KR102426436B1 - complex-fiber for the compressing molding body and Manufacturing method thereof - Google Patents

complex-fiber for the compressing molding body and Manufacturing method thereof Download PDF

Info

Publication number
KR102426436B1
KR102426436B1 KR1020170115859A KR20170115859A KR102426436B1 KR 102426436 B1 KR102426436 B1 KR 102426436B1 KR 1020170115859 A KR1020170115859 A KR 1020170115859A KR 20170115859 A KR20170115859 A KR 20170115859A KR 102426436 B1 KR102426436 B1 KR 102426436B1
Authority
KR
South Korea
Prior art keywords
resin
fiber
composite fiber
compression molded
molded article
Prior art date
Application number
KR1020170115859A
Other languages
Korean (ko)
Other versions
KR20180028982A (en
Inventor
최익선
이휘동
정긍식
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Publication of KR20180028982A publication Critical patent/KR20180028982A/en
Priority to PCT/KR2018/010614 priority Critical patent/WO2019050376A1/en
Priority to TW107131947A priority patent/TWI798257B/en
Application granted granted Critical
Publication of KR102426436B1 publication Critical patent/KR102426436B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters

Abstract

본 발명은 압축성형체용 섬유 및 이를 제조하는 방법에 관한 것으로서, 좀 더 구체적으로는 성형성 및 형태안정성이 우수한 이성분으로 구성된 복합섬유, 이의 제조방법을 제공할 수 있는 발명이다. The present invention relates to a fiber for a compression molded article and a method for manufacturing the same, and more specifically, to an invention capable of providing a composite fiber composed of two components having excellent moldability and shape stability, and a method for manufacturing the same.

Description

압축성형체용 복합섬유 및 이의 제조방법{complex-fiber for the compressing molding body and Manufacturing method thereof}Composite fiber for compression molding and manufacturing method thereof

본 발명은 성형성 및 형태안정성과 관련된 기계적 물성이 우수한 응용제품을 제공할 수 있는 복합섬유 및 이를 높은 양산성으로 제조하는 방법에 관한 것이다.The present invention relates to a composite fiber capable of providing an application product having excellent mechanical properties related to moldability and shape stability, and a method for manufacturing the same with high mass productivity.

통상적으로, 부직포와 같은 섬유집합체의 응용제품은 위생용, 의료용, 농업용 또는 산업용과 같이 다양한 용도로 사용되어 오고 있는데, 특히 산업용으로 사용하는 부직포의 경우 인장 강도가 매우 중요한 요소로 요구되며, 이러한 요구를 충족하도록 하기 위해 일반적으로 높은 인장 강도의 제품을 얻기 위해서는 단위면적당 중량을 올려서 생산하는 방법을 사용하는 것이 보편적이다. 그런데, 이와 같이 중량을 올려서 생산하는 경우에는 제품의 두께가 동시에 증가하기 때문에 얇으면서 강도를 요구하는 제품에는 적용을 하기가 어렵다는 문제점이 있다. In general, application products of fiber aggregates such as non-woven fabrics have been used for various purposes, such as hygiene, medical, agricultural, or industrial use. In general, in order to obtain a product with high tensile strength, it is common to use a method of producing by increasing the weight per unit area. However, in the case of production by increasing the weight in this way, since the thickness of the product increases at the same time, there is a problem in that it is difficult to apply it to a product that is thin and requires strength.

이에 유리섬유, 탄소섬유 등을 타 섬유와 혼용, 혼섬화시켜서 섬유집합체를 이용한 응용제품의 부족한 기계적 물성 보완시켜서 플라스틱 제품과 유사 또는 그 이상의 기계적 물성을 가지는 제품을 제조, 판매되고 있다. 하지만, 이러한 유리섬유를 이용한 제품의 경우, 그 가공 공정에서 유리섬유가 제품으로부터 이탈하여 흩날려서 작업 환경을 오염시키는 문제가 있으며, 유리섬유는 폐암을 유발하는 것으로 알려져 있어서, 최근에 유리섬유를 사용하지 않으면서도 유리섬유를 이용한 제품의 물성과 동등 또는 그 이상의 물성을 가지는 제품 개발에 대한 요구가 증대하고 있는 실정이다.Accordingly, glass fiber, carbon fiber, etc. are mixed with other fibers to compensate for insufficient mechanical properties of application products using fiber aggregates, thereby manufacturing and selling products having mechanical properties similar to or higher than those of plastic products. However, in the case of a product using such glass fiber, there is a problem that the glass fiber scatters from the product in the processing process and contaminates the working environment, and since glass fiber is known to cause lung cancer, glass fiber is recently used There is an increasing demand for the development of products having properties equal to or higher than those of products using glass fibers without doing so.

대한민국 등록특허 제10-0899613호(등록일: 2009. 5. 20)Republic of Korea Patent Registration No. 10-0899613 (Registration Date: 2009. 5. 20) 대한민국 등록특허 제10-1357018호(등록일: 2014. 01. 23)Republic of Korea Patent Registration No. 10-1357018 (Registration Date: 2014.01.23)

본 발명의 목적은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 인장강도, 굴곡강도, 굴곡탄성율 등의 기계적 물성이 우수하면서도, 소리 흡수성, 소리 분산성, 수분 흡수성, 수분산성 등이 우수한 섬유집합체 등의 응용제품을 제공할 수 있는 복합섬유를 제공하고자 하며, 또한, 이를 높은 상업성으로 제조할 수 있는 방법을 제공하고자 한다. The object of the present invention was devised to solve the above problems, and the object of the present invention is to have excellent mechanical properties such as tensile strength, flexural strength, and flexural modulus, while also providing sound absorption, sound dispersibility, water absorption, and water dispersibility. An object of the present invention is to provide a composite fiber capable of providing application products such as an excellent fiber aggregate, and also to provide a method for manufacturing it with high commerciality.

상술한 과제를 해결하기 위하여 본 발명의 복합섬유는 제1성분 수지 및 제2성분 수지를 포함하는 이성분 섬유로서, 제1성분 수지는 폴리에스테르 수지를 포함하고, 제2성분 수지는 결정성 폴리올레핀 수지를 포함하며, 제1성분 수지와 제2성분 수지의 융점온도 차가 30℃ ~ 100℃일 수 있다.In order to solve the above problems, the composite fiber of the present invention is a bicomponent fiber including a first component resin and a second component resin, wherein the first component resin includes a polyester resin, and the second component resin is a crystalline polyolefin Including a resin, the difference in the melting point temperature of the first component resin and the second component resin may be 30 ℃ ~ 100 ℃.

본 발명의 바람직한 일실시예로서, 상기 결정성 폴리올레핀 수지는 DSC(differential thermal analysis) 분석시, 결정을 녹이는데 필요한 엔탈피(Enthalpy) 값이 40 ~ 120 J/g일 수 있다.In a preferred embodiment of the present invention, the crystalline polyolefin resin may have an enthalpy value of 40 to 120 J/g required to melt the crystal during differential thermal analysis (DSC) analysis.

본 발명의 바람직한 일실시예로서, 상기 제1성분 수지는 고유점도 0.50 ~ 1.00 dl/g 및 융점 200℃ 이상인 폴리에스테르 수지를 포함하며, 상기 폴리에스테르 수지는 폴리에틸렌테레프탈레이트(PET) 수지, 폴리부틸렌테레프탈렌(PBT) 수지, 폴리트리메틸렌테레프탈레이트(PTT) 수지 및 폴리에틸렌나프탈레이트(PEN) 수지 중에서 선택된 1종 이상을 포함할 수 있다.As a preferred embodiment of the present invention, the first component resin includes a polyester resin having an intrinsic viscosity of 0.50 to 1.00 dl/g and a melting point of 200° C. or higher, and the polyester resin is a polyethylene terephthalate (PET) resin, polybutyl It may include at least one selected from a renterephthalene (PBT) resin, a polytrimethylene terephthalate (PTT) resin, and a polyethylene naphthalate (PEN) resin.

본 발명의 바람직한 일실시예로서, 상기 PET 수지는 테레프탈산과 및 디올(diol);을 1 : 0.95 ~ 1.20 몰비로 중합시킨 중합체를 포함할 수 있다.In a preferred embodiment of the present invention, the PET resin may include a polymer obtained by polymerizing terephthalic acid and a diol in a molar ratio of 1:0.95 to 1.20.

본 발명의 바람직한 일실시예로서, 상기 제2성분 수지는 융점 150℃ ~ 170℃인 결정성 폴리올레핀 수지를 포함할 수 있고, 상기 결정성 폴리 올레핀 수지는 결정성 폴리프로필렌(PP) 수지 및 폴리에틸렌 수지 중에서 선택된 1종 이상을 포함할 수 있다.As a preferred embodiment of the present invention, the second component resin may include a crystalline polyolefin resin having a melting point of 150°C to 170°C, and the crystalline polyolefin resin is a crystalline polypropylene (PP) resin and a polyethylene resin. It may include one or more selected from among.

본 발명의 바람직한 일실시예로서, 상기 이성분 섬유는 시스-코어형(sheath-core)형 섬유, 사이드-바이-사이드(side-by-side)형 섬유, 해도(sea-islands)형 섬유 또는 분할(segmented -pie)형 섬유일 수 있다.In a preferred embodiment of the present invention, the bicomponent fiber is a sheath-core fiber, a side-by-side fiber, a sea-islands fiber or It may be a segmented-pie type fiber.

본 발명의 바람직한 일실시예로서, 상기 이성분 섬유는 제1성분 및 제2성분의 단면적비가 1:0.5 ~ 1일 수 있다.In a preferred embodiment of the present invention, in the bicomponent fiber, the cross-sectional area ratio of the first component and the second component may be 1:0.5 to 1.

본 발명의 바람직한 일실시예로서, 상기 이성분 섬유는 시스-코어형 섬유이고, 시스는 융점 150℃ ~ 170℃인 결정성 폴리프로필렌(PP) 수지를 포함하며, 코어는 융점 200℃ 이상인 폴리에틸렌테레프탈레이트(PET) 수지를 포함할 수 있다.As a preferred embodiment of the present invention, the bicomponent fiber is a sheath-core type fiber, the sheath includes a crystalline polypropylene (PP) resin having a melting point of 150°C to 170°C, and the core is polyethylene terephthalate having a melting point of 200°C or higher. It may include a phthalate (PET) resin.

본 발명의 바람직한 일실시예로서, 본 발명의 복합섬유의 평균섬도는 4 ~ 12 de이고, 평균섬유장은 3 mm ~ 120 mm이며, 크림프수 9 ~ 15 개/인치일 수 있다.As a preferred embodiment of the present invention, the average fineness of the composite fiber of the present invention is 4 to 12 de, the average fiber length is 3 mm to 120 mm, and the number of crimps may be 9 to 15 pieces/inch.

본 발명의 바람직한 일실시예로서, 본 발명의 복합섬유는 표면이 개질되거나, 또는 복합섬유의 표면상이 친수성 코팅층 및/또는 소수성 코팅층이 형성되어 있을 수 있다.As a preferred embodiment of the present invention, the surface of the composite fiber of the present invention may be modified, or a hydrophilic coating layer and/or a hydrophobic coating layer may be formed on the surface of the composite fiber.

본 발명의 다른 목적은 앞서 설명한 복합섬유를 제조하는 방법에 관한 것으로서, 폴리에스테르 칩 및 결정성 폴리올레핀 칩을 각각 준비하는 1단계; 폴리에스테르 칩 및 결정성 폴리올레핀 칩 각각을 용융시킨 제1성분 수지 및 제2성분 수지를 복합방사구금에 투입 및 복합방사시킨 후, 냉각시켜서 미연신 서브토우(sub-tow)를 제조하는 2단계; 상기 미연신 서브토우를 연신한 후, 권축(Crimp)을 부여하는 3단계; 및 연신 및 권축된 서브토우를 열고정시키고 컷팅(Cutting)하는 4단계;를 포함하는 공정을 수행하여 제조할 수 있다.Another object of the present invention relates to a method for producing the above-described composite fiber, the first step of preparing a polyester chip and a crystalline polyolefin chip, respectively; A second step of preparing an unstretched sub-tow by putting the first component resin and the second component resin in which the polyester chip and the crystalline polyolefin chip are melted, respectively, into a composite spinneret and composite spinning, followed by cooling; After stretching the unstretched sub tow, a third step of applying a crimp; and 4 steps of heat-setting and cutting the stretched and crimped sub tow;

본 발명의 바람직한 일실시예로서, 상기 서브토우는 시스-코어형 모노 필라멘트, 사이드-바이-사이드형 모노 필라멘트, 해도형 모노 필라멘트 또는 분할형 모노 필라멘트일 수 있다.In a preferred embodiment of the present invention, the subtow may be a sheath-core type monofilament, a side-by-side type monofilament, a sea-island type monofilament, or a split type monofilament.

본 발명의 바람직한 일실시예로서, 2단계의 용융은 폴리에스테르 칩은 270℃ ~ 300℃ 하에서 수행하고, 결정성 폴리올레핀 칩 230℃ ~ 280℃ 하에서 수행할 수 있다.As a preferred embodiment of the present invention, the two-step melting may be performed under 270°C to 300°C for the polyester chip, and 230°C to 280°C for the crystalline polyolefin chip.

본 발명의 바람직한 일실시예로서, 2단계의 복합방사는 방사온도 260℃ ~ 290℃ 및 권취속도 400 ~ 1,300 m/min 조건 하에서 수행할 수 있다. As a preferred embodiment of the present invention, the two-step composite spinning may be performed under the conditions of a spinning temperature of 260°C to 290°C and a winding speed of 400 to 1,300 m/min.

본 발명의 또 다른 목적은 상기 본 발명의 복합섬유를 이용하여 제조한 섬유집합체를 제공하고자 한다.Another object of the present invention is to provide a fiber assembly prepared by using the composite fiber of the present invention.

본 발명의 바람직한 일실시예로서, 상기 섬유집합체는 부직포일 수 있다.As a preferred embodiment of the present invention, the fiber aggregate may be a non-woven fabric.

본 발명의 바람직한 일실시예로서, 상기 부직포는 건식(dry-laid) 부직포, 습식(wet-laid) 부직포 또는 에어레이드(air-laid) 부직포일 수 있다.In a preferred embodiment of the present invention, the non-woven fabric may be a dry-laid non-woven fabric, a wet-laid non-woven fabric or an air-laid non-woven fabric.

본 발명의 또 다른 목적은 상기 섬유집합체를 한층 또는 다층 적층한 후, 이를 압축성형시킨 압축성형체를 제공하고자 한다.Another object of the present invention is to provide a compression molded article in which the fiber aggregate is laminated in one layer or in multiple layers and then compression molded.

본 발명의 바람직한 일실시예로서, 상기 압축성형체는 상기 섬유집합체를 구성하는 섬유와 다른 종류의 섬유를 포함하는 섬유집합체층을 더 포함할 수도 있다.As a preferred embodiment of the present invention, the compression molded article may further include a fiber aggregate layer comprising fibers of a different type from the fibers constituting the fiber aggregate.

본 발명의 복합섬유는 인장강도, 굴곡강도, 굴곡탄성율 등의 물성이 우수하고, 복합섬유간 접합력이 우수하면서도 가공성이 우수한 바, 높은 기계적 물성과 함께 소리 흡수성, 소리 분산성, 수분 흡수성, 수분산성 등이 요구되는 수한 섬유집합체 응용제품에 적용하기 적합하다. The composite fiber of the present invention has excellent physical properties such as tensile strength, flexural strength, and flexural modulus, and has excellent bonding strength between composite fibers and excellent processability. It is suitable for application to several fiber aggregate application products that require such.

도 1은 제조예 1에서 제조한 압축성형체의 단면을 찍은 SEM 사진이다.
도 2는 제조예 2에서 제조한 압축성형체의 단면을 찍은 SEM 사진이다.
도 3은 제조예 3에서 제조한 압축성형체의 단면을 찍은 SEM 사진이다.
도 4 및 도 5 각각은 실험예 2에서 실시한 제조예 1, 제조예 2 및 제조예 3의 형태안정성 측정 결과이다.
1 is an SEM photograph of a cross-section of the compression molded article prepared in Preparation Example 1.
2 is a SEM photograph taken of a cross-section of the compression molded article prepared in Preparation Example 2.
3 is an SEM photograph of a cross-section of the compression molded article prepared in Preparation Example 3.
4 and 5 are each a measurement result of shape stability of Preparation Example 1, Preparation Example 2, and Preparation Example 3 carried out in Experimental Example 2.

이하 본 발명의 복합섬유에 대하여 더욱 자세하게 설명을 한다.Hereinafter, the composite fiber of the present invention will be described in more detail.

본 발명의 복합섬유는 제1성분 수지 및 제2성분 수지를 포함하는 이성분 섬유로서, 시스-코어형(sheath-core)형 섬유, 사이드-바이-사이드(side-by-side)형 섬유, 해도(sea-islands)형 섬유 또는 분할(segmented -pie)형 섬유일 수 있고, 바람직하게는 시스-코어형 섬유 또는 사이드-바이-사이드형 섬유일 수 있다.The composite fiber of the present invention is a bicomponent fiber comprising a first component resin and a second component resin, a sheath-core type fiber, a side-by-side type fiber, It may be a sea-islands type fiber or a segmented-pie type fiber, preferably a sheath-core type fiber or a side-by-side type fiber.

제1성분 수지는 본 발명의 복합섬유를 이용하여 제조한 부직포 등의 섬유집합체, 이를 응용한 압축성형체의 형태안정성과 관련이 있는 바, 우수한 모듈러스를 가지는 수지를 사용하는 것이 좋다. 그리고, 제2성분 수지는 복합섬유간 접착성을 확보함으로서, 섬유집합체 및/또는 압축성형체의 형태안정성과 성형성을 확보하기에 적합한 소재를 채용하는 것이 바람직하다.The first component resin is related to the shape stability of a fiber aggregate such as a nonwoven fabric manufactured using the composite fiber of the present invention and a compression molded article to which the same is applied, so it is preferable to use a resin having an excellent modulus. In addition, the second component resin is preferably a material suitable for securing the shape stability and moldability of the fiber aggregate and/or compression molded body by securing adhesion between the composite fibers.

그리고, 본 발명의 복합섬유는 상기 제1성분 수지 및 제2성분 수지는 융점온도 차가 30℃ ~ 100℃, 바람직하게는 40℃ ~ 90℃일 수 있는데, 이때, 용점온도 차가 30℃ 미만이면 복합섬유를 이용한 섬유집합체 제조시, 제2성분 수지로 인해 복합섬유간 접합이 되도록 하기 위해 제2성분 수지가 적절하게 녹도록 적정 온도 분위기 하에서 섬유집합체를 제조해야 하는데, 제1성분 및 제2성분 수지간 융점 온도차가 작아서 제1성분 수지가 물러지기 때문에, 섬유집합체 및 이를 이용한 압축성형체의 기계적 물성을 감소시키고, 가공성, 성형성이 떨어지는 문제가 있을 수 있으며, 용점온도 차가 100℃를 초과하면 너무 불필요하게 수지간 온도차가 커져서 오히려 제1성분 및 제2성분의 수지 간 상용성이 떨어져서 이성분 복합섬유를 제조하기 어려운 문제가 있을 수 있다.And, in the composite fiber of the present invention, the first component resin and the second component resin may have a melting point temperature difference of 30 ° C. to 100 ° C., preferably 40 ° C. to 90 ° C. In this case, if the melting point temperature difference is less than 30 ° C. When manufacturing a fiber aggregate using fibers, the fiber aggregate must be prepared under an appropriate temperature atmosphere so that the second component resin is properly melted in order to bond between the composite fibers due to the second component resin. Since the first component resin becomes brittle because the melting point temperature difference between the two parts is small, the mechanical properties of the fiber aggregate and the compression molded product using the same may be reduced, and there may be a problem of poor processability and moldability. As the temperature difference between the resins increases, the compatibility between the resins of the first component and the second component decreases, so that it may be difficult to manufacture a bicomponent composite fiber.

상기 제1성분 수지인 폴리에스테르 수지를 포함할 수 있으며, 상기 폴리에스테르 수지는 폴리에틸렌테레프탈레이트(PET) 수지, 폴리부틸렌테레프탈렌(PBT) 수지, 폴리트리메틸렌테레프탈레이트(PTT) 수지 및 폴리에틸렌나프탈레이트(PEN) 수지를 포함할 수 있으며, 바람직하게는 PET 수지, PBT 수지 및 PEN 수지 중에서 선택된 1종 이상을, 더욱 바람직하게는 PET 수지를 포함할 수 있다. The first component resin may include a polyester resin, wherein the polyester resin is a polyethylene terephthalate (PET) resin, a polybutylene terephthalene (PBT) resin, a polytrimethylene terephthalate (PTT) resin, and a polyethylene or It may include a phthalate (PEN) resin, preferably at least one selected from a PET resin, a PBT resin, and a PEN resin, and more preferably a PET resin.

그리고, 상기 제1성분 수지는 고유점도 0.50 ~ 1.00 dl/g 및 융점 200℃ 이상인 것을, 바람직하게는 고유점도 0.55 ~ 0.90 dl/g 및 융점 230℃ ~ 280℃인 것을, 더욱 바람직하게는 고유점도 0.60 ~ 0.75 dl/g 및 융점 240℃ ~ 265℃인 것을 사용하는 것이 좋다. 이때, 제1성분 수지의 고유점도가 0.50 dl/g 미만이면 복합섬유의 강도가 저하하는 문제가 있을 수 있고, 고유점도가 1.00 dl/g을 초과하면 방사 및 연신 작업성이 떨어지는 문제가 있을 수 있다. 또한, PET 수지의 융점이 200℃ 미만이면 제2성분 수지와의 융점 온도차가 너무 작아져서, 복합섬유를 이용한 응용제품 제조시, 가공성, 성형성 등이 떨어지는 문제가 있을 수 있으므로 상기 융점을 가지는 PET 수지를 사용하는 것이 좋다.And, the first component resin has an intrinsic viscosity of 0.50 to 1.00 dl/g and a melting point of 200° C. or higher, preferably an intrinsic viscosity of 0.55 to 0.90 dl/g and a melting point of 230° C. to 280° C., more preferably an intrinsic viscosity It is recommended to use 0.60 to 0.75 dl/g and a melting point of 240°C to 265°C. At this time, if the intrinsic viscosity of the first component resin is less than 0.50 dl/g, there may be a problem in that the strength of the composite fiber decreases, and if the intrinsic viscosity exceeds 1.00 dl/g, there may be a problem in spinning and drawing workability have. In addition, if the melting point of the PET resin is less than 200 ° C., the melting point temperature difference with the second component resin is too small, so that there may be a problem in that processability, moldability, etc. are deteriorated when manufacturing an application product using the composite fiber. Therefore, PET having the melting point It is better to use resin.

그리고, 폴리에스테르 수지가 PET 수지의 경우, 당업계에서 사용하는 일반적인 PET 수지를 사용할 수 있으며, 바람직하게는 테레프탈산과 및 디올(diol);을 1 : 0.95 ~ 1.20 몰비로 중합시킨 중합체를 포함하는 것을 사용할 수 있다.And, when the polyester resin is a PET resin, a general PET resin used in the art may be used, and preferably, a polymer obtained by polymerizing terephthalic acid and a diol; in a molar ratio of 1: 0.95 to 1.20. Can be used.

다음으로, 상기 제2성분 수지는 폴리올레핀 수지를 포함할 수 있다.Next, the second component resin may include a polyolefin resin.

상기 결정성 폴리올레핀 수지로는 폴리프로필렌 수지 및 폴리에틸렌 수지 중에서 선택된 1종 이상을 사용할 수 있고, 바람직하게는 폴리프로필렌 수지를 사용할 수 있다.As the crystalline polyolefin resin, at least one selected from polypropylene resin and polyethylene resin may be used, and polypropylene resin may be preferably used.

그리고, 상기 결정성 폴리올레핀 수지는 DSC(differential thermal analysis) 분석시, 결정을 녹이는데 필요한 엔탈피(Enthalpy) 값이 40 ~ 120 J/g인 것을, 바람직하게는 엔탈피(Enthalpy) 값이 70 ~ 115 J/g인 것을 사용하는 것이 좋다.In addition, the crystalline polyolefin resin has an enthalpy value of 40 to 120 J/g required for dissolving the crystal during differential thermal analysis (DSC) analysis, preferably an enthalpy value of 70 to 115 J It is recommended to use /g.

또한, 상기 결정성 폴리올레핀 수지는 융점이 150℃ ~ 170℃, 바람직하게는 155℃ ~ 170℃, 더욱 바람직하게는 160℃ ~ 170℃인 것이 좋은데, 이때, 결정성 폴리올레핀 수지의 융점이 150℃ 미만이면 제1성분 수지인 폴리에스테르 수지와의 융점온도 차가 너무 커져서 이성분 복합섬유 제조를 위한 방사성이 떨어질 뿐만 아니라, 제1 및 제2 성분의 수지간 상용성이 떨어져서 이성분 복합섬유를 제조하기 어려운 문제가 있을 수 있고, 융점이 170℃를 초과하면 제1 성분 및 제2성분 수지 간 융점 온도차가 작아져서 이로 인한 가공성이 떨어지는 문제가 있을 수 있다.In addition, the crystalline polyolefin resin has a melting point of 150 ° C. to 170 ° C., preferably 155 ° C. to 170 ° C., more preferably 160 ° C. to 170 ° C. In this case, the melting point of the crystalline polyolefin resin is less than 150 ° C. On the other hand, the difference in the melting point temperature with the polyester resin, which is the first component resin, is too large, so that the spinnability for manufacturing the bicomponent composite fiber is deteriorated, and the compatibility between the resins of the first and second components is poor, making it difficult to manufacture the bicomponent composite fiber. There may be a problem, and when the melting point exceeds 170° C., the difference in the melting point temperature between the first component and the second component resin becomes small, and thus there may be a problem in that processability is deteriorated.

그리고, 본 발명의 복합섬유는 이성분으로 구성된 복합섬유로서, 섬유는 제1성분 및 제2성분의 단면적비가 1:0.5 ~ 1, 바람직하게는 단면적비가 1 : 0.7 ~ 1일 수 있다. 이때, 제2성분 단면적비가 0.5 미만이면 복합섬유간 결합력이 떨어지는 문제가 있을 수 있고, 제2성분 단면적비가 1을 초과하면 상대적으로 제1성분 면적이 적어져서 복합섬유의 강도가 약해지고, 복합섬유를 이용하여 제조한 제품의 모듈러스가 감소하는 문제가 있을 수 있다.And, the composite fiber of the present invention is a composite fiber composed of two components, and the fiber may have a cross-sectional area ratio of the first component and the second component of 1:0.5 to 1, preferably, a cross-sectional area ratio of 1:0.7 to 1. At this time, if the cross-sectional area ratio of the second component is less than 0.5, there may be a problem in that the bonding strength between the composite fibers is lowered. There may be a problem in that the modulus of a product manufactured by using it decreases.

본 발명의 복합섬유의 바람직한 구현예를 설명하면, 본 발명의 복합섬유는 시스-코어형 복합섬유이고, 이때, 시스는 융점 150℃ ~ 170℃인 결정성 폴리프로필렌(PP) 수지를 포함하며, 코어는 융점 200℃ 이상인 폴리에틸렌테레프탈레이트(PET) 수지를 포함할 수 있다.When describing a preferred embodiment of the composite fiber of the present invention, the composite fiber of the present invention is a sheath-core type composite fiber, wherein the sheath comprises a crystalline polypropylene (PP) resin having a melting point of 150°C to 170°C, The core may include a polyethylene terephthalate (PET) resin having a melting point of 200° C. or higher.

또한, 본 발명의 복합섬유는 평균섬도는 4 ~ 12 de이고, 평균섬유장은 3 ~ 120 mm이며, 크림프수 9 ~ 15개/인치일 수 있으며, 바람직하게는 평균섬도는 5 ~ 10 de이고, 평균섬유장은 6 ~ 100 mm이며, 크림프수 10 ~ 14개/인치일 수 있고, 더욱 바람직하게는 평균섬도는 5 ~ 9 de이고, 평균섬유장은 20 ~ 100 mm이며, 크림프수 10 ~ 14개/인치일 수 있다. 이때, 복합섬유의 평균섬도가 4 de 미만이면 섬유집합체 및/또는 압축성형체의 인장강도가 낮아지는 문제가 있을 수 있고, 12 de를 초과하면 섬유집합체 및/또는 압축성형체의 모듈러스가 낮아지는 문제가 있을 수 있다. 그리고, 복합섬유의 섬유장은 복합섬유를 이용하여 제조하고자 하는 제품에 따라 복합섬유의 섬유장에 변화를 주어 적용시킬 수 있다. 그리고, 크림프수가 9개/인치 미만이면 복합섬유의 탄력성 및 벌키성이 떨어질 수 있고, 15개/인치를 초과하면 섬유집합체 제조시 카딩공정 상에 넵(nep)의 발생을 증가시키는 문제가 있을 수 있다.In addition, the composite fiber of the present invention has an average fineness of 4 to 12 de, the average fiber length is 3 to 120 mm, and the number of crimps may be 9 to 15 pieces/inch, preferably the average fineness is 5 to 10 de, The average fiber length is 6 ~ 100 mm, the number of crimps may be 10 ~ 14 / inch, more preferably the average fineness is 5 ~ 9 de, the average fiber length is 20 ~ 100 mm, the number of crimps is 10 ~ 14 / can be inches. At this time, if the average fineness of the composite fiber is less than 4 de, there may be a problem in that the tensile strength of the fiber aggregate and/or compression molded body is lowered, and if it exceeds 12 de, the modulus of the fiber aggregate and/or the compression molded body is lowered. there may be In addition, the fiber length of the composite fiber may be applied by changing the fiber length of the composite fiber according to a product to be manufactured using the composite fiber. And, if the number of crimps is less than 9/inch, the elasticity and bulkiness of the composite fiber may be lowered, and if it exceeds 15/inch, there may be a problem of increasing the occurrence of neps during the carding process when manufacturing the fiber assembly. have.

본 발명의 복합섬유는 섬유의 표면을 개질시켜서 기능성을 부여할 수 있으며, 또는 복합섬유의 표면상에 친수성 코팅층 및/또는 소수성 코팅층이 형성시킬 수도 있다.The composite fiber of the present invention may provide functionality by modifying the surface of the fiber, or a hydrophilic coating layer and/or a hydrophobic coating layer may be formed on the surface of the composite fiber.

본 발명의 복합섬유는 강도 3.5 g/d 이상, 신도 55% 이상, 초기탄성률 3.2 g/d 이상, 수축율 5.0 ~ 6.5% 및 권축수 9 ~ 15개/인치를 가질 수 있으며, 바람직하게는 강도 3.70 ~ 4.10 g/d, 신도 57 ~ 62%, 초기탄성률 3.2 ~ 3.8 g/d, 수축율 5.4 ~ 6.2% 및 권축수 10 ~ 14개/인치를 가질 수 있다.The composite fiber of the present invention may have a strength of 3.5 g/d or more, an elongation of 55% or more, an initial modulus of 3.2 g/d or more, a shrinkage ratio of 5.0 to 6.5%, and a number of crimps of 9 to 15 pieces/inch, preferably a strength of 3.70 ~ 4.10 g/d, elongation of 57 ~ 62%, initial modulus of 3.2 ~ 3.8 g / d, shrinkage of 5.4 ~ 6.2%, and may have a number of crimps of 10 ~ 14 / inch.

본 발명의 복합섬유가 시스-코어형 복합섬유인 경우, 시스-코어형 복합섬유로 제조한 압축성형체는 ASTM D790에 의거하여 측정시, 상대습도 50% 및 23℃일 때, 굴곡강도 5.5 MPa 이상 및 굴곡탄성률 430 MPa 이상, 바람직하게는 굴곡강도 7.4 ~ 12 MPa 및 굴곡탄성률 480 ~ 700 MPa, 더욱 바람직하게는 굴곡강도 9.5 ~ 11.5 MPa 및 굴곡탄성률 508 ~ 620 MPa 일 수 있다.When the composite fiber of the present invention is a sheath-core type composite fiber, the compression molded article made of the sheath-core type composite fiber has a flexural strength of 5.5 MPa or more when measured according to ASTM D790 at 50% relative humidity and 23°C and a flexural modulus of 430 MPa or more, preferably a flexural strength of 7.4 to 12 MPa and a flexural modulus of 480 to 700 MPa, more preferably a flexural strength of 9.5 to 11.5 MPa and a flexural modulus of 508 to 620 MPa.

또한, 본 발명의 복합섬유가 시스-코어형 복합섬유인 경우, 시스-코어형 복합섬유로 제조한 압축성형체는 ASTM D638에 의거하여 측정시, 상대습도 50% 및 23℃ 일 때, 인장강도 18.5 Mpa 이상, 바람직하게는 인장강도 20 ~ 27 Mpa, 더욱 바람직하게는 20.2 ~ 23.5 Mpa일 수 있다.In addition, when the composite fiber of the present invention is a sheath-core type composite fiber, the compression molded article made of the sheath-core type composite fiber has a tensile strength of 18.5 when measured according to ASTM D638 at 50% relative humidity and 23°C Mpa or more, preferably, the tensile strength may be 20 to 27 Mpa, more preferably 20.2 to 23.5 Mpa.

이러한, 본 발명의 복합섬유는 폴리에스테르 칩 및 결정성 폴리올레핀 칩을 각각 준비하는 1단계; 폴리에스테르 칩 및 결정성 폴리올레핀 칩 각각을 용융시킨 제1성분 수지 및 제2성분 수지를 복합방사구금에 투입 및 복합방사시킨 후, 냉각시켜서 미연신 서브토우(sub-tow)를 제조하는 2단계; 상기 미연신 서브토우를 연신한 후, 권축(Crimp)을 부여하는 3단계; 및 연신 및 권축된 서브토우를 열고정시키고 컷팅(Cutting)하는 4단계;를 포함하는 공정을 수행하여 제조할 수 있다.Such, the composite fiber of the present invention is a first step of preparing a polyester chip and a crystalline polyolefin chip, respectively; A second step of preparing an unstretched sub-tow by putting the first component resin and the second component resin in which the polyester chip and the crystalline polyolefin chip are melted, respectively, into a composite spinneret and composite spinning, followed by cooling; After stretching the unstretched sub tow, a third step of applying a crimp; and 4 steps of heat-setting and cutting the stretched and crimped sub tow;

상기 1단계의 폴리에스테르 칩의 특징, 종류 등은 앞서 설명한 제1성분 수지와 동일하며, 상기 결정성 폴리올레핀 칩의 특징, 종류 등은 앞서 설명한 제2성분 수지와 동일하며, 상기 제1성분 수지 및 제2성분 수지를 칩(chip)화한 것이다.The characteristics and types of the polyester chip in the first step are the same as the first component resin described above, and the characteristics and types of the crystalline polyolefin chip are the same as the second component resin described above, and the first component resin and The second component resin is chipped.

2단계의 용융은 폴리에스테르 270℃ ~ 300℃ 하에서 수행하고, 결정성 폴리올레핀 칩 230℃ ~ 280℃ 하에서 수행할 수 있다.The melting of the second step may be performed under 270° C. to 300° C. of the polyester, and 230° C. to 280° C. of the crystalline polyolefin chip.

2단계의 복합방사는 방사온도 260℃ ~ 290℃ 및 권취속도 400 ~ 1,300 m/min 조건 하에서, 바람직하게는 265℃ ~ 285℃ 및 권취속도 500 ~ 1,200 m/min 조건 하에 수행할 수 있다. 이때, 방사온도가 260℃ 미만이면 팩(pack) 내압 상승과 방사 작업성이 저하되는 문제가 있을 수 있고, 방사온도가 290℃를 초과하면 복합섬유의 물성이 저하되는 문제가 있을 수 있다. 또한, 권취속도가 500 m/min 미만이면 신도가 증가하여 복합섬유 및/또는 이를 이용한 응용제품의 물성이 저하되는 문제가 있을 수 있고, 권취속도가 1,300 m/min를 초과하면 미연신 서브토우가 캔에 적층되는 형태가 불균일하여 연신 작업성이 저하되는 문제가 있을 수 있다.The two-step composite spinning may be performed under the conditions of a spinning temperature of 260° C. to 290° C. and a winding speed of 400 to 1,300 m/min, preferably 265° C. to 285° C. and a winding speed of 500 to 1,200 m/min. At this time, if the spinning temperature is less than 260 ℃, there may be a problem that the pack (pack) pressure increase and spinning workability is reduced, if the spinning temperature exceeds 290 ℃, there may be a problem in that the physical properties of the composite fiber is reduced. In addition, if the winding speed is less than 500 m/min, the elongation may increase and there may be a problem in that the physical properties of the composite fiber and/or the applied product using the same may be deteriorated. There may be a problem in that the form laminated on the can is non-uniform, thereby reducing the stretching workability.

그리고, 2단계의 상기 서브토우는 시스-코어형 모노 필라멘트, 사이드-바이-사이드형 모노 필라멘트, 해도형 모노 필라멘트 또는 분할형 모노 필라멘트일 수 있다.In addition, the subtow of step 2 may be a sheath-core type monofilament, a side-by-side type monofilament, a sea-island type monofilament, or a split type monofilament.

3단계의 연신은 당업계에서 사용하는 일반적인 방법을 통해서 연신을 수행할 수 있으며, 바람직하게는 미연신 서브토우를 70℃ ~ 100℃ 하에서 2.5 ~ 5배로, 바람직하게는 3.0 ~ 4.5 배로 연신시켜서 수행할 수 있다. 이때, 연신비가 2.5배 미만이면 신도가 증가하여 복합섬유를 이용한 응용제품의 물성이 감소할 수 있고, 연신비가 5.0배를 초과하면 사절이 발생하는 문제가 있을 수 있으므로 상기 범위 내에서 연신을 수행하는 것이 좋다.The three-step stretching may be performed by a general method used in the art, and preferably, the unstretched subtow is stretched 2.5 to 5 times, preferably 3.0 to 4.5 times under 70° C. to 100° C. can do. At this time, if the draw ratio is less than 2.5 times, the elongation may increase and the physical properties of the applied product using the composite fiber may decrease. it's good

그리고, 3단계의 권축은 당업계에서 사용하는 일반적인 권축 방법을 수행할 수 있으며, 바람직한 일례를 들면, 연신된 서브토우를 1mm당 3,000 de ~ 8,000 de를 통과시킬 수 있는 크림프 박스를 이용하여 크림프 형성 공정을 통하여 권축을 수행할 수 있다.And, the crimping of the three steps may be performed by a general crimping method used in the art, and for example, a crimp is formed using a crimp box capable of passing 3,000 de to 8,000 de per 1 mm of the stretched subtow. Crimping can be performed through the process.

그리고, 권축 전에 연신된 서브토우를 정장열처리 공정을 수행하여 서브토우의 안정성을 높이는 공정을 추가적으로 실시를 할 수도 있는데, 구체적인 예를 들면, 다수의 핫드럼(Hot drum)을 이용하여 핫드럼의 표면에 5초 ~ 30초 정도 접촉시켜서 열처리하여 서브토우의 결정화도를 높여 수축율 및 탄성율을 향상시킬 수도 있다.In addition, a process of increasing the stability of the sub tow may be additionally performed by performing a heat treatment process on the stretched sub tow before crimping. For a specific example, the surface of the hot drum using a plurality of hot drums It is also possible to heat-treat by contacting for about 5 to 30 seconds to increase the crystallinity of the sub-tow, thereby improving the shrinkage rate and the elastic modulus.

4단계의 열고정은 당업계에서 사용하는 일반적인 열고정 방법을 통해 수행할 수 있으며, 바람직한 일례를 들면, 연신 및 권축된 서브토우를 오븐(oven)에 투입한 후 140℃ ~ 180℃ 하에서, 바람직하게는 후 140℃ ~ 170℃ 하에서 10 ~ 20분 동안 수행할 수 있다. 이때, 열고정 온도가 140℃ 미만이면 제조된 최종 복합섬유의 수축률이 증가하는 문제가 있을 수 있고, 180℃를 초과하면 복합섬유의 분산성이 저하되어 섬유집합체의 복합섬유 밀도가 떨어지고, 작업성이 떨어지는 문제가 있을 수 있으므로 상기 온도 범위 하에서 열고정을 수행하는 것이 좋다.The four-step heat setting can be performed through a general heat setting method used in the art, and for example, after putting the stretched and crimped sub tow into an oven, under 140° C. to 180° C., preferably After that, it can be carried out for 10 to 20 minutes under 140 ℃ ~ 170 ℃. At this time, if the heat setting temperature is less than 140 ℃, there may be a problem that the shrinkage rate of the final composite fiber produced increases, and if it exceeds 180 ℃, the dispersibility of the composite fiber is lowered, the density of the composite fiber of the fiber assembly is lowered, and workability Since there may be a problem of this falling, it is preferable to perform heat setting under the above temperature range.

그리고, 4단계의 컷팅은 복합섬유를 이용하고자 하는 가공제품에 따라 복합섬유가 적정 섬유장을 가지도록 열고정된 서브토우를 자르는 공정으로서, 당업계에서 사용하는 일반적인 컷팅 방법으로 수행할 수 있으며, 복합섬유의 평균섬유장이 3 mm ~ 120 mm 범위 내에서 컷팅을 수행하는 것이 바람직하다.And, the cutting in step 4 is a process of cutting the heat-set sub-tow so that the composite fiber has an appropriate fiber length depending on the processed product to use the composite fiber, and can be performed by a general cutting method used in the art, It is preferable to perform cutting within the average fiber length of the composite fiber in the range of 3 mm to 120 mm.

이렇게 제조방법을 통해, 앞서 설명한 바와 같이, 평균섬도는 4 ~ 12 de이고, 평균섬유장은 3 ~ 120 mm이며, 크림프수 9 ~ 15 개/인치를 가지는 본 발명의 복합섬유를 제조할 수 있다.Through this manufacturing method, as described above, the composite fiber of the present invention having an average fineness of 4 to 12 de, an average fiber length of 3 to 120 mm, and a number of crimps of 9 to 15 pieces/inch can be manufactured.

앞서 설명한 본 발명의 복합섬유를 이용하여 부직포 등의 섬유집합체를 제조할 수 있다. 이때, 상기 부직포는 건식(dry-laid) 부직포, 습식(wet-laid) 부직포 또는 에어레이드(air-laid) 부직포일 수 있으며, 바람직하게는 써멀본딩(thermal bonding) 부직포, 니들펀칭(needle-punching) 부직포 등의 건식 부직포 일 수 있다.By using the composite fiber of the present invention described above, it is possible to manufacture a fiber aggregate such as a nonwoven fabric. In this case, the non-woven fabric may be a dry-laid non-woven fabric, a wet-laid non-woven fabric or an air-laid non-woven fabric, preferably a thermal bonding non-woven fabric, or needle-punching (needle-punching) non-woven fabric. ) may be a dry nonwoven fabric such as a nonwoven fabric.

또한, 상기 섬유집합체를 한층 또는 다층 적층한 후, 이를 압축성형시킨 압축성형체를 제조할 수 있으며, 압축성형체 제조시, 상기 섬유집합체 외에 다른 종류의 섬유를 포함하는 이종의 섬유집합체층을 적층 또는 개재시킨 후, 압축성형시켜서 압축성형체를 제조할 수도 있다.In addition, after laminating the fiber aggregate in one layer or multiple layers, a compression molded product obtained by compression molding may be manufactured. After making it, it is also possible to manufacture a compression molded article by compression molding.

이하, 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail through examples, but the following examples are not intended to limit the scope of the present invention, which should be construed to aid understanding of the present invention.

[실시예] [Example]

실시예 1 : 시스-코어형 복합섬유의 제조Example 1: Preparation of sheath-core type composite fiber

고유점도 0.65 dl/g 및 융점 252℃인 폴리에틸렌테레프탈레이트(PET) 수지를 칩화한 PET 칩을 준비하였다. A PET chip obtained by chipping a polyethylene terephthalate (PET) resin having an intrinsic viscosity of 0.65 dl/g and a melting point of 252° C. was prepared.

또한, DSC(differential thermal analysis) 분석시, 결정을 녹이는데 필요한 엔탈피(Enthalpy) 값이 94J/g이고, 융점 165℃인 폴리프로필렌(PP) 수지를 칩화한 PP 칩을 준비하였다.In addition, during differential thermal analysis (DSC) analysis, a PP chip obtained by chipping polypropylene (PP) resin having an enthalpy value of 94 J/g and a melting point of 165° C. required to melt the crystal was prepared.

다음으로, 상기 PET 칩은 290℃에서 용융시키고, PP 칩은 260℃에서 용융시킨 후, 이들을 복합방사구금에 투입 및 방사시킨 다음, 냉각시켜서 시스-코어형 미연신-서브토우를 제조하였다.Next, the PET chip was melted at 290°C, the PP chip was melted at 260°C, and then they were put into a composite spinneret and spun, and then cooled to prepare a sheath-core type unstretched-subtow.

이때, 복합방사는 방사온도 275℃ 및 권취속도 950 m/min 조건 하에서 복합방사시킨 후, 인취공정을 거쳐 캔(can)에 적재하였다.At this time, the composite spinning was performed under the conditions of a spinning temperature of 275° C. and a winding speed of 950 m/min, and then loaded into a can through a take-up process.

다음으로, 상기 미연신-서브토우를 85℃ 하에서 3.2배로 연신을 수행한 후, 150℃에서 10초 동안 정장열처리를 하였다.Next, the unstretched-subtow was stretched 3.2 times under 85° C., followed by heat treatment at 150° C. for 10 seconds.

다음으로 연신시킨 서브토우를 스퍼핑 박스를 이용하여 크림프를 형성시켰다.Next, the stretched subtow was crimped using a sputtering box.

다음으로, 연신 및 권축된 서브토우를 오븐에 투입한 후, 165℃에서 15분 동안 열고정시켜서 평균섬도 7de, 평균섬유장 51mm 및 크림프수 11개/인치인 시스-코어형 복합섬유를 제조하였다. 이때, 시스와 코어의 단면적비는 1 : 1이였으며, 시스는 PP 수지로 구성되고 코어는 PET 수지로 구성되었다.Next, the drawn and crimped subtow was put into an oven, and then heat-set at 165° C. for 15 minutes to prepare a sheath-core type composite fiber having an average fineness of 7de, an average fiber length of 51 mm, and a number of crimps of 11/inch. . At this time, the cross-sectional area ratio of the sheath and the core was 1:1, the sheath was made of PP resin and the core was made of PET resin.

실시예 2 ~ 실시예 12 및 비교예 1 ~ 10Examples 2 to 12 and Comparative Examples 1 to 10

상기 실시예 1과 동일하게 실시하되, 하기 표 1 및 표 2와 같이 코어성분인 PET 칩, 시스성분인 PP 칩, 평균섬도, 평균섬유장, 크림프수 및 시스와 코어의 단면적비를 각각 달리하여 시스-코어형 복합섬유를 각각 제조하여, 실시예 2 ~ 12 및 비교예 1 ~ 10을 실시하였다.It was carried out in the same manner as in Example 1, except that as shown in Tables 1 and 2 below, the PET chip as the core component, the PP chip as the sheath component, the average fineness, the average fiber length, the number of crimps, and the cross-sectional area ratio between the sheath and the core were varied. Each of the sheath-core type composite fibers was prepared, and Examples 2 to 12 and Comparative Examples 1 to 10 were carried out.

구분division 고유점도intrinsic viscosity
(dl/g)(dl/g)
융점melting point 융점차melting point difference DSCDSC 평균섬도(de),average fineness (de),
평균섬유장(mm)/Average fiber length (mm)/
크림프수(개/인치)Number of Crimps (pcs/inch)
코어:시스 Core: sheath
단면적비cross-sectional area ratio
실시예 1Example 1 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de, 7de,
51mm,51mm,
11개/인치11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 2Example 2 코어core PETPET 0.650.65 252℃252℃ 82℃82℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 170℃170℃ 90 J/g90 J/g 실시예 3Example 3 코어core PETPET 0.650.65 242℃242℃ 87℃87℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 155℃155℃ 95 J/g95 J/g 실시예 4Example 4 코어core PETPET 0.550.55 241℃241℃ 78℃78℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 5Example 5 코어core PETPET 0.900.90 260℃260℃ 95℃95℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 6Example 6 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:0.71:0.7
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 7Example 7 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 10de,
51mm,
11개/인치
10de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 8Example 8 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 5de,
51mm,
11개/인치
5de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 9Example 9 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
95mm,
11개/인치
7de,
95mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 10Example 10 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
25mm,
11개/인치
7de,
25mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 11Example 11 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
14개/인치
7de,
51mm,
14 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 실시예 12Example 12 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
9개/인치
7de,
51mm,
9 pcs/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g

구분division 고유점도intrinsic viscosity
(dl/g)(dl/g)
융점melting point 융점차melting point difference DSCDSC 평균섬도average fineness (de),(de),
평균섬유장(mm)/Average fiber length (mm)/
크림프수(개/인치)Number of Crimps (pcs/inch)
시스:코어sheath: core
단면적비cross-sectional area ratio
비교예 1Comparative Example 1 코어core PETPET 0.650.65 252℃252℃ 82℃82℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 176℃176℃ 89 J/g89 J/g 비교예 2Comparative Example 2 코어core PETPET 0.650.65 242℃242℃ 87℃87℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 148℃148℃ 97 J/g97 J/g 비교예 3Comparative Example 3 코어core PETPET 0.460.46 240℃240℃ 75℃75℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 4Comparative Example 4 코어core PETPET 1.051.05 262℃262℃ 97℃97℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 5Comparative Example 5 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:0.451:0.45
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 6Comparative Example 6 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
11개/인치
7de,
51mm,
11 pieces/inch
1:1.141:1.14
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 7Comparative Example 7 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 12.6de,
51mm,
11개/인치
12.6de,
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 8Comparative Example 8 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 3.7de,
51mm,
11개/인치
3.7de;
51mm,
11 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 9Comparative Example 9 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
16개/인치
7de,
51mm,
16 pieces/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g 비교예 10Comparative Example 10 코어core PETPET 0.650.65 252℃252℃ 87℃87℃ ** 7de,
51mm,
8개/인치
7de,
51mm,
8 pcs/inch
1:11:1
시스sheath PPPP ** 165℃165℃ 94 J/g94 J/g

실험예Experimental example 1 : 복합섬유의 물성 측정 1: Measurement of properties of composite fibers

상기 실시예 및 비교예에서 제조한 시스-코어 복합섬유를 하기 방법에 의거하여 복합섬유의 강도, 신도, 초기탄성률, 수축율을 측정하였고, 그 결과를 하기 표 3에 나타내었다.The strength, elongation, initial modulus of elasticity, and shrinkage of the sheath-core composite fibers prepared in Examples and Comparative Examples were measured according to the following method, and the results are shown in Table 3 below.

1) 강도(tenacity), 신도(elongation) 측정 방법1) How to measure tenacity and elongation

섬유의 강, 신도의 측정은 자동 인장 시험기(Textechno 사)를 사용하여 50 cm/m 의 속도, 50 cm의 파지 거리를 적용하여 측정하였다. 강도 및 신도는 섬유에 일정한 힘을 주어 절단될 때까지 연신시켰을 때, 걸린 하중을 데니어로 나눈 값(g/de)을 강도, 늘어난 길이에 대한 처음 길이를 백분율로 나타낸 값(%)을 신도로 정의하였다. The fiber strength and elongation were measured using an automatic tensile tester (Textechno) at a speed of 50 cm/m and a gripping distance of 50 cm. Strength and elongation are the value (g/de) obtained by dividing the applied load by the denier when the fiber is stretched until it is cut by applying a constant force to the strength, and the value (%) expressed as a percentage of the initial length to the stretched length defined.

2) 초기탄성률, 2) Initial modulus of elasticity, 수축율shrinkage 측정 방법 How to measure

초기탄성율은 유스터 테스터기(USTER TESTER) 측정하였고, 수축율은 180에서 20분간 건열처리한 전후의 복합섬유의 길이변화를 하기 수학식 1에 의거하여 측정하였다.The initial modulus of elasticity was measured with a USTER TESTER, and the shrinkage was measured based on Equation 1 below for the change in length of the composite fiber before and after dry heat treatment at 180°C for 20 minutes.

[수학식 1][Equation 1]

수축률(%) = (C-D)/C×100%Shrinkage (%) = (C-D)/C×100%

수학식 1에서, C는 열처리 전의 섬유의 길이 평균값이며, D는 열처리 후의 섬유의 길이 평균값이다. In Equation 1, C is the average length of fibers before heat treatment, and D is the average length of fibers after heat treatment.

구분division 강도
(%)
burglar
(%)
신도
(%)
Shinto
(%)
초기탄성률
(g/de)
initial modulus of elasticity
(g/de)
수축율
(%)
shrinkage
(%)
권축수
(개/inch)
crimp
(pcs/inch)
실시예 1Example 1 3.893.89 59.259.2 3.53.5 5.75.7 10.810.8 실시예 2Example 2 3.923.92 57.357.3 3.53.5 5.85.8 10.910.9 실시예 3Example 3 3.843.84 59.159.1 3.63.6 5.85.8 10.910.9 실시예 4Example 4 3.713.71 57.457.4 3.53.5 5.75.7 11.211.2 실시예 5Example 5 4.084.08 58.158.1 3.33.3 5.75.7 10.810.8 실시예 6Example 6 3.823.82 58.858.8 3.43.4 5.75.7 11.011.0 실시예 7Example 7 3.853.85 59.959.9 3.73.7 5.65.6 10.910.9 실시예 8Example 8 3.923.92 58.658.6 3.63.6 5.85.8 11.011.0 실시예 9Example 9 3.883.88 59.559.5 3.63.6 5.65.6 11.011.0 실시예 10Example 10 3.913.91 58.358.3 3.53.5 6.06.0 10.810.8 실시예 11Example 11 3.823.82 61.761.7 3.63.6 5.75.7 13.613.6 실시예 12Example 12 3.943.94 57.857.8 3.43.4 5.55.5 10.110.1 비교예 1Comparative Example 1 3.773.77 57.157.1 3.03.0 5.75.7 11.111.1 비교예 2Comparative Example 2 방사 불가no radiation 비교예 3Comparative Example 3 3.453.45 55.355.3 3.43.4 5.85.8 10.710.7 비교예 4Comparative Example 4 4.184.18 54.254.2 3.43.4 5.65.6 10.910.9 비교예 5Comparative Example 5 3.143.14 48.548.5 3.63.6 5.65.6 11.111.1 비교예 6Comparative Example 6 3.583.58 65.265.2 3.73.7 5.45.4 11.011.0 비교예 7Comparative Example 7 방사 불가no radiation 비교예 8Comparative Example 8 방사 불가no radiation 비교예 9Comparative Example 9 3.723.72 58.358.3 3.53.5 7.57.5 16.316.3 비교예 10Comparative Example 10 3.823.82 60.760.7 3.63.6 5.15.1 7.87.8

상기 표 3에 나타낸 복합섬유의 물성 결과를 살펴보면, 실시예 1 ~ 12의 경우, 강도 3.71 ~ 4.08 g/d, 신도 57.3 ~ 61.7%, 초기탄성률 3.3 ~ 3.6 g/d, 수축율 5.5 ~ 6.0% 및 권축수 9.3 ~ 13.5개/인치를 가짐을 보였다.Looking at the physical property results of the composite fibers shown in Table 3, in the case of Examples 1 to 12, strength 3.71 ~ 4.08 g / d, elongation 57.3 ~ 61.7%, initial modulus 3.3 ~ 3.6 g / d, shrinkage ratio 5.5 ~ 6.0% and It was shown to have a number of crimps of 9.3 to 13.5 pieces/inch.

이에 반해 시스 성분 융점이 170℃ 초과한 것을 사용한 비교예 1의 경우, 초기 탄성률이 3.2 g/d 미만인 낮은 값을 가지는 문제가 있었고, 시스 성분 융점이 150℃ 미만인 비교예 2의 경우, 방사가 매우 불량한 문제가 있어서, 복합섬유의 물성 측정이 불가능했다. On the other hand, in the case of Comparative Example 1 in which the melting point of the sheath component exceeded 170° C., there was a problem that the initial elastic modulus had a low value of less than 3.2 g/d, and in Comparative Example 2, where the melting point of the sheath component was less than 150° C., the spinning was very Due to a poor problem, it was impossible to measure the physical properties of the composite fiber.

또한, 고유점도 1.0 dl/g 초과한 PET를 코어 성분으로 도입한 비교예 3의 경우, 실시예와 비교할 때, 강도 및 신도가 떨어지는 결과를 보였다.In addition, in the case of Comparative Example 3, in which PET having an intrinsic viscosity of more than 1.0 dl/g was introduced as a core component, the strength and elongation were inferior as compared with Examples.

그리고, 복합섬유의 시스 및 코어의 단면적비가 1:0.5 미만인 1:0.45였던 비교예 5의 경우, 신도가 매우 불량한 문제가 있었다.And, in the case of Comparative Example 5, in which the cross-sectional area ratio of the composite fiber to the sheath and the core was 1:0.45, which was less than 1:0.5, there was a problem in that the elongation was very poor.

또한, 복합섬유의 평균섬도가 12 de를 초과하도록 설계한 비교예 7 및 평균섬도가 4 de 미만인 비교예 8의 경우 방사가 실질적으로 불가능했다.In addition, in Comparative Example 7, in which the average fineness of the composite fiber was designed to exceed 12 de, and Comparative Example 8, in which the average fineness was less than 4 de, spinning was practically impossible.

그리고, 크림프수가 16개/인치 초과한 비교예 9의 경우, 권축수가 15개/인치를 초과하여 너무 많이 형성되는 문제가 있었으며, 크림프수가 9 개/인치 미만인 비교예 10의 경우, 권축수가 낮은 문제가 있었다. And, in the case of Comparative Example 9, in which the number of crimps exceeded 16 pieces/inch, there was a problem in that the number of crimps exceeded 15 pieces/inch and formed too much, and in Comparative Example 10 where the number of crimps was less than 9 pieces/inch, the number of crimps was low there was

제조예production example 1 : One : 압축성형체의compression molding 제조 Produce

실시예 1에서 제조한 복합섬유만을 이용해서 카딩하여, 두께 10mm의 니들펀칭(Needle Punching) 부직포를 제조하였다.By carding using only the composite fiber prepared in Example 1, a needle punching nonwoven fabric having a thickness of 10 mm was prepared.

다음으로 상기 부직포를 200℃에서 90초간 열처리 공정을 수행한 후, 냉간압축하여 압축성형체(평균두께 3mm)를 제조하였다.Next, the nonwoven fabric was subjected to a heat treatment process at 200° C. for 90 seconds, and then cold-compressed to prepare a compression molded article (average thickness of 3 mm).

제조한 압축성형체의 평균면밀도는 1,230g/m2였고, 평균면밀도의 균제도는 3 CV% 였다.The average areal density of the prepared compression molded article was 1,230 g/m 2 , and the uniformity of the average areal density was 3 CV%.

제조예production example 2 : 2 : 압축성형체의compression molding 제조 Produce

상기 실시예 1에서 제조한 복합섬유 50 중량% 및 7데니어, 섬유장 51mm, 고유점도 0.65 dl/g인 PET를 50 중량%로 혼합한 후, 카딩하여 두께 10mm 니들펀칭(Needle Punching )부직포를 제조하였다.50% by weight of the composite fiber prepared in Example 1, 7 denier, 51mm fiber length, and 50% by weight PET having an intrinsic viscosity of 0.65 dl/g were mixed, and then carded to prepare a 10mm thick needle punching (Needle Punching) nonwoven fabric did.

다음으로 상기 제조예 1과 동일한 방법으로 열처리 공정 및 냉간압축을 수행하여 압축성형체(평균두께 3mm)를 제조하였다.Next, a compression molded article (average thickness of 3 mm) was prepared by performing a heat treatment process and cold compression in the same manner as in Preparation Example 1.

제조한 압축성형체의 평균면밀도는 1,250g/m2였고, 평균면밀도의 균제도 4.6 CV% 였다.The average areal density of the prepared compression molded article was 1,250 g/m 2 , and the uniformity of the average areal density was 4.6 CV%.

제조예production example 3 : 3: 압축성형체의compression molding 제조 Produce

상기 실시예 1에서 제조한 복합섬유 70 중량% 및 고유점도 0.65 dl/g인 PET 소재의 7데니어, 섬유장 51mm 단섬유를 30 중량%로 혼합한 후, 카딩하여 두께 10mm 니들펀칭(Needle Punching )부직포를 제조하였다.70% by weight of the composite fiber prepared in Example 1 and 7 denier of PET material having an intrinsic viscosity of 0.65 dl/g and 30% by weight of short fibers with a fiber length of 51mm were mixed with 30% by weight, and then carded and needle punched with a thickness of 10mm (Needle Punching) A nonwoven fabric was prepared.

다음으로 상기 제조예 1과 동일한 방법으로 열처리 공정 및 냉간압축을 수행하여 압축성형체(평균두께 3mm)를 제조하였다.Next, a compression molded article (average thickness of 3 mm) was prepared by performing a heat treatment process and cold compression in the same manner as in Preparation Example 1.

제조한 압축성형체의 평균면밀도는 1,210g/m2였고, 평균면밀도의 균제도 3.8 CV% 였다.The average areal density of the prepared compression molded article was 1,210 g/m 2 , and the uniformity of the average areal density was 3.8 CV%.

제조예production example 4 ~ 4 ~ 제조예production example 14 : 14: 압축성형체의compression molding 제조 Produce

상기 실시예 1과 동일한 방법으로 제조하되, 실시예 1의 복합섬유 대신 실시예 2 ~ 실시예 12의 복합섬유를 사용하여, 카딩하여, 두께 10mm 니들펀칭(Needle Punching) 부직포를 제조하였다.It was prepared in the same manner as in Example 1, except that the composite fibers of Examples 2 to 12 were used instead of the composite fibers of Example 1, and carding was performed to prepare a needle punching nonwoven fabric having a thickness of 10 mm.

다음으로, 상기 부직포를 200℃에서 90초간 열처리 공정을 수행한 후, 냉간압축하여 압축성형체(평균두께 3mm)를 제조하여 제조예 4 ~ 제조예 14를 각각 실시하였다(하기 표 4 참조).Next, the nonwoven fabric was subjected to a heat treatment process at 200° C. for 90 seconds, and then cold-compressed to prepare a compression molded article (average thickness 3 mm), and Preparation Examples 4 to 14 were carried out, respectively (see Table 4 below).

비교제조예 1Comparative Preparation Example 1

9데니어, 섬유장 70mm의 모노타입의 폴리프로필렌 섬유 60 중량% 및 유리섬유 40 중량%로 혼합한 후, 카딩하여 두께 10mm 니들펀칭(Needle Punching )부직포를 제조하였다.After mixing with 9 denier, 60% by weight of monotype polypropylene fiber and 40% by weight of glass fiber having a fiber length of 70mm, carding was performed to prepare a 10mm thick needle punching (Needle Punching) nonwoven fabric.

다음으로 상기 제조예 1과 동일한 방법으로 열처리 공정 및 냉간압축을 수행하여 압축성형체(평균두께 3mm)를 제조하였다.Next, a compression molded article (average thickness of 3 mm) was prepared by performing a heat treatment process and cold compression in the same manner as in Preparation Example 1.

비교제조예 2Comparative Preparation Example 2

4 데니어, 섬유장 51 mm의 연화점 110℃인 PET바인더 섬유 50 중량% 및 7데니어, 섬유장 51mm, 고유점도 0.65 dl/g인 PET 소재 단섬유를 50 중량%로 혼합한 후, 카딩하여 두께 10mm 니들펀칭(Needle Punching )부직포를 제조하였다.50 wt% of PET binder fiber with a softening point of 110°C with 4 denier, 51 mm of fiber length and 50 wt% of short PET material with 7 denier, 51 mm fiber length, and intrinsic viscosity of 0.65 dl/g Needle Punching A nonwoven fabric was prepared.

다음으로 상기 제조예 1과 동일한 방법으로 열처리 공정 및 냉간압축을 수행하여 압축성형체(평균두께 3mm)를 제조하였다.Next, a compression molded article (average thickness of 3 mm) was prepared by performing a heat treatment process and cold compression in the same manner as in Preparation Example 1.

비교제조예 3 ~ 9 : 압축성형체의 제조Comparative Preparation Examples 3 to 9: Preparation of compression molded articles

상기 실시예 1과 동일한 방법으로 제조하되, 실시예 1의 복합섬유 대신 비교예 1 ~ 비교예 10의 복합섬유를 사용하여, 카딩하여, 두께 10mm 니들펀칭(Needle Punching) 부직포를 제조하였다.It was prepared in the same manner as in Example 1, but using the composite fiber of Comparative Examples 1 to 10 instead of the composite fiber of Example 1, and carding, to prepare a needle punching nonwoven fabric having a thickness of 10 mm.

다음으로, 상기 부직포를 200℃에서 90초간 열처리 공정을 수행한 후, 냉간압축하여 압축성형체(평균두께 3mm)를 제조하여 비교제조예 3 ~ 비교제조예 9를 각각 실시하였다(하기 표 4 참조).Next, the nonwoven fabric was subjected to a heat treatment process at 200° C. for 90 seconds, and then cold-compressed to prepare a compression molded article (average thickness 3 mm), and Comparative Preparation Examples 3 to 9 were performed respectively (see Table 4 below). .

구분division 복합섬유composite fiber 혼합섬유mixed fiber 복합섬유 및 PET 섬유 혼합양Composite fiber and PET fiber mixture 제조예 1Preparation Example 1 실시예 1Example 1 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 2Preparation 2 실시예 1Example 1 7데니어, 섬유장 51mm, 고유점도 0.65 dl/g 인 PET 단섬유PET short fibers with 7 denier, 51 mm fiber length, and 0.65 dl/g intrinsic viscosity 복합섬유 50 중량%
+
PET 단섬유 50 중량%
50% by weight of composite fiber
+
PET short fiber 50% by weight
제조예 3Preparation 3 실시예 1Example 1 7데니어, 섬유장 51mm, 고유점도 0.65 dl/g 인 PET 단섬유PET short fibers with 7 denier, 51 mm fiber length, and 0.65 dl/g intrinsic viscosity 복합섬유 70 중량%
+
PET 단섬유 30 중량%
70% by weight of composite fiber
+
PET short fiber 30% by weight
제조예 4Preparation 4 실시예 2Example 2 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 5Preparation 5 실시예 3Example 3 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 6Preparation 6 실시예 4Example 4 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 7Preparation 7 실시예 5Example 5 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 8Preparation 8 실시예 6Example 6 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 9Preparation 9 실시예 7Example 7 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 10Preparation 10 실시예 8Example 8 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 11Preparation 11 실시예 9Example 9 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 12Preparation 12 실시예 10Example 10 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 13Preparation 13 실시예 11Example 11 ** 복합섬유 100 중량%100% by weight of composite fiber 제조예 14Preparation 14 실시예 12Example 12 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예 1Comparative Preparation Example 1 9데니어, 섬유장 70mm의 모노타입의 폴리프로필렌(PP) 섬유Monotype polypropylene (PP) fiber with 9 denier, 70mm fiber length 유리섬유fiberglass PP섬유 60중량%
+
유리섬유 40 중량%
PP fiber 60% by weight
+
Glass fiber 40% by weight
비교제조예 2Comparative Preparation Example 2 4 데니어, 섬유장 51 mm의 연화점 110℃인 PET바인더 섬유PET binder fiber with 4 denier, 51 mm fiber length and a softening point of 110°C 7데니어, 섬유장 51mm, 고유점도 0.65 dl/g 인 PET 단섬유PET short fibers with 7 denier, 51 mm fiber length, and 0.65 dl/g intrinsic viscosity PET바인더 섬유 50중량%
+
PET 단섬유 50 중량%
PET binder fiber 50% by weight
+
PET short fiber 50% by weight
비교제조예3Comparative Preparation Example 3 비교예 1Comparative Example 1 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예4Comparative Preparation Example 4 비교예 3Comparative Example 3 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예5Comparative Preparation Example 5 비교예 4Comparative Example 4 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예6Comparative Preparation Example 6 비교예 5Comparative Example 5 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예7Comparative Preparation Example 7 비교예 6Comparative Example 6 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예8Comparative Preparation Example 8 비교예 9Comparative Example 9 ** 복합섬유 100 중량%100% by weight of composite fiber 비교제조예9Comparative Preparation Example 9 비교예 10Comparative Example 10 ** 복합섬유 100 중량%100% by weight of composite fiber

실험예 1 : 압축성형체의 SEM 측정Experimental Example 1: SEM measurement of compression molded articles

제조예 1, 제조예 2 및 제조예 3에서 제조한 압축성형체의 절단면에 대한 SEM 사진을 도 1 ~ 도 3에 순서대로 각각 나타내었다.SEM photographs of the cut surfaces of the compression molded articles prepared in Preparation Example 1, Preparation Example 2 and Preparation Example 3 are shown in FIGS. 1 to 3 in order, respectively.

도 1의 SEM 측정 사진을 보면, 본 발명의 압축성형체의 경우, 섬유가 빽빽하게 형성되어 있는 것에 반해, 제조예 2 및 3의 경우, 도 2 및 도 3를 살펴보면 제조예 1 보다 상대적으로 섬유 형성 밀도가 낮았다. Looking at the SEM measurement photo of FIG. 1, in the case of the compression molded article of the present invention, while the fibers are densely formed, in the case of Preparation Examples 2 and 3, looking at FIGS. was low

실험예 2 : 압축성형체의 형태안정성 측정Experimental Example 2: Measurement of shape stability of compression molded articles

1) 온도에 따른 형태안정성1) Form stability according to temperature

상기 제조예 1, 비교제조예 1 및 비교제조예 2에서 제조한 압축성형체를 열풍건조기 투입한 후, 80g 하중 가한 상태에서 1시간 동안 노화후 형태 변화 확인하였으며, 그 결과를 도 4에 나타내었다.After the compression molded articles prepared in Preparation Example 1, Comparative Preparation Example 1 and Comparative Preparation Example 2 were put into a hot air dryer, a change in shape after aging was confirmed for 1 hour under a load of 80 g applied, and the results are shown in FIG. 4 .

도 4를 살펴보면, 제조예 1의 압축성형체의 경우, 100℃ 및 110℃에서도 형태안정성이 우수한데 반해, 비교제조예 1 및 2의 경우, 100℃부터 형태안정성이 떨어지는 문제가 있음을 확인할 수 있었다.4, in the case of the compression molded article of Preparation Example 1, it was confirmed that the shape stability was excellent even at 100 °C and 110 °C, whereas, in the case of Comparative Preparation Examples 1 and 2, there was a problem that the shape stability was lowered from 100 °C. .

2) 내열 환경 노화 후 형태안정성 측정2) Measurement of shape stability after aging in heat-resistant environment

상기 제조예 1, 비교제조예 1 및 비교제조예 2에서 제조한 압축성형체를 내열환경에서 방치한 한 후, 외력을 제거한 다음 80℃에서 72시간 경과한 후의 형태안정성을 측정하였고, 그 결과를 도 5에 나타내었다.After the compression molded articles prepared in Preparation Example 1, Comparative Preparation Example 1 and Comparative Preparation Example 2 were left in a heat-resistant environment, the external force was removed and the shape stability was measured after 72 hours at 80°C, and the results are shown in Fig. 5 is shown.

도 5를 살펴보면 제조예 1의 경우, 형태 변화가 거의 없지만, 비교제조예 1의 경우 크게 휘었으며, 비교제조예 2 또한 끝 부분이 살짝 말리면서 휘는 경향을 보였다.Referring to FIG. 5, in the case of Preparation Example 1, there was little change in shape, but in Comparative Preparation Example 1, it was greatly bent, and Comparative Preparation Example 2 also showed a tendency to bend while slightly curling the tip.

형태안정성 측정을 통해 본 발명의 복합섬유로 제조한 압축성형체의 형태안정성이 매우 우수함을 확인할 수 있었다.Through the measurement of shape stability, it was confirmed that the shape stability of the compression molded article prepared from the composite fiber of the present invention was very good.

실험예Experimental example 3 : 3: 압축성형체의compression molding 인장강도, The tensile strength, 모듈러스modulus 측정 measurement

제조예 1 ~ 14 및 비교제조예 1 ~ 12에서 제조한 압축성형체의 인장강도, 굴곡강도 및 굴곡탄성률을 측정하였고, 그 결과를 하기 표 5에 각각 나타내었다.Tensile strength, flexural strength, and flexural modulus of the compression molded articles prepared in Preparation Examples 1 to 14 and Comparative Preparation Examples 1 to 12 were measured, and the results are shown in Table 5 below, respectively.

이때, 인장강도는 ASTM D 638에 의거하여 측정하였고, 모듈러스인 굴곡강도 및 굴곡탄성률은 ASTM D 790에 의거하여 측정하였다.At this time, the tensile strength was measured according to ASTM D 638, and the modulus of flexural strength and flexural modulus was measured according to ASTM D 790.

구분division 인장강도
(Mpa)
The tensile strength
(Mpa)
굴곡강도
(Mpa)
flexural strength
(Mpa)
굴곡탄성율
(Mpa)
flexural modulus
(Mpa)
제조예 1Preparation Example 1 21.321.3 9.79.7 542542 제조예 2Preparation 2 18.518.5 5.75.7 436436 제조예 3Preparation 3 20.620.6 7.47.4 480480 제조예 4Preparation 4 20.820.8 9.69.6 537537 제조예 5Preparation 5 21.521.5 9.49.4 518518 제조예 6Preparation 6 20.320.3 9.29.2 495495 제조예 7Preparation 7 20.420.4 10.710.7 583583 제조예 8Preparation 8 20.720.7 9.19.1 522522 제조예 9Preparation 9 20.720.7 10.110.1 531531 제조예 10Preparation 10 21.121.1 9.59.5 508508 제조예 11Preparation 11 23.123.1 9.39.3 511511 제조예 12Preparation 12 20.420.4 9.59.5 502502 제조예 13Preparation 13 20.420.4 10.010.0 545545 제조예 14Preparation 14 21.221.2 9.29.2 551551 비교제조예 1Comparative Preparation Example 1 9.59.5 3.23.2 316316 비교제조예 2Comparative Preparation Example 2 9.09.0 2.82.8 125125 비교제조예3Comparative Preparation Example 3 20.120.1 8.58.5 471471 비교제조예4Comparative Preparation Example 4 20.420.4 7.77.7 448448 비교제조예5Comparative Preparation Example 5 18.818.8 9.89.8 490490 비교제조예6Comparative Preparation Example 6 19.719.7 5.95.9 411411 비교제조예7Comparative Preparation Example 7 19.419.4 7.47.4 420420 비교제조예8Comparative Preparation Example 8 18.618.6 9.49.4 483483 비교제조예9Comparative Preparation Example 9 18.918.9 9.59.5 408408

상기 표 5를 살펴보면, 제조예 1 ~ 14의 압축성형체가 비교제조예 1 ~ 2 보다 인장강도 및 모듈러스가 전반적으로 우수한 것을 확인할 수 있었으며, 압축성형체용 섬유를 단독으로 사용한 제조예 1이 PET 섬유를 혼용하여 사용한 제조예 2 ~ 3에 비해 상대적으로 기계적 물성이 우수한 결과를 보였다.Looking at Table 5, it was confirmed that the compression molded articles of Preparation Examples 1 to 14 were overall superior in tensile strength and modulus than Comparative Preparation Examples 1 and 2, and Preparation Example 1 using the fibers for the compression molded article alone produced PET fibers. Compared to Preparation Examples 2 to 3, which were mixed and used, relatively excellent mechanical properties were obtained.

그리고, 비교제조예 3의 경우, 굴곡강도가 다소 떨어지는 문제가 있고 가공성이 떨어지는 문제가 있었다. 그리고, 비교제조예 4의 경우, 굴곡탄성율이 좋지 않은 결과를 보였다.And, in the case of Comparative Preparation Example 3, there was a problem that the flexural strength was somewhat lowered and the workability was lowered. And, in the case of Comparative Preparation Example 4, the flexural modulus showed poor results.

또한, 비교제조예 5의 경우, 굴곡강도는 우수하나, 인장강도도 다소 떨어지는 결과를 보였고, 비교제조예 6 및 비교제조예 7의 경우, 굴곡강도 및 굴곡탄성율이 너무 낮은 문제가 있었다.In addition, in the case of Comparative Preparation Example 5, although the flexural strength was excellent, the tensile strength was also slightly lowered. In the case of Comparative Preparation Example 6 and Comparative Preparation Example 7, there was a problem that the flexural strength and the flexural modulus were too low.

또한, 비교제조예 8의 경우, 사용된 복합섬유의 크림프수가 높아서 넵(nep)이 발생하는 문제가 있었으며, 비교제조예 9의 경우 사용된 복합섬유의 크림프 수가 너무 낮아서 굴곡탄성율이 낮은 결과를 보였다.In addition, in Comparative Preparation Example 8, the number of crimps of the composite fibers used was high, so there was a problem that neps were generated. In Comparative Preparation Example 9, the number of crimps of the composite fibers used was too low, resulting in a low flexural modulus. .

상기 실시예 및 실험예를 통하여 본 발명의 복합섬유가 우수한 기계적 물성을 가지면서도, 소리 흡수성/소리 분산성 및 수분 흡수성/수분산성을 가지는 것을 확인할 수 있었다. 이러한, 본 발명의 복합섬유를 부직포 등의 섬유집합체로 제조하거나, 또는 상기 섬유집합체를 압축시켜서 다양한 응용제품을 제공할 수 있을 것으로 기대되며, 구체적인 예를 들면, 건축 내외장재 / 토목 자재 / 비행기, 배 등의 운송수단의 내외장재 / 기저귀, 생리대, 마스크 등의 위생재 / 에어필터, 액체필터 등의 필터 등으로 적용할 수 있다. Through the above Examples and Experimental Examples, it was confirmed that the composite fiber of the present invention has excellent mechanical properties, and has sound absorption/sound dispersibility and water absorption/water dispersibility. It is expected that the composite fiber of the present invention can be manufactured into a fiber aggregate such as a nonwoven fabric, or the fiber aggregate is compressed to provide various application products, for example, building interior and exterior materials / civil engineering materials / airplanes, ships It can be applied as interior and exterior materials of transportation means / sanitary materials such as diapers, sanitary napkins and masks / filters such as air filters and liquid filters.

Claims (14)

고유점도 0.50 ~ 1.00 dl/g 및 융점 240 ~ 280℃인 제1성분 수지; 및 융점 150 ~ 170℃인 제2성분 수지;를 포함하는 시스-코어형 복합섬유이고,
상기 시스-코어형 복합섬유는 상기 제1성분 수지로 구성된 코어 및 상기 제2성분 수지로 구성된 시스의 단면적비가 1 : 0.5 ~ 1이며,
상기 제1성분 수지는 폴리에틸렌테레프탈레이트(PET) 수지, 폴리부틸렌테레프탈렌(PBT) 수지, 폴리트리메틸렌테레프탈레이트(PTT) 수지 및 폴리에틸렌나프탈레이트(PEN) 수지 중에서 선택된 1종 이상을 포함하는 폴리에스테르 수지를 포함하고,
상기 제2성분 수지는 융점 150℃ ~ 170℃인 폴리프로필렌(PP) 수지 및 폴리에틸렌(PE) 중에서 선택된 1종 이상을 포함하는 결정성 폴리올레핀 수지를 포함하며,
제1성분 수지와 제2성분 수지의 융점온도 차가 30℃~ 100℃인 것을 특징으로 하는 압축성형체용 복합섬유.
a first component resin having an intrinsic viscosity of 0.50 to 1.00 dl/g and a melting point of 240 to 280°C; and a second component resin having a melting point of 150 to 170° C.; a sheath-core type composite fiber comprising;
In the sheath-core type composite fiber, the cross-sectional area ratio of the core composed of the first component resin and the sheath composed of the second component resin is 1: 0.5 to 1,
The first component resin is a poly containing at least one selected from polyethylene terephthalate (PET) resin, polybutylene terephthalene (PBT) resin, polytrimethylene terephthalate (PTT) resin, and polyethylene naphthalate (PEN) resin. containing an ester resin,
The second component resin includes a crystalline polyolefin resin comprising at least one selected from polypropylene (PP) resin and polyethylene (PE) having a melting point of 150°C to 170°C,
Composite fiber for compression molded article, characterized in that the difference in melting point temperature between the first component resin and the second component resin is 30°C to 100°C.
제1항에 있어서, 상기 결정성 폴리올레핀 수지는 DSC(differential thermal analysis) 분석시, 결정을 녹이는데 필요한 엔탈피(Enthalpy) 값이 40 ~ 120J/g인 것을 특징으로 하는 압축성형체용 복합섬유.
The composite fiber for a compression molded article according to claim 1, wherein the crystalline polyolefin resin has an enthalpy value of 40 to 120J/g required to melt the crystals during differential thermal analysis (DSC) analysis.
삭제delete 제1항에 있어서, 상기 PET 수지는
테레프탈산과 및 디올(diol)을 1 : 0.95 ~ 1.20 몰비로 중합시킨 중합체를 포함하는 것을 특징으로 하는 압축성형체용 복합섬유.
The method of claim 1, wherein the PET resin is
A composite fiber for a compression molded article, comprising a polymer obtained by polymerizing terephthalic acid and diol in a molar ratio of 1:0.95 to 1.20.
삭제delete 삭제delete 삭제delete 제1항, 제2항 및 제4항 중에서 선택된 어느 한 항에 있어서, 압축성형체용 섬유의 평균섬도는 4 ~ 12 de이고, 평균섬유장은 3 ~ 120 mm이며, 크림프수 9 ~ 15개/인치인 것을 특징으로 하는 압축성형체용 복합섬유.
[Claim 5] The method according to any one of claims 1, 2 and 4, wherein the fibers for compression molded products have an average fineness of 4 to 12 de, an average fiber length of 3 to 120 mm, and a number of crimps of 9 to 15/inch. Composite fiber for compression molded article, characterized in that.
삭제delete 폴리에스테르 칩 및 결정성 폴리올레핀 칩을 각각 준비하는 1단계;
폴리에스테르 칩 및 결정성 폴리올레핀 칩 각각을 용융시킨 제1성분 수지 및 제2성분 수지를 복합방사구금에 투입 및 복합방사시킨 후, 냉각시켜서 미연신 서브토우(sub-tow)를 제조하는 2단계;
상기 미연신 서브토우를 연신한 후, 권축(Crimp)을 부여하는 3단계; 및
연신 및 권축된 서브토우를 열고정시키고 컷팅(Cutting)하는 4단계;를 포함하는 공정을 수행하여 제조하며,
상기 서브토우는 시스-코어형 모노 필라멘트이고,
2단계의 용융은 폴리에스테르 칩은 270℃~ 300℃ 하에서 수행하고, 결정성 폴리올레핀 칩은 230℃~ 280℃ 하에서 수행하며,
상기 제1성분 수지는 코어를 구성하고, 상기 제2성분 수지는 시스를 구성하며,
상기 제1성분 수지는 고유점도 0.50 ~ 1.00 dl/g 및 융점 240 ~ 280℃이고, 상기 제1성분 수지는 폴리에틸렌테레프탈레이트(PET) 수지, 폴리부틸렌테레프탈렌(PBT) 수지, 폴리트리메틸렌테레프탈레이트(PTT) 수지 및 폴리에틸렌나프탈레이트(PEN) 수지 중에서 선택된 1종 이상을 포함하는 폴리에스테르 수지를 포함하고,
상기 제2성분 수지는 융점 150℃ ~ 170℃이며, 상기 제2성분 수지는 폴리프로필렌(PP) 수지 및 폴리에틸렌(PE) 중에서 선택된 1종 이상을 포함하는 결정성 폴리올레핀 수지를 포함하는 것을 특징으로 하는 압축성형체용 복합섬유의 제조방법.
Step 1 of preparing a polyester chip and a crystalline polyolefin chip, respectively;
A second step of preparing an unstretched sub-tow by putting the first component resin and the second component resin in which the polyester chip and the crystalline polyolefin chip are melted, respectively, into a composite spinneret and composite spinning, followed by cooling;
After stretching the unstretched sub tow, a third step of applying a crimp; and
4 steps of heat-setting and cutting the stretched and crimped sub tow; manufactured by performing a process comprising:
The subtow is a sheath-core monofilament,
The melting of the second step is carried out under 270 ° C. to 300 ° C. for the polyester chip, and 230 ° C. to 280 ° C. for the crystalline polyolefin chip.
The first component resin constitutes a core, and the second component resin constitutes a sheath,
The first component resin has an intrinsic viscosity of 0.50 to 1.00 dl/g and a melting point of 240 to 280° C., and the first component resin is polyethylene terephthalate (PET) resin, polybutylene terephthalene (PBT) resin, polytrimethylene tere. A polyester resin comprising at least one selected from a phthalate (PTT) resin and a polyethylene naphthalate (PEN) resin,
The second component resin has a melting point of 150° C. to 170° C., and the second component resin comprises a crystalline polyolefin resin comprising at least one selected from polypropylene (PP) resin and polyethylene (PE). A method for manufacturing a composite fiber for a compression molded article.
제10항에 있어서, 2단계의 복합방사는 방사온도 260℃ ~ 290℃ 및 권취속도 400 ~ 1,300 m/min 조건 하에서 수행하는 것을 특징으로 하는 압축성형체용 복합섬유의 제조방법.
11. The method of claim 10, wherein the composite spinning in the second step is performed under the conditions of a spinning temperature of 260° C. to 290° C. and a winding speed of 400 to 1,300 m/min.
제8항의 복합섬유를 포함하는 것을 특징으로 하는 압축성형체용 섬유집합체.
A fiber assembly for a compression molded article, characterized in that it comprises the composite fiber of claim 8.
제8항의 압축성형체용 복합섬유를 포함하는 것을 특징으로 하는 압축성형체용 부직포.
A nonwoven fabric for a compression molded article, comprising the composite fiber for a compression molded article of claim 8.
제13항에 있어서, 상기 부직포는 건식(dry-laid) 부직포, 습식(wet-laid) 부직포 또는 에어레이드(air-laid) 부직포인 것을 특징으로 하는 압축성형체용 부직포.The nonwoven fabric for compression molded article according to claim 13, wherein the nonwoven fabric is a dry-laid nonwoven fabric, a wet-laid nonwoven fabric, or an air-laid nonwoven fabric.
KR1020170115859A 2016-09-09 2017-09-11 complex-fiber for the compressing molding body and Manufacturing method thereof KR102426436B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/010614 WO2019050376A1 (en) 2016-09-09 2018-09-11 Composite fiber for compression-molded body and method for producing composite fiber
TW107131947A TWI798257B (en) 2016-09-09 2018-09-11 Complex-fiber for the compressing molding body and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160116557 2016-09-09
KR20160116557 2016-09-09

Publications (2)

Publication Number Publication Date
KR20180028982A KR20180028982A (en) 2018-03-19
KR102426436B1 true KR102426436B1 (en) 2022-07-29

Family

ID=61910946

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170115859A KR102426436B1 (en) 2016-09-09 2017-09-11 complex-fiber for the compressing molding body and Manufacturing method thereof

Country Status (3)

Country Link
KR (1) KR102426436B1 (en)
TW (1) TWI798257B (en)
WO (1) WO2019050376A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122151B1 (en) * 2019-03-08 2020-06-11 도레이첨단소재 주식회사 polyester composite fiber, non-woven fabric containing the same, and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350508B1 (en) 2013-07-22 2014-01-16 코오롱글로텍주식회사 Thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2894828B2 (en) * 1989-07-25 1999-05-24 ダンロップ・リミテッド Carbon fiber preform and method for producing the same
JP3082338B2 (en) * 1991-08-27 2000-08-28 ソニー株式会社 Tape cassette
DE502004010774D1 (en) * 2004-10-08 2010-04-01 Sgl Carbon Se POLYMER-LINKED FIBER LAYERS
JP4820211B2 (en) * 2006-05-12 2011-11-24 帝人ファイバー株式会社 Self-extensible thermoadhesive conjugate fiber and method for producing the same
KR100888276B1 (en) * 2007-04-27 2009-03-11 (주) 신우피앤씨 Manufacturing method of a multifunctional complex filter
KR100899613B1 (en) 2007-05-29 2009-05-27 (주)대보휄트 Fabric sheet using hemp fabric and method for manufacturing the same
JP5233053B2 (en) * 2008-05-19 2013-07-10 Esファイバービジョンズ株式会社 Composite fiber for producing air laid nonwoven fabric and method for producing high density air laid nonwoven fabric
TW201339387A (en) * 2011-12-16 2013-10-01 Toray Industries Combined filament nonwoven fabric, laminated sheet, filter and process for manufacturing the combined filament nonwoven fabric
KR101357018B1 (en) 2012-06-29 2014-02-03 주식회사 윈코 Manufacturing process of multi-component nonwoven fabric felt with lightness and high-strength
JP6222997B2 (en) * 2013-05-31 2017-11-01 Esファイバービジョンズ株式会社 Thermal adhesive composite fiber with excellent flexibility and non-woven fabric using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101350508B1 (en) 2013-07-22 2014-01-16 코오롱글로텍주식회사 Thermally bondable core-sheath type composite fiber, manufacturing method thereof and use thereof

Also Published As

Publication number Publication date
WO2019050376A1 (en) 2019-03-14
TWI798257B (en) 2023-04-11
KR20180028982A (en) 2018-03-19
TW201912855A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
KR101194359B1 (en) Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
KR101194358B1 (en) Polyester nonwoven fabrics, its preparation method and carpet primary backing substrate
KR100915458B1 (en) Flame retardant and low melting polyester fiber and method of making the same
KR102426436B1 (en) complex-fiber for the compressing molding body and Manufacturing method thereof
KR101143519B1 (en) Thermal bonded highly elastic conjugate fiber and maunfacturing method thereof
KR102402948B1 (en) The compressing molding body using complex-fiber and Manufacturing method thereof
KR101915810B1 (en) Non-woven Fabric Of Cross-section For High-efficiency Filter
TWI784249B (en) Polyesters with ultra-high flowability and superior stability and meltblown fibers thereof
CN106917192B (en) Preparation method of flame-retardant non-woven fabric
KR102031790B1 (en) Improved Thermoform Spunbonded Nonwoven for Primary Carpet Backing, and Method for Manufacturing the Same
KR101240339B1 (en) The latent crimped polyester staple fiber and method thereof
KR102122151B1 (en) polyester composite fiber, non-woven fabric containing the same, and manufacturing method thereof
KR102037496B1 (en) Improved Plasticity Spunbonded Nonwoven for Primary Carpet Backing, and Method for Manufacturing the Same
KR102415147B1 (en) Short-cut fiber for the compressing molding body, Compressing molding body using the same and Manufacturing method thereof
US11332863B2 (en) Non-woven fabric with enhanced hardness and sound absorption, manufacturing method therefor, and automotive undercover comprising non-woven fabric with enhanced hardness and sound absorption
KR101703348B1 (en) Shaped cross-section conjugate fiber and fibrous assemblies using thereof
KR102003889B1 (en) Sheath Core Hollow Composite Fiber Excellent In Bulky Property
KR102003890B1 (en) Sheath Core Hollow Composite Fiber With Excellent Bending Strength
KR101434370B1 (en) The high thermostable elastic nonwoven fabric and its preparation method
JP6537431B2 (en) Core-sheath composite binder fiber
KR101218609B1 (en) The latent crimping polyester staple fiber
KR20100074459A (en) Polyester nonwoven fabrics and preparation method thereof
KR102617463B1 (en) Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof
KR101641898B1 (en) Shaped cross-section hollow fiber and fibrous Assemblies using thereof
KR101915812B1 (en) Nonwoven fabric having good heat-retaining

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant