KR102426759B1 - 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 - Google Patents
다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 Download PDFInfo
- Publication number
- KR102426759B1 KR102426759B1 KR1020227000098A KR20227000098A KR102426759B1 KR 102426759 B1 KR102426759 B1 KR 102426759B1 KR 1020227000098 A KR1020227000098 A KR 1020227000098A KR 20227000098 A KR20227000098 A KR 20227000098A KR 102426759 B1 KR102426759 B1 KR 102426759B1
- Authority
- KR
- South Korea
- Prior art keywords
- wireless communication
- frame
- communication terminal
- transmission
- station
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 581
- 238000000034 method Methods 0.000 title claims description 150
- 230000005540 biological transmission Effects 0.000 claims abstract description 279
- 230000004044 response Effects 0.000 claims description 86
- 101150081243 STA1 gene Proteins 0.000 description 83
- 101100161473 Arabidopsis thaliana ABCB25 gene Proteins 0.000 description 77
- 101100096893 Mus musculus Sult2a1 gene Proteins 0.000 description 77
- 101000752249 Homo sapiens Rho guanine nucleotide exchange factor 3 Proteins 0.000 description 46
- 102100021689 Rho guanine nucleotide exchange factor 3 Human genes 0.000 description 46
- 230000011664 signaling Effects 0.000 description 21
- 230000001960 triggered effect Effects 0.000 description 17
- 230000008569 process Effects 0.000 description 16
- 101100395869 Escherichia coli sta3 gene Proteins 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 230000001419 dependent effect Effects 0.000 description 12
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- OVGWMUWIRHGGJP-WTODYLRWSA-N (z)-7-[(1r,3s,4s,5r)-3-[(e,3r)-3-hydroxyoct-1-enyl]-6-thiabicyclo[3.1.1]heptan-4-yl]hept-5-enoic acid Chemical compound OC(=O)CCC\C=C/C[C@H]1[C@H](/C=C/[C@H](O)CCCCC)C[C@H]2S[C@@H]1C2 OVGWMUWIRHGGJP-WTODYLRWSA-N 0.000 description 2
- 101100366889 Caenorhabditis elegans sta-2 gene Proteins 0.000 description 2
- 102100034274 Diamine acetyltransferase 1 Human genes 0.000 description 2
- 101000641077 Homo sapiens Diamine acetyltransferase 1 Proteins 0.000 description 2
- 101000713305 Homo sapiens Sodium-coupled neutral amino acid transporter 1 Proteins 0.000 description 2
- 101710140501 Sulfate adenylyltransferase subunit 2 1 Proteins 0.000 description 2
- VYLDEYYOISNGST-UHFFFAOYSA-N bissulfosuccinimidyl suberate Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VYLDEYYOISNGST-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 101000640813 Homo sapiens Sodium-coupled neutral amino acid transporter 2 Proteins 0.000 description 1
- 101000716973 Homo sapiens Thialysine N-epsilon-acetyltransferase Proteins 0.000 description 1
- 101150042248 Mgmt gene Proteins 0.000 description 1
- -1 STA2 Proteins 0.000 description 1
- 102100020926 Thialysine N-epsilon-acetyltransferase Human genes 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0205—Traffic management, e.g. flow control or congestion control at the air interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0278—Traffic management, e.g. flow control or congestion control using buffer status reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/14—Flow control between communication endpoints using intermediate storage
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
- H04W74/0841—Random access procedures, e.g. with 4-step access with collision treatment
- H04W74/085—Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
무선으로 통신하는 무선 통신 단말이 개시된다. 무선 통신 단말은 송수신부;및 프로세서를 포함한다. 상기 프로세서는 상기 송수신부를 통해 AP인 무선 통신 단말과 링크를 설정하기 위한 프레임이 다중 사용자 상향(UpLink Multi User, UL MU) 전송을 통해 전송되는 것을 트리거링하는 트리거 프레임을 수신한다. 상기 프로세서는 상기 트리거 프레임을 프레임을 기초로 상기 링크를 설정하기 위한 프레임을 UL MU 전송을 통해 전송한다.
Description
본 발명은 다중 사용자 무선 통신 방법 및 무선 통신 단말에 관한 것이다.
최근 모바일 기기의 보급이 확대됨에 따라 이들에게 빠른 무선 인터넷 서비스를 제공할 수 있는 무선랜(Wireless LAN) 기술이 많은 각광을 받고 있다. 무선랜 기술은 근거리에서 무선 통신 기술을 바탕으로 스마트 폰, 스마트 패드, 랩탑 컴퓨터, 휴대형 멀티미디어 플레이어, 임베디드 기기 등과 같은 모바일 기기들을 가정이나 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 접속할 수 있도록 하는 기술이다.
IEEE(Institute of Electrical and Electronics Engineers) 802.11은 2.4GHz 주파수를 이용한 초기의 무선랜 기술을 지원한 이래, 다양한 기술의 표준을 실용화 또는 개발 중에 있다. 먼저, IEEE 802.11b는 2.4GHz 밴드의 주파수를 사용하면서 최고 11Mbps의 통신 속도를 지원한다. IEEE 802.11b 이후에 상용화된 IEEE 802.11a는 2.4GHz 밴드가 아닌 5GHz 밴드의 주파수를 사용함으로써 상당히 혼잡한 2.4GHz 밴드의 주파수에 비해 간섭에 대한 영향을 줄였으며, 직교주파수분할(Orthogonal Frequency Division Multiplexing, OFDM) 기술을 사용하여 통신 속도를 최대 54Mbps까지 향상시켰다. 그러나 IEEE 802.11a는 IEEE 802.11b에 비해 통신 거리가 짧은 단점이 있다. 그리고 IEEE 802.11g는 IEEE 802.11b와 마찬가지로 2.4GHz 밴드의 주파수를 사용하여 최대 54Mbps의 통신속도를 구현하며, 하위 호환성(backward compatibility)을 만족하고 있어 상당한 주목을 받았는데, 통신 거리에 있어서도 IEEE 802.11a보다 우위에 있다.
그리고 무선랜에서 취약점으로 지적되어온 통신 속도에 대한 한계를 극복하기 위하여 제정된 기술 규격으로서 IEEE 802.11n이 있다. IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 데이터 처리 속도가 최대 540Mbps 이상인 고처리율(High Throughput, HT)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다. 또한, 이 규격은 데이터 신뢰성을 높이기 위해 중복되는 사본을 여러 개 전송하는 코딩 방식을 사용할 수 있다.
무선랜의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, IEEE 802.11n이 지원하는 데이터 처리 속도보다 더 높은 처리율(Very High Throughput, VHT)을 지원하기 위한 새로운 무선랜 시스템에 대한 필요성이 대두되었다. 이 중 IEEE 802.11ac는 5GHz 주파수에서 넓은 대역폭(80MHz~160MHz)을 지원한다. IEEE 802.11ac 표준은 5GHz 대역에서만 정의되어 있으나 기존 2.4GHz 대역 제품들과의 하위 호환성을 위해 초기 11ac 칩셋들은 2.4GHz 대역에서의 동작도 지원할 것이다. 이론적으로, 이 규격에 따르면 다중 스테이션의 무선랜 속도는 최소 1Gbps, 최대 단일 링크 속도는 최소 500Mbps까지 가능하게 된다. 이는 더 넓은 무선 주파수 대역폭(최대 160MHz), 더 많은 MIMO 공간적 스트림(최대 8 개), 다중 사용자 MIMO, 그리고 높은 밀도의 모듈레이션(최대 256 QAM) 등 802.11n에서 받아들인 무선 인터페이스 개념을 확장하여 이루어진다. 또한, 기존 2.4GHz/5GHz 대신 60GHz 밴드를 사용해 데이터를 전송하는 방식으로 IEEE 802.11ad가 있다. IEEE 802.11ad는 빔포밍 기술을 이용하여 최대 7Gbps의 속도를 제공하는 전송규격으로서, 대용량의 데이터나 무압축 HD 비디오 등 높은 비트레이트 동영상 스트리밍에 적합하다. 하지만 60GHz 주파수 밴드는 장애물 통과가 어려워 근거리 공간에서의 디바이스들 간에만 이용이 가능한 단점이 있다.
한편, 최근에는 802.11ac 및 802.11ad 이후의 차세대 무선랜 표준으로서, 고밀도 환경에서의 고효율 및 고성능의 무선랜 통신 기술을 제공하기 위한 논의가 계속해서 이루어지고 있다. 즉, 차세대 무선랜 환경에서는 고밀도의 스테이션과 AP(Access Point)의 존재 하에 실내/외에서 높은 주파수 효율의 통신이 제공되어야 하며, 이를 구현하기 위한 다양한 기술들이 필요하다.
특히, 무선랜을 이용하는 장치의 수가 늘어남에 따라 정해진 채널을 효율적으로 사용할 필요가 있다. 따라서 복수의 스테이션과 AP간 데이터 전송을 동시에 하게하여 대역폭을 효율적으로 사용할 수 있는 기술이 필요하다.
본 발명의 일 실시 예는 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말을 제공하는 것을 목적으로 한다.
본 발명의 일 실시 예에 따라 무선으로 통신하는 무선 통신 단말은 송수신부; 및 프로세서를 포함한다. 상기 프로세서는 상기 송수신부를 통해 AP인 무선 통신 단말과 링크를 설정하기 위한 프레임이 다중 사용자 상향(UpLink Multi User, UL MU) 전송을 통해 전송되는 것을 트리거링하는 트리거 프레임을 수신하고, 상기 트리거 프레임을 프레임을 기초로 상기 링크를 설정하기 위한 프레임을 UL MU 전송을 통해 전송할 수 있다.
상기 프로세서는 상기 트리거 프레임이 트리거링하는 무선 통신 단말을 나타내는 결합 식별자(Association Identifier, AID)를 기초로 상기 트리거 프레임이 상기 링크를 설정하기 위한 프레임의 전송을 트리거링하는지 판단할 수 있다.
상기 프로세서는 상기 트리거 프레임이 트리거링하는 무선 통신 단말을 나타내는 AID가 임시 AID인지 여부를 기초로 상기 트리거 프레임이 상기 링크를 설정하기 위한 프레임의 전송을 트리거링하는지 판단할 수 있다. 이때, 상기 임시 AID는 상기 AP인 무선 통신 단말이 결합 이후 상기 무선 통신 단말에게 할당하는 AID와 구별되는 값일 수 있다.
상기 임시 AID는 미리 지정된 값을 가질 수 있따.
상기 프로세서는 상기 송수신부를 통해 상기 AP인 무선 통신 단말로부터 상기 링크를 설정하기 위한 프레임 대한 응답 프레임을 다중 사용자 하향(DownLink Multi User, DL MU) 전송을 통해 수신할 수 있다.
상기 프로세서는 상기 DL MU 전송을 위한 PPDU의 시그널링 필드가 상기 링크를 설정하기 위한 프레임의 상향 전송을 트리거링 하기 위해 사용된 임시 결합 식별자(Association Identifier, AID)를 포함하는지를 기초로 상기 응답 프레임을 수신할 수 있다. 이때, 상기 PPDU의 시그널링 필드는 상기 PPDU를 수신할 무선 통신 단말을 나타내는 필드일 수 있다. 또한, 상기 임시 AID는 상기 AP인 무선 통신 단말이 결합 이후 상기 무선 통신 단말에게 할당하는 AID와 구별되는 값일 수 있다.
상기 프로세서는 상기 임시 AID에 해당하는 RU(Resource Unit)을 통해 전송되는 프레임의 수신 주소가 상기 무선 통신 단말의 주소인지를 기초로 상기 응답 프레임을 수신할 수 있다.
상기 무선 통신 단말이 상기 링크를 설정하기 위한 프레임 전송 시 사용한 AID는 결합 이후 무선 통신 단말에게 할당될 수 있는 AID 값의 범위 밖의 수일 수 있다.
상기 무선 통신 단말은 상기 무선 통신 단말과 결합되지 않은 무선 통신 단말일 수 있다.
상기 트리거 프레임은 상기 링크를 설정하기 위한 프레임과 링크 설정과 관련 없는 프레임의 전송을 트리거링할 수 있다.
상기 링크를 설정하기 위한 프레임은 결합 요청 프레임일 수 있다.
상기 트리거 프레임은 상기 링크를 설정하기 위한 프레임은 인증 요청 프레임일 수 있다.
본 발명의 실시 예에 따른 무선으로 통신하는 무선 통신 단말은 송수신부; 및 프로세서를 포함한다. 상기 프로세서는 상기 송수신부를 통해 상기 무선 통신 단말과 링크를 설정하기 위한 프레임의 다중 사용자 상향(UpLink Multi User, UL MU) 전송을 트리거링하는 트리거 프레임을 전송하고, 상기 트리거 프레임을 프레임을 기초로 전송된 상기 링크를 설정하기 위한 프레임을 수신할 수 있다.
상기 프로세서는 상기 트리거 프레임은 상기 트리거 프레임을 기초로 상향 전송을 할 무선 통신 단말을 결합 식별자(Association Identifier, AID)를 통해 지시하고, 상기 링크 설정을 하기 위한 프레임에 해당하는 AID를 상기 무선 통신 단말과의 결합 이후 결합된 무선 통신 단말에게 할당하는 AID의 값과 구별되는 값으로 설정할 수 있다.
상기 프로세서는 상기 송수신부를 통해 상기 링크를 설정하기 위한 프레임에 대한 응답 프레임을 다중 사용자 하향(DownLink Multi User, DL MU) 전송을 통해 전송할 수 있다.
상기 프로세서는 상기 DL MU 전송을 위한 PPDU의 시그널링 필드에 상기 트리거 프레임에서 상기 링크를 설정하기 위한 프레임의 UL MU 전송을 트리거링하기 위해 사용된 임시 결합 식별자(Association Identifier, AID)를 삽입할 수 있다. 이때, 상기 PPDU의 시그널링 필드는 상기 PPDU를 수신할 무선 통신 단말을 나타내는 필드일 수 있다. 또한, 상기 임시 AID는 상기 AP인 무선 통신 단말이 결합 이후 상기 무선 통신 단말에게 할당하는 AID와 구별되는 값일 수 있다.
상기 임시 AID는 결합 이후 상기 무선 통신 단말과 결합한 무선 통신 단말에게 할당될 수 있는 AID 값의 범위 밖의 수일 수 있다.
상기 프로세서는 상기 트리거 프레임을 통해 상기 링크를 설정하기 위한 프레임과 링크 설정과 관련 없는 프레임의 전송을 트리거링할 수 있다.
상기 링크를 설정하기 위한 프레임은 결합 요청 프레임일 수 있다.
상기 링크를 설정하기 위한 프레임은 인증 요청 프레임일 수 있다.
본 발명의 실시 예에 따른 무선으로 통신하는 무선 통신 단말의 동작 방법은 AP인 무선 통신 단말과 링크를 설정하기 위한 프레임이 다중 사용자 상향(UpLink Multi User, UL MU) 전송을 통해 전송되는 것을 트리거링하는 트리거 프레임을 수신하는 단계; 및 상기 트리거 프레임을 프레임을 기초로 상기 링크를 설정하기 위한 프레임을 UL MU 전송을 통해 전송하는 단계를 포함한다.
본 발명이 일 실시 예는 다중 사용자 무선 통신 방법 및 다중 사용자 무선 통신 방법을 이용하는 무선 통신 단말을 제공한다.
도 1은 본 발명의 일 실시 예에 따른 무선랜 시스템을 보여준다.
도 2는 본 발명의 다른 실시 예에 따른 무선랜 시스템을 보여준다.
도 3은 본 발명의 일 실시 예에 따른 스테이션의 구성을 보여주는 블록도이다.
도 4는 본 발명의 일 실시 예에 따른 액세스 포인트의 구성을 보여주는 블록도이다.
도 5는 본 발명의 일 실시 예에 따른 스테이션이 액세스 포인트와 링크를 설정하는 과정을 개략적으로 보여준다.
도 6은 본 발명의 실시 예에 따른 초기 링크 셋업 과정을 보여준다.
도 7은 본 발명의 실시 예에 따른 복수의 무선 통신 단말이 링크를 설정하는 동작을 보여준다.
도 8은 본 발명의 실시 예에 따른 무선 통신 단말의 MU 인증 절차를 보여준다.
도 9는 본 발명의 실시 예에 따른 무선 통신 단말이 4-way handshaking 인증 절차를 수행하는 동작을 보여준다.
도 10은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 4-way handshaking 인증 절차를 수행하는 동작을 보여준다.
도 11은 본 발명의 실시 예에 따른 무선 통신 단말이 결합 절차를 수행하는 동작을 보여준다.
도 12는 본 발명의 실시 예에 따른 무선 통신 단말이 결합 절차를 수행하는 동작을 보여준다.
도 13은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 캐스캐이딩 시퀀스를 이용해 인증과 결합을 수행하는 것을 보여준다.
도 14는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 캐스캐이딩 시퀀스를 이용해 인증과 결합을 수행하는 것을 보여준다.
도 15는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 MU 링크 설정 동작을 보여준다.
도 16은 본 발명의 실시 예에 따른 무선 통신 단말이 MU-RTS 프레임 및 동시 CTS 프레임 전송을 통해 상향 데이터 전송을 보호하는 동작을 보여준다.
도 17은 본 발명의 실시 예에 따른 무선 통신 단말이 동시 CTS 프레임을 전송하는 동작을 보여준다.
도 18은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 동시 CTS 프레임을 전송하는 동작을 보여준다.
도 19는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 NAV를 설정하는 동작을 보여준다.
도 20은 본 발명의 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 21은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 22는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 23은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 24는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 25 내지 도 27은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 28 내지 도 29는 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 방법을 보여준다.
도 30 내지 도 33은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR 전송을 위한 큐를 운영하는 방법을 보여준다.
도 34는 본 발명의 실시 예에 따른 복수의 무선 통신 단말이 동시 상향 전송을 하는 동작을 보여준다.
도 35 내지 도 36은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 동작을 보여준다.
도 37은 본 발명의 실시 예에 따른 무선 통신 단말의 동작을 보여준다.
도 2는 본 발명의 다른 실시 예에 따른 무선랜 시스템을 보여준다.
도 3은 본 발명의 일 실시 예에 따른 스테이션의 구성을 보여주는 블록도이다.
도 4는 본 발명의 일 실시 예에 따른 액세스 포인트의 구성을 보여주는 블록도이다.
도 5는 본 발명의 일 실시 예에 따른 스테이션이 액세스 포인트와 링크를 설정하는 과정을 개략적으로 보여준다.
도 6은 본 발명의 실시 예에 따른 초기 링크 셋업 과정을 보여준다.
도 7은 본 발명의 실시 예에 따른 복수의 무선 통신 단말이 링크를 설정하는 동작을 보여준다.
도 8은 본 발명의 실시 예에 따른 무선 통신 단말의 MU 인증 절차를 보여준다.
도 9는 본 발명의 실시 예에 따른 무선 통신 단말이 4-way handshaking 인증 절차를 수행하는 동작을 보여준다.
도 10은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 4-way handshaking 인증 절차를 수행하는 동작을 보여준다.
도 11은 본 발명의 실시 예에 따른 무선 통신 단말이 결합 절차를 수행하는 동작을 보여준다.
도 12는 본 발명의 실시 예에 따른 무선 통신 단말이 결합 절차를 수행하는 동작을 보여준다.
도 13은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 캐스캐이딩 시퀀스를 이용해 인증과 결합을 수행하는 것을 보여준다.
도 14는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 캐스캐이딩 시퀀스를 이용해 인증과 결합을 수행하는 것을 보여준다.
도 15는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 MU 링크 설정 동작을 보여준다.
도 16은 본 발명의 실시 예에 따른 무선 통신 단말이 MU-RTS 프레임 및 동시 CTS 프레임 전송을 통해 상향 데이터 전송을 보호하는 동작을 보여준다.
도 17은 본 발명의 실시 예에 따른 무선 통신 단말이 동시 CTS 프레임을 전송하는 동작을 보여준다.
도 18은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 동시 CTS 프레임을 전송하는 동작을 보여준다.
도 19는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 NAV를 설정하는 동작을 보여준다.
도 20은 본 발명의 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 21은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 22는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 23은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 24는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 25 내지 도 27은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
도 28 내지 도 29는 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 방법을 보여준다.
도 30 내지 도 33은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR 전송을 위한 큐를 운영하는 방법을 보여준다.
도 34는 본 발명의 실시 예에 따른 복수의 무선 통신 단말이 동시 상향 전송을 하는 동작을 보여준다.
도 35 내지 도 36은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 동작을 보여준다.
도 37은 본 발명의 실시 예에 따른 무선 통신 단말의 동작을 보여준다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 출원은 대한민국 특허 출원 제10-2016-0029136호(2016.03.10), 제10-2016-0041302호(2016.04.04), 제10-2016-0043773호(2016.04.09) 및 제10-2016-0045142호(2016.04.12)를 기초로 한 우선권을 주장하며, 우선권의 기초가 되는 상기 각 출원들에 서술된 실시 예 및 기재 사항은 본 출원의 상세한 설명에 포함되는 것으로 한다.
도 1은 본 발명의 일 실시 예에 따른 무선랜 시스템을 도시하고 있다. 무선랜 시스템은 하나 또는 그 이상의 베이직 서비스 세트(Basic Service Set, BSS)를 포함하는데, BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 기기들의 집합을 나타낸다. 일반적으로 BSS는 인프라스트럭쳐 BSS(infrastructure BSS)와 독립 BSS(Independent BSS, IBSS)로 구분될 수 있으며, 도 1은 이 중 인프라스트럭쳐 BSS를 나타내고 있다.
도 1에 도시된 바와 같이 인프라스트럭쳐 BSS(BSS1, BSS2)는 하나 또는 그 이상의 스테이션(STA1, STA2, STA3, STA_4, STA5), 분배 서비스(Distribution Service)를 제공하는 스테이션인 액세스 포인트(PCP/AP-1, PCP/AP-2), 및 다수의 액세스 포인트(PCP/AP-1, PCP/AP-2)를 연결시키는 분배 시스템(Distribution System, DS)을 포함한다.
스테이션(Station, STA)은 IEEE 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리층(Physical Layer) 인터페이스를 포함하는 임의의 디바이스로서, 광의로는 비 액세스 포인트(Non-AP) 스테이션뿐만 아니라 액세스 포인트(AP)를 모두 포함한다. 또한, 본 명세서에서는 스테이션과 AP 등의 무선랜 통신 디바이스를 모두 포함하는 개념으로서 '단말'이라는 용어가 사용될 수 있다. 무선 통신을 위한 스테이션은 프로세서(Processor)와 송수신부(transmit/receive unit)를 포함하고, 실시 예에 따라 유저 인터페이스부와 디스플레이 유닛 등을 더 포함할 수 있다. 프로세서는 무선 네트워크를 통해 전송할 프레임을 생성하거나 또는 상기 무선 네트워크를 통해 수신된 프레임을 처리하며, 그 밖에 스테이션을 제어하기 위한 다양한 처리를 수행할 수 있다. 그리고, 송수신부는 상기 프로세서와 기능적으로 연결되어 있으며 스테이션을 위하여 무선 네트워크를 통해 프레임을 송수신한다.
액세스 포인트(Access Point, AP)는 AP에게 결합된(associated) 스테이션을 위하여 무선 매체를 경유하여 분배시스템(DS)에 대한 접속을 제공하는 개체이다. 인프라스트럭쳐 BSS에서 비 AP 스테이션들 사이의 통신은 AP를 경유하여 이루어지는 것이 원칙이지만, 다이렉트 링크가 설정된 경우에는 비AP 스테이션들 사이에서도 직접 통신이 가능하다. 한편, 본 발명에서 AP는 PCP(Personal BSS Coordination Point)를 포함하는 개념으로 사용되며, 광의적으로는 집중 제어기, 기지국(Base Station, BS), 노드-B, BTS(Base Transceiver System), 또는 사이트 제어기 등의 개념을 모두 포함할 수 있다.
복수의 인프라스트럭쳐 BSS는 분배 시스템(DS)을 통해 상호 연결될 수 있다. 이때, 분배 시스템을 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set, ESS)라 한다.
도 2는 본 발명의 다른 실시 예에 따른 무선랜 시스템인 독립 BSS를 도시하고 있다. 도 2의 실시 예에서 도 1의 실시 예와 동일하거나 상응하는 부분은 중복적인 설명을 생략하도록 한다.
도 2에 도시된 BSS3는 독립 BSS이며 AP를 포함하지 않기 때문에, 모든 스테이션(STA6, STA7)이 AP와 접속되지 않은 상태이다. 독립 BSS는 분배 시스템으로의 접속이 허용되지 않으며, 자기 완비적 네트워크(self-contained network)를 이룬다. 독립 BSS에서 각각의 스테이션들(STA6, STA7)은 다이렉트로 서로 연결될 수 있다.
도 3은 본 발명의 일 실시 예에 따른 스테이션(100)의 구성을 나타낸 블록도이다.
도시된 바와 같이, 본 발명의 실시 예에 따른 스테이션(100)은 프로세서(110), 송수신부(120), 유저 인터페이스부(140), 디스플레이 유닛(150) 및 메모리(160)를 포함할 수 있다.
먼저, 송수신부(120)는 무선랜 피지컬 레이어 프레임 등의 무선 신호를 송수신 하며, 스테이션(100)에 내장되거나 외장으로 구비될 수 있다. 실시 예에 따르면, 송수신부(120)는 서로 다른 주파수 밴드를 이용하는 적어도 하나의 송수신 모듈을 포함할 수 있다. 이를 테면, 상기 송수신부(120)는 2.4GHz, 5GHz 및 60GHz 등의 서로 다른 주파수 밴드의 송수신 모듈을 포함할 수 있다. 일 실시 예에 따르면, 스테이션(100)은 6GHz 이상의 주파수 밴드를 이용하는 송수신 모듈과, 6GHz 이하의 주파수 밴드를 이용하는 송수신 모듈을 구비할 수 있다. 각각의 송수신 모듈은 해당 송수신 모듈이 지원하는 주파수 밴드의 무선랜 규격에 따라 AP 또는 외부 스테이션과 무선 통신을 수행할 수 있다. 송수신부(120)는 스테이션(100)의 성능 및 요구 사항에 따라 한 번에 하나의 송수신 모듈만을 동작시키거나 동시에 다수의 송수신 모듈을 함께 동작시킬 수 있다. 스테이션(100)이 복수의 송수신 모듈을 포함할 경우, 각 송수신 모듈은 각각 독립된 형태로 구비될 수도 있으며, 복수의 모듈이 하나의 칩으로 통합되어 구비될 수도 있다.
다음으로, 유저 인터페이스부(140)는 스테이션(100)에 구비된 다양한 형태의 입/출력 수단을 포함한다. 즉, 유저 인터페이스부(140)는 다양한 입력 수단을 이용하여 유저의 입력을 수신할 수 있으며, 프로세서(110)는 수신된 유저 입력에 기초하여 스테이션(100)을 제어할 수 있다. 또한, 유저 인터페이스부(140)는 다양한 출력 수단을 이용하여 프로세서(110)의 명령에 기초한 출력을 수행할 수 있다.
다음으로, 디스플레이 유닛(150)은 디스플레이 화면에 이미지를 출력한다. 상기 디스플레이 유닛(150)은 프로세서(110)에 의해 실행되는 컨텐츠 또는 프로세서(110)의 제어 명령에 기초한 유저 인터페이스 등의 다양한 디스플레이 오브젝트를 출력할 수 있다. 또한, 메모리(160)는 스테이션(100)에서 사용되는 제어 프로그램 및 그에 따른 각종 데이터를 저장한다. 이러한 제어 프로그램에는 스테이션(100)이 AP 또는 외부 스테이션과 접속을 수행하는데 필요한 접속 프로그램이 포함될 수 있다.
본 발명의 프로세서(110)는 다양한 명령 또는 프로그램을 실행하고, 스테이션(100) 내부의 데이터를 프로세싱 할 수 있다. 또한, 상기 프로세서(110)는 상술한 스테이션(100)의 각 유닛들을 제어하며, 유닛들 간의 데이터 송수신을 제어할 수 있다. 본 발명의 실시 예에 따르면, 프로세서(110)는 메모리(160)에 저장된 AP의 접속을 위한 프로그램을 실행하고, AP가 전송한 통신 설정 메시지를 수신할 수 있다. 또한, 프로세서(110)는 통신 설정 메시지에 포함된 스테이션(100)의 우선 조건에 대한 정보를 판독하고, 스테이션(100)의 우선 조건에 대한 정보에 기초하여 AP에 대한 접속을 요청할 수 있다. 본 발명의 프로세서(110)는 스테이션(100)의 메인 컨트롤 유닛을 가리킬 수도 있으며, 실시 예에 따라 스테이션(100)의 일부 구성 이를 테면, 송수신부(120)등을 개별적으로 제어하기 위한 컨트롤 유닛을 가리킬 수도 있다. 즉, 프로세서(110)는 송수신부(120)로부터 송수신되는 무선 신호를 모듈레이션하는 모듈레이션부 또는 디모듈레이션부(modulator and/or demodulator)일 수 있다. 프로세서(110)는 본 발명의 실시예에 따른 스테이션(100)의 무선 신호 송수신의 각종 동작을 제어한다. 이에 대한 구체적인 실시예는 추후 기술하기로 한다.
도 3에 도시된 스테이션(100)은 본 발명의 일 실시 예에 따른 블록도로서, 분리하여 표시한 블록들은 디바이스의 엘리먼트들을 논리적으로 구별하여 도시한 것이다. 따라서 상술한 디바이스의 엘리먼트들은 디바이스의 설계에 따라 하나의 칩으로 또는 복수의 칩으로 장착될 수 있다. 이를테면, 상기 프로세서(110) 및 송수신부(120)는 하나의 칩으로 통합되어 구현될 수도 있으며 별도의 칩으로 구현될 수도 있다. 또한, 본 발명의 실시 예에서 상기 스테이션(100)의 일부 구성들, 이를 테면 유저 인터페이스부(140) 및 디스플레이 유닛(150) 등은 스테이션(100)에 선택적으로 구비될 수 있다.
도 4는 본 발명의 일 실시 예에 따른 AP(200)의 구성을 나타낸 블록도이다.
도시된 바와 같이, 본 발명의 실시 예에 따른 AP(200)는 프로세서(210), 송수신부(220) 및 메모리(260)를 포함할 수 있다. 도 4에서 AP(200)의 구성 중 도 3의 스테이션(100)의 구성과 동일하거나 상응하는 부분에 대해서는 중복적인 설명을 생략하도록 한다.
도 4를 참조하면, 본 발명에 따른 AP(200)는 적어도 하나의 주파수 밴드에서 BSS를 운영하기 위한 송수신부(220)를 구비한다. 도 3의 실시 예에서 전술한 바와 같이, 상기 AP(200)의 송수신부(220) 또한 서로 다른 주파수 밴드를 이용하는 복수의 송수신 모듈을 포함할 수 있다. 즉, 본 발명의 실시 예에 따른 AP(200)는 서로 다른 주파수 밴드, 이를 테면 2.4GHz, 5GHz, 60GHz 중 두 개 이상의 송수신 모듈을 함께 구비할 수 있다. 바람직하게는, AP(200)는 6GHz 이상의 주파수 밴드를 이용하는 송수신 모듈과, 6GHz 이하의 주파수 밴드를 이용하는 송수신 모듈을 구비할 수 있다. 각각의 송수신 모듈은 해당 송수신 모듈이 지원하는 주파수 밴드의 무선랜 규격에 따라 스테이션과 무선 통신을 수행할 수 있다. 상기 송수신부(220)는 AP(200)의 성능 및 요구 사항에 따라 한 번에 하나의 송수신 모듈만을 동작시키거나 동시에 다수의 송수신 모듈을 함께 동작시킬 수 있다.
다음으로, 메모리(260)는 AP(200)에서 사용되는 제어 프로그램 및 그에 따른 각종 데이터를 저장한다. 이러한 제어 프로그램에는 스테이션의 접속을 관리하는 접속 프로그램이 포함될 수 있다. 또한, 프로세서(210)는 AP(200)의 각 유닛들을 제어하며, 유닛들 간의 데이터 송수신을 제어할 수 있다. 본 발명의 실시 예에 따르면, 프로세서(210)는 메모리(260)에 저장된 스테이션과의 접속을 위한 프로그램을 실행하고, 하나 이상의 스테이션에 대한 통신 설정 메시지를 전송할 수 있다. 이때, 통신 설정 메시지에는 각 스테이션의 접속 우선 조건에 대한 정보가 포함될 수 있다. 또한, 프로세서(210)는 스테이션의 접속 요청에 따라 접속 설정을 수행한다. 일 실시예에 따르면, 프로세서(210)는 송수신부(220)로부터 송수신되는 무선 신호를 모듈레이션하는 모듈레이션부 또는 디모듈레이션부(modulator and/or demodulator)일 수 있다. 프로세서(210)는 본 발명의 실시 예에 따른 AP(200)의 무선 신호 송수신의 각종 동작을 제어한다. 이에 대한 구체적인 실시 예는 추후 기술하기로 한다.
도 5는 STA가 AP와 링크를 설정하는 과정을 개략적으로 도시하고 있다.
도 5를 참조하면, STA(100)와 AP(200) 간의 링크는 크게 스캐닝(scanning), 인증(authentication) 및 결합(association)의 3단계를 통해 설정된다. 먼저, 스캐닝 단계는 AP(200)가 운영하는 BSS의 접속 정보를 STA(100)가 획득하는 단계이다. 스캐닝을 수행하기 위한 방법으로는 AP(200)가 주기적으로 전송하는 비콘(beacon) 메시지(S101)만을 활용하여 정보를 획득하는 패시브 스캐닝(passive scanning) 방법과, STA(100)가 AP에 프로브 요청(probe request)을 전송하고(S103), AP로부터 프로브 응답(probe response)을 수신하여(S105) 접속 정보를 획득하는 액티브 스캐닝(active scanning) 방법이 있다.
스캐닝 단계에서 성공적으로 무선 접속 정보를 수신한 STA(100)는 인증 요청(authentication request)을 전송하고(S107a), AP(200)로부터 인증 응답(authentication response)을 수신하여(S107b) 인증 단계를 수행한다. 인증 단계가 수행된 후, STA(100)는 결합 요청(association request)를 전송하고(S109a), AP(200)로부터 결합 응답(association response)을 수신하여(S109b) 결합 단계를 수행한다. 본 명세서에서 결합(association)은 기본적으로 무선 결합을 의미하나, 본 발명은 이에 한정되지 않으며 광의의 의미로의 결합은 무선 결합 및 유선 결합을 모두 포함할 수 있다.
한편, 추가적으로 802.1X 기반의 인증 단계(S111) 및 DHCP를 통한 IP 주소 획득 단계(S113)가 수행될 수 있다. 도 5에서 인증 서버(300)는 STA(100)와 802.1X 기반의 인증을 처리하는 서버로서, AP(200)에 물리적으로 결합되어 존재하거나 별도의 서버로서 존재할 수 있다.
구체적인 실시 예에서 AP(200)는 ad-hoc 네트워크와 같이 외부의 분배 서비스(Distribution Service)에 연결되지 않는 독립적인 네트워크에서 통신 매개체 자원을 할당하고 스케줄링을 수행하는 무선 통신 단말일 수 있다. 또한, AP(200)는 베이스 스테이션(base station), eNB, 및 트랜스미션 포인트(TP) 중 적어도 어느 하나일 수 있다.
도 6은 본 발명의 실시 예에 따른 초기 링크 셋업 과정을 보여준다.
앞서 설명한 바와 같이 무선 통신 단말 간의 링크는 스캐닝(scanning) 절차, 인증(authentication) 절차 및 결합(association) 절차를 통해 설정된다. 오토 스캐닝 또는 수동(passive) 스캐닝에 따라 BSS에 새로 액세스한 무선 통신 단말이 프로브(probe) 요청(request) 프레임을 전송하거나 프로브 요청 프레임 전송 없이 바로 결합 절차를 진행할 수 있다. 구체적으로 무선 통신 단말이 프로브 응답 프레임 또는 비콘(Beacon) 프레임을 들은(overhear) 경우에, 무선 통신 단말은 해당 프레임을 기초로 스캐닝 절차를 완료할 수 있다. 다만, 무선 통신 단말이 인증 절차 및 결합 절차를 진행하기 위해, 무선 통신 단말은 백오프 동작을 기초로 하는 경쟁 절차에 참여해야 한다.
예컨대, 도 6의 실시 예에서 제1 스테이션(STA1)과 제2 스테이션(STA2) 백오프를 기초로 하는 경쟁 절차를 수행한다. 이때, 제2 스테이션(STA1)이 경쟁 절차를 통해 전송 기회를 획득하고, 액세스 포인트(AP)에게 프로브 요청 프레임(Probe req.)을 전송한다. 액세스 포인트(AP)는 프로브 요청 프레임(Probe req.)에 대한 응답으로 제2 스테이션(STA2)에게 프로브 응답 프레임(Probe resp.)을 전송한다. 다시, 제1 스테이션(STA1)과 제2 스테이션(STA2) 백오프를 기초로 하는 경쟁 절차를 수행하고, 제2 스테이션(STA2)이 전송 기회를 획득한다. 제2 스테이션(STA2)은 액세스 포인트(AP)에게 인증 요청 프레임(Auth. req.)을 전송한다. 액세스 포인트(AP)는 인증 요청 프레임(Auth. req.)에 대한 응답으로 제2 스테이션(STA2)에게 인증 응답 프레임(Auth. resp.)을 전송한다. 다시, 제1 스테이션(STA1)과 제2 스테이션(STA2) 백오프를 기초로 하는 경쟁 절차를 수행하고, 제1 스테이션(STA1)이 전송 기회를 획득한다. 제1 스테이션(STA1)은 이전에 들은(overhear) 프로브 응답 프레임(Prob resp.)을 기초로 액세스 포인트(AP)에게 인증 요청 프레임(Auth. req.)을 전송한다. 액세스 포인트(AP)는 인증 요청 프레임(Auth. req.)에 대한 응답으로 인증 응답 프레임(Auth. resp.)을 전송한다. 이러한 경쟁 절차의 반복을 통해, 제1 스테이션(STA1)과 제2 스테이션(STA2)은 인증 절차를 수행한다.
따라서 많은 무선 통신 단말이 좁은 지역에 공존하여, 복수의 무선 통신 단말이 동시에 링크 셋업을 시도하는 경우, 네트워크 전체의 성능이 저하될 수 있다. 또한, 새롭게 BSS에 참여하려는 무선 통신 단말이 링크 셋업을 설정하기까지 오랜 시간이 소요될 수 있다. 그러므로 복수의 무선 통신 단말이 효율적으로 초기 링크 설정을 수행할 수 있는 방법이 필요하다. 이에 대해서 도 7 내지 도 15를 통해 설명한다.
도 7은 본 발명의 실시 예에 따른 복수의 무선 통신 단말이 링크를 설정하는 동작을 보여준다.
복수의 무선 통신 단말은 상향(UpLink, UL) OFDMA(Orthogonal Frequency-Division Multiple Access)를 통해 AP인 무선 통신 단말과 링크를 설정할 수 있다. 이때, 복수의 무선 통신 단말은 AP인 무선 통신 단말과 링크를 설정하지 못한 무선 통신 단말이다. 구체적으로 결합되지 않은(unassociated) 무선 통신 단말은 UL OFDMA를 통해 AP인 무선 통신 단말과 링크를 설정할 수 있다. 또한, 인증되지 않은(unauthenticated) 무선 통신 단말은 UL OFDMA를 통해 AP인 무선 통신 단말과 링크를 설정할 수 있다. 구체적으로 AP인 무선 통신 단말은 복수의 무선 통신 단말이 링크를 설정하기 위한 프레임 전송할 것을 트리거링하는 트리거 프레임을 전송할 수 있다. 링크를 설정하기 위한 프레임은 인증 요청 프레임일 수 있다. 또한, 링크를 설정하기 위한 프레임은 결합 요청 프레임일 수 있다. 이때, 복수의 무선 통신 단말은 트리거 프레임을 기초로 인증 요청 프레임 및 결합 요청 프레임 중 적어도 어느 하나를 UL OFDMA로 전송할 수 있다. 설명의 편의를 위해 이러한 링크 설정 절차를 다중 사용자(Multi User, MU) 링크 설정 절차로 지칭한다. 구체적인 실시 예에 따라서 다중 링크 설정 절차는 인증 절차 및 결합 절차 어느 하나의 절차만을 지칭할 수도 있다.
AP인 무선 통신 단말은 매니지먼트 프레임을 통해 MU 링크 설정 절차가 스케줄링되어 있음을 시그널링할 수 있다. 구체적으로 AP인 무선 통신 단말은 비콘 프레임, 프로브 응답 프레임 및 디스커버리 프레임 중 적어도 어느 하나를 통해 MU 링크 설정 절차가 스케줄링되어 있음을 시그널링할 수 있다. 이때, AP인 무선 통신 단말은 MU 링크 설정 절차가 스케줄링되어 있음을 나타내는 정보를 BSS 운영(operation)에 관한 정보를 시그널링하는 HE operation element를 통해 전송할 수 있다. 또한, MU 링크 설정 절차가 스케줄링되어 있음을 나타내는 정보는 MU 링크 설정 절차가 트리거링되는 횟수를 포함할 수 있다. 예컨대, MU 링크 설정 절차가 스케줄링되어 있음을 나타내는 정보는 MU 링크 설정 절차가 트리거링되는 횟수를 2진수 형태로 나타낼 수 있다.
AP가 아닌 무선 통신 단말은 매니지먼트를 프레임을 기초로 MU 링크 설정 절차가 스케줄링되어 있음을 나타내는 정보를 획득하여 MU 링크 설정 절차가 스케줄링되어 있음을 판단할 수 있다. 이때, 매니지먼트 프레임은 앞서 설명할 바와 같이 비콘 프레임, 프로브 응답 프레임 및 디스커버리 프레임 중 적어도 어느 하나일 수 있다. 또한, AP가 아닌 무선 통신 단말은 매니지먼트 프레임으로부터 HE operation element를 획득하고, HE operation element를 기초로 MU 링크 설정 절차가 스케줄링되어 있음을 나타내는 정보를 획득할 수 있다. 또한, AP가 아닌 무선 통신 단말은 MU 링크 설정 절차가 스케줄링되어 있음을 나타내는 정보로부터 MU 링크 설정 절차가 스케줄링된 횟수를 획득할 수 있다. 이때, MU 링크 설정 절차가 스케줄링된 횟수는 지정된 기간 내에서 스케줄링된 횟수를 나타낼 수 있다. 구체적으로 지정된 기간은 비콘의 전송 주기일 수 있다. 또한, AP가 아닌 무선 통신 단말은 무선 통신 단말의 버퍼 상태를 기초로 다중 링크 설정 절차 참여를 결정할 수 있다. 또한, AP가 아닌 무선 통신 단말이 다중 링크 설정 절차 참여하는 경우, 무선 통신 단말은 AP로부터 트리거 프레임을 수신하기 전까지 백오프를 기초로 하는 경쟁 절차에 참여하지 않을 수 있다.
도 7의 실시 예에서, 제1 스테이션(STA1)과 제2 스테이션(STA2)은 스캐닝 절차 이후, 트리거 프레임(Trigger Frame)을 수신한다. 제1 스테이션(STA1)과 제2 스테이션(STA2)은 트리거 프레임(Trigger Frame)을 기초로 OFDMA를 이용한 다중 사용자 상향(UL MU) 전송을 통해 액세스 포인트(AP)에게 동시에 인증 요청 프레임(UL MU Auth. req.)을 전송한다. 또한, 제1 스테이션(STA1)과 제2 스테이션(STA2)은 OFDMA를 이용한 다중 사용자 하향(DL MU) 전송을 통해 액세스 포인트(AP)로부터 동시에 인증 응답 프레임(DL MU Auth. resp.)을 수신한다. 제1 스테이션(STA1)과 제2 스테이션(STA2)은 다시 트리거 프레임(Trigger Frame)을 수신한다. 제1 스테이션(STA1)과 제2 스테이션(STA2)은 트리거 프레임(Trigger Frame)을 기초로 OFDMA를 이용한 다중 사용자 상향(UL MU) 전송을 통해 액세스 포인트(AP)에게 동시에 결합 요청 프레임(UL MU Assoc. req.)을 전송한다. 또한, 제1 스테이션(STA1)과 제2 스테이션(STA2)은 OFDMA를 이용한 다중 사용자 하향(DL MU) 전송을 통해 액세스 포인트(AP)로부터 동시에 결합 응답 프레임(DL MU Assoc. resp.)을 수신한다. 도 7에서 제1 상태(State 1)는 스캐닝 절차를 완료한 상태를 나타내고, 제2 상태(State 2)는 인증 절차를 완료한 상태를 나타내고, 제3 상태(State 2)는 결합 절차를 완료한 상태를 나타낸다. 이와 같은 동작을 통해 복수의 무선 통신 단말이 인증 절차 및 결합 절차의 효율을 높일 수 있다. 구체적인 전송 방법 및 수신 방법에 관해서는 도 8을 통해 설명한다.
도 8은 본 발명의 실시 예에 따른 무선 통신 단말의 MU 인증 절차를 보여준다.
앞서 설명한 MU 링크 설정 차에서 AP인 무선 통신 단말은 트리거 프레임을 통해 무선 통신 단말의 무작위 접속(random access)을 트리거링할 수 있다. AP인 무선 통신 단말이 링크 설정에 참여할 무선 통신 단말의 수나 존재 여부를 알기가 어렵기 때문이다. 또한, AP인 무선 통신 단말은 MU 링크 설정 절차에서 사용되는 트리거 프레임의 트리거 타입을 통해 MU 링크 설정 절차에 필요한 전송을 트리거링함을 나타낼 수 있다. AP가 아닌 무선 통신 단말은 트리거 타입을 기초로 트리거 프레임이 MU 링크 설정 절차를 위한 전송을 트리거링하는지 판단할 수 있다. 구체적으로 트리거 프레임이 인증 요청 프레임 전송을 트리거링하는 경우, AP인 무선 통신 단말은 트리거 타입을 인증(Authentication)으로 설정할 수 있다.
또한, AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말이 임시로 사용할 결합 식별자(Association Identifier, AID)를 설정할 수 있다. AP인 무선 통신 단말이 AP와 링크가 설정되지 않은 AP가 아닌 무선 통신 단말의 주소를 알 수 없고, AP와 링크가 설정되지 않은 무선 통신 단말에게 AID가 할당되기 전이기 때문이다. 구체적으로 AP인 무선 통신 단말은 자원 유닛(Resource Unit, RU) 별로 AP와 링크가 설정되지 않은 무선 통신 단말이 임시로 사용할 AID를 지정할 수 있다. 설명의 편의를 위해 링크 설정 절차에 참여하는 무선 통신 단말이 임시로 사용할 AID를 임시 AID로 지칭한다. 구체적인 실시 예에서 AP인 무선 통신 단말은 트리거 프레임에서 링크 설정에 사용되는 RU에 해당하는 Per User Info 필드에 임시 AID를 삽입할 수 있다.
이때, 임시 AID는 결합 이후 무선 통신 단말에게 할당될 AID와 구별되는 값을 가질 수 있다. 구체적으로 임시 AID의 값은 결합 이후 무선 통신 단말에게 할당될 수 있는 AID 값의 범위 밖의 수 중 어느 하나에 해당할 수 있다. 구체적인 실시 예에서 임시 AID의 값은 결합 이후 무선 통신 단말에게 할당되는 AID의 리저브드(reserved) 값 중 하나일 수 있다. 예컨대, 임시 AID는 2007 이후의 어느 하나의 수일 수 있다. AP가 아닌 무선 통신 단말은 트리거 프레임의 Per User Info 필드의 RU에 해당하는 AID 값을 기초로 링크 설정 절차에 사용되는 RU인지 판단할 수 있다. 임시 AID의 값이 무선 통신 단말에게 할당되는 AID 값과 구별될 수 있기 때문이다. 트리거 프레임이 트리거링하는 무선 통신 단말을 나타내는 AID 값이 결합 이후 무선 통신 단말에게 할당될 AID와 구별되는 값인 경우, 트리거 프레임을 수신한 무선 통신 단말은 해당 RU가 링크 설정을 위해 사용할 수 있는 RU인 것으로 판단할 수 있다. 구체적으로 트리거 프레임이 트리거링하는 무선 통신 단말을 나타내는 AID 값이 결합 이후 무선 통신 단말에게 할당될 AID와 구별되는 값인 경우, 트리거 프레임을 수신한 무선 통신 단말은 해당 RU가 링크 설정을 위해 무작위 접속(Random Access)할 수 있는 RU인 것으로 판단할 수 있다. 이때, AID 값이 결합 이후 무선 통신 단말에게 할당될 AID와 구별되는 값은 앞서 설명한 바와 같이 결합 이후 무선 통신 단말에게 할당될 수 있는 AID 값의 범위 밖의 수 중 어느 하나에 해당할 수 있다.
또한, AP인 무선 통신 단말은 트리거 프레임에 인증 절차 이후 결합 절차가 시작되기까지 최소 지연 시간을 나타내는 결합 지연 정보를 삽입할 수 있다. 구체적으로 AP인 무선 통신 단말은 인증 절차 이후 연결 절차가 바로 시작되지 않는 경우 인증 절차pre 이후 결합 절차가 시작되기까지 최소 지연 시간을 나타내는 결합 지연 정보를 삽입할 수 있다. 또한, AP인 무선 통신 단말은 트리거 프레임의 Common Info 필드에 결합 지연 정보를 삽입할 수 있다. AP가 아닌 무선 통신 단말은 트리거 프레임으로부터 결합 지연 정보를 획득하고, 결합 지연 정보를 기초로 트리거 프레임을 기초로 하는 결합 절차에 참여할 것인지 판단할 수 있다. 구체적으로 AP가 아닌 무선 통신 단말은 결합 지연 정보를 기초로 결합 요청 프레임의 전송을 트리거링하는 트리거 프레임을 기초로 결합 요청 프레임을 전송할지 결정할 수 있다. 구체적인 실시 예에서 AP가 아닌 무선 통신 단말은 결합 지연 정보가 나타내는 지연 시간이 일정 기준보다 작은 경우, 결합 지연 정보를 포함하는 트리거 프레임 이후 전송될 트리거 프레임을 기초로 AP에게 결합 요청 프레임을 전송할 수 있다.
또한, 앞서 설명한 바와 같이 링크 설정 차에서 AP인 무선 통신 단말은 트리거 프레임을 통해 무선 통신 단말의 무작위 접속을 트리거링할 수 있다. AP인 무선 통신 단말이 무작위 접속을 트리거링할 경우, 트리거 프레임을 수신한 무선 통신 단말은 일정 범위 내의 임의 수를 기초로 무작위 접속에 할당된 RU에 액세스할 수 있다. 이때, 임의 수를 OFDMA 백오프(OBO) 카운터라 지칭한다. 구체적으로 무작위 접속을 트리거링하는 트리거 프레임을 수신한 무선 통신 단말은 무작위 접속에 할당된 RU 개수만큼 OBO 카운터를 줄일 수 있다. 트리거 프레임을 수신한 무선 통신 단말은 OBO 카운터가 0이될 때 무작위 접속에 할당된 RU 중 어느 하나에 액세스할 수 있다. AP가 아닌 무선 통신 단말은 링크 설정을 트리거링하는 트리거 프레임이 스케줄링된 횟수를 기초로 OBO 카운터를 획득할 수 있다. 구체적으로 무선 통신 단말은 링크 설정을 트리거링하는 트리거 프레임이 스케줄링된 횟수를 기초로 OBO 카운터의 범위를 증가시킬 수 있다. 예컨대, AP가 아닌 무선 통신 단말은 OBO 카운터의 최대 값에 링크 설정을 트리거링하는 트리거 프레임이 스케줄링된 횟수를 곱하여 OBO 카운터의 최대 값을 조정할 수 있다. 또 다른 구체적인 실시 예에서, AP가 아닌 무선 통신 단말은 OBO 카운터의 최대 값에 링크 설정을 트리거링하는 트리거 프레임이 스케줄링된 횟수에 따라 미리 지정된 상수를 더하여 OBO 카운터의 최대 값을 조정할 수 있다. AP가 아닌 무선 통신 단말은 조정된 OBO 카운터의 최대 값 내에서 임의 수를 OBO 카운터로 획득할 수 있다.
AP인 무선 통신 단말은 트리거 프레임을 기초로 전송된 링크를 설정하기 위한 프레임을 수신하고, 링크를 설정 하기 위한 프레임에 대한 응답 프레임을 전송할 수 있다. 구체적으로 AP인 무선 통신 단말은 OFDMA를 이용한 DL MU 전송을 통해 링크를 설정 하기 위한 프레임에 대한 응답 프레임을 전송할 수 있다 이때, AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말이 링크를 설정하기 위한 프레임을 전송할 때 사용한 임시 AID를 DL MU 전송을 위한 시그널링 정보로 사용할 수 있다. 구체적으로 AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말이 링크를 설정하기 위한 프레임을 전송할 때 사용한 임시 AID를 DL MU 전송을 위한 PPDU의 시그널링 필드에 삽입할 수 있다. 구체적으로 AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말이 링크를 설정하기 위한 프레임을 전송할 때 사용한 임시 AID를 DL MU PPDU의 시그널링 필드에서 DL MU PPDU를 수신하는 무선 통신 단말을 나타내는 AID로 사용할 수 있다. 구체적인 실시 예에서, AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말이 링크를 설정하기 위한 프레임을 전송할 때 사용한 임시 AID를 DL MU PPDU의 시그널링 필드에서 링크를 설정하기 위한 프레임에 대한 응답 프레임이 전송되는 RU를 나타내기 위해 사용할 수 있다. 또한, DL MU PPDU의 시그널링 필드는 HE-SIG-B 필드일 수 있다.
AP가 아닌 무선 통신 단말은 DL MU 전송을 위한 PPDU의 시그널링 필드가 AP가 아닌 무선 통신 단말이 사용한 임시 AID를 포함하는지 여부를 기초로 링크를 설정하기 위한 프레임에 대한 응답 프레임을 수신할 수 있다. 이때, PPDU의 시그널링 필드는 구체적으로 PPDU를 수신할 무선 통신 단말을 나타내는 필드일 수 있다. 구체적으로 AP가 아닌 무선 통신 단말은 DL MU 전송을 위한 PPDU의 시그널링 필드가 AP가 아닌 무선 통신 단말이 사용한 임시 AID를 포함하는지 여부와 임시 AID에 해당하는 RU로 전송되는 링크를 설정하기 위한 프레임에 대한 응답 프레임의 MAC 주소를 기초로 링크를 설정하기 위한 프레임에 대한 응답 프레임을 수신할 수 있다. 구체인 실시 예에서, AP가 아닌 무선 통신 단말은 DL MU 전송을 위한 PPDU의 시그널링 필드가 AP가 아닌 무선 통신 단말이 사용한 임시 AID를 포함하지 않는 경우, 링크를 설정하기 위한 프레임 전송이 실패한 것으로 판단할 수 있다. 또한, AP가 아닌 무선 통신 단말은 임시 AID에 해당하는 RU를 통해 전송되는 MAC 프레임의 수신 주소가, AP가 아닌 무선 통신 단말이 아닌 경우 링크를 설정하기 위한 프레임의 전송이 실패한 것으로 판단할 수 있다. AP가 아닌 무선 통신 단말이 링크를 설정하기 위한 프레임의 전송이 실패한 것으로 판단하는 경우, AP가 아닌 무선 통신 단말은 할당 받은 임시 AID를 폐기(discard)하고, 링크를 설정하기 위한 프레임의 전송을 다시 시도할 수 있다.
또한, AP인 무선 통신 단말이 링크 설정을 위해 할당한 복수의 RU 중 어느 하나의 RU로부터 링크를 설정하기 위한 프레임을 수신하지 못한 경우, AP인 무선 통신 단말은 링크를 설정하기 위한 프레임에 대한 응답 프레임을 포함하는 DL MU 전송 시 해당 RU를 통해 Null 데이터를 전송할 수 있다. 또한, 무선 통신 단말이 단말은 링크를 설정하기 위한 프레임에 대한 응답 프레임을 포함하는 DL MU 전송하는 경우, 무선 통신 단말은 링크 설정과 관련 없는 프레임을 해당 DL MU PPDU를 통해 전송할 수 있다. 구체적으로 AP인 무선 통신 단말이 링크 설정을 위해 할당한 복수의 RU 중 어느 하나의 RU로부터 링크를 설정하기 위한 프레임을 수신하지 못한 경우, AP인 무선 통신 단말은 링크를 설정하기 위한 프레임에 대한 응답을 포함하는 DL MU 전송 시 해당 RU를 통해 이전에 링크가 설정된 무선 통신 단말에게 링크 설정과 관련 없는 프레임을 전송할 수 있다. 이때, 링크 설정과 관련 없는 프레임은 데이터 프레임일 수 있다. 또한, 링크 설정과 관련 없는 프레임은 컨트롤 프레임일 수 있다.
DL MU PPDU를 통해 전송되는 링크 설정을 위한 프레임에 대한 응답 프레임은 인증 응답 프레임일 수 있다. 또한, DL MU PPDU를 통해 전송되는 링크 설정을 위한 프레임에 대한 응답 프레임은 결합 응답 프레임일 수 있다.
4-way handshake 인증이 사용되는 경우, AP인 무선 통신 단말은 인증 요청 프레임을 수신한 뒤 다시 인증 절차를 위한 트리거 프레임을 전송할 수 있다. 이때, AP인 무선 통신 단말은 트리거 프레임에 인증 절차의 진행 과정을 나타내는 인증 시퀀스 정보를 삽입할 수 있다. 구체적으로 AP인 무선 통신 단말은 트리거 프레임의 Trigger dependent common info에 인증 시퀀스 정보를 삽입할 수 있다. 이때, AP가 아닌 무선 통신 단말은 AP와의 결합을 통해 AID를 할당 받기 전까지 할당 받은 임시 AID를 사용할 수 있다.
AP인 무선 통신 단말이 전송하는 트리거 프레임의 구체적인 형식은 도 8(a)와 같을 수 있다. 구체적으로 AP인 무선 통신 단말이 전송하는 트리거 프레임은 Frame control 필드, Duration 필드, RA 필드, TA 필드, Common Info 필드, 적어도 하나의 Per User Info 필드(User Info 1, .. User Info N) 및 FCS 필드를 포함할 수 있다. 앞서 설명한 바와 같이 Common Info 필드는 트리거 타입을 포함할 수 있고, 링크 설정을 트리거링하는 트리거 프레임의 트리거 타입은 인증(Authentication)을 나타낼 수 있다. 또한, Common Info 필드의 Trigger dependent Common info 필드는 앞서 설명한 결합 지연 정보(Association delay info.) 및 인증 시퀀스 정보를 포함할 수 있다.
AP인 무선 통신 단말과 AP가 아닌 무선 통신 단말은 도 8(b)와 같이 동작할 수 있다. AP인 무선 통신 단말은 인증 요청 프레임의 전송을 트리거링하는 트리거 프레임을 전송한다. 이때, AP인 무선 통시 단말은 인증 요청 프레임 전송을 위해 할당하는 복수의 RU 각각에 a부터 g까지의 임시 AID(Tmp. AID)를 할당한다. 제1 스테이션(STA1)은 트리거 프레임을 기초로 임시 AID가 b인 RU를 통해 인증 요청 프레임(Auth. Req.)을 전송한다. 또한, 제2 스테이션(STA2)은 트리거 프레임을 기초로 임시 AID가 f인 RU를 통해 인증 요청 프레임(Auth. Req.)을 전송한다. 또한, 제3 스테이션(STA3)은 트리거 프레임을 기초로 임시 AID가 d인 RU를 통해 인증 요청 프레임(Auth. Req.)을 전송한다. AP인 무선 통신 단말은 DL MU 전송에서, 인증 요청 프레임이 전송된 RU를 통해 인증 응답 프레임(Auth. Resp.)을 전송한다. 이때, AP인 무선 통신 단말은 제3 스테이션(STA3)에게 인증 거절(refuse)하는 인증 응답 프레임 (Auth. Resp.)을 전송한다. AP인 무선 통신 단말은 DL MU 전송에서, 인증 요청 프레임을 수신하지 못한 RU를 통해 Null 데이터 프레임, 컨트롤 프레임(Ctrl.), 및 매니지먼트 프레임(Mgmt) 중 어느 하나를 전송할 수 있다. 무선 통신 단말이 4-way handshaking 인증 절차를 이용하는 경우에 대해서는 도 9를 통해 구체적으로 설명한다.
도 9는 본 발명의 실시 예에 따른 무선 통신 단말이 4-way handshaking 인증 절차를 수행하는 동작을 보여준다.
앞서 설명한 바와 같이 4-way handshake 인증이 사용되는 경우, AP인 무선 통신 단말은 인증 요청 프레임을 수신한 뒤 다시 인증 절차를 위한 트리거 프레임을 전송할 수 있다. 이때, AP인 무선 통신 단말은 캐스캐이딩 시퀀스를 이용해 4-way handshake 인증을 위해 필요한 프레임을 수신/전송할 수 있다. 캐스캐이딩 시퀀스는 하나의 TXOP(Transmission Opportunity) 내에서 하향 전송과 상향 전송을 모두 포함하는 전송 시퀀스이다. 캐스캐이딩 시퀀스 내에서 하향 전송과 상향 전송이 연속해서 진행될 수 있다.
AP인 무선 통신 단말은 트리거 프레임에 인증 절차의 진행 과정을 나타내는 인증 시퀀스 정보를 삽입할 수 있다. 구체적으로 AP인 무선 통신 단말은 트리거 프레임의 Trigger dependent common info에 인증 시퀀스 정보를 삽입할 수 있다. 구체적으로 AP인 무선 통신 단말은 트리거 프레임의 Trigger dependent common info의 transaction sequence 필드에 인증 시퀀스 정보를 삽입할 수 있다.
도 9의 실시 예에서, AP는 제1 인증 프레임의 전송을 트리거링하는 트리거 프레임을 전송한다. 또한, AP인 무선 통시 단말은 제1 인증 프레임 전송을 위해 할당하는 복수의 RU 각각에 a부터 g까지의 임시 AID(Tmp. AID)를 할당한다. 이때, AP는 트리거 프레임의 Trigger dependent common info 필드에 인증 절차의 첫 번째 시퀀스에 해당함을 나타내는 인증 시퀀스 정보를 삽입한다. 또한, AP는 트리거 프레임의 캐스케이딩 시퀀스에 따른 전송이 계속됨을 나타내는 Cascade indication 비트를 1로 설정한다. 제1 스테이션(STA1)은 트리거 프레임을 기초로 임시 AID가 b인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제2 스테이션(STA2)은 트리거 프레임을 기초로 임시 AID가 f인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제3 스테이션(STA3)은 트리거 프레임을 기초로 임시 AID가 d인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. AP는 제1 스테이션(STA1) 내지 제3 스테이션(STA3)으로부터 제1 인증 프레임(Auth. Frame 1)을 수신하고, DL MU 전송을 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 제2 인증 프레임(Auth. Frame 2)을 전송한다.
AP는 다시 인증 프레임의 전송을 트리거링하는 트리거 프레임을 전송한다. 이때, AP는 앞서 사용된 임시 AID와 다른 값을 갖는 AID 세 개(h, I, j)를 더 할당 한다. 또한, AP는 트리거 프레임의 Trigger dependent common info 필드에 인증 절차의 첫 번째 시퀀스에 해당함을 나타내는 인증 시퀀스 정보를 삽입한다. 또한, AP는 트리거 프레임의 캐스케이딩 시퀀스에 따른 전송이 계속됨을 나타내는 Cascade indication 비트를 1로 설정한다. 제4 스테이션(STA4)은 트리거 프레임을 기초로 임시 AID가 a인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제5 스테이션(STA5)은 트리거 프레임을 기초로 임시 AID가 i인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제6 스테이션(STA6)은 트리거 프레임을 기초로 임시 AID가 j인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제7 스테이션(STA7)은 트리거 프레임을 기초로 임시 AID가 g인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. AP는 제4 스테이션(STA4) 내지 제7 스테이션(STA7)으로부터 제1 인증 프레임(Auth. Frame 1)을 수신하고, DL MU 전송을 통해 제4 스테이션(STA4) 내지 제7 스테이션(STA7)에게 제2 인증 프레임(Auth. Frame 2)을 전송한다.
AP는 제3 인증 프레임(Auth. Frame 3)의 전송을 트리거링하는 트리거 프레임을 전송한다. AP는 트리거 프레임의 Trigger dependent common info 필드에 인증 절차의 세 번째 시퀀스에 해당함을 나타내는 인증 시퀀스 정보를 삽입한다. 또한, 제1 인증 프레임(Auth. Frame 1)을 전송한 스테이션이 사용한 임시 AID를 사용하여 복수의 스테이션 각각에 할당된 RU를 시그널링한다. 제1 스테이션(STA1) 내지 제7 스테이션(STA7)은 트리거 프레임을 기초로 제3 인증 프레임(Auth. Frame 3)을 전송한다. 이때, 제1 스테이션(STA1) 내지 제7 스테이션(STA7)은 이전에 사용한 임시 AID를 사용한다. AP는 제1 스테이션(STA1) 내지 제7 스테이션(STA7)로부터 제3 인증 프레임(Auth. Frame 3)을 수신하고, 제1 스테이션(STA1) 내지 제7 스테이션(STA7)에게 제4 인증 프레임(Auth. Frame 4)을 전송한다.
도 10은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 4-way handshaking 인증 절차를 수행하는 동작을 보여준다.
AP인 무선 통신 단말이 AP가 아닌 무선 통신 단말로부터 수신한 인증 프레임 인증에 대한 응답으로 인증 프레임을 전송할 때, AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말로부터 인증 프레임을 수신하지 못한 RU를 통해 인증 프레임의 전송을 트리거링하는 트리거 프레임을 전송할 수 있다. 앞서 설명한 바와 같이 트리거 프레임은 무작위 접속을 트리거링할 수 있다. 또한, 트리거 프레임은 브로드캐스트 트리거 프레임일 수 있다.
도 10의 실시 예에서, AP는 제1 인증 프레임(Auth. Frame 1)의 전송을 트리거링하는 트리거 프레임을 전송한다. 또한, AP인 무선 통시 단말은 제1 인증 프레임 전송을 위해 할당하는 복수의 RU 각각에 a부터 g까지의 임시 AID(Tmp. AID)를 할당한다. 이때, AP는 트리거 프레임의 Trigger dependent common info 필드에 인증 절차의 첫 번째 시퀀스에 해당함을 나타내는 인증 시퀀스 정보를 삽입한다. 또한, AP는 트리거 프레임의 캐스케이딩 시퀀스에 따른 전송이 계속됨을 나타내는 Cascade indication 비트를 1로 설정한다. 제1 스테이션(STA1)은 트리거 프레임을 기초로 임시 AID가 b인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제2 스테이션(STA2)은 트리거 프레임을 기초로 임시 AID가 f인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다. 또한, 제3 스테이션(STA3)은 트리거 프레임을 기초로 임시 AID가 d인 RU를 통해 제1 인증 프레임(Auth. Frame 1)을 전송한다.
AP는 제1 스테이션(STA1) 내지 제3 스테이션(STA3)으로부터 제1 인증 프레임(Auth. Frame 1)을 수신하고, DL MU 전송을 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 제2 인증 프레임(Auth. Frame 2)을 전송한다. 이때, AP는 제1 인증 프레임(Auth. Frame 1)의 전송을 트리거링하는 트리거 프레임을 함께 전송한다. AP는 DL MU 전송을 위한 PPDU의 시그널링 필드에 DL MU 전송 대상이 되는 무선 통신 단말을 나타내는 무선 통신 단말 식별자 리스트를 삽입할 수 있다. 이때, AP는 무선 통신 단말 식별자 리스트에 제1 스테이션(STA1) 내지 제3 스테이션(STA3)이 사용한 임시 AID와 인증 프레임 전송을 트리거리하는 임시 AID를 함께 삽입할 수 있다. AP와 스테이션들의 나머지 동작은 도 9의 실시 예와 동일할 수 있다.
무선 통신 단말은 도 9 내지 도 10을 통해 설명한 실시 예들을 통해 4-way handshake 인증 절차를 효율적으로 수행할 수 있다.
도 11은 본 발명의 실시 예에 따른 무선 통신 단말이 결합 절차를 수행하는 동작을 보여준다.
AP인 무선 통신 단말은 결합 요청 프레임의 전송을 트리거링하는 트리거 프레임을 전송할 수 있다. 이때, AP인 무선 통신 단말은 트리거 타입을 결합(Association)으로 설정할 수 있다. 구체적인 트리거 프레임의 포맷은 도 11(a)의 실시 예와 같을 수 있다. 트리거 프레임의 나머지 필드는 도 8(a)를 통해 설명한 실시 예와 동일할 수 있다. AP인 무선 통신 단말은 결합 응답 프레임을 전송하면서, 결합 요청 프레임을 전송한 무선 통신 단말에게 임시 AID와 다른 값을 갖는 AID를 할당할 수 있다. 이때, 무선 통신 단말에게 할당된 AID는 임시 AID가 아닌 일반적인 AID이다.
도 11(b)의 실시 예에서, AP는 결합 요청 프레임(Assoc. Req.)의 전송을 트리거링하는 트리거 프레임을 전송한다. 또한, AP인 무선 통시 단말은 결합 요청 프레임(Assoc. Req.) 전송을 위해 할당하는 복수의 RU 각각에 a부터 g까지의 임시 AID(Tmp. AID)를 할당한다. 제1 스테이션(STA1)은 트리거 프레임을 기초로 임시 AID가 b인 RU를 통해 결합 요청 프레임(Assoc. Req.)을 전송한다. 또한, 제2 스테이션(STA2)은 트리거 프레임을 기초로 임시 AID가 f인 RU를 통해 결합 요청 프레임(Assoc. Req.)을 전송한다. 또한, 제3 스테이션(STA3)은 트리거 프레임을 기초로 임시 AID가 d인 RU를 통해 결합 요청 프레임(Assoc. Req.)을 전송한다.
AP는 제1 스테이션(STA1) 내지 제3 스테이션(STA3)으로부터 결합 요청 프레임(Assoc. Req.)을 수신하고, DL MU 전송을 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 결합 응답 프레임(Assoc. Resp.)을 전송한다. 이때, AP는 제1 스테이션(STA1)에게 AID x를 할당하고, 제3 스테이션(STA3)에게 AID y를 할당하고, 제2 스테이션(STA2)에게 AID z를 할당한다. 이후 전송에서, 제1 스테이션(SAT1)은 AID x를 사용하고, 제2 스테이션(SAT2) AID z를 사용하며, 제3 스테이션(STA3)은 AID y를 사용한다.
도 12는 본 발명의 실시 예에 따른 무선 통신 단말이 결합 절차를 수행하는 동작을 보여준다.
AP인 무선 통신 단말은 결합 과정에서 결합되는 무선 통신 단말에게 BSS 및 AP에 관련된 정보를 전송한다. 이때, BSS 및 AP에 관련된 정보는 결합 과정에서 공통으로 전송된다. 따라서 AP인 무선 통신 단말은 결합 과정에서 AP가 아닌 무선 통신 단말에게 공통으로 전송되는 정보를 결합 요청 프레임의 전송을 트리거링하는 트리거 프레임을 통해 전송할 수 있다. 이때, 결합 과정에서 AP가 아닌 무선 통신 단말에게 공통으로 전송되는 정보는 BSS 및 AP에 관련된 정보 중 적어도 어느 하나일 수 있다. 구체적으로 AP인 무선 통신 단말은 결합 과정에서 AP가 아닌 무선 통신 단말에게 공통으로 전송되는 정보를 Trigger dependent common info 필드를 통해 전송할 수 있다. 또한, AP인 무선 통신 단말 트리거 프레임을 통해 전송한 결합 과정에서 AP가 아닌 무선 통신 단말에게 공통으로 전송되는 정보가 제외된 결합 응답 프레임을 전송할 수 있다.
또한, AP가 아닌 무선 통신 단말이 결합 이후에도 임시 AID를 계속하여 사용하는 경우, AP인 무선 통신 단말은 결합된 무선 통신 단말에게 할당된 AID를 나타내는 AID 필드를 포함하지 않는 결합 응답 프레임을 전송할 수 있다. 또한, AP가 아닌 무선 통신 단말이 결합 이후 임시 AID와 다른 AID를 사용할 수 있다. 이때, AP인 무선 통신 단말은 트리거 프레임에 Per User Info 필드에서 임시 AID를 사용하여 해당 Per User Info가 어느 무선 통신 단말에 해당하는지를 시그널링하고, Trigger Dependent Per User Info 필드를 통해 결합 이후 Per User Info 필드에 해당하는 무선 통신 단말이 사용할 AID를 전송할 수 있다. 이때, 해당하는 무선 통신 단말이 사용할 AID는 암호화되어 전송될 수 있다.
또한, AP인 무선 통신 단말은 AP와 결합되는 무선 통신 단말 별로 독립적인 정보를 결합 응답 프레임을 통해 전송한다. 구체적으로 AP와 결합되는 무선 통신 단말 별로 독립적인 정보는 결합 이후 생성되는 정보일 수 있다. 구체적인 실시 예에서, AP와 결합되는 무선 통신 단말 별로 독립적인 정보는 status code를 포함할 수 있다. 구체적인 트리거 프레임의 형태는 도 12(a)와 같을 수 있다.
도 12(b)의 실시 예에서, AP는 결합 요청 프레임(Assoc. Req.)의 전송을 트리거링하는 트리거 프레임을 전송한다. 이때, AP는 트리거 프레임의 Common Info 필드에 결합 과정에서 AP가 아닌 무선 통신 단말에게 공통으로 전송되는 정보를 삽입할 수 있다. 결합 이후에도 AP가 아닌 무선 통신 단말이 임시 AID를 사용하는 경우, AP는 Per User info 필드의 AID 필드에 임시 AID를 삽입할 수 있다. 또한, Per User Info 필드에 임시 AID(Tmp AID)를 삽입하고 Trigger Dependent Per User Info 필드를 통해 결합 이후 Per User Info 필드에 해당하는 무선 통신 단말이 사용할 AID를 전송할 수 있다. AP가 응답 프레임을 전송하는 경우, 트리거 프레임을 통해 전송한 결합 과정에서 AP가 아닌 무선 통신 단말에게 공통으로 전송되는 정보가 생략된 압축된 결합 응답 프레임(comp. Assoc. Resp.)을 전송한다. 이때, 압축된 결합 응답 프레임(comp. Assoc. Resp.)은 AP와 결합되는 status code와 같이 무선 통신 단말 별로 독립적인 정보를 포함한다. AP와 제1 스테이션(STA1) 내지 제3 스테이션(STA3)의 동작은 도 11(b)를 통해 설명한 것과 동일할 수 있다.
도 13은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 캐스캐이딩 시퀀스를 이용해 인증과 결합을 수행하는 것을 보여준다.
AP인 무선 통신 단말은 캐스캐이딩 시퀀스를 통해 인증 절차와 결합 절차를 연속으로 진행할 수 있다. 이때, AP인 무선 통신 단말은 cascade indication 비트를 1로 설정하여 캐스캐이딩 시퀀스가 진행됨을 시그널링할 수 있다. 또한, AP인 무선 통신 단말은 인증 요청 프레임의 전송을 트리거링하는 트리거 프레임의 트리거 타입을 인증으로 설정할 수 있다. 또한, AP인 무선 통신 단말은 결합 요청 프레임의 전송을 트리거링하는 트리거 프레임의 트리거 타입을 결합으로 설정할 수 있다. 이를 통해 AP인 무선 통신 단말은 인증 절차와 결합 절차의 시작을 시그널링할 수 있다.
AP인 무선 통신 단말은 하나의 트리거 프레임을 통해 링크를 설정하기 위한 프레임의 전송과 링크 설정 절차와 관련 없는 프레임의 전송을 트리거링할 수 있다. 구체적으로 무선 통신 단말은 트리거 프레임을 통해 제1 RU를 통해 링크를 설정하기 위한 프레임이 전송될 것을 트리거링하고, 제2 RU를 통해 링크 설정 절차와 관련 없는 프레임의 전송을 트리거링할 수 있다. AP인 무선 통신 단말은 하나의 트리거 프레임을 통해 결합 요청 프레임 전송과 링크 설정 절차와 관련 없는 프레임의 전송을 함께 트리거링할 수 있다. 이때, AP인 무선 통신 단말은 결합 요청 프레임 전송에 사용되는 RU의 수 및 RU의 크기 중 적어도 어느 하나를 조절할 수 있다. 또한, AP인 무선 통신 단말은 인증된 무선 통신 단말의 수를 기초로 결합 요청 프레임 전송에 사용되는 RU의 수 및 RU의 크기 중 적어도 어느 하나를 조절할 수 있다. 이때, 트리거링 프레임을 통해 링크 설정 절차와 관련 없는 프레임의 전송이 트리거링되는 무선 통신 단말은 AP와 링크가 설정된 무선 통신 단말일 수 있다. 또한, 링크 설정 절차와 관련 없는 프레임은 데이터 프레임일 수 있다. 또한, 링크 설정 절차와 관련 없는 프레임은 컨트롤 프레임일 수 있다. 인증 절차 이후 결합 절차에서, AP인 무선 통신 단말이 인증 절차에서 사용한 임시 AID를 계속 사용하는 경우, AP인 무선 통신 단말은 하나의 트리거 프레임을 통해 결합 요청 프레임 전송과 링크 설정 절차와 관련 없는 프레임의 전송을 함께 트리거링할 수 있다.
또 다른 구체적인 실시 예에서, 인증 절차 이후 결합 절차에서, AP인 무선 통신 단말은 인증 절차에서 사용한 임시 AID를 폐기하고 새로운 임시 AID를 통해 무작위 접속을 트리거링할 수 있다.
AP인 무선 통신 단말은 결합 요청 프레임에 대한 응답을 OFDMA BA(Block ACK)으로 전송할 수 있다. 또한, AP인 무선 통신 단말은 결합 요청 프레임을 전송한 무선 통신 단말이 사용한 임시 AID를 이용하여 결합 요청 프레임에 대한 응답을 M-BA(Multi-STA BA)으로 전송할 수 있다. 이때, M-BA의 Per STA Info 필드가 BA 비트맵을 포함하고, AP인 무선 통신 단말은 BA 비트맵에 결합 응답 프레임을 삽입할 수 있다. 이때, 결합 응답 프레임은 도 12를 통해 설명한 압축된 결합 응답 프레임일 수 있다.
도 13의 실시 예에서, AP는 도 8(b)를 통해 설명한 실시 예와 같이 제1 스테이션(SAT1) 내지 제3 스테이션(STA3)과 인증 절차를 수행한다. 이때, AP는 인증 요청 프레임의 전송을 트리거링하는 트리거 프레임의 캐스캐이딩 인디케이션 비트를 1로 설정한다. 이후 AP는 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 결합 요청 프레임의 전송을 트리거링하고, AP와 링크가 설정된 다른 스테이션들에게 데이터 전송을 트리거링하는 트리거 프레임을 전송할 수 있다.
제1 스테이션(STA1) 내지 제3 스테이션(STA3)은 트리거 프레임을 기초로 AP에게 결합 요청 프레임(Assoc. Req.) 프레임을 전송한다. 데이터 전송이 트리거링된 무선 통신 단말은 트리거 프레임을 기초로 AP에게 데이터를 전송한다.
AP는 OFDMA BA를 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 결합 응답 프레임(Assoc. Resp.)을 전송하고, 데이터 프레임을 전송한 스테이션들에게 ACK 프레임을 전송할 수 있다. 이때, AP는 앞서 설명한 바와 같이 M-BA 프레임을 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 결합 응답 프레임(Assoc. Resp.)을 전송하고, 데이터 프레임을 전송한 스테이션들에게 ACK 프레임을 전송할 수 있다. 구체적으로 AP는 Per STA info 필드의 BA bitmap 필드를 통해 결합 응답 프레임을 전송할 수 있다. 이때, 결합 응답 프레임은 압축된 결합 응답 프레임(comp. Assoc. Resp.)일 수 있다.
도 14는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 캐스캐이딩 시퀀스를 이용해 인증과 결합을 수행하는 것을 보여준다.
앞서 설명한 바와 같이 AP인 무선 통신 단말은 캐스캐이딩 시퀀스를 통해 인증 절차와 결합 절차를 연속으로 진행할 수 있다. 이때, AP인 무선 통신 단말은 인증 응답 프레임을 전송하면서, 인증 응답 프레임을 수신하는 무선 통신 단말의 결합 요청 프레임 전송을 트리거링하는 트리거 프레임을 함께 전송할 수 있다. 또한, AP인 무선 통신 단말이 인증 응답 프레임을 전송하면서, AP인 무선 통신 단말은 OFDMA를 통해 링크 설정 절차와 관련 없는 프레임 전송을 트리거링하는 트리거 프레임을 인증 응답 프레임과 함께 전송할 수 있다. 이때, 링크 설정 절차와 관련 없는 프레임 전송을 트리거링하는 트리거 프레임은 AP인 무선 통신 단말과 링크가 설정된 무선 통신 단말의 전송을 트리거링할 수 있다.
도 14의 실시 예에서, AP는 도 8(b) 및 도 13의 실시 예에서와 같이 인증 요청 프레임(Auth. Req.)의 전송을 트리거링하는 트리거 프레임을 전송하고, 제1 스테이션(STA1) 내지 제3 스테이션(STA3)으로부터 같이 인증 요청 프레임(Auth. Req.)을 수신한다. AP는 OFDMA를 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에게 인증 응답 프레임(Auth. Resp)과 결합 요청 프레임의 전송을 트리거링하는 트리거 프레임을 전송한다. 이때, AP는 제1 스테이션(STA1) 내지 제3 스테이션(STA3)에 대한 전송에 사용되지 않는 RU를 통해 제1 스테이션(STA1) 내지 제3 스테이션(STA3)과 다른 스테이션의 데이터 프레임 전송을 트리거링하는 트리거 프레임을 전송한다.
제1 스테이션(STA1) 내지 제3 스테이션(STA3)은 트리거 프레임을 기초로 AP에게 결합 요청 프레임(Assoc. Req.) 프레임을 전송한다. 데이터 전송이 트리거링된 무선 통신 단말은 트리거 프레임을 기초로 AP에게 데이터를 전송한다. 이후 AP의 동작은 도 13의 실시 예를 통해 설명한 것과 동일할 수 있다.
도 15는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 MU 링크 설정 동작을 보여준다.
AP인 무선 통신 단말은 복수의 AP가 아닌 무선 통신 단말을 복수의 그룹으로 구별하고, 그룹별로 MU 링크 설정 절차를 트리거링할 수 있다. 이때, AP인 무선 통신 단말은 복수의 AP가 아닌 무선 통신 단말의 버퍼 상태를 기초로 복수의 그룹으로 구별할 수 있다. 구체적으로 AP인 무선 통신 단말은 복수의 AP가 아닌 무선 통신 단말이 버퍼에 저장하는 상향 데이터의 크기를 기초로 복수의 그룹으로 구별할 수 있다. 구체적인 실시 예에서 AP인 무선 통신 단말은 복수의 AP가 아닌 무선 통신 단말이 버퍼에 상향 데이터를 저장하는지 여부를 기초로 복수의 그룹으로 구별할 수 있다. 또 다른 구체적인 실시 예에서, AP인 무선 통신 단말은 복수의 AP가 아닌 무선 통신 단말이 버퍼에 저장된 상향 데이터의 액세스 카테고리(Access Category, AC)를 기초로 복수의 그룹으로 구별할 수 있다. 또한, AP인 무선 통신 단말은 트리거 프레임에 의해 트리거링되는 그룹을 식별하는 정보를 트리거 프레임에 삽입할 수 있다. 구체적으로 AP인 무선 통신 단말은 트리거 프레임에 의해 트리거링되는 그룹을 식별하는 정보를 트리거 프레임의 Trigger type dependent common info 필드에 트리거 프레임에 의해 트리거링되는 그룹을 식별하는 정보를 트리거 프레임에 삽입할 수 있다. 또한, AP인 무선 통신 단말은 상대적으로 우선 순위가 높은 그룹의 결합 지연 시간을 짧게 설정할 수 있다. 즉, AP인 무선 통신 단말은 상대적으로 우선 순위가 낮은 그룹의 결합 지연 시간을 길게 설정할 수 있다. 이때, AP인 무선 통신 단말은 결합 지연 시간을 앞서 설명한 결합 지연 정보를 통해 시그널링할 수 있다. 또한, AP인 무선 통신 단말은 결합 지연 정보를 통해 트리거 프레임을 통한 결합 절차 수행 여부를 시그널링할 수 있다. 예컨대, 결합 지연 정보를 나타내는 필드의 값이 모두 1인 경우, 트리거 프레임을 통한 결합 절차가 수행됨을 나타낼 수 있다. 앞서 설명한 바와 같이 AP가 아닌 무선 통신 단말은 트리거 프레임으로부터 결합 지연 정보를 획득하고, 결합 지연 정보를 기초로 트리거 프레임을 기초로 하는 결합 절차에 참여할 것인지 판단할 수 있다.
AP인 무선 통신 단말과 복수의 AP가 아닌 무선 통신 단말은 MU-RTS(Require To Send) 프레임과 동시(simultaneous) CTS(Clear To Send) 프레임 전송을 통해 데이터 전송을 보호할 수 있다. 이와 관련된 본 발명의 실시 예들에 대해서는 도 16 내지 도 27을 통해 설명한다.
도 16은 본 발명의 실시 예에 따른 무선 통신 단말이 MU-RTS 프레임 및 동시 CTS 프레임 전송을 통해 상향 데이터 전송을 보호하는 동작을 보여준다.
AP인 무선 통신 단말은 UL MU 전송에 참여할 복수의 무선 통신 단말에게 MU-RTS 프레임을 전송할 수 있다. UL MU 전송에 참여할 복수의 무선 통신 단말은 MU-RTS 프레임에 대한 응답으로 동시 CTS 프레임을 전송할 수 있다. 이때, 무선 통신 단말은 non-HT PPDU, non-HT duplicate PPDU, 및 HE PPDU 중 어느 하나의 PPDU 포맷을 통해 동시 CTS 프레임을 전송할 수 있다. MU-RTS 프레임의 듀레이션 필드와 동시 CTS 프레임의 듀레이션 필드는 NAV 설정에 사용된다. 따라서 UL MU 전송은 다른 무선 통신 단말의 전송으로부터 보호될 수 있다.
구체적으로 UL MU 전송에 참여할 복수의 무선 통신 단말은 MU-RTS 프레임이 지시하는 RU를 통해 동시 CTS 프레임을 전송할 수 있다. 복수의 무선 통신 단말이 UL MU 전송할 때, 복수의 무선 통신 단말은 MU-RTS 프레임이 지시하는 RU를 통해 데이터 프레임을 전송할 수 있다. 구체적인 실시 예에서 무선 통신 단말은 채널 확장 규칙(channel bonding rule)에 따라 동시 CTS 프레임을 전송할 수 있다. 예컨대, 무선 통신 단말은 주 채널(Primary Channel)을 포함하는 연속된(contiguous) 20MHz 주파수 대역, 주 채널(Primary Channel)을 포함하는 연속된 40MHz 주파수 대역, 또는 주 채널(Primary Channel)을 포함하는 연속된 80MHz 주파수 대역을 통해 동시 CTS 프레임을 전송할 수 있다. 이러한 경우, 동일한 시점에 동시 CTS 프레임을 전송하는 복수의 무선 통신 단말이라도 복수의 무선 통신 단말 각각은 서로 다른 개수의 20MHz 주파수 대역을 채널에 동시 CTS 프레임을 전송하게 된다.
도 16의 실시 예에서, AP는 제1 스테이션(STA1)과 제3 스테이션(STA3)에게 MU-RTS 프레임을 전송한다. 제1 스테이션(STA1)과 제3 스테이션(STA3)은 MU-RTS 프레임이 지시하는 채널을 통해 동시 CTS 프레임을 전송한다. 이때, MU-RTS 프레임은 제1 스테이션(STA1)에게 주 채널(Primary)을 지시하고, 제3 스테이션(STA3)에게 제2 부 채널(Secondary2)을 지시한다. 앞서 설명한 동시 CTS 프레임 전송을 위한 채널 확장(bonding) 규칙에 따라 제1 스테이션(STA1)과 제3 스테이션(STA3) 모두 80MHz 주파수 대역을 통해 동시 CTS 프레임을 전송한다.
무선 통신 단말이 전송 및 수신에 참여하지 않는 경우, 무선 통신 단말은 무선 통신 단말이 포함된 BSS의 주 채널만을 통해 전송되는 프레임을 디코딩하고, 주 채널을 전송된 프레임을 기초로 NAV를 설정한다. 따라서 동시 CTS 프레임이 다른 BSS의 주 채널로 전송되지 않는 경우, 다른 BSS의 부 채널(Secondary Channel)과 동시 CTS 프레임이 전송되는 주파수 대역이 겹치는 경우라도 무선 통신 단말은 동시 CTS 프레임을 기초로 NAV를 설정하지 못할 수 있다. 또한, 무선 통신 단말은 다른 BSS의 주 채널에 대한 정보를 알기 어려우므로, 다른 BSS의 주 채널에 선택적으로 동시 CTS 프레임을 전송하는 것이 어렵다. 따라서 MU-RTS 프레임과 동시 CTS 프레임을 전송하더라도, UL MU 전송이 다른 BSS의 전송과 충돌이 발생할 수 있다. 이러한 문제를 해결하기 위한 실시 예를 도 16 내지 도 19를 통해 설명한다.
도 17은 본 발명의 실시 예에 따른 무선 통신 단말이 동시 CTS 프레임을 전송하는 동작을 보여준다.
무선 통신 단말은 MU-RTS 프레임을 통해 지정된 채널과 주 채널을 통해 동시 CTS 프레임을 전송할 수 있다. 이때, MU-RTS 프레임을 통해 지정된 채널 무선 통신 단말에게 지정된 채널은 무선 통신 단말이 UL MU 전송 시 사용할 채널일 수 있다. 또한, MU-RTS 프레임을 통해 지정된 채널이 주 채널인 경우, 무선 통신 단말은 주 채널과 인접한 20MHz 주파수 대역폭의 부 채널 또는 임의 부 채널을 선택하여 동시 CTS 프레임을 전송할 수 있다.
도 17의 실시 예에서, AP는 제1 스테이션(STA1)과 제3 스테이션(STA3)에게 MU-RTS 프레임을 전송한다. MU-RTS 프레임은 제1 스테이션(STA1)에게 주 채널을 지시하고, 제3 스테이션(STA3)에게 제2 부 채널(Secondary2)을 지시한다. 제1 스테이션(STA1)은 주 채널(Primary)과 제1 부 채널(Secondary1)을 통해 동시 CTS 프레임을 전송한다. 또한, 제3 스테이션(STA3)은 MR-RTS 프레임이 지시한 제2 부 채널(Secondary2)과 주 채널(Primary)을 통해 동시 CTS 프레임을 전송한다. 이때, 제1 스테이션(STA1)은 주 채널(Primary) 이외의 채널을 임의로 선택하여 동시 CTS 프레임을 전송할 수 있다.
도 18은 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 동시 CTS 프레임을 전송하는 동작을 보여준다.
MU-RTS 프레임이 지정한 복수의 무선 통신 단말 각각은 MU-RTS 프레임이 할당하는 주파수 대역 범위 내에서 서로 동일한 개수의 채널을 통해 동시 CTS 프레임을 전송할 수 있다. 이때, 복수의 무선 통신 단말 각각이 동시 CTS 프레임을 전송하는 채널의 개수는 MU-RTS 프레임이 할당하는 주파수 대역 범위가 포함하는 채널의 개수를 복수의 무선 통신 단말 개수로 나눈 값을 기초로 결정될 수 있다. 예컨대, MU-RTS 프레임이 80MHz 주파수 대역을 범위에서 2개의 무선 통신 단말을 지시하는 경우, 2개의 무선 통신 단말 각각은 2개의 채널을 통해 동시 CTS 프레임을 전송할 수 있다. 또한, 복수의 무선 통신 단말 각각은 MU-RTS 프레임이 지정한 채널과 임의 채널을 선택하여 동시 CTS 프레임을 전송할 수 있다. 또 다른 구체적인 실시 예에서, 복수의 무선 통신 단말 각각은 MU-RTS 프레임이 지정한 채널과 채널 확장 규칙에 따라 확장 가능한 채널을 통해 동시 CTS 프레임을 전송할 수 있다.
도 18의 실시 예에서, AP는 제1 스테이션(STA1)과 제3 스테이션(STA3)에게 MU-RTS 프레임을 전송한다. MU-RTS 프레임은 제1 스테이션(STA1)에게 주 채널을 지시하고, 제3 스테이션(STA3)에게 제2 부 채널(Secondary2)을 지시한다. 제1 스테이션(STA1)은 주 채널(Primary)과 제1 부 채널(Secondary1)을 통해 동시 CTS 프레임을 전송한다. 또한, 제3 스테이션(STA3)은 MR-RTS 프레임이 지시한 제2 부 채널(Secondary2)과 제3 부 채널(Secondary3)을 통해 동시 CTS 프레임을 전송한다.
도 19는 본 발명의 또 다른 실시 예에 따른 무선 통신 단말이 NAV를 설정하는 동작을 보여준다.
앞서 설명한 바와 같이, 무선 통신 단말은 전송에 참여 하지 않는 상태에서 주 채널을 통해 전송되는 프레임을 디코딩하여 NAV를 설정한다. 본 발명의 또 다른 실시 예에 따른 무선 통신 단말은 주 채널과 무선 통신 단말이 감지 가능한 채널을 통해 전송되는 프레임을 디코딩할 수 있다. 구체적으로 무선 통신 단말은 주 채널과 적어도 하나의 부 채널을 통해 전송되는 프레임을 디코딩할 수 있다. 이때, 부 채널은 채널 확장 규칙에 따라 확장 가능한 채널일 수 있다. 또 다른 부 채널은 무선 통신 단말이 감지 가능한 모든 채널일 수 있다.
도 19(a)와 19(b)의 실시 예에서, 스테이션은 주 채널을 포함하는 80MHz 주 파수 대역을 감지할 수 있다. 도 19(a)의 실시 예에서, 스테이션은 주 채널(Primary)과 주 채널(Primary)과 연속하는 부 채널을 통해 전송되는 프레임을 디코딩하여 NAV를 설정한다. 이때, 첫 번째 부 채널과 세 번째 부 채널을 통해 Inter-BSS 프레임인 CTS 프레임이 전송된다. 따라서 스테이션은 첫 번째 부 채널을 통해 전송된 CTS 프레임을 기초로 NAV를 설정한다. 도 19(b)의 실시 예에서, 스테이션은 스테이션이 감지 가능한 모든 채널을 통해 전송되는 프레임을 디코딩하여 NAV를 설정한다. 이때, 두 번째 부 채널을 통해 Inter-BSS 프레임인 CTS 프레임이 전송된다. 따라서 스테이션은 두 번째 부 채널을 통해 전송된 CTS 프레임을 기초로 NAV를 설정한다. 무선 통신 단말은 이러한 실시 예들을 통해 Inter-BSS에서 전송되는 프레임과의 충돌을 방지할 수 있다.
도 20은 본 발명의 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
앞서 설명한 바와 같이, AP인 무선 통신 단말과 복수의 AP가 아닌 무선 통신 단말은 MU-RTS 프레임과 동시 CTS 프레임 전송을 통해 데이터 전송을 보호할 수 있다. AP인 무선 통신 단말은 UL MU 전송에 참여할 복수의 무선 통신 단말에게 MU-RTS 프레임을 전송할 수 있다. MU-RTS 프레임을 수신한 무선 통신 단말은 MU-RTS 프레임이 지정하는 RU를 통해 MU-RTS 프레임에 대한 응답으로 동시 CTS 프레임을 전송할 수 있다. 이때, 무선 통신 단말은 앞서 설명한 실시 예들의 채널 확장 규칙에 따라 동시 CTS 프레임을 전송할 수 있다. MU-RTS 프레임과 CTS 프레임의 전송 간격은 미리 지정된 시간 간격일 수 있다. 구체적으로 미리 지정된 시간 간격은 SIFS(Short Inter-Frame Space)일 수 있다.
또한, AP는 복수의 무선 통신 단말에게 트리거 프레임을 전송하여 복수의 무선 통신 단말의 데이터 프레임 전송을 트리거링할 수 있다. 이때, 트리거 프레임과 데이터 프레임의 전송 간격은 미리 지정된 시간 간격일 수 있다. 구체적으로 미리 지정된 시간 간격은 SIFS일 수 있다. 또한, 동시 CTS 프레임과 트리거 프레임의 전송 간격은 미리 지정된 시간 간격일 수 있다. 구체적으로 미리 지정된 시간 간격은 SIFS일 수 있다.
도 20의 실시 예에서, AP는 제1 스테이션(STA 1) 내지 제5 스테이션(STA 5)에게 MU-RTS 프레임을 전송한다. 제1 스테이션(STA1) 내지 제5 스테이션(STA 5) 각각은 MU-RTS 프레임이 제1 스테이션(STA1) 내지 제5 스테이션(STA 5) 각각에게 지시하는 RU를 통해 동시 CTS 프레임을 전송한다. 구체적으로 제1 스테이션(STA1) 내지 제2 스테이션(STA2)는 주 채널(Primary)과 제1 부 채널(Secondary 1)을 통해 동시 CTS 프레임을 전송한다. 제3 스테이션(STA2) 내지 제5 스테이션(STA5)은 주 채널(Primary), 제1 부 채널(Secondary 1), 제2 부 채널(Secondary 2), 및 제3 부 채널(Secondary 3)를 통해 동시 CTS 프레임을 전송한다. AP는 제1 스테이션(STA1) 내지 제5 스테이션(STA 5)에게 트리거 프레임을 전송한다. 제1 스테이션(STA1) 내지 제5 스테이션(STA 5) 각각은 트리거 프레임이 제1 스테이션(STA1) 내지 제5 스테이션(STA 5) 각각에게 지시하는 RU를 통해 데이터 프레임을 전송한다. AP는 제1 스테이션(STA1) 내지 제5 스테이션(STA 5)에게 데이터 프레임에 대한 ACK을 전송한다. 구체적으로 AP는 제1 스테이션(STA1) 내지 제5 스테이션(STA 5)에게 데이터 프레임에 대한 ACK 프레임, BA 프레임 및 M-BA 프레임 중 적어도 어느 하나를 전송한다. 이때, 프레임간 전송은 SIFS이다.
도 21은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
트리거 프레임은 복수의 무선 통신 단말의 동시 전송을 트리거링하므로 주변 BSS의 전송에 미치는 영향이 클 수 있다. 이를 방지하기 위해, 트리거 프레임이 의해 전송이 트리거링되는 무선 통신 단말은 트리거 프레임이 지시하는 채널을 센싱한 후 해당 채널을 통해 트리거를 기초로 하는 PPDU를 전송할 수 있다. 구체적으로 트리거 프레임이 지시한 채널이 유휴한 경우, 트리거 프레임이 의해 전송이 트리거링되는 무선 통신 단말은 해당 채널을 통해 트리거를 기초로 하는 PPDU를 전송할 수 있다. MU-RTS 프레임은 트리거 프레임의 변형(variant)이다. 따라서 무선 통신 단말이 MU-RTS 프레임을 기초로 동시 CTS 프레임을 전송할 때, 무선 통신 단말은 MU-RTS 프레임이 지시하는 채널을 센싱한 후 동시 CTS 프레임을 전송할 수 있다. 구체적으로 MU-RTS 프레임이 지시하는 채널이 유휴한 경우, 무선 통신 단말은 MU-RTS 프레임이 지시하는 채널을 통해 동시 CTS 프레임을 전송할 수 있다.
또한, 트리거 프레임은 채널 센싱 필요 여부를 나타내는 정보를 포함할 수 있다. 구체적으로 채널 센싱 필요 여부를 나타내는 정보는 CS required 비트일 수 있다. 구체적인 실시 예에서, CS required 비트가 1인 경우, 무선 통신 단말은 트리거를 기초로 하는 PPDU를 전송할 때, 트리거 프레임이 지시하는 채널이 유휴한지 감지할 수 있다. AP인 무선 통신 단말이 MU-RTS 프레임을 전송하고, 데이터 프레임의 전송을 트리거링하는 트리거 프레임을 전송하는 경우, AP인 무선 통신 단말은 MU-RTS 프레임이 포함하는 CS required 비트를 1로 설정하고, 트리거 프레임이 포함하는 CS required 비트를 0으로 설정할 수 있다.
또한, 트리거 프레임은 앞서 설명한 캐스캐이딩 인디케이션 비트를 포함할 수 있다. AP인 무선 통신 단말이 MU-RTS 프레임을 전송하고, 데이터 프레임의 전송을 트리거링하는 트리거 프레임을 전송하는 경우, MU-RTS 프레임의 캐스캐이딩 인디케이션 비트를 1로 설정할 수 있다. MU-RTS 프레임을 수신하는 무선 통신 단말은 MU-RTS 프레임의 캐스캐이딩 인디케이션 비트가 1로 설정된 경우, 트리거 프레임을 기초로 하는 상향 전송이 연속되는 것으로 판단할 수 있다. 따라서 MU-RTS 프레임을 수신하는 무선 통신 단말은 상향 전송을 위한 프로세싱 시간을 줄일 수 있다.
도 21의 실시 예에서, AP는 도 20의 실시 예와 같이 제1 스테이션(STA 1) 내지 제5 스테이션(STA 5)에게 MU-RTS 프레임을 전송한다. 이때, 트리거 프레임은 CS required 비트(CS req.)를 포함한다. 또한, CS required 비트(CS req.)의 값은 1로 트리거를 기초로 하는 PPDU 전송 전에 채널 센싱이 필요함을 나타낸다. 제2 부 채널(Secondary 2)을 통해 Inter-BSS 프레임이 전송되고 있어, 제3 스테이션(STA 3)은 동시 CTS 프레임을 전송하지 못 한다. 또한, 트리거 프레임을 통해 제3 부 채널(Secondary 3)을 할당받은 제4 스테이션(STA 4)도 제2 부 채널(Secondary 2)을 통해 전송되는 Inter-BSS 프레임의 에너지를 감지한다. 따라서 제4 스테이션(STA 4)도 동시 CTS 프레임을 전송하지 못 한다. 다른 스테이션들은 AP에게 동시 CTS 프레임을 전송한다. AP는 제3 부 채널(Secondary 3)에서 동시 CTS 프레임을 전송한 스테이션이 제4 스테이션(STA 4)과 제5 스테이션(STA 5)중 어느 스테이션인지 구분할 수 없으므로 제4 스테이션(STA 4)을 트리거링하는 트리거 프레임을 전송한다. 이때, 트리거 프레임이 포함하는 CS required 비트(CS req.)의 값은 0으로 트리거를 기초로 하는 PPDU 전송 전에 채널 센싱이 필요 없음을 나타낸다. 또한, 제1 스테이션(STA 1) 내지 제5 스테이션(STA 5) 중 동시 CTS 프레임을 전송한 무선 통신 단말만 트리거 프레임을 기초로 데이터를 전송한다. 따라서 제3 스테이션(STA 3)과 제4 스테이션(STA4)은 트리거 프레임을 기초로 데이터 프레임을 전송하지 않는다. 도 21의 실시 예의 동작 환경과 기본 동작은 도 20의 실시 예의 동작 환경과 기본 동작과 동일하다.
도 22는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
트리거 프레임을 수신한 무선 통신 단말이 동시 CTS 프레임을 전송하지 않은 경우에도, 트리거 프레임이 지시하는 채널이 유휴한 경우, 트리거 프레임을 수신한 무선 통신 단말 트리거 프레임을 기초로 하는 PPDU를 전송할 수 있다. 이를 위해, AP인 무선 통신 단말이 MU-RTS 프레임을 전송하고, 데이터 프레임의 전송을 트리거링하는 트리거 프레임을 전송하는 경우, AP인 무선 통신 단말은 MU-RTS 프레임이 포함하는 CS required 비트를 1로 설정하고, 트리거 프레임이 포함하는 CS required 비트를 1으로 설정할 수 있다.
도 22의 실시 예에서 AP는 도 21의 실시 예와 달리 동시 CTS 프레임 수신 이후 전송하는 트리거 프레임의 CS required 비트(CS req.)의 값을 1로 설정한다. 제4 스테이션(STA4)은 트리거 프레임이 지시하는 제3 부 채널(Secondary 3)이 유휴한지 감지한다. 제3 부 채널(Secondary 3)이 유휴하므로 제4 스테이션(STA4)은 트리거 프레임을 기초로 데이터 프레임을 AP에게 전송한다. 이러한 동작을 통해 트리거 프레임을 기초로 하는 PPDU 전송 효율을 높일 수 있다. 도 22의 실시 예의 동작 환경과 기본 동작은 도 20의 실시 예의 동작 환경과 기본 동작과 동일하다.
도 23은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
무선 통신 단말은 MU-RTS 프레임이 지정한 채널을 20MHz 채널 별로 해당 채널이 유휴한지 감지하고, 채널 확장 규칙과 관계 없이 유휴한 20MHz 채널 만을 통해 동시 CTS 프레임을 전송할 수 있다. 구체적으로 무선 통신 단말은 20MHz 채널 별로 해당 채널이 유휴한지 감지하고, 유휴한 채널이 주 채널을 포함하여 연속하는 경우가 아닐지라도 유휴한 20MHz 채널을 통해 동시 CTS 프레임을 전송할 수 있다. 이때, AP인 무선 통신 단말이 MU-RTS 프레임을 전송하고, 데이터 프레임의 전송을 트리거링하는 트리거 프레임을 전송하는 경우, AP인 무선 통신 단말은 MU-RTS 프레임이 포함하는 CS required 비트를 1로 설정하고, 트리거 프레임이 포함하는 CS required 비트를 0으로 설정할 수 있다.
구체적으로 도 23의 실시 예에서, MU-RTS 프레임은 제4 스테이션(STA 4)에게 주 채널(Primary)과 제1 부 채널(Secondary 1) 내지 제3 부 채널(Secondary 3)을 통해 동시 CTS 프레임을 전송할 것을 트리거링한다. 이때, 도 21과 도 22의 실시 예와 달리 제4 스테이션(STA 4)은 사용 중인(busy) 제2 부 채널(Secondary 2)을 제외한 나머지 채널을 통해 동시 CTS 프레임을 전송한다. 이후 제4 스테이션(STA 4)은 트리거 프레임을 기초로 제3 부 채널(Secondary 3)을 통해 AP에게 데이터 프레임을 전송한다. 도 23의 실시 예의 동작 환경과 기본 동작은 도 20의 실시 예의 동작 환경과 기본 동작과 동일하다.
도 24는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말에게 앞서 설명한 채널 확장 규칙과 관계 없이 AP가 아닌 무선 통신 단말이 데이터 프레임을 전송할 채널을 통한 동시 CTS 프레임 전송을 트리거링하는 MU-RTS 프레임을 전송할 수 있다. 이때, AP가 아닌 무선 통신 단말은 선택적으로 주 채널을 통해 동시 CTS 프레임을 전송할 수 있다.
도 24의 실시 예에서, MU-RTS 프레임은 제4 스테이션(STA 4)에게 제3 부 채널(Secondary 3)을 통해 동시 CTS 프레임을 전송할 것을 트리거링한다. 이때, 제4 스테이션(STA 4)은 제3 부 채널(Secondary 3)을 통해 동시 CTS 프레임을 전송한다. 이후 제4 스테이션(STA 4)은 트리거 프레임을 기초로 제3 부 채널(Secondary 3)을 통해 AP에게 데이터 프레임을 전송한다. 또한, 제4 스테이션(STA 4)은 선택적으로 제3 부 채널(Secondary 3)뿐만 아니라 주 채널(Primary)을 통해 동시 CTS 프레임을 전송할 수 있다. 도 24의 실시 예의 동작 환경과 기본 동작은 도 20의 실시 예의 동작 환경과 기본 동작과 동일하다.
도 25는 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
AP인 무선 통신 단말이 MU-RTS 프레임을 전송하고, 데이터 프레임의 전송을 트리거링하는 트리거 프레임을 전송하는 경우, AP인 무선 통신 단말은 MU-RTS 프레임이 포함하는 CS required 비트를 0으로 설정하고, 트리거 프레임이 포함하는 CS required 비트를 1로 설정할 수 있다. 이를 통해, UL MU PPDU 전송을 적극적으로 보호할 수 있다.
도 25의 실시 예에서, AP는 MU-RTS 프레임의 CS required 비트(CS req.)를 0으로 설정한다. 이에 따라 제1 스테이션(STA1) 내지 제5 스테이션(STA5) 각각은 채널 센싱을 하지 않고, 제1 스테이션(STA1) 내지 제5 스테이션(STA5) 각각에게 MU-RTS 프레임이 지시하는 RU를 통해 동시 CTS 프레임을 전송한다. 이때, 제1 스테이션(STA1) 내지 제5 스테이션(STA5) 각각은 채널 센싱 없이 MU-RTS 프레임을 수신한 때로부터 SIFS 후 동시 CTS 프레임을 전송한다. 따라서 제4 스테이션(STA4)은 다른 무선 통신 단말에 의해 사용 중인 제2 부 채널(Secondary 2)을 통해서도 동시 CTS 프레임을 전송한다.
또한, AP는 트리거 프레임의 CS required 비트(CS req.)를 1로 설정한다. 이에 따라 제1 스테이션(STA1) 내지 제5 스테이션(STA5) 각각은 채널 센싱 후, 제1 스테이션(STA1) 내지 제5 스테이션(STA5) 각각에게 MU-RTS 프레임이 지시하는 RU가 유휴한 경우, 해당 RU를 통해 동시 데이터 프레임을 전송한다. 따라서 제4 스테이션(STA4)은 제3 부 채널(Secondary 3)을 통해 데이터 프레임을 전송한다. 도 25의 실시 예의 동작 환경과 기본 동작은 도 20의 실시 예의 동작 환경과 기본 동작과 동일하다.
도 26은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
CS required 비트가 1로 설정된 트리거 프레임을 수신한 무선 통신 단말은 트리거 프레임이 지시하는 RU가 20MHz 이상의 주파수 대역이고, 이중 일부 주파수 대역이 사용 중(busy)인 경우 트리거 프레임을 기초로 하는 PPDU를 전송할 수 없다. 구체적으로 CS required 비트가 1로 설정된 MU-RTS 프레임을 수신한 무선 통신 단말은 MU-RTS 프레임이 지시하는 RU가 20MHz 이상의 주파수 대역이고, 이중 일부 주파수 대역이 사용 중(busy)인 경우 동시 CTS 프레임을 전송할 수 없다. 이때, AP는 동시 CTS 프레임을 수신하지 못한 20MHz 채널에 대해서는 트리거 프레임을 전송하지 않는다. 따라서 동시 CTS 프레임을 전송하지 못한 무선 통신 단말은 트리거 프레임을 기초로 데이터 프레임을 전송할 수 없다.
도 26의 실시 예에서, AP는 제1 스테이션(STA 1) 내지 제3 스테이션(STA 3)에게 MU-RTS 프레임을 전송한다. 이때, AP는 MU-RTS 프레임이 포함하는 CS required 비트를 1로 설정한다. MU-RTS 프레임은 제1 스테이션(STA1)에게 주 채널(Primary)을 통해 동시 CTS 프레임을 전송할 것을 시그널링하고, 제2 스테이션(STA2)에게 주 채널(Primary)과 제1 부 채널(Secondary 1)을 통해 동시 CTS 프레임을 전송할 것을 시그널링한다. 또한, MU-RTS 프레임은 제3 스테이션(STA3)에게 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)를 통해 동시 CTS 프레임을 전송할 것을 시그널링한다. 제1 스테이션(STA1)은 주 채널(Primary)을 통해 동시 CTS 프레임을 전송하고, 제2 스테이션(STA2)은 주 채널(Primary)과 제1 부 채널(Secondary 1)을 통해 동시 CTS 프레임을 전송한다. 제3 스테이션(STA3)은 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)이 유휴한지 센싱한다. 제2 부 채널(Secondary 2)이 사용 중이므로 제3 스테이션(STA3)은 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)을 통해 동시 CTS 프레임을 전송하지 않는다. 따라서 AP는 제1 스테이션(SAT 1)과 제2 스테이션(STA 2)에게 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)을 통한 데이터 프레임 전송을 트리거링하지 않고, 주 채널(Primary)과 제1 부 채널(Secondary 1)을 통한 데이터 프레임 전송을 트리거링하는 트리거 프레임을 전송한다. 제1 스테이션(SAT 1)과 제2 스테이션(STA 2)은 트리거 프레임을 기초로 데이터 프레임을 전송한다. 이때, 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)은 상향 전송에서 이용되지 않으므로 채널 활용 효율이 떨어질 수 있다. 이를 해결 하기 위한 실시 예에 대해서는 도 27을 통해 설명한다.
도 27은 본 발명의 또 다른 실시 예에 따른 MU-RTS 프레임 및 동시 CTS 프레임 이용하는 상향 전송 시퀀스를 보여준다.
AP인 무선 통신 단말은 MU-RTS 프레임에 대한 응답으로 동시 CTS 프레임이 수신되지 않은 채널이 있는 경우, AP는 트리거 프레임을 통해 해당 채널을 통한 상향 전송을 트리거링할 수 있다. 이때, AP인 무선 통신 단말은 트리거 프레임을 통해 MU-RTS 프레임에 의해 동시 CTS 프레임 전송이 트리거링되지 않은 무선 통신 단말을 MU-RTS 프레임에 대한 응답으로 동시 CTS 프레임이 수신되지 않은 채널 통한 상향 전송을 트리거링할 수 있다. 또한, AP인 무선 통신 단말은 트리거 프레임을 통해 이전에 BSR(Buffer Status Report)를 전송한 무선 통신 단말을 MU-RTS 프레임에 대한 응답으로 동시 CTS 프레임이 수신되지 않은 채널 통한 상향 전송을 트리거링할 수 있다. 일 수 있다. 또한, AP인 무선 통신 단말은 트리거 프레임을 통해 MU-RTS 프레임에 대한 응답으로 동시 CTS 프레임이 수신되지 않은 채널 통한 임의 접속(random access) 상향 전송을 트리거링할 수 있다.
이러한 실시 예들에서, AP인 무선 통신 단말 트리거 프레임의 CS required 비트를 1로 설정할 수 있다. 이를 통해, 동시 CTS 프레임이 전송되지 않은 채널에서 다른 무선 통신 단말과 전송 충돌을 방지할 수 있다.
도 27의 실시 예에서, AP와 제1 스테이션(STA 1) 내지 제3 스테이션(STA 3)의 동작은 트리거 프레임 전송 전까지 동일하다. 다만, 도 27의 실시 예에서 AP는 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)을 통한 상향 전송을 시그널링하는 트리거 프레임을 전송한다. 이때, 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)을 통한 상향 전송을 시그널링하는 트리거 프레임은 무작위 접속 상향 전송을 트리거링할 수 있다. 또 다른 구체적인 실시 예에서, 제2 부 채널(Secondary 2)과 제3 부 채널(Secondary 3)을 통한 상향 전송을 시그널링하는 트리거 프레임은 제1 스테이션(STA 1) 내지 제3 스테이션(STA 3)과 다른 무선 통신 단말의 상향 전송을 트리거링할 수 있다.
무선 통신 단말은 트래픽의 우선 순위에 따라 어떤 트래픽을 전송할지 결정할 수 있다. 구체적으로 트래픽의 우선 순위는 트래픽의 특성에 따라 결정된다. 트래픽의 우선 순위는 액세스 클래스(Access Class, AC)라 지칭된다. 액세스 클래스는 전송 빈도, 딜레이, 정확도, 및 데이터 사이즈 중 적어도 어느 하나를 기초로 결정될 수 있다. 구체적인 실시 예에서 무선 통신 단말은 무선 통신 단말의 버퍼에 있는 트래픽 별로 백오프 카운터를 획득하여 전송 순서를 결정할 수 있다. 이때, 트래픽의 AC에 따라 백오프 카운터가 가질 수 있는 값의 범위가 달라진다. 구체적으로 우선 순위가 높은 AC에 해당하는 트래픽의 백오프(BackOff, BO) 카운터 값이 가질 수 있는 최댓값은 상대적으로 우선 순위가 낮은 AC에 해당하는 트래픽의 백오프 카운터 값이 가질 수 있는 최댓값보다 작다.
무선 통신 단말은 AC에 따라 결정되는 백오프 카운터가 가질 수 있는 값의 범위 내에서 임의 수를 획득할 수 있다. 무선 통신 단말은 획득한 임의 수를 기초로 트래픽 별 대기 시간을 결정할 수 있다. 구체적으로 무선 통신 단말은 획득한 임의 수에 슬랏 타임 값을 곱하고, 고정된 시간 값인 AIFS(Arbitrary Inter-Frame Space)를 더한 시간만큼을 해당 트래픽의 전송을 유보한다. 무선 통신 단말은 채널이 슬랏 타임만큼 유효할 때마다 백오프 카운터 값을 1씩 줄여나간다. 백오프 카운터 값이 0이될 때, 무선 통신 단말은 해당 트래픽을 전송한다. 이때, 복수의 트래픽의 백오프 카운터 값이 0에 해당하는 경우, 무선 통신 단말은 복수의 트래픽 중 가장 높은 우선 순위의 AC를 갖는 트래픽을 전송할 수 있다. 또한, 무선 통신 단말은 백오프 카운터 값이 0에 해당하는 나머지 트래픽의 백오프 카운터 값을 다시 획득할 수 있다. 이러한 동작을 위해 무선 통신 단말은 AC 별로 독립적인 큐를 운영할 수 있다. 구체적인 실시 예에서 4개의 AC가 존재할 수 있다. 따라서 4개의 독립적인 큐가 존재할 수 있다. 이와 같이 AC에 따른 큐와 백오프 카운터 값을 관리하는 기능을 EDCAF(Enhanced Distributed Channel Access Function)라 지칭한다.
앞서 설명한 다중 사용자 전송에서, AP인 무선 통신 단말이 상향 전송 시점을 지시하므로, 이러한 동작 특성을 고려한 무선 통신 단말이 버퍼에 저장된 트래픽 전송 순서를 결정하는 방법이 필요하다. 이에 대해서는 도 28 내지 도 36을 통해 설명한다.
도 28은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 방법을 보여준다.
무선 통신 단말은 AP인 무선 통신 단말에게 버퍼 상태 리포트(Buffer Status Report)를 전송할 수 있다. AP인 무선 통신 단말은 수신한 BSR을 기초로 무선 통신 단말의 상향 전송을 트리거링할 수 있다. 무선 통신 단말은 BSR을 통해 버퍼에 있는 트래픽에 관한 정보를 전송할 수 있다. 구체적으로 무선 통신 단말은 BSR을 통해 버퍼에 있는 트래픽의 특성을 식별할 수 있는 식별자와 트래픽의 크기를 전송할 수 있다. 이때, 식별자는 TID 또는 AC일 수 있다. 또한, 무선 통신 단말은 BSR을 통해 트래픽의 백오프 카운터 값을 전송할 수 있다. 무선 통신 단말은 버퍼에 있는 복수의 트래픽 중 조건에 해당하는 트래픽에 대한 정보를 BSR을 통해 전송할 수 있다.
구체적으로 AP인 무선 통신 단말은 임의 접속을 통해 BSR을 전송할 것을 트리거링하는 트리거 프레임을 전송할 수 있다. AP가 아닌 무선 통신 단말은 트리거 프레임을 기초로 AP인 무선 통신 단말에게 BSR을 전송할 수 있다. 이때, AP가 아닌 무선 통신 단말은 남은 대기 시간이 가장 작은 트래픽에 대한 정보를 BSR을 통해 전송할 수 있다. 구체적으로 AP가 아닌 무선 통신 단말은 백오프 카운터 값에 슬랏 타임을 곱한 뒤 AIFS를 더한 값이 가장 작은 트래픽에 대한 정보를 BSR을 통해 전송할 수 있다. 가장 작은 대기 시간을 갖는 트래픽이 복수인 경우, 무선 통신 단말은 복수의 트래픽 중 AC가 높은 트래픽에 대한 정보를 BSR을 통해 전송할 수 있다. 또한, 트래픽의 대기 시간이 기준 값보다 작은 경우, 무선 통신 단말은 해당 트래픽에 대한 정보를 BSR을 통해 전송할 수 있다. 구체적으로 백오프 카운터 값이 기준 값보다 작은 경우, 무선 통신 단말은 해당 트래픽에 대한 정보를 BSR을 통해 전송할 수 있다.
도 28(a)의 실시 예에서, AP는 무작위 접속을 통해 BSR을 전송할 것을 트리거링하는 트리거 프레임(TF-R)을 전송한다. 이때, 제1 스테이션(STA1) 내지 제4 스테이션(STA4)은 트리거 프레임을 기초로 AP에게 BSR을 전송한다. 구체적으로 제1 스테이션(STA1)은 현재 백오프 카운터(BO) 값이 4로 가장 작은, AC_VO에 해당하는 트래픽에 대한 정보를 BSR를 통해 전송한다. 또한, 제2 스테이션(STA2)은 현재 백오프 카운터(BO) 값이 10으로 가장 작은, AC_BE에 해당하는 트래픽에 대한 정보를 BSR을 통해 전송한다. 또한, 제3 스테이션(STA3)은 현재 백오프 카운터(BO) 값이 4로 가장 작은, AC_VI에 해당하는 트래픽에 대한 정보를 BSR을 통해 전송한다. 또한, 제4 스테이션(STA4)은 현재 백오프 카운터(BO) 값이 3으로 가장 작은, AC_VI에 해당하는 트래픽에 대한 정보를 BSR을 통해 전송한다.
이때, BSR은 도 28(b)와 같은 포맷일 수 있다. 구체적으로 BSR은 트래픽의 TID 또는 AC를 포함할 수 있다. 또한, BSR은 앞서 설명한 바와 같이 트래픽의 백오프 카운터 값(Residual BO)을 포함할 수 있다. 또한, BSR은 트래픽의 크기(length)를 포함할 수 있다.
도 29는 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 방법을 보여준다.
AP인 무선 통신 단말은 AP가 아닌 무선 통신 단말로부터 수신한 BSR을 기초로 상향 전송 트리거링 순서를 결정할 수 있다. 구체적으로 AP인 무선 통신 단말은 상향 전송 트리거링 순서 결정을 위한 내부의 큐(Cue)를 운영할 수 있다. AP인 무선 통신 단말이 BSR을 수신한 경우, AP인 무선 통신 단말은 각 트래픽이 갖는 백오프 카운터 값에 따라 트래픽에 대한 정보를 큐에 저장한다. 이때, 무선 통신 단말은 BSR을 전송한 무선 통신 단말에 대한 구별 없이 AC 별로 트래픽에 대한 정보를 저장할 수 있다. 또한, 무선 통신 단말은 채널이 유휴한 때, 큐에 저장된 트래픽에 대한 정보의 백오프 카운터 값을 줄여 나갈 수 있다. 이때, AP인 무선 통신 단말이 이미 저장된 트래픽의 AC와 동일한 AC를 갖는 트래픽에 대한 정보를 수신하고, 수신한 트래픽에 대한 정보가 나타내는 백오프 카운터 값이 저장된 트랙픽의 백오프 카운터 값보다 작은 경우, AP인 무선 통신 단말은 수신한 트래픽에 대한 정보가 나타내는 백오프 카운터 값을 해당 AC에 해당하는 백오프 카운터 값으로 설정할 수 있다. 트래픽에 대한 정보가 갖는 백오프 카운터 값이 0이되는 경우, AP인 무선 통신 단말은 해당 트래픽에 대한 상향 전송을 트리거링할 수 있다. 백오프 카운터 값이 0인 트래픽이 복수인 경우, 무선 통신 단말은 내부 충돌 해결법(internal collision resolution)을 통해 상향 전송을 트리거링할 트래픽을 결정할 수 있다. 구체적으로 AP인 무선 통신 단말은 백오프 카운터 값이 0인 복수의 트래픽 중 우선순위가 높은 AC를 갖는 트래픽을 트리거링할 트래픽으로 결정할 수 있다.
또한, AP인 무선 통신 단말은 상향 전송을 트리거링하기 위한 큐와 하향 전송을 위한 큐간의 경쟁을 통하여 상향 전송 트리거링과 하향 전송 간의 순서를 결정할 수 있습니다. 구체적으로 AP인 무선 통신 단말은 하향 전송에 해당하는 트래픽의 AC와 상향 전송 트리거링에 해당하는 트래픽의 AC를 비교하여 상향 전송 트리거링과 하향 전송 간의 순서를 결정할 수 있다. 구체적인 실시 예에서 하향 전송에 해당하는 트래픽의 AC보다 상향 전송 트리거링에 해당하는 트래픽의 AC의 우선 순위가 높은 경우, AP인 무선 통신 단말은 상향 전송을 트리거링할 수 있다. 반대인 경우, 무선 통신 단말은 하향 전송을 시작할 수 있다. 하향 전송에 해당하는 트래픽의 AC와 상향 전송 트리거링에 해당하는 트래픽의 AC가 동일한 경우, AP인 무선 통신 단말은 네트워크 특성에 따라 전송 순서를 결정할 수 있다. AP인 무선 통신 단말은 상향 전송을 트리거링하기 위한 큐와 하향 전송을 위한 큐간의 경쟁에서 진 하향 전송 트래픽 또는 특정 트래픽에 대한 상향 전송 트리거링을 해당하는 큐에 다시 저장한다.
또한, AP인 무선 통신 단말은 상향 전송 트리거링 순서 결정을 위한 별도의 큐나 EDCAF를 운영하지 않고, 수신한 BSR을 기초로 상향 전송 트리거링 시점을 결정할 수 있다.
도 29의 실시 예에서, AP인 무선 통신 단말은 상향 전송 트리거링을 위한 큐와 하향 전송을 위한 큐를 운영한다. AP인 무선 통신 단말은 상향 전송을 위한 큐에서 남은 대기 시간이 가장 짧은, AC_VI에 해당하는 트래픽의 상향 전송 트리거링을 결정한다. AP인 무선 통신 단말은 하향 전송을 위한 큐에서 남은 대기 시간이 가장 짧은, AC_VI에 해당하는 트래픽의 하향 전송을 결정한다. 이때, AP인 무선 통신 단말은 AC_VI에 해당하는 트래픽의 상향 전송 트리거링과 AC_VI에 해당하는 트래픽의 하향 전송간의 경쟁 절차를 통해 어느 하나를 선택할 수 있다. 구체적으로 AP인 무선 통신 단말은 남은 대기 시간이 더 짧은 AC_VI에 해당하는 트래픽의 상향 전송 트리거링을 선택하여, AC_VI에 해당하는 트래픽의 상향 전송을 트리거링할 수 있다.
도 30은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR 전송을 위한 큐를 운영하는 방법을 보여준다.
무선 통신 단말이 전송한 BSR에 대한 ACK을 수신한 경우, 무선 통신 단말은 BSR이 리포트하는 트래픽이 저장된 큐의 EDCAF를 중지할 수 있다. BSR 전송이 성공적으로 이루어진 경우, AP인 무선 통신 단말이 BSR이 리포트하는 트래픽에 대한 상향 전송을 트리거링하는 시점과 무선 통신 단말이 해당 트래픽에 대한 전송을 시도하는 시점이 겹칠 수 있기 때문이다. 이때, 무선 통신 단말은 BSR이 리포트하는 트래픽이 저장된 큐 이외의 큐에 대한 EDCAF를 중지하지 않을 수 있다. 따라서 BSR에 리포트된 트래픽에 대한 상향 전송이 트리거링 될 때, 무선 통신 단말은 AP인 무선 통신 단말에게 BSR이 리포트하는 트래픽과 BSR에 의해 리포트 되지 않은 트래픽을 함께 전송할 수 있다. 또한, 무선 통신 단말은 SR에 의해 리포트 되지 않은 트래픽을 UL SU 전송을 통해 전송할 수 있다.
무선 통신 단말이 BSR이 리포트하는 트래픽을 전송하고, 해당 트래픽 전송에 대한 ACK을 수신한 경우, 무선 통신 단말은 BSR이 리포트하는 트래픽이 저장된 큐의 EDCAF를 다시 시작할 수 있다. 이때, 무선 통신 단말은 전송이 성공한 트래픽을 큐에서 제거할 수 있다. 또한, EDCAF가 정지된 시간으로부터 일정 시간 내에 무선 통신 단말이 리포트된 트래픽을 전송하지 못 하거나, 해당 트래픽 전송에 대한 ACK을 수신하지 못한 경우, 무선 통신 단말은 BSR이 리포트하는 트래픽이 저장된 큐의 EDCAF를 다시 시작할 수 있다.
도 30의 실시 예에서, 제1 스테이션(STA1)은 BSR이 리포트하는 트래픽을 저장하는 AC_VO 큐의 EDCAF를 중지한다. 또한, 제2 스테이션(STA2)은 BSR이 리포트하는 트래픽을 저장하는 AC_BE 큐의 EDCAF를 중지한다. 또한, 제3 스테이션(STA3)은 BSR이 리포트하는 트래픽을 저장하는 AC_VI 큐의 EDCAF를 중지한다. 또한, 제4 스테이션(STA4)은 BSR이 리포트하는 트래픽을 저장하는 AC_VI 큐의 EDCAF를 중지한다.
도 31은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR 전송을 위한 큐를 운영하는 방법을 보여준다.
무선 통신 단말이 전송한 BSR에 대한 ACK을 수신한 경우, 무선 통신 단말은 모든 큐의 EDCAF를 중지할 수 있다. 이를 통해, 과도한 접속 시도로 인한 전송 충돌을 방지할 수 있다. 이때, 무선 통신 단말의 상향 전송이 트리거링되는 경우, 무선 통신 단말은 모든 큐의 EDCAF를 재개할 수 있다. 또한, EDCAF가 정지된 시간으로부터 일정 시간 내에 무선 통신 단말이 리포트된 트래픽을 전송하지 못 하거나, 해당 트래픽 전송에 대한 ACK을 수신하지 못한 경우, 무선 통신 단말은 모든 큐의 EDCAF를 다시 시작할 수 있다.
도 31의 실시 예에서, 제1 스테이션(STA1) 내지 제4 스테이션(STA4)은 도 30의 실시 예와 달리 BSR에 대한 ACK을 수신한 때로부터 모든 큐의 EDCAF를 중지한다.
도 32는 본 발명의 실시 예에 따른 무선 통신 단말이 BSR 전송을 위한 큐를 운영하는 방법을 보여준다.
무선 통신 단말이 전송한 BSR에 대한 ACK을 수신하고, BSR이 리포트하는 트래픽이 저장된 큐의 EDCAF를 중지할 때, BSR이 리포트하는 트래픽과 동일한 대기 시간을 갖는 트래픽이 저장된 큐가 있는 경우, 무선 통신 단말은 BSR이 리포트하는 트래픽과 동일한 대기 시간을 갖는 트래픽 전송 시 BSR이 리포트하는 트래픽과 내부 충돌 해결법을 적용할 수 있다. 무선 통신 단말이 BSR이 리포트하는 트래픽과 동일한 대기 시간을 갖는 트래픽 전송을 시도와 AP인 무선 통신 단말이 상향 전송 트리거링이 충돌할 수 있기 때문이다.
도 32의 실시 예에서, 제3 스테이션(STA 3)은 동일한 대기 시간을 갖는 트래픽 중 더 높은 우선 순위를 갖는 트래픽을 리포트하는 BSR을 전송한다. 구체적으로 AC_VI인 트래픽과 AC가 AC_BE인 트래픽의 대기 시간이 동일하다. 이때, AC_VI의 우선 순위가 AC_BE의 우선 순위보다 빠르므로, 제3 스테이션(STA3)은 BSR을 통해 AC_VI에 해당하는 트래픽을 리포트한다. AC_VI인 트래픽과 AC가 AC_BE인 트래픽의 대기 시간이 동일하므로, AC가 AC_BE인 트래픽이 백오프 카운터가 0이될 때, 제3 스테이션(STA3)은 AC가 AC_BE인 트래픽과 AC가 AC_VI인 트래픽 사이에 내부 충돌이 일어난 것 같이 취급한다.
도 33은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR 전송을 위한 큐를 운영하는 방법을 보여준다.
도 32의 실시 예에서, 내부 충돌 해결법이 적용되므로, BSR이 리포트하는 트래픽의 대기 시간과 동일한 크기의 대기 시간을 갖는 트래픽은 백오프 카운터를 획득하여 다시 큐에 저장된다. BSR이 리포트하는 트래픽의 전송을 트리거링하는 트리거 프레임이 BSR이 리포트하는 트래픽의 대기 시간보다 빨리 수신 되는 경우, 무선 통신 단말은 BSR이 리포트하는 트래픽의 대기 시간과 동일한 크기의 대기 시간을 갖는 트래픽에 내부 충돌 해결법을 적용하지 않을 수 있다. 이를 통해, 무선 통신 단말은 BSR이 리포트하는 트래픽의 대기 시간과 동일한 크기의 대기 시간을 갖는 트래픽을 백오프 카운터 획득 등 재전송 준비 절차 없이 전송할 수 있다.
도 33의 실시 예에서, 제3 스테이션(STA 3)은 동일한 대기 시간을 갖는 트래픽 중 더 높은 우선 순위를 갖는 트래픽을 리포트하는 BSR을 전송한다. 구체적으로 AC_VI인 트래픽과 AC가 AC_BE인 트래픽의 대기 시간이 동일하다. 이때, AC_VI의 우선 순위가 AC_BE의 우선 순위보다 빠르므로, 제3 스테이션(STA3)은 BSR을 통해 AC_VI에 해당하는 트래픽을 리포트한다. AC_VI인 트래픽과 AC가 AC_BE인 트래픽의 대기 시간이 동일하나, 제3 스테이션(STA3)은 AC가 AC_BE인 트래픽이 백오프 카운터가 0이되기 전에 AC가 AC_VI인 트래픽을 트리거링하는 트리거 프레임을 수신한다. 따라서 AC가 AC_BE인 트래픽이 백오프 카운터가 0이될 때, 제3 스테이션(STA3)은 AC가 AC_BE인 트래픽을 전송한다..
도 34는 본 발명의 실시 예에 따른 복수의 무선 통신 단말이 동시 상향 전송을 하는 동작을 보여준다.
무선 통신 단말이 수신한 트리거 프레임이 시그널링하는 상향 전송 길이가 트리거 프레임이 트리거링하는 AC에 해당하는 트래픽 전송에 소요되는 시간보다 짧은 경우, 무선 통신 단말은 트리거 프레임이 트리거링하는 트래픽과 트리거 프레임이 트리거링하는 AC 다음으로 높은 우선 순위를 갖는 트래픽을 함께 전송할 수 있다.
도 34의 실시 예에서, AP는 제1 스테이션(STA1) 내지 제4 스테이션(STA4)에게 BSR 전송을 트리거링하는 트리거 프레임을 전송한다. AP는 BSR을 수신하고, 제1 스테이션(STA1) 내지 제4 스테이션(STA4)에게 BSR에 대한 ACK을 전송한다.
AP는 제1 스테이션(STA1) 내지 제4 스테이션(STA4)의 상향 전송을 트리거링하는 트리거 프레임을 전송한다. 특히, AP는 제1 스테이션(STA1)에게 AC가 AC_VI인 트래픽 전송을 트리거링한다. 제1 스테이션(STA1)은 제1 스테이션(STA1) 버퍼에 저장하고 있는 AC_VI에 해당하는 트래픽을 전송에 소요되는 시간이 트리거 프레임이 트리거링하는 전송길이보다 짧은 것을 확인한다. 따라서 제1 스테이션(STA1)은 AC_VI에 해당하는 트래픽을 전송하고, AC_VO에 해당하는 트래픽을 전송한다.
AP인 무선 통신 단말이 BSR을 통해 리포트된 트래픽의 크기보다 작은 크기의 트래픽 상향 전송을 트리거링한 경우, AP인 무선 통신 단말은 트리거링 되지 않고 남아있는 트래픽의 전송 순서를 결정할 때 사용한 백오프 카운터 값을 재사용할 수 있다. 이때, 리포트된 트래픽의 크기보다 작은 크기의 트래픽 상향 전송에 내부 충돌 해결법이 적용된 경우, 무선 통신 단말은 트리거링 되지 않고 남아있는 트래픽의 전송 순서를 결정할 때 새로운 백오프 카운터 값을 사용할 수 있다.
도 35는 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 동작을 보여준다.
AP인 무선 통신 단말이 DL 데이터를 전송할 때, AP 무선 통신 단말은 트리거 프레임을 DL 데이터와 함께 전송하거나 MAC 헤더의 UL 스케줄링 전송하여 DL 데이터를 수신하는 무선 통신 단말의 BSR 전송을 트리거링할 수 있다.
이때, 무선 통신 단말은 AP인 무선 통신 단말에게 ACK을 전송할 때, BSR을 함께 전송할 수 있다. 구체적으로 무선 통신 단말은 AP인 무선 통신 단말에게 ACK을 전송할 때, MAC 헤더를 통해 BSR을 함께 전송할 수 있다. 구체적인 실시 예에서, 무선 통신 단말은 AP인 무선 통신 단말에게 ACK을 전송할 때, MAC 헤더의 HE-A control 필드를 통해 BSR을 함께 전송할 수 있다. 또한, 무선 통신 단말은 QoS NULL MPDU를 통해 BSR을 전송할 수 있다.
도 35의 실시 예에서, AP는 스테이션에게 DL 데이터를 전송한다. 이때, AP는 트리거 프레임을 DL 데이터와 함께 전송하거나 MAC 헤더의 UL 스케줄링 전송한다. 스테이션은 AP에게 DL 데이터에 대한 ACK을 전송한다. 이때, 스테이션은 MAC 헤더의 HE-A control 필드를 통해 BSR을 전송하거나 QoS NULL MPDU를 통해 BSR을 전송할 수 있다. AP는 스테이션으로부터 수신한 BSR을 기초로 상향 전송을 스케줄링한다. 이후 AP는 상향 전송 스케줄링에 따라 트리거 프레임을 통해 스테이션의 상향 전송을 트리거링한다.
도 36은 본 발명의 실시 예에 따른 무선 통신 단말이 BSR을 전송하는 동작을 보여준다.
AP인 무선 통신 단말은 도 35를 통해 설명한 것과 같이 DL 데이터 전송과 함께 BSR 전송을 트리거링하여 BSR을 수신할 수 있다. 이때, AP인 무선 통신 단말이 ACK과 함께 BSR을 수신하므로, AP인 무선 통신 단말의 버퍼에 있는 트래픽 정보를 충분히 수신하지 못할 수 있다. AP인 무선 통신 단말이 버퍼에 있는 트래픽 정보를 충분히 수신하지 못한 경우, AP인 무선 통신 단말은 무작위 접속을 통해 BSR 전송을 트리거링하는 트리거 프레임을 전송할 수 있다.
도 36의 실시 예에서, AP는 스테이션에게 DL 데이터를 전송한다. 이때, AP는 트리거 프레임을 DL 데이터와 함께 전송하거나 MAC 헤더의 UL 스케줄링 전송한다. 스테이션은 AP에게 DL 데이터에 대한 ACK을 전송한다. 이때, 스테이션은 MAC 헤더의 HE-A control 필드를 통해 BSR을 전송하거나 QoS NULL MPDU를 통해 BSR을 전송할 수 있다. 이후 AP는 스테이션에게 무작위 접속을 통해 BSR 전송을 트리거링하는 트리거 프레임 전송한다. AP는 복수의 스테이션으로부터 BSR을 수신하고, BSR을 기초로 상향 전송을 스케줄링한다. 이후 AP는 상향 전송 스케줄링에 따라 트리거 프레임을 통해 복수의 스테이션의 상향 전송을 트리거링한다.
도 37은 본 발명의 실시 예에 따른 무선 통신 단말의 동작을 보여준다.
무선 통신 단말은 다중 사용자 전송을 트리거링하는 트리거 프레임을 수신한다(S3701). 무선 통신 단말은 AP인 무선 통신 단말로부터 다중 사용자 전송을 트리거링하는 트리거 프레임을 수신할 수 있다.
무선 통신 단말은 트리거 프레임을 기초로 프레임을 전송한다(S3703).
이때, 트리거 프레임은 도 6 내지 도 15를 통해 설명한 AP인 무선 통신 단말과 링크를 설정하기 위한 프레임의 전송을 트리거링하는 프레임일 수 있다. 구체적으로 무선 통신 단말은 AP인 무선 통신 단말과 링크를 설정하기 위한 프레임이 다중 사용자 상향(UpLink Multi User, UL MU) 전송을 통해 전송되는 것을 트리거링하는 트리거 프레임을 수신할 수 있다. 이때, 무선 통신 단말은 앞서 설명한 바와 같이 AP인 무선 통신 단말과 결합되지 않은 무선 통신 단말일 수 있다. 또한, 무선 통신 단말은 AP인 무선 통신 단말로부터 인증 받지 못한 무선 통신 단말일 수 있다. 또한, 무선 통신 단말은 트리거 프레임을 프레임을 기초로 링크를 설정하기 위한 프레임을 전송할 수 있다. 구체적으로 무선 통신 단말은 트리거 프레임을 프레임을 기초로 링크를 설정하기 위한 프레임을 UL MU 전송을 통해 전송할 수 있다. 이때, 링크를 설정하기 위한 프레임은 인증 요청 프레임일 수 있다. 또한, 링크를 설정하기 위한 프레임은 결합 요청 프레임일 수 있다. 또한, 트리거 프레임은 앞서 설명한 바와 같이 AP인 무선 통신 단말과 링크를 설정하기 위한 프레임을 임의 접속을 통해 전송할 것을 트리거링할 수 있다.
또한, 무선 통신 단말은 트리거 프레임이 시그널링하는 결합 식별자(AID)를 기초로 트리거 프레임이 링크를 설정하기 위한 프레임의 전송을 트리거링하는지 판단할 수 있다. 이때, AID는 트리거 프레임을 기초로 상향 전송을 할 무선 통신 단말을 지시할 수 있다. 또한, AID는 RU 별로 상향 전송을 할 무선 통신 단말을 지시할 수 있다. 구체적으로 무선 통신 단말은 트리거 프레임이 트리거링하는 무선 통신 단말을 나타내는 AID가 미리 지정된 값인지를 기초로 트리거 프레임이 링크를 설정하기 위한 프레임의 전송을 트리거링하는지 판단할 수 있다. 이때, 미리 지정된 값은 AP인 무선 통신 단말이 결합 이후 상기 무선 통신 단말에게 할당하는 AID와 구별되는 값일 수 있다. 구체적으로 미리 지정된 값은 결합 이후 무선 통신 단말에게 할당될 수 있는 AID 값의 범위 밖의 수 중 어느 하나에 해당할 수 있다. 구체적인 실시 예에서 미리 지정된 값은 결합 이후 무선 통신 단말에게 할당되는 AID의 리저브드(reserved) 값 중 하나일 수 있다. 예컨대, 미리 지정된 값은 2007 이후의 어느 하나의 수일 수 있다.
트리거 프레임은 링크를 설정하기 위한 프레임과 링크 설정과 관련 없는 프레임의 전송을 트리거링할 수 있다. 구체적으로 트리거 프레임은 링크를 설정하기 위한 프레임이 제1 RU를 통해 상향 전송될 것을 트리거링하고, 링크 설정과 관련 없는 프레임이 제2 RU를 통해 상향 전송될 것을 트리거링할 수 있다. 이때, 링크 설정과 관련 없는 프레임은 데이터 프레임, 컨트롤 프레임 및 매니지먼트 프레임 중 적어도 어느 하나일 수 있다.
트리거 프레임은 결합 절차가 시작되까지 소요되는 최소 시간을 나타내는 결합 지연 정보를 포함할 수 있다. 무선 통신 단말은 결합 지연 정보를 기초로 결합 절차에 참여 여부를 결정할 수 있다. 구체적으로 무선 통신 단말은 결합 지연 정보를 기초로 결합 요청 프레임의 전송을 트리거링하는 트리거 프레임을 기초로 결합 요청 프레임을 전송할지 결정할 수 있다. 구체적인 실시 예에서 무선 통신 단말은 결합 지연 정보가 나타내는 지연 시간이 일정 기준보다 작은 경우, 결합 지연 정보를 포함하는 트리거 프레임 이후 전송될 트리거 프레임을 기초로 AP인 무선 통신 단말에게 결합 요청 프레임을 전송할 수 있다.
무선 통신 단말은 링크를 설정하기 위한 프레임의 전송을 트리거링하는 트리거 프레임이 스케줄링된 횟수를 수신할 수 있다. 구체적으로 무선 통신 단말은 비콘을 키초로 링크를 설정하기 위한 프레임의 전송을 트리거링하는 트리거 프레임이 스케줄링된 횟수를 수신할 수 있다. 이때, 트리거 프레임이 스케줄링된 횟수는 지정된 기간 내에서 스케줄링된 횟수를 나타낼 수 있다. 구체적으로 지정된 기간은 비콘의 전송 주기일 수 있다. 무선 통신 단말은 링크 설정을 트리거링하는 트리거 프레임이 스케줄링된 횟수를 기초로 임의 접속을 위한 OBO 카운터를 획득할 수 있다. 구체적으로 무선 통신 단말은 트리거 프레임이 스케줄링된 횟수를 기초로 OBO 카운터의 범위를 증가시킬 수 있다.
AP인 무선 통신 단말은 링크 설정을 위한 프레임에 대한 응답 프레임을 DL MU 전송을 통해 전송할 수 있다. 따라서 무선 통신 단말은 AP인 무선 통신 단말로부터 링크를 설정하기 위한 프레임 대한 응답 프레임을 DL MU 전송을 통해 수신할 수 있다. 이때, AP인 무선 통신 단말은 DL MU 전송을 위한 PPDU의 시그널링 필드에 트리거 프레임에서 링크를 설정하기 위한 프레임을 트리거링하기 위해 사용된 임시 AID를 삽입할 수 있다. 또한, 무선 통신 단말은 DL MU 전송을 위한 PPDU의 시그널링 필드가 링크를 설정하기 위한 프레임의 상향 전송을 트리거링 하기 위해 사용된 임시 AID를 포함하는지를 기초로 링크를 설정하기 위한 프레임에 대한 응답 프레임을 수신할 수 있다. 이때, PPDU의 시그널링 필드는 상기 PPDU를 수신할 무선 통신 단말을 나타내는 필드일 수 있다. 또한, 임시 AID는 AP인 무선 통신 단말이 결합 이후 무선 통신 단말에게 할당하는 AID와 구별되는 값일 수 있다. 또한, 임시 AID의 값은 앞서 설명한 바와 같이 결합 이후 AP인 무선 통신 단말과 결합한 무선 통신 단말에게 할당될 수 있는 AID 값의 범위 밖의 수일 수 있다.
또한, 트리거 프레임은 앞서 설명한 MU-RTS 프레임일 수 있다. 또한, 트리거 프레임을 기초로 전송되는 프레임은 동시 CTS 프레임일 수 있다. 따라서 무선 통신 단말은 도 16 내지 도 19를 통해 설명한 실시 예와 같이 동작할 수 있다. 구체적으로 무선 통신 단말은 도 16 내지 도 19를 통해 설명한 것과 같이 동시 CTS 프레임을 전송할 수 있다. 또한, AP인 무선 통신 단말은 도 20 내지 도 27를 통해 설명한 실시 예들과 같이 트리거 프레임의 파라미터를 설정할 수 있다. 또한, 무선 통신 단말은 도 20 내지 도 27를 통해 실시 예들과 같이 트리거를 기초로 하는 PPDU를 설정할 수 있다.
또한, AP인 무선 통신 단말은 도 28 내지 도 36에서 설명한 실시 예들과 같이 상향 전송을 트리거링할 트래픽의 순서를 결정할 수 있다. 구체적으로 AP인 무선 통신 단말은 AP인 무선 통신 단말이 수신한 BSR을 기초로 상향 전송을 트리거링할 트래픽의 순서를 결정할 수 있다. 또한, 무선 통신 단말은 도 28 내지 도 36에서 설명한 실시 예들과 같이 BSR을 전송할 수 있다.
상기와 같이 무선랜 통신을 예로 들어 본 발명을 설명하였지만, 본 발명은 이에 한정하지 않으며 셀룰러 통신 등 다른 통신 시스템에서도 동일하게 적용될 수 있다. 또한 본 발명의 방법, 장치 및 시스템은 특정 실시 예와 관련하여 설명되었지만, 본 발명의 구성 요소, 동작의 일부 또는 전부는 범용 하드웨어 아키텍처를 갖는 컴퓨터 시스템을 사용하여 구현될 수 있다.
이상에서 실시 예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (10)
- 무선으로 통신하는 무선 통신 단말에서,
송수신부; 및
프로세서를 포함하고,
상기 프로세서는
베이스 무선 통신 단말로부터 제1 트리거 프레임을 수신하고, 상기 제1 트리거 프레임은 상기 무선 통신 단말의 전송을 트리거하고 상기 무선 통신 단말에게 할당된 RU(resource unit)를 지시하고,
상기 제1 트리거 프레임에 대한 응답으로 제1 응답 프레임을 상기 제1 트리거 프레임에서 지시된 상기 RU를 통해 상기 베이스 무선 통신 단말에게 전송하고,
상기 무선 통신 단말이 상기 제1 응답 프레임에 대한 ACK을 수신한 경우, 제1 응답 프레임에 대응하는 EDCAF(enhanced distributed channel access function)를 중단하고,
상기 EDCAF는 큐에 있는 프레임이 전송되는 시간을 결정하는 함수이고 액세스 카테고리 별로 정의되는
무선 통신 단말. - 제1항에서,
상기 프로세서는
상기 베이스 무선 통신 단말로부터 제2 트리거 프레임을 수신하고, 상기 제2 트리거 프레임은 상기 무선 통신 단말의 전송을 트리거하고 상기 무선 통신 단말에게 할당된 RU를 지시하고,
상기 제2 트리거 프레임에 대한 응답으로 제2 응답 프레임을 상기 제2 트리거 프레임에서 지시된 RU를 통해 상기 베이스 무선 통신 단말에게 전송하고,
상기 무선 통신 단말이 상기 제2 응답 프레임에 대한 ACK을 수신한 경우, 상기 제2 응답 프레임에 대응하는 EDCAF를 다시 시작하는
무선 통신 단말. - 제1항에서,
상기 프로세서는
상기 무선 통신 단말이 상기 제1 응답 프레임에 대한 ACK을 수신한 때로부터 미리 지정된 시간만큼 경과한 때에 상기 제1 응답 프레임에 대응하는 EDCAF를 다시 시작하는
무선 통신 단말. - 제3항에서,
상기 프로세서는
모든 EDCAF를 다시 시작하는
무선 통신 단말. - 제1항에서,
제1 응답 프레임은 BSR(buffer status report)인
무선 통신 단말. - 무선으로 통신하는 무선 통신 단말의 동작 방법에서,
베이스 무선 통신 단말로부터 제1 트리거 프레임을 수신하고, 상기 제1 트리거 프레임은 상기 무선 통신 단말의 전송을 트리거하고 상기 무선 통신 단말에게 할당된 RU(resource unit)를 지시하는 단계;
상기 제1 트리거 프레임에 대한 응답으로 제1 응답 프레임을 상기 제1 트리거 프레임에서 지시된 상기 RU를 통해 상기 베이스 무선 통신 단말에게 전송하는 단계; 및
상기 무선 통신 단말이 상기 제1 응답 프레임에 대한 ACK을 수신한 경우, 상기 제1 응답 프레임에 해당하는 EDCAF(enhanced distributed channel access function)를 중단하는 단계를 포함하고,
상기 EDCAF는 큐에 있는 프레임이 전송되는 시간을 결정하는 함수이고 액세스 카테고리 별로 정의되는
동작 방법. - 제6항에서,
상기 동작 방법은
상기 베이스 무선 통신 단말로부터 제2 트리거 프레임을 수신하고, 상기 제2 트리거 프레임은 상기 무선 통신 단말의 전송을 트리거하고 상기 무선 통신 단말에게 할당된 RU를 지시하는 단계;
상기 제2 트리거 프레임에 대한 응답으로 제2 응답 프레임을 상기 제2 트리거 프레임에서 지시된 상기 RU를 통해 상기 베이스 무선 통신 단말에게 전송하는 단계; 및
상기 무선 통신 단말이 상기 제2 응답 프레임에 대한 ACK을 수신한 경우, EDCAF를 다시 시작하는 단계를 더 포함하는
동작 방법. - 제7항에서,
상기 동작 방법은
상기 무선 통신 단말이 상기 제1 응답 프레임에 대한 ACK을 수신한 때로부터 미리 지정된 시간만큼 경과한 때에 상기 제2 응답 프레임에 해당하는 EDCAF를 다시 시작하는 단계를 더 포함하는
동작 방법. - 제7항에서,
상기 EDCAF를 다시 시작하는 단계는
모든 EDCAF를 다시 시작하는 단계를 포함하는
동작 방법. - 제6항에서,
제1 응답 프레임은 BSR(buffer status report)인
동작 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227025799A KR102566115B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160029136 | 2016-03-10 | ||
KR1020160029136 | 2016-03-10 | ||
KR20160041302 | 2016-04-04 | ||
KR1020160041302 | 2016-04-04 | ||
KR1020160043773 | 2016-04-09 | ||
KR20160043773 | 2016-04-09 | ||
KR20160045142 | 2016-04-12 | ||
KR1020160045142 | 2016-04-12 | ||
PCT/KR2017/002644 WO2017155359A1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
KR1020187025838A KR102349919B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선통신 단말 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187025838A Division KR102349919B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선통신 단말 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227025799A Division KR102566115B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220004786A KR20220004786A (ko) | 2022-01-11 |
KR102426759B1 true KR102426759B1 (ko) | 2022-07-29 |
Family
ID=59790766
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187025838A KR102349919B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선통신 단말 |
KR1020227000098A KR102426759B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
KR1020227025799A KR102566115B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
KR1020227000094A KR102417274B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187025838A KR102349919B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선통신 단말 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227025799A KR102566115B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
KR1020227000094A KR102417274B1 (ko) | 2016-03-10 | 2017-03-10 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
Country Status (3)
Country | Link |
---|---|
US (4) | US10750403B2 (ko) |
KR (4) | KR102349919B1 (ko) |
WO (1) | WO2017155359A1 (ko) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3331271B1 (en) * | 2015-09-09 | 2023-09-20 | Sony Group Corporation | Communications device and communications method |
KR102349919B1 (ko) | 2016-03-10 | 2022-01-12 | 주식회사 윌러스표준기술연구소 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선통신 단말 |
KR102349928B1 (ko) | 2016-04-04 | 2022-01-12 | 주식회사 윌러스표준기술연구소 | 프래그멘테이션을 이용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말 |
US11778663B1 (en) * | 2016-09-20 | 2023-10-03 | Marvell Asia Pte, Ltd. | Methods and systems for enabling communications from a station to an access point using a backoff counter and carrier sensing |
US20190082443A1 (en) * | 2017-09-12 | 2019-03-14 | Apple Inc. | Communication of Persistent or Predictive Scheduling Information |
US11581997B2 (en) * | 2018-04-06 | 2023-02-14 | Lg Electronics Inc. | Method and device for transmitting PPDU on basis of FDR in wireless LAN system |
US11490261B2 (en) | 2018-07-10 | 2022-11-01 | Lg Electronics Inc. | Method and device for transmitting data in wireless LAN system |
US20220312522A1 (en) * | 2019-07-02 | 2022-09-29 | Lg Electronics Inc. | Mapping of tid and link in multi-link |
CN116981100B (zh) | 2019-07-05 | 2024-06-11 | 华为技术有限公司 | 通信方法及装置 |
WO2021010663A1 (ko) * | 2019-07-12 | 2021-01-21 | 한국전자통신연구원 | 무선랜 통신 시스템에서 다중 링크 전송을 위한 링크 설정 방법 및 장치 |
WO2021075932A1 (ko) * | 2019-10-17 | 2021-04-22 | 엘지전자 주식회사 | 멀티플 ru 할당을 위한 시그널링 |
CN113993090B (zh) | 2020-07-27 | 2024-04-09 | 华为技术有限公司 | 适用于多链路的组播业务传输方法及装置 |
CN114071506A (zh) | 2020-08-07 | 2022-02-18 | 华为技术有限公司 | 适用于多链路的单播业务指示方法及相关装置 |
JP2023540512A (ja) * | 2020-09-07 | 2023-09-25 | エルジー エレクトロニクス インコーポレイティド | 無線lanシステムにおけるmld間リンクに対する情報を獲得する方法及び装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016003037A1 (ko) | 2014-07-03 | 2016-01-07 | 엘지전자(주) | 무선 통신 시스템에서 다중 사용자 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치 |
WO2016028131A1 (ko) | 2014-08-22 | 2016-02-25 | 엘지전자(주) | 무선 통신 시스템에서 상향링크 다중 사용자 전송 방법 및 이를 위한 장치 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4440037B2 (ja) | 2004-08-11 | 2010-03-24 | 株式会社東芝 | 通信装置及び通信方法 |
WO2006016745A1 (en) | 2004-08-12 | 2006-02-16 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting ack frame |
KR100678943B1 (ko) * | 2004-08-24 | 2007-02-07 | 삼성전자주식회사 | 블록 ack 프레임 전송방법 및 장치 |
KR101100198B1 (ko) * | 2005-04-11 | 2011-12-28 | 엘지전자 주식회사 | 멀티모드 단말에서의 초기 설정 및 링크 설정 방법 |
US20070074090A1 (en) * | 2005-09-28 | 2007-03-29 | Trainin Solomon B | System, method and device of controlling the activation of a processor |
US7675911B2 (en) | 2007-03-01 | 2010-03-09 | Samsung Electronics Co., Ltd. | Method and system for acknowledgements in wireless communications |
EP2441201A4 (en) | 2009-06-13 | 2017-06-21 | Nokia Technologies Oy | Use of block acknowledgement policy for wireless networks |
KR101574255B1 (ko) | 2009-09-02 | 2015-12-04 | 에스케이텔레콤 주식회사 | 근거리 무선 네트워크 기반 패킷 전송 시스템 및 그 방법 |
US9794032B2 (en) * | 2010-03-05 | 2017-10-17 | Lg Electronics Inc. | PPDU receiving method and apparatus based on the MIMO technique in a WLAN system |
KR101764955B1 (ko) * | 2010-11-12 | 2017-08-03 | 인터디지탈 패튼 홀딩스, 인크 | 채널 통합 및 매체 접근 제어 재전송을 수행하는 방법 및 장치 |
WO2012070811A2 (en) * | 2010-11-22 | 2012-05-31 | Samsung Electronics Co., Ltd. | Method and system for minimizing latencies for content protection in audio/video networks |
US9326285B2 (en) * | 2012-02-28 | 2016-04-26 | Lg Electronics Inc. | Method for setting service period in wireless communication system and apparatus for same |
US9253290B2 (en) | 2012-02-29 | 2016-02-02 | Qualcomm Incorporated | Apparatus and methods for block acknowledgment compression |
KR20130104174A (ko) | 2012-03-13 | 2013-09-25 | 삼성전자주식회사 | 이동통신 시스템에서 클러스터 사이 협력 통신을 위한 방법 및 장치 |
US20150092697A1 (en) | 2012-05-11 | 2015-04-02 | Agency For Science, Technology And Research | Methods for determining information about a communication parameter and communication devices |
US9504089B2 (en) | 2012-05-14 | 2016-11-22 | Broadcom Corporation | System and method for wireless station bridging |
KR102064910B1 (ko) | 2012-07-16 | 2020-01-10 | 퀄컴 인코포레이티드 | 블록 확인응답 압축을 위한 장치 및 방법들 |
EP3379888B1 (en) * | 2012-09-04 | 2019-11-13 | Electronics and Telecommunications Research Institute | Apparatus and method for channel access |
CN103873190B (zh) | 2012-12-14 | 2017-11-24 | 中兴通讯股份有限公司 | 端到端间业务性能的传递方法、系统及终端 |
WO2014110361A1 (en) | 2013-01-11 | 2014-07-17 | Interdigital Patent Holdings, Inc. | Range extension in wireless local area networks |
ITFI20130011A1 (it) | 2013-01-15 | 2014-07-16 | V E T Srl Sa | Sistema e metodo per telecomunicazioni dati con terminali mobili |
JP6062286B2 (ja) * | 2013-02-27 | 2017-01-18 | 株式会社東芝 | 無線通信装置及びロギングシステム |
KR102150036B1 (ko) * | 2013-07-15 | 2020-08-31 | 한국전자통신연구원 | Uplink mu-mimo 통신을 위한 uplink mu-mimo 송신 요청 방법 |
WO2015032045A1 (zh) * | 2013-09-05 | 2015-03-12 | 华为技术有限公司 | 基于多信道的数据发送方法及装置 |
CN106464354B (zh) | 2014-06-19 | 2020-07-07 | Lg电子株式会社 | 用于发送帧的方法和设备 |
WO2016003056A1 (ko) * | 2014-07-03 | 2016-01-07 | 엘지전자(주) | 무선 통신 시스템에서 다중 사용자(multi-user) 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치 |
US9929839B2 (en) * | 2014-08-08 | 2018-03-27 | Futurewei Technologies, Inc. | Device, network, and method for communications with fast adaptive transmission and reception |
WO2016027937A1 (ko) * | 2014-08-21 | 2016-02-25 | 엘지전자 주식회사 | 액티브 스캐닝을 수행하는 방법 및 장치 |
CN106605382B (zh) * | 2014-08-27 | 2020-11-06 | Lg 电子株式会社 | 在无线通信系统中的发送数据的方法及用于其装置 |
EP3188536B1 (en) | 2014-08-29 | 2021-04-14 | Kabushiki Kaisha Toshiba | Integrated circuit for wireless communication, wireless communication terminal, and wireless communication method |
US20180220443A1 (en) * | 2014-08-31 | 2018-08-02 | Lg Electronics Inc. | Method and device by which station transmits signal in wireless communication system |
US9929847B2 (en) | 2014-12-23 | 2018-03-27 | Qualcomm Incorporated | Shortened block acknowledgement with fragmentation acknowledgement signaling |
US10257854B2 (en) * | 2015-02-02 | 2019-04-09 | Samsung Electronics Co., Ltd. | Management of uplink multi-user transmissions in wireless local area networks |
WO2016163850A1 (ko) * | 2015-04-09 | 2016-10-13 | 엘지전자 주식회사 | 무선랜 시스템에서 액세스 방법 선택에 관련된 프레임 송수신 방법 및 장치 |
US10116360B2 (en) * | 2015-04-23 | 2018-10-30 | Newracom, Inc. | Method and apparatus for uplink multi-user transmission in a high efficiency wireless LAN |
US10492223B2 (en) * | 2015-05-21 | 2019-11-26 | Newracom, Inc. | Channel access for multi-user communication |
US20170127446A1 (en) * | 2015-11-02 | 2017-05-04 | Po-Kai Huang | Station (sta) and method for neighborhood awareness network (nan) communication using paging time blocks |
CN106922034B (zh) * | 2015-12-25 | 2020-03-20 | 华为技术有限公司 | 一种接入方法及装置 |
US10873878B2 (en) | 2016-02-19 | 2020-12-22 | Nxp Usa, Inc. | Acknowledgement of transmissions in a wireless local area network |
JP2019513308A (ja) | 2016-03-03 | 2019-05-23 | パナソニックIpマネジメント株式会社 | ブロック肯定応答送信のための通信方法及び通信装置 |
US11177908B2 (en) | 2016-03-03 | 2021-11-16 | Panasonic intellectual property Management co., Ltd | Communication method and communication apparatus for block acknowledgment transmission |
KR102349919B1 (ko) | 2016-03-10 | 2022-01-12 | 주식회사 윌러스표준기술연구소 | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선통신 단말 |
-
2017
- 2017-03-10 KR KR1020187025838A patent/KR102349919B1/ko active Application Filing
- 2017-03-10 KR KR1020227000098A patent/KR102426759B1/ko active IP Right Grant
- 2017-03-10 KR KR1020227025799A patent/KR102566115B1/ko active IP Right Grant
- 2017-03-10 WO PCT/KR2017/002644 patent/WO2017155359A1/ko active Application Filing
- 2017-03-10 KR KR1020227000094A patent/KR102417274B1/ko active IP Right Grant
-
2018
- 2018-09-07 US US16/125,530 patent/US10750403B2/en active Active
-
2020
- 2020-07-14 US US16/928,838 patent/US11304094B2/en active Active
- 2020-07-14 US US16/928,754 patent/US11700546B2/en active Active
-
2023
- 2023-06-02 US US18/204,944 patent/US20230328589A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016003037A1 (ko) | 2014-07-03 | 2016-01-07 | 엘지전자(주) | 무선 통신 시스템에서 다중 사용자 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치 |
WO2016028131A1 (ko) | 2014-08-22 | 2016-02-25 | 엘지전자(주) | 무선 통신 시스템에서 상향링크 다중 사용자 전송 방법 및 이를 위한 장치 |
Also Published As
Publication number | Publication date |
---|---|
US10750403B2 (en) | 2020-08-18 |
KR102417274B1 (ko) | 2022-07-06 |
US11304094B2 (en) | 2022-04-12 |
KR20220004786A (ko) | 2022-01-11 |
US20200344645A1 (en) | 2020-10-29 |
KR20180115724A (ko) | 2018-10-23 |
US20230328589A1 (en) | 2023-10-12 |
KR102566115B1 (ko) | 2023-08-14 |
US20200344646A1 (en) | 2020-10-29 |
US11700546B2 (en) | 2023-07-11 |
KR20220107335A (ko) | 2022-08-02 |
KR20220004785A (ko) | 2022-01-11 |
KR102349919B1 (ko) | 2022-01-12 |
WO2017155359A1 (ko) | 2017-09-14 |
KR20230119271A (ko) | 2023-08-16 |
US20190021025A1 (en) | 2019-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102426759B1 (ko) | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 | |
KR102218971B1 (ko) | 데이터 동시 전송을 위한 무선 통신 방법 및 이를 이용한 무선 통신 단말 | |
US10581582B2 (en) | Wireless communication method and wireless communication device for configuring broadband link | |
US11716171B2 (en) | Wireless communication terminal and wireless communication method for multi-user concurrent transmission | |
KR102167924B1 (ko) | 다중 사용자 상향 전송을 위한 무선 통신 단말 및 무선 통신 방법 | |
US11800510B2 (en) | Wireless communication method and wireless communication terminal | |
KR102283162B1 (ko) | 무선 통신 방법 및 무선 통신 단말 | |
KR102104274B1 (ko) | 다중 사용자 상향 전송을 위한 무선 통신 방법 및 무선 통신 단말 | |
US20200252961A1 (en) | Wireless communication method for saving power and wireless communication terminal using same | |
KR102437919B1 (ko) | 무선 통신 방법 및 무선 통신 단말 | |
KR102725470B1 (ko) | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 | |
KR20240160240A (ko) | 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말 | |
KR20210093390A (ko) | 무선 통신 방법 및 무선 통신 단말 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |