실시예에서의 농도 및 막 분리를 이용하는 본 발명에 따른 제2 실시예에서의 농도는 측정시간 동안 실질적으로 일정하게 유지된다. In Figure 2, the graph demonstrates the time-dependence of sulfate concentration in different electroplating systems. In an electroplating system based on a bath with membraneless Cr(III) sulfate, while the sulfate concentration increases rapidly, the concentration and membrane separation in the first embodiment according to the invention using a “temporary” anion The concentration in the second embodiment according to the invention used is kept substantially constant during the measurement time.

표 1은 본 발명의 예 1-4의 전기도금배스 및 Cr(VI) 기반의 비교예의 조성물 및 각 전기도금배스에서의 작동 파라미터를 나타낸다. Table 1 shows the composition of the electroplating bath of Examples 1-4 of the present invention and the composition of Comparative Example based on Cr(VI) and operating parameters in each electroplating bath.

비교예comparative example 예 1Example 1 예 2Example 2 예 3Example 3 예 4Example 4 CrO3 CrO 3 300g/L300g/L H2SO4 H 2 SO 4 3.5g/L3.5g/L 유기 촉매organic catalyst 50mL/L50mL/L 크롬설페이트 염기Chromium Sulfate Base 140g/L
(0.46M)
140g/L
(0.46M)
140g/L
(0.46M)
140g/L
(0.46M)
140g/L
(0.46M)
140g/L
(0.46M)
140g/L
(0.46M)
140g/L
(0.46M)
포름산formic acid 250g/L
(5.43M)
250g/L
(5.43M)
250g/L
(5.43M)
250g/L
(5.43M)
250g/L
(5.43M)
250g/L
(5.43M)
250g/L
(5.43M)
250g/L
(5.43M)
NH3 NH 3 90g/L
(5.3M)
90g/L
(5.3M)
90g/L
(5.3M)
90g/L
(5.3M)
90g/L
(5.3M)
90g/L
(5.3M)
90g/L
(5.3M)
90g/L
(5.3M)
KBrKBr 10g/L
(0.085M)
10g/L
(0.085M)
10g/L
(0.085M)
10g/L
(0.085M)
10g/L
(0.085M)
10g/L
(0.085M)
10g/L
(0.085M)
10g/L
(0.085M)
PEG400PEG400 0.5g/L0.5 g/L 0.5g/L0.5 g/L 0.5g/L0.5 g/L 0.5g/L0.5 g/L 4 암모늄 화합물quaternary ammonium compound 1g/L1 g/L 1g/L1 g/L 1g/L1 g/L 1g/L1 g/L 작동 파라미터operating parameters 온도temperature 50℃50℃ 35~45℃35~45℃ 35~45℃35~45℃ 35~45℃35~45℃ 35~45℃35~45℃ 전류 밀도current density 50A/dm2
DC
50A/dm2
DC
50A/dm2
DC
50A/dm2
DC
50A/dm2
PRC
50A/dm2
PRC
pHpH -- 5-5.55-5.5 5-5.55-5.5 5-5.55-5.5 5-5.55-5.5 음극 듀티 사이클negative duty cycle 96%96% 96%96% 96%96% 주파수frequency 6.5Hz6.5Hz 6.5Hz6.5Hz 6.5Hz6.5Hz 자기유도(magnetic induction)magnetic induction 300℃-2초300℃-2 seconds 300℃-2초300℃-2 seconds

DC : 직류(Direct current)DC : Direct current

PRC : 펄스 역전류(Pulse Reverse Current)PRC: Pulse Reverse Current

표 1의 전기도금배스에서 얻은 증착물의 성질을 표 2에 나타낸다. Table 2 shows the properties of the deposits obtained in the electroplating bath of Table 1.

비교예comparative example 예 1Example 1 예 2Example 2 예 3Example 3 예 4Example 4 두께(㎛)Thickness (㎛) 130㎛130㎛ 130㎛130㎛ 130㎛130㎛ 130㎛130㎛ 130㎛130㎛ 경도(HV)Hardness (HV) 1000-12001000-1200 750-800750-800 800-900800-900 1100-12001100-1200 1900-21001900-2100 Chiselling UNI EN ISO 2819에 의한 점착 Adhesion according to Chiselling UNI EN ISO 2819 excellentexcellent poorpoor goodgood excellentexcellent excellentexcellent 음극 효율
(cathodic efficiency)
Cathode Efficiency
(cathodic efficiency)
25-30%25-30% Cr(III)에서 12-15%12-15% in Cr(III) Cr(III)에서 12-15%12-15% in Cr(III) Cr(III)에서 12-15%12-15% in Cr(III) Cr(III)에서 12-15%12-15% in Cr(III)
결정도crystallinity 결정decision 무정질amorphous 무정질amorphous 결정decision 결정decision (XPS에 의한) 화학 조성물Chemical composition (by XPS) Cr>99Cr>99 Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w
Cr=92.5-95%w
C=2-3%w
O=3-4%w
N=0.1-0.5%w

Claims (15)

크롬 또는 크롬 합금을 증착하기 위한 전기도금배스(electroplating bath)로서,
a) 100 내지 400g/L의 적어도 하나의 3가 크롬염(trivalent chromium salt),
b) 100 내지 400g/L의 적어도 하나의 착화제(complexing agent) 및
c) 1 내지 50g/L의 적어도 하나의 할로겐 염(halogen salt)을 포함하고,
상기 전기도금배스는 4 내지 7의 pH를 가지며, 실질적으로 2가 황 화합물(divalent sulphur compounds) 및 붕산(boric acid), 붕산염 및/또는 파생물(derivatives)을 포함하지 않으며,
상기 3가 크롬염에 대한 상기 착화제의 몰 비율은 8:1 내지 15:1이며,
상기 전기도금배스는 전기도금배스의 유기성분 또는 암모니아로부터 제공되는 탄소, 산소 및 질소를 더 포함하는, 전기도금배스.
An electroplating bath for depositing chromium or a chromium alloy, comprising:
a) from 100 to 400 g/L of at least one trivalent chromium salt,
b) from 100 to 400 g/L of at least one complexing agent and
c) from 1 to 50 g/L of at least one halogen salt,
The electroplating bath has a pH of 4 to 7, and substantially does not contain divalent sulphur compounds and boric acid, borates and/or derivatives,
The molar ratio of the complexing agent to the trivalent chromium salt is 8:1 to 15:1,
The electroplating bath further comprises carbon, oxygen and nitrogen provided from an organic component of the electroplating bath or ammonia.
제1항에 있어서,
상기 3가 크롬염은 산성(acidic) 형태의 크롬(III) 설페이트 또는 알칼리성 형태의 크롬(III) 설페이트, 크롬(III) 클로라이드(chromium(III) chloride), 크롬(III) 아세테이트(chromium(III) acetate), 크롬(III) 하이드록시아세테이트(chromium(III) hydroxyacetate), 크롬(III) 포메이트(chromium(III) formate), 크롬(III) 하이드록시포메이트(chromium(III) hydroxyformate), 크롬(III) 카보네이트(chromium(III) carbonate), 크롬(III) 메탄술포네이트(chromium(III) methanesulfonate), 포타슘 크롬(III) 설페이트(potassium chromium(III) sulphate) 및 그들의 혼합물로 이루어진 그룹에서 선택되는, 전기도금배스.
According to claim 1,
The trivalent chromium salt is chromium (III) sulfate in an acidic form or chromium (III) sulfate in an alkaline form, chromium (III) chloride, chromium (III) acetate (chromium (III) acetate), chromium (III) hydroxyacetate, chromium (III) formate, chromium (III) hydroxyformate, chromium (III) hydroxyformate III) carbonate (chromium (III) carbonate), chromium (III) methanesulfonate (chromium (III) methanesulfonate), potassium chromium (III) sulfate (potassium chromium (III) sulphate) and mixtures thereof, electroplating bath.
제1항 또는 제2항에 있어서,
상기 3가 크롬염은 120 내지 160g/L의 양으로 존재하는, 전기도금배스.
3. The method of claim 1 or 2,
The trivalent chromium salt is present in an amount of 120 to 160 g / L, electroplating bath.
제1항 또는 제2항에 있어서,
상기 3가 크롬염의 음이온은 휘발성 산(volatile acid) 또는 전기화학적으로 소비될 수 있는 산(electro-chemically consumable acid)의 음이온인, 전기도금배스.
3. The method of claim 1 or 2,
The anion of the trivalent chromium salt is an anion of a volatile acid or an electro-chemically consumable acid.
제1항 또는 제2항에 있어서,
상기 전기도금배스는 바나듐(vanadium), 망간(manganese), 철(iron), 코발트(cobalt), 니켈(nickel), 몰리브덴(molybdenum), 텅스텐(tungsten) 및 그들의 혼합물로 이루어진 그룹에서 선택된 합금 형성체(alloy former)를 포함하는, 전기도금배스.
3. The method of claim 1 or 2,
The electroplating bath is an alloy forming body selected from the group consisting of vanadium, manganese, iron, cobalt, nickel, molybdenum, tungsten, and mixtures thereof. (alloy former), including an electroplating bath.
제1항 또는 제2항에 있어서,
상기 착화제는 카르복실산 및 카르복실레이트 염(carboxylate salts), 및 이의 혼합물로 이루어진 그룹에서 선택되는, 전기도금배스.
3. The method of claim 1 or 2,
The complexing agent is selected from the group consisting of carboxylic acids and carboxylate salts, and mixtures thereof.
제1항 또는 제2항에 있어서,
상기 착화제는 100 내지 300g/L의 양으로 존재하며, 및/또는 상기 3가 크롬염에 대한 상기 착화제의 몰 비율은 10:1 내지 13:1인, 전기도금배스.
3. The method of claim 1 or 2,
The complexing agent is present in an amount of 100 to 300 g/L, and/or the molar ratio of the complexing agent to the trivalent chromium salt is from 10:1 to 13:1.
제1항 또는 제2항에 있어서,
상기 할로겐 염(halogen salt)은 브롬화염(bromide salt), 염화염(chloride salt), 요오드화염(iodide salt), 불화염(fluoride salt) 및 이의 혼합물로 이루어진 그룹에서 선택되며, 및/또는 상기 할로겐 염은 5 내지 50g/L의 양으로 존재하는, 전기도금배스.
3. The method of claim 1 or 2,
The halogen salt is selected from the group consisting of a bromide salt, a chloride salt, an iodide salt, a fluoride salt, and mixtures thereof, and/or the halogen The salt is present in an amount of 5 to 50 g/L, the electroplating bath.
제1항 또는 제2항에 있어서,
상기 전기도금배스는 적어도 하나의 추가 착화제 및/또는 적어도 하나의 추가 할로겐 염으로서 불화물(fluoride)을 더 포함하는, 전기도금배스.
3. The method of claim 1 or 2,
The electroplating bath further comprises fluoride as at least one further complexing agent and/or at least one further halogen salt.
제1항 또는 제2항에 있어서,
상기 전기도금배스는 실질적으로 염화 이온(chloride ions)이 없고 및/또는 실질적으로 암모늄 이온(aluminium ion)이 없는, 전기도금배스.
3. The method of claim 1 or 2,
wherein the electroplating bath is substantially free of chloride ions and/or substantially free of ammonium ions.
- 제1항 또는 제2항의 전기도금배스(electroplating bath)를 제공하는 단계;
- 상기 전기도금배스에 기판을 담그는 단계; 및
- 상기 기판 위에 3가 크롬을 증착시키기 위해 전류를 적용하는 단계를 포함하는, 기판 위에 크롬을 증착시키는 방법.
- providing the electroplating bath of claim 1 or 2;
- immersing the substrate in the electroplating bath; and
- a method of depositing chromium on a substrate comprising applying an electric current to deposit trivalent chromium on said substrate.
제11항에 있어서,
상기 전기도금배스는 양극액(anolyte) 및 음극액(catholyte)을 정의하는, 막(membrane)에 의해 양극으로부터 분리되는, 기판 위에 크롬을 증착시키는 방법.
12. The method of claim 11,
wherein the electroplating bath is separated from the anode by a membrane defining an anolyte and a catholyte.
제12항에 있어서,
상기 양극액은 크롬(III) 설페이트(chromium (III) sulphate)를 포함하는 기판 위에 크롬을 증착시키는 방법.
13. The method of claim 12,
The method of depositing chromium on a substrate wherein the anolyte comprises chromium (III) sulphate.
삭제delete 삭제delete
KR1020217037970A 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium KR102430755B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14152463.7A EP2899299A1 (en) 2014-01-24 2014-01-24 Electroplating bath containing trivalent chromium and process for depositing chromium
EP14152463.7 2014-01-24
PCT/EP2015/051469 WO2015110627A1 (en) 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium
KR1020167020060A KR20160113610A (en) 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020167020060A Division KR20160113610A (en) 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium

Publications (2)

Publication Number Publication Date
KR20210147081A KR20210147081A (en) 2021-12-06
KR102430755B1 true KR102430755B1 (en) 2022-08-10

Family

ID=49989624

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217037970A KR102430755B1 (en) 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium
KR1020167020060A KR20160113610A (en) 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020167020060A KR20160113610A (en) 2014-01-24 2015-01-26 Electroplating bath containing trivalent chromium and process for depositing chromium

Country Status (12)

Country Link
US (2) US10619258B2 (en)
EP (2) EP2899299A1 (en)
JP (1) JP6534391B2 (en)
KR (2) KR102430755B1 (en)
CN (2) CN105917031B (en)
BR (1) BR112016016834B1 (en)
CA (1) CA2935934C (en)
ES (1) ES2944135T3 (en)
HU (1) HUE061836T2 (en)
MX (1) MX2016009533A (en)
PL (1) PL3097222T3 (en)
WO (1) WO2015110627A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899299A1 (en) * 2014-01-24 2015-07-29 COVENTYA S.p.A. Electroplating bath containing trivalent chromium and process for depositing chromium
GB2534883A (en) * 2015-02-03 2016-08-10 Univ Leicester Electrolyte for electroplating
WO2017042420A1 (en) * 2015-09-09 2017-03-16 Savroc Ltd Chromium-based coating, a method for producing a chromium-based coating and a coated object
US10270691B2 (en) * 2016-02-29 2019-04-23 Cisco Technology, Inc. System and method for dataplane-signaled packet capture in a segment routing environment
FR3051806B1 (en) * 2016-05-31 2018-06-01 Safran Aircraft Engines METHOD FOR ELECTROLYTIC CHROMING A SUBSTRATE FROM A TRIVALENT CHROME BATH
EP3382062A1 (en) * 2017-03-31 2018-10-03 COVENTYA S.p.A. Method for increasing the corrosion resistance of a chrome-plated substrate
CA3058275A1 (en) * 2017-04-04 2018-10-11 Atotech Deutschland Gmbh Controlled method for depositing a chromium or chromium alloy layer on at least one substrate
EP4170071A1 (en) * 2017-04-04 2023-04-26 Atotech Deutschland GmbH & Co. KG Method for electrolytically depositing a chromium or chromium alloy layer on at least one substrate
CN108130570A (en) * 2017-12-15 2018-06-08 北京科技大学 A kind of compound trivalent plating chromium process
CN109056005A (en) * 2018-09-11 2018-12-21 沈阳飞机工业(集团)有限公司 A method of chromium-boron alloy is prepared using electro-deposition techniques
FR3087209B1 (en) 2018-10-12 2022-11-04 Mecaprotec Ind COMPOSITION FOR CHROMING A SUBSTRATE AND CHROMING METHOD USING SUCH A COMPOSITION
TWI725581B (en) * 2018-10-19 2021-04-21 德商德國艾托特克公司 A method for electrolytically passivating a surface of silver, silver alloy, gold, or gold alloy
EP3894615A1 (en) * 2018-12-11 2021-10-20 ATOTECH Deutschland GmbH A method for depositing a chromium or chromium alloy layer and plating apparatus
EP3744874A1 (en) 2019-05-29 2020-12-02 Coventya SAS Electroplated product with corrosion-resistant coating
MX2022007692A (en) 2019-12-18 2022-07-19 Atotech Deutschland Gmbh & Co Kg Method for reducing the concentration of iron ions in a trivalent chromium eletroplating bath.
EP4077770A1 (en) 2019-12-18 2022-10-26 Atotech Deutschland GmbH & Co. KG Electroplating composition and method for depositing a chromium coating on a substrate
RU2734986C1 (en) * 2020-03-23 2020-10-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) Method for electrochemical deposition of chrome coatings from self-regulating electrolyte based on trivalent chromium compounds
FI129420B (en) * 2020-04-23 2022-02-15 Savroc Ltd An aqueous electroplating bath
JP2023534468A (en) * 2020-07-15 2023-08-09 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップ Method for electrodepositing functional or decorative chromium layers from trivalent chromium electrolytes
KR102350114B1 (en) * 2020-08-03 2022-01-10 김근호 Eco-friendly aluminum electrolytic chromate treatment method
CN112226791A (en) * 2020-10-26 2021-01-15 厦门市金宝源实业有限公司 Trivalent chromium plating solution, preparation method thereof and trivalent chromium plating method
EP4023793A1 (en) * 2021-01-05 2022-07-06 Coventya SAS Electroplating bath for depositing chromium or chromium alloy from a trivalent chromium bath and process for depositing chromium or chromium alloy
EP4151779A1 (en) * 2021-09-15 2023-03-22 Trivalent Oberflächentechnik GmbH Chrome-indium, chrome-bismuth and chrome antimony coating, method for the production and use thereof
CN113735172B (en) * 2021-10-08 2023-04-07 上海良仁化工有限公司 Method for preparing fine-particle chromium hydroxide from chromium-containing sludge
CN114875459A (en) * 2022-05-10 2022-08-09 成立航空股份有限公司 Trivalent chromium plating solution and black chromium plating layer
DE102022129788A1 (en) 2022-11-10 2024-05-16 Dornbracht AG & Co. KG. Sanitary object, in particular sanitary fitting or fitting
CN115928108B (en) * 2022-12-23 2023-08-01 中国科学院青海盐湖研究所 Method for directly preparing trivalent chromium compound by electrochemical ferric chromium oxide

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247803C2 (en) * 1959-10-07 1973-03-29 Du Pont PROCESS FOR MANUFACTURING SELF-SUPPORTING METAL COMPOSITE FALMS BY DEPOSITING GALVANISCLES
GB1368747A (en) * 1971-11-23 1974-10-02 British Non Ferrous Metals Res Electrodeposition of chromium
US4062737A (en) * 1974-12-11 1977-12-13 International Business Machines Corporation Electrodeposition of chromium
US4107004A (en) * 1975-03-26 1978-08-15 International Lead Zinc Research Organization, Inc. Trivalent chromium electroplating baths and method
GB1488381A (en) * 1975-09-01 1977-10-12 Bnf Metals Tech Centre Trivalent chromium plating bath
US4093521A (en) * 1975-12-18 1978-06-06 Stanley Renton Chromium electroplating
JPS53106348A (en) * 1977-02-28 1978-09-16 Toyo Soda Mfg Co Ltd Electrolytic bath for chromium plating
GB1580137A (en) * 1977-05-24 1980-11-26 Bnf Metals Tech Centre Electrolytic deposition of protective chromite-containing coatings
AU513298B2 (en) * 1978-06-02 1980-11-27 International Lead Zinc Research Organization Inc. Electrodeposition of black chromium
US4392922A (en) * 1980-11-10 1983-07-12 Occidental Chemical Corporation Trivalent chromium electrolyte and process employing vanadium reducing agent
US4477318A (en) * 1980-11-10 1984-10-16 Omi International Corporation Trivalent chromium electrolyte and process employing metal ion reducing agents
GB2109817B (en) * 1981-11-18 1985-07-03 Ibm Electrodeposition of chromium
GB2109816B (en) * 1981-11-18 1985-01-23 Ibm Electrodeposition of chromium
US4466865A (en) * 1982-01-11 1984-08-21 Omi International Corporation Trivalent chromium electroplating process
US4806446A (en) * 1986-04-09 1989-02-21 Brother Kogyo Kabushiki Kaisha Photosensitive recording medium capable of image contrast adjustment
US4804446A (en) 1986-09-19 1989-02-14 The United States Of America As Represented By The Secretary Of Commerce Electrodeposition of chromium from a trivalent electrolyte
US5196109A (en) * 1991-08-01 1993-03-23 Geoffrey Scott Trivalent chromium electrolytes and plating processes employing same
US5415763A (en) * 1993-08-18 1995-05-16 The United States Of America As Represented By The Secretary Of Commerce Methods and electrolyte compositions for electrodepositing chromium coatings
US6004448A (en) * 1995-06-06 1999-12-21 Atotech Usa, Inc. Deposition of chromium oxides from a trivalent chromium solution containing a complexing agent for a buffer
SG53086A1 (en) * 1997-09-29 1998-09-28 Univ Singapore A novel method of decorative chromium plating from trivalent chromium
US6663700B1 (en) * 2000-10-31 2003-12-16 The United States Of America As Represented By The Secretary Of The Navy Post-treatment for metal coated substrates
KR100572486B1 (en) * 2003-11-29 2006-04-19 테크앤라이프 주식회사 Trivalent chromium plating solution composition and preparation method thereof
FR2864553B1 (en) 2003-12-31 2006-09-01 Coventya INSTALLATION OF ZINC DEPOSITION OR ZINC ALLOYS
US7964083B2 (en) 2004-03-04 2011-06-21 Taskem, Inc. Polyamine brightening agent
ES2669050T3 (en) * 2006-03-31 2018-05-23 Atotech Deutschland Gmbh Crystalline Chrome Deposit
DE102006035871B3 (en) 2006-08-01 2008-03-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the deposition of chromium layers as hard chrome plating, plating bath and hard chrome plated surfaces and their use
US20080169199A1 (en) * 2007-01-17 2008-07-17 Chang Gung University Trivalent chromium electroplating solution and an electroplating process with the solution
BRPI0817924B1 (en) * 2007-10-02 2019-02-12 Atotech Deutschland Gmbh ELECTROPOSED CRYSTALLINE FUNCTIONAL CHROME ALLOY DEPOSIT, ELECTROPOSITION BATH TO DEPOSIT A CRYSTALLINONANOGRAULAR FUNCTIONAL CHROME ALLOY DEPOSIT, AND PROCESS TO ELECTROPOSIT A CRYSTAL CRYSTAL CHRONOUS ALLOY DEPOSIT
CN101565827A (en) * 2009-05-31 2009-10-28 广州民航职业技术学院 Passivation method of high-corrosion-resistance organic trivalent chromium applicable to surface of zinc coating
CN101665960A (en) * 2009-09-04 2010-03-10 厦门大学 Trivalent chromium sulfate plating solution and preparation method thereof
CN101748449A (en) * 2010-01-19 2010-06-23 上海应用技术学院 Method for plating chromium by using trivalent chromium
EP2492372A1 (en) * 2011-02-23 2012-08-29 Enthone, Inc. Aqueous solution and method for the formation of a passivation layer
CN102383150B (en) * 2011-11-09 2014-08-20 广东达志环保科技股份有限公司 High-corrosion-resistance environmentally-friendly trivalent chromium electroplating solution and electroplating method thereof
US9758884B2 (en) * 2012-02-16 2017-09-12 Stacey Hingley Color control of trivalent chromium deposits
US20130220819A1 (en) 2012-02-27 2013-08-29 Faraday Technology, Inc. Electrodeposition of chromium from trivalent chromium using modulated electric fields
CN103993303A (en) * 2013-02-17 2014-08-20 武汉风帆电镀技术股份有限公司 Trivalent-chromium anticorrosive passivating solution of aluminium and aluminium alloy
EP2899299A1 (en) 2014-01-24 2015-07-29 COVENTYA S.p.A. Electroplating bath containing trivalent chromium and process for depositing chromium
GB2534883A (en) * 2015-02-03 2016-08-10 Univ Leicester Electrolyte for electroplating

Also Published As

Publication number Publication date
EP3097222A1 (en) 2016-11-30
US11905613B2 (en) 2024-02-20
US10619258B2 (en) 2020-04-14
JP6534391B2 (en) 2019-06-26
US20170009361A1 (en) 2017-01-12
CA2935934C (en) 2022-03-01
BR112016016834B1 (en) 2022-02-08
EP2899299A1 (en) 2015-07-29
CN113818053A (en) 2021-12-21
ES2944135T3 (en) 2023-06-19
CN105917031B (en) 2021-11-02
JP2017503926A (en) 2017-02-02
BR112016016834A2 (en) 2017-08-08
KR20210147081A (en) 2021-12-06
EP3097222B1 (en) 2023-03-29
WO2015110627A1 (en) 2015-07-30
PL3097222T3 (en) 2023-05-29
MX2016009533A (en) 2016-10-28
US20200308723A1 (en) 2020-10-01
CN105917031A (en) 2016-08-31
HUE061836T2 (en) 2023-08-28
KR20160113610A (en) 2016-09-30
CA2935934A1 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
KR102430755B1 (en) Electroplating bath containing trivalent chromium and process for depositing chromium
US11105013B2 (en) Ionic liquid electrolyte and method to electrodeposit metals
EP3253906B1 (en) Electrolyte for electroplating
JP2011520037A (en) Improved copper-tin electrolyte and bronze layer deposition method
GB2086939A (en) Trivalent chromium electrolyte and process employing vanadium reducing agent
JP6951465B2 (en) Trivalent chrome plating solution and chrome plating method using this
US2693444A (en) Electrodeposition of chromium and alloys thereof
RU2016135556A (en) METHOD FOR CONTINUOUS COVERING OF TREVALENT CHROME
CN107761142A (en) A kind of method of eutectic solvent Electrodeposition Bath of Iron evanohm coating
US8110087B2 (en) Production of a structured hard chromium layer and production of a coating
WO2018185154A1 (en) Method for electrolytically depositing a chromium or chromium alloy layer on at least one substrate
Kasach et al. Effect of parameters of pulse electrolysis on electrodeposition of copper–tin alloy from sulfate electrolyte
US20240035184A1 (en) Silver-Bismuth Electrolyte for Separating Hard Silver Layers
CA2236933A1 (en) Electroplating of low-stress nickel
US3772167A (en) Electrodeposition of metals
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
JPH1060683A (en) Electroplating with ternary system zinc alloy, and its method
US1590170A (en) Process of plating with chromium
RU2449062C1 (en) Method for obtaining oxide coating on steel
US20180355498A1 (en) Iron tungsten coating formulations and processes
EP2405034A1 (en) Copper-zinc alloy electroplating bath and method of plating using same
US20230160083A1 (en) Electrolyte and method for producing chromium layers
JPH0987885A (en) Electroplated ternary zinc alloy and its method
KR20220119012A (en) Sulfate-based ammonium-free trivalent chromium decorative plating process
BR102017008137B1 (en) METHOD FOR CHROMETING A SUBSTRATE, AND, ELECTROLYTIC SOLUTION FOR CHROMETING A SUBSTRATE

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right