KR102424905B1 - Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage - Google Patents

Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage Download PDF

Info

Publication number
KR102424905B1
KR102424905B1 KR1020200089504A KR20200089504A KR102424905B1 KR 102424905 B1 KR102424905 B1 KR 102424905B1 KR 1020200089504 A KR1020200089504 A KR 1020200089504A KR 20200089504 A KR20200089504 A KR 20200089504A KR 102424905 B1 KR102424905 B1 KR 102424905B1
Authority
KR
South Korea
Prior art keywords
activated carbon
hydrogen storage
hydrogen
koh
chemical activation
Prior art date
Application number
KR1020200089504A
Other languages
Korean (ko)
Other versions
KR20220010861A (en
Inventor
박수진
박지혜
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020200089504A priority Critical patent/KR102424905B1/en
Publication of KR20220010861A publication Critical patent/KR20220010861A/en
Application granted granted Critical
Publication of KR102424905B1 publication Critical patent/KR102424905B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

본 발명은 수소저장용 활성탄소 제조방법에 관한 것으로, 더욱 상세하게는 알칼리금속 수산화물을 이용한 화학적 활성화 및 규소제거법을 이용하여 미세기공이 발현된 고비표면적 수소저장용 활성탄소를 제조하는 방법에 관한 것이다. 본 발명에 따르면, 코코넛껍질을 탄소 전구체로 사용하여 질소분위기 하에서 열처리하는 탄화과정을 거친 후, 수산화칼륨(KOH) 등의 알칼리금속 수산화물을 이용한 화학적 활성화 및 규소제거법을 통해 종래 활성탄소에 비하여 우수한 수소저장용량을 나타내는 활성탄소를 제공함에 따라, 비행기, 자동차 및 선박과 같은 다양한 분야에 화석연료를 대체할 수소저장매체로 이용될 수 있다.The present invention relates to a method for producing activated carbon for storage of hydrogen, and more particularly, to a method for producing activated carbon for storage of high specific surface area hydrogen with micropores by using chemical activation and silicon removal using alkali metal hydroxide. . According to the present invention, after a carbonization process of heat treatment in a nitrogen atmosphere using coconut shell as a carbon precursor, chemical activation and silicon removal using an alkali metal hydroxide such as potassium hydroxide (KOH), hydrogen superior to conventional activated carbon By providing activated carbon showing a storage capacity, it can be used as a hydrogen storage medium to replace fossil fuels in various fields such as airplanes, automobiles and ships.

Description

화학적 활성화 및 규소 제거법에 의한 코코넛껍질 기반의 수소저장용 활성탄소 제조 방법{Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage}Coconut shell-based activated carbon production method by chemical activation and silicon removal method {Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage}

본 발명은 다양한 대체에너지 소재분야에서 응용할 수 있는 수소저장용 활성탄소 제조 방법에 관한 것이다. 더욱 상세하게는, 코코넛껍질을 탄소 전구체로 사용하여 질소 분위기 하에서 열처리하는 탄화 과정을 거친 후, 수산화칼륨(KOH) 등의 알칼리금속 수산화물을 이용한 화학적 활성화 및 규소 제거법을 통해, 종래 활성탄소에 비해 우수한 수소 저장 용량을 갖는 활성탄소를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing activated carbon for hydrogen storage that can be applied in various alternative energy material fields. More specifically, after a carbonization process of heat-treating under a nitrogen atmosphere using coconut shell as a carbon precursor, chemical activation and silicon removal using an alkali metal hydroxide such as potassium hydroxide (KOH), superior to conventional activated carbon A method for producing activated carbon having hydrogen storage capacity.

지구온난화의 주원인인 화석연료의 사용을 억제하기 위한 청정에너지의 사용과 화석 연료의 고갈 문제가 대두됨에 따라, 수소에너지에 대한 관심이 급증하고 있다. 수소에너지는 지구상 존재하는 가장 풍부한 자원으로서, 오염물질을 배출하지 않을 뿐 아니라, 단위무게당 높은 에너지용량을 나타내는 등 많은 장점을 가지고 있어, 이상적인 대체에너지로서 각광받고 있다. 하지만, 단위부피당 매우 낮은 밀도를 가지고 있기 때문에, 이를 에너지원으로 효율적으로 활용하기 위해서는 적절한 저장방법의 모색이 필수적이다.As the use of clean energy to suppress the use of fossil fuels, the main cause of global warming, and the depletion of fossil fuels have emerged, interest in hydrogen energy is rapidly increasing. Hydrogen energy is the most abundant resource that exists on earth, and it not only emits no pollutants, but also has many advantages, such as high energy capacity per unit weight, and is spotlighted as an ideal alternative energy. However, since it has a very low density per unit volume, it is essential to find an appropriate storage method to efficiently utilize it as an energy source.

수소저장방법은 크게 액화수소 저장법, 압축기체 저장법, 저장소재로서 흡착제를 이용한 흡착법 등이 있다. 그 중 흡착법은 많은 저장량, 빠른 저장이 가능하며, 가역적인 특징이 있어, 현재 많은 연구가 진행되고 있다. 흡착제로는 제올라이트, 다공성 실리카, 금속 유기 구조체 및 활성탄소가 많이 사용된다. 그 중, 활성탄소는 다른 흡착제와 비교하여 높은 비표면적 및 기공성을 나타내고, 저렴한 가격과 뛰어난 안정성으로 수소저장을 위한 흡착제로서 많은 주목을 받고 있다.Hydrogen storage methods are largely divided into liquid hydrogen storage method, compressed gas storage method, and adsorption method using an adsorbent as a storage material. Among them, the adsorption method has a large amount of storage, can be stored quickly, and has reversible characteristics, so many studies are currently being conducted. As adsorbents, zeolite, porous silica, metal organic structures, and activated carbon are widely used. Among them, activated carbon shows a high specific surface area and porosity compared to other adsorbents, and has attracted much attention as an adsorbent for hydrogen storage due to its low price and excellent stability.

최근 대두되는 환경문제를 해결하기 위해, 활성탄소의 전구체로서 바이오매스 물질이 각광받고 있다. 바이오매스 물질은 토양으로부터 흡수되어 식물세포에 형성된 산화규소를 포함하고 있어, 산화규소의 제거를 통한 추가적인 기공성 향상을 나타낼 수 있는 잠재력을 갖고 있다. 이중 코코넛껍질은 매년 전세계적으로 많은 양이 버려지고 있고, 산화규소를 다량 포함하고 있어 수소저장용 활성탄소의 전구체로서 적절하다.In order to solve recent environmental problems, biomass materials are in the spotlight as a precursor of activated carbon. The biomass material contains silicon oxide that is absorbed from the soil and formed in plant cells, so it has the potential to exhibit additional porosity improvement through the removal of silicon oxide. Of these, coconut shells are thrown away worldwide every year and contain a large amount of silicon oxide, so it is suitable as a precursor of activated carbon for hydrogen storage.

이에 본 발명자는, 알칼리금속 수산화물을 이용한 화학적 활성화 및 산화규소 제거법을 이용하여 미세기공이 발현된 고비표면적 수소저장용 활성탄소를 제조하는 방법을 제공한다.Accordingly, the present inventors provide a method for producing activated carbon for storage of high specific surface area hydrogen in which micropores are expressed using chemical activation and silicon oxide removal using alkali metal hydroxide.

한국공개특허공보 제10-2017-0100331호Korean Patent Publication No. 10-2017-0100331

본 발명의 목적은, 수산화칼륨(KOH)을 이용한 화학적 활성화와 추가적인 규소제거를 통하여 비표면적과 미세기공 부피가 증가된 코코넛껍질 기반의 활성탄소를 제조하여, 기존의 활성탄소보다 높은 수소흡착능력을 나타내는 수소저장용 활성탄소 제조 방법을 제공하는 것이다.An object of the present invention is to prepare coconut shell-based activated carbon with an increased specific surface area and micropore volume through chemical activation using potassium hydroxide (KOH) and additional silicon removal, thereby providing higher hydrogen adsorption capacity than conventional activated carbon. It is to provide a method for producing activated carbon for hydrogen storage shown.

상기 목적을 달성하기 위하여, 본 발명은 화학적 활성화 및 규소제거법을 이용하여 높은 수소 흡착 능력을 보여주는 코코넛껍질 기반의 수소저장용 활성탄소의 제조방법으로서, 1) 전구체로서 코코넛껍질을 열처리하여 탄화하는 탄화단계; 2) 산화규소 제거를 위한 알칼리수용액을 제조하는 단계; 3) 상기 2) 단계에서 제조된 알칼리수용액과 상기 1) 단계에서 탄화된 활성탄소 전구체를 혼합 및 열처리하여 산화규소를 제거하는 단계; 4) 상기 3) 단계에서 제조된 탄소 시료와, KOH 및 NaOH를 포함하는 군으로부터 선택된 어느 1종의 알칼리금속 수산화물을 혼합하여 혼합물을 제조하는 단계; 및 5) 상기 4) 단계에서 제조된 혼합물을 활성화 과정을 통해 활성탄소를 제조하는 단계; 를 포함한다.In order to achieve the above object, the present invention is a method for producing coconut shell-based activated carbon for hydrogen storage that shows high hydrogen adsorption capacity using chemical activation and desiliconization method, 1) carbonization step of heat-treating coconut shell as a precursor to carbonize it ; 2) preparing an alkaline aqueous solution for removing silicon oxide; 3) removing silicon oxide by mixing and heat-treating the alkaline aqueous solution prepared in step 2) and the activated carbon precursor carbonized in step 1); 4) preparing a mixture by mixing the carbon sample prepared in step 3) with any one alkali metal hydroxide selected from the group comprising KOH and NaOH; and 5) preparing activated carbon by activating the mixture prepared in step 4); includes

상기 1) 단계에서, 코코넛껍질의 탄화는 질소분위기 하에서 1 내지 5시간 동안 500 내지 900℃의 온도에서 수행될 수 있다. In step 1), carbonization of coconut shells may be performed at a temperature of 500 to 900° C. for 1 to 5 hours under a nitrogen atmosphere.

상기 2) 단계에서, 상기 알칼리수용액은 KOH, NaOH을 포함하는 군에서 선택된 어느 1종이며, 상기 알칼리수용액의 농도는 0.1 내지 10 M일 수 있다.In step 2), the alkaline aqueous solution is any one selected from the group consisting of KOH and NaOH, and the concentration of the alkaline aqueous solution may be 0.1 to 10 M.

상기 3) 단계에서 산화규소의 제거는 80℃ 내지 200℃ 의 온도에서 1 시간 내지 24 시간 동안 수행될 수 있다.The removal of silicon oxide in step 3) may be performed at a temperature of 80° C. to 200° C. for 1 hour to 24 hours.

상기 4) 단계에서 탄소 시료에 대한 알칼리금속 수산화물의 비율은 0.5 내지 15의 중량비일 수 있다.The ratio of the alkali metal hydroxide to the carbon sample in step 4) may be a weight ratio of 0.5 to 15.

상기 5) 단계에서 활성화 과정은 600℃ 내지 1000℃에서 행해질 수 있다.The activation process in step 5) may be performed at 600°C to 1000°C.

상기 5) 단계에서 활성화 과정은 5시간 이내로 행해질 수 있다.The activation process in step 5) may be performed within 5 hours.

상기와 같은 본 발명에 따르면, 규소제거 후 화학적 활성화를 이용하여 비표면적 및 기공부피가 크게 증가한 활성탄소를 제조할 수 있으며, 우수한 수소흡착효율을 통해 수소저장과 관련한 여러 분야에 응용이 가능하며 고부가 가치를 창출할 수 있는 효과가 있다. According to the present invention as described above, it is possible to manufacture activated carbon with greatly increased specific surface area and pore volume by using chemical activation after silicon removal, and it can be applied to various fields related to hydrogen storage through excellent hydrogen adsorption efficiency and high value added. It has the potential to create value.

도 1은 본 발명에 따른 수소저장용 활성탄소의 EDS mapping 사진이다.
도 2는 본 발명에 따른 수소저장용 활성탄소의 질소 흡착 등온선이다.
도 3는 본 발명에 따른 수소저장용 활성탄소의 수소 흡착 등온선이다.
1 is an EDS mapping photograph of activated carbon for hydrogen storage according to the present invention.
2 is a nitrogen adsorption isotherm of activated carbon for hydrogen storage according to the present invention.
3 is a hydrogen adsorption isotherm of activated carbon for hydrogen storage according to the present invention.

이하, 본 발명을 상세히 설명한다. 규소제거법 및 화학적 활성화를 이용한 코코넛껍질 기반의 수소저장용 활성탄소를 제조하는 방법에 있어서, 보다 상세하게는, 1) 전구체로서 코코넛껍질을 열처리하여 탄화하는 탄화단계; 2) 산화규소 제거를 위한 알칼리수용액을 제조하는 단계; 3) 상기 2) 단계에서 제조된 알칼리수용액과 상기 1) 단계에서 탄화된 활성탄소 전구체를 혼합 및 열처리하여 산화규소를 제거하는 단계; 4) 상기 3) 단계에서 제조된 탄소 시료와, KOH 및 NaOH를 포함하는 군으로부터 선택된 어느 1종의 알칼리금속 수산화물을 혼합하여 혼합물을 제조하는 단계; 및 5) 상기 4) 단계에서 제조된 혼합물을 활성화 과정을 통해 활성탄소를 제조하는 단계; 를 포함한다.Hereinafter, the present invention will be described in detail. In a method for producing coconut shell-based activated carbon for hydrogen storage using a silicon removal method and chemical activation, more specifically, 1) a carbonization step of carbonizing the coconut shell by heat treatment as a precursor; 2) preparing an alkaline aqueous solution for removing silicon oxide; 3) removing silicon oxide by mixing and heat-treating the alkaline aqueous solution prepared in step 2) and the activated carbon precursor carbonized in step 1); 4) preparing a mixture by mixing the carbon sample prepared in step 3) with any one alkali metal hydroxide selected from the group comprising KOH and NaOH; and 5) preparing activated carbon by activating the mixture prepared in step 4); includes

상기 1) 단계에서, 코코넛껍질의 탄화는 질소분위기 하에서 1 내지 5시간 동안 500 내지 900℃의 온도에서 수행될 수 있다. In step 1), carbonization of coconut shells may be performed at a temperature of 500 to 900° C. for 1 to 5 hours under a nitrogen atmosphere.

상기 2) 단계에서, 상기 알칼리수용액은 KOH, NaOH을 포함하는 군에서 선택된 어느 1종이며, 상기 알칼리수용액의 농도는 0.1 내지 10 M일 수 있다.In step 2), the alkaline aqueous solution is any one selected from the group consisting of KOH and NaOH, and the concentration of the alkaline aqueous solution may be 0.1 to 10 M.

상기 3) 단계에서 산화규소의 제거는 80℃ 내지 200℃ 의 온도에서 1 시간 내지 24 시간 동안 수행될 수 있다.The removal of silicon oxide in step 3) may be performed at a temperature of 80° C. to 200° C. for 1 hour to 24 hours.

상기 4) 단계에서 탄소 시료에 대한 알칼리금속 수산화물의 비율은 0.5 내지 15의 중량비일 수 있다.The ratio of the alkali metal hydroxide to the carbon sample in step 4) may be a weight ratio of 0.5 to 15.

상기 5) 단계에서 활성화 과정은 600℃ 내지 1000℃에서 행해질 수 있다.The activation process in step 5) may be performed at 600°C to 1000°C.

상기 5) 단계에서 활성화 과정은 5시간 이내로 행해질 수 있다.The activation process in step 5) may be performed within 5 hours.

이하, 실시 예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples.

측정예 1. 본 발명에서 제조한 화학적 활성화 및 규소제거법에 의한 수소저장용 활성탄소 표면의 구조와 형태 및 규소함유량 관찰Measurement Example 1. Observation of the structure, shape and silicon content of the surface of activated carbon for hydrogen storage by chemical activation and silicon removal prepared in the present invention

Scanning Electron Microscopy (SU8010, Hitach Co., LTD)와 energy dispersive X-ray spectroscopy (EDS)를 통해 본 발명에서 제조한 활성탄소 표면의 구조와 형태 및 규소함유량을 관찰하였다.The structure and shape and silicon content of the activated carbon surface prepared in the present invention were observed through Scanning Electron Microscopy (SU8010, Hitach Co., LTD) and energy dispersive X-ray spectroscopy (EDS).

측정예 2. 본 발명에서 제조한 화학적 활성화 및 규소제거법에 의한 수소저장용 활성탄소의 기공구조 특성Measurement Example 2. Pore structure characteristics of activated carbon for hydrogen storage by chemical activation and silicon removal method prepared in the present invention

본 발명에 따른 활성탄소의 기공구조 특성을 77 K 액체질소 분위기 하에서 질소 기체를 흡착질로 하여 흡착량을 측정함으로써 관찰하였다. 질소등온흡착실험 후에는, P/P0(P: 부분압력 ; P0: 포화증기압)이 약 0.05에서 0.25 사이일 때의 흡착량에 대해서, BET 식을 이용하여 BET 비표면적을 구하였다. 또한, 전체 기공부피는 P/P0가 0.99일 때 흡착된 양을 기초로 하여 구하였다.The pore structure characteristics of the activated carbon according to the present invention were observed by measuring the adsorption amount using nitrogen gas as an adsorbate under a 77 K liquid nitrogen atmosphere. After the nitrogen isothermal adsorption experiment, the BET specific surface area was calculated using the BET equation for the adsorption amount when P/P 0 (P: partial pressure; P 0 : saturated vapor pressure) was between about 0.05 and 0.25. In addition, the total pore volume was calculated based on the adsorbed amount when P/P 0 was 0.99.

측정예 3. 본 발명에서 제조한 화학적 활성화 및 규소제거법에 의한 수소저장용 활성탄소의 수소 흡착 능력 관찰Measurement Example 3. Observation of hydrogen adsorption capacity of activated carbon for hydrogen storage by chemical activation and silicon removal method prepared in the present invention

본 발명에 따른 활성탄소의 수소저장용량을 측정하기 위하여, 각 활성탄소 샘플을 온도 200 ℃에서 잔류 압력을 10-3 torr 이하로 유지한 상태로 12 시간 동안 탈기시켰다. 그 다음 BEL-HP 기기(BEL Japan)를 이용하여 온도 77 K 및 60 bar의 조건 하에서 수소저장용량을 측정하였다. 1회 평균 시료량은 0.5 g으로 정하여 실시하였다. In order to measure the hydrogen storage capacity of the activated carbon according to the present invention, each activated carbon sample was degassed for 12 hours at a temperature of 200 °C while maintaining the residual pressure at 10 -3 torr or less. Then, hydrogen storage capacity was measured under conditions of a temperature of 77 K and 60 bar using a BEL-HP instrument (BEL Japan). The average sample amount at one time was set to 0.5 g.

실시예 1. Example 1 .

코코넛껍질 50g을 활성탄소 전구체로 하여 튜브형 퍼니스에 넣고 질소분위기 하에서 900℃ 까지 승온시켜 60분간 유지하여 탄화한 후, 실온까지 냉각시켰다. 이후, 상기 탄화된 활성탄소 전구체를 볼밀을 이용하여 분쇄한 뒤, 증류수로 세척하고, 진공오븐에서 건조한 다음, 활성탄소 전구체를 1 M의 KOH 수용액과 혼합하여 90℃에서 24시간 동안 열처리하여 산화규소를 제거하였다. 이후, 산화규소가 제거된 활성탄소 원료의 pH가 7 내지 8에 도달할 때까지 수세하였다. 이렇게 얻은 탄소시료와 활성화제로서 KOH를 1 : 1 중량비로 혼합하여, 튜브형 퍼니스에 위치시키고, 질소분위기 하에서 900℃에서 1시간 동안 활성화 과정을 통해 수소저장용 활성탄소를 제조하였다.50 g of coconut shells were put into a tubular furnace using an activated carbon precursor, heated to 900° C. under a nitrogen atmosphere, maintained for 60 minutes, carbonized, and then cooled to room temperature. Thereafter, the carbonized activated carbon precursor is pulverized using a ball mill, washed with distilled water, dried in a vacuum oven, and then the activated carbon precursor is mixed with 1 M KOH aqueous solution and heat-treated at 90° C. for 24 hours to silicon oxide was removed. Then, it was washed with water until the pH of the activated carbon raw material from which the silicon oxide was removed reached 7 to 8. The carbon sample thus obtained and KOH as an activator were mixed in a 1:1 weight ratio, placed in a tube-type furnace, and activated carbon for hydrogen storage was prepared through an activation process at 900° C. for 1 hour under a nitrogen atmosphere.

실시예 2.Example 2.

활성화 과정에서 탄소시료와 KOH를 1 : 2 중량비로 혼합하는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the carbon sample and KOH were mixed in a weight ratio of 1:2 during the activation process.

실시예 3.Example 3.

활성화 과정에서 탄소시료와 KOH를 1 : 4 중량비로 혼합하는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the carbon sample and KOH were mixed in a weight ratio of 1:4 during the activation process.

실시예 4.Example 4.

활성화 과정에서 탄소시료와 KOH를 1 : 6 중량비로 혼합하는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the carbon sample and KOH were mixed in a weight ratio of 1:6 during the activation process.

실시예 5.Example 5.

활성화 과정에서 탄소시료와 KOH를 1 : 8 중량비로 혼합하는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the carbon sample and KOH were mixed in a weight ratio of 1:8 during the activation process.

실시예 6.Example 6.

활성화 과정에서 탄소시료와 KOH를 1 : 10 중량비로 혼합하는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the carbon sample and KOH were mixed in a weight ratio of 1:10 during the activation process.

실시예 7.Example 7.

활성화 과정이 600℃의 온도에서 1시간 동안 진행되는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the activation process was performed at a temperature of 600° C. for 1 hour.

실시예 8.Example 8.

활성화 과정이 700℃의 온도에서 1시간 동안 진행되는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the activation process was performed at a temperature of 700° C. for 1 hour.

실시예 9.Example 9.

활성화 과정이 800℃의 온도에서 1시간 동안 진행되는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the activation process was performed at a temperature of 800° C. for 1 hour.

실시예 10.Example 10.

활성화 과정이 1000℃의 온도에서 1시간 동안 진행되는 것을 제외하고는, 상기 실시예 1과 동일하게 수소저장용 활성탄소를 제조하였다.Activated carbon for hydrogen storage was prepared in the same manner as in Example 1, except that the activation process was performed at a temperature of 1000° C. for 1 hour.

비교예 1. Comparative Example 1.

코코넛껍질을 활성탄소 전구체로 하여 튜브형 퍼니스에 넣고 질소분위기 하에서 900℃까지 승온시켜 60분간 유지하여 탄화한 후, 실온까지 냉각시켰다. 이후, 상기 탄화된 활성탄소 전구체를 볼밀을 이용하여 분쇄한 뒤, 증류수로 세척하고, 진공오븐에 건조하였다.Coconut shells were placed in a tubular furnace using an activated carbon precursor, heated to 900° C. under a nitrogen atmosphere, maintained for 60 minutes, carbonized, and then cooled to room temperature. Thereafter, the carbonized activated carbon precursor was pulverized using a ball mill, washed with distilled water, and dried in a vacuum oven.

비교예 2.Comparative Example 2.

상기 비교예 1과 동일한 과정을 실시한 후, 활성탄소 전구체를 1 M의 KOH 수용액과 혼합하여 90℃에서 24시간 동안 열처리하여 산화규소를 제거하였다. 이후, 산화규소가 제거된 활성탄소 원료의 pH가 7 내지 8에 도달할 때까지 수세하였다.After performing the same process as in Comparative Example 1, the activated carbon precursor was mixed with 1 M KOH aqueous solution and heat-treated at 90° C. for 24 hours to remove silicon oxide. Then, it was washed with water until the pH of the activated carbon raw material from which the silicon oxide was removed reached 7 to 8.

비교예 3.Comparative Example 3.

상기 비교예 1과 동일한 과정을 실시한 후, 활성탄소 전구체와 KOH를 1 : 6 중량비로 혼합하여, 튜브형 퍼니스에 위치시키고, 질소분위기 하에서 900℃에서 1시간 동안 활성화를 진행하였다.After performing the same process as in Comparative Example 1, the activated carbon precursor and KOH were mixed in a weight ratio of 1:6, placed in a tubular furnace, and activated at 900° C. for 1 hour under a nitrogen atmosphere.

비교예 4.Comparative Example 4.

상기 비교예 1과 동일한 과정을 실시한 후, 활성탄소 전구체와 KOH를 1 : 6 중량비로 혼합하여, 튜브형 퍼니스에 위치시키고, 질소분위기 하에서 900℃에서 1시간 동안 활성화를 진행하였다. 이후, 1 M의 KOH 수용액과 혼합하여 90℃에서 24시간 동안 열처리하여 산화규소를 제거하였다. 이후, 산화규소가 제거된 활성탄소 원료의 pH가 7 내지 8에 도달할 때까지 수세하였다.After performing the same process as in Comparative Example 1, the activated carbon precursor and KOH were mixed in a weight ratio of 1:6, placed in a tubular furnace, and activated at 900° C. for 1 hour under a nitrogen atmosphere. Then, it was mixed with 1 M KOH aqueous solution and heat-treated at 90° C. for 24 hours to remove silicon oxide. Then, it was washed with water until the pH of the activated carbon raw material from which the silicon oxide was removed reached 7 to 8.

Figure 112020075219404-pat00001
Figure 112020075219404-pat00001

Figure 112020075219404-pat00002
Figure 112020075219404-pat00002

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Above, a specific part of the present invention has been described in detail, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (7)

1) 전구체로서 코코넛껍질을 열처리하여 탄화하는 탄화단계;
2) 산화규소 제거를 위한 알칼리수용액을 제조하는 단계;
3) 상기 2) 단계에서 제조된 알칼리수용액과 상기 1) 단계에서 탄화된 활성탄소 전구체를 혼합 및 열처리하여 산화규소를 제거하는 단계;
4) 상기 3) 단계에서 제조된 탄소 시료와, KOH 및 NaOH를 포함하는 군으로부터 선택된 어느 1종의 알칼리금속 수산화물을 혼합하여 혼합물을 제조하는 단계; 및
5) 상기 4) 단계에서 제조된 혼합물을 활성화 과정을 통해 활성탄소를 제조하는 단계; 를 포함하며,
상기 3) 단계에서 산화규소의 제거는 80℃ 내지 200℃ 의 온도에서 1 시간 내지 24 시간 동안 수행되고,
상기 4) 단계에서 탄소 시료에 대한 알칼리금속 수산화물의 비율은 1 : 6의 중량비인 수소저장용 활성탄소의 제조방법.
1) a carbonization step of carbonizing the coconut shell by heat treatment as a precursor;
2) preparing an alkaline aqueous solution for removing silicon oxide;
3) removing silicon oxide by mixing and heat-treating the alkaline aqueous solution prepared in step 2) and the activated carbon precursor carbonized in step 1);
4) preparing a mixture by mixing the carbon sample prepared in step 3) with any one alkali metal hydroxide selected from the group comprising KOH and NaOH; and
5) preparing activated carbon by activating the mixture prepared in step 4); includes,
The removal of silicon oxide in step 3) is performed at a temperature of 80° C. to 200° C. for 1 hour to 24 hours,
The method for producing activated carbon for hydrogen storage in which the ratio of alkali metal hydroxide to the carbon sample in step 4) is 1:6 by weight.
제 1 항에 있어서,
상기 1) 단계에서, 코코넛껍질의 탄화는 질소분위기 하에서 1 내지 5시간 동안 500 내지 900℃의 온도에서 수행하는 수소저장용 활성탄소의 제조방법.
The method of claim 1,
In step 1), the carbonization of the coconut shell is a method for producing activated carbon for hydrogen storage, which is performed at a temperature of 500 to 900° C. for 1 to 5 hours under a nitrogen atmosphere.
제 1 항에 있어서,
상기 2) 단계에서, 상기 알칼리수용액은 KOH, NaOH을 포함하는 군에서 선택된 어느 1종이며, 상기 알칼리수용액의 농도는 0.1 내지 10 M인 것을 특징으로 하는 수소저장용 활성탄소 제조방법.
The method of claim 1,
In step 2), the alkaline aqueous solution is any one selected from the group consisting of KOH and NaOH, and the concentration of the alkaline aqueous solution is 0.1 to 10 M. The method for producing activated carbon for hydrogen storage.
삭제delete 삭제delete 제 1 항에 있어서,
상기 5) 단계에서 활성화 과정은 600℃ 내지 1000℃에서 행해지는 것을 특징으로 하는 수소저장용 활성탄소 제조방법.
The method of claim 1,
The activation process in step 5) is a method for producing activated carbon for hydrogen storage, characterized in that it is carried out at 600 ℃ to 1000 ℃.
제 6 항에 있어서,
상기 5) 단계에서 활성화 과정은 5시간 이내로 행해지는 것을 특징으로 하는 수소저장용 활성탄소 제조방법.
7. The method of claim 6,
The activation process in step 5) is a method for producing activated carbon for hydrogen storage, characterized in that it is carried out within 5 hours.
KR1020200089504A 2020-07-20 2020-07-20 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage KR102424905B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200089504A KR102424905B1 (en) 2020-07-20 2020-07-20 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200089504A KR102424905B1 (en) 2020-07-20 2020-07-20 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage

Publications (2)

Publication Number Publication Date
KR20220010861A KR20220010861A (en) 2022-01-27
KR102424905B1 true KR102424905B1 (en) 2022-07-25

Family

ID=80049553

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200089504A KR102424905B1 (en) 2020-07-20 2020-07-20 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage

Country Status (1)

Country Link
KR (1) KR102424905B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122608A (en) 1999-10-26 2001-05-08 Tokyo Gas Co Ltd Activated carbon controlled in fine pore structure and method of manufacturing the same
KR100599254B1 (en) 2004-10-19 2006-07-13 한국화학연구원 High porous activated carbon for hydrogen storage and preparation thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0142702B1 (en) * 1995-06-19 1998-07-15 구자홍 Nonmagnetic ceramic substrate for magnetic head and the manufacturing method
JP5523102B2 (en) * 2006-11-08 2014-06-18 キュレーターズ オブ ザ ユニバーシティ オブ ミズーリ High surface area carbon and method for producing the same
KR101896319B1 (en) 2016-02-25 2018-10-04 현대자동차 주식회사 Activated carbon and method for manufacturing the same
KR20200045794A (en) * 2018-10-23 2020-05-06 주식회사 한국아트라스비엑스 Lead-acid battery with activated carbon powder additive

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122608A (en) 1999-10-26 2001-05-08 Tokyo Gas Co Ltd Activated carbon controlled in fine pore structure and method of manufacturing the same
KR100599254B1 (en) 2004-10-19 2006-07-13 한국화학연구원 High porous activated carbon for hydrogen storage and preparation thereof

Also Published As

Publication number Publication date
KR20220010861A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
Ello et al. Development of microporous carbons for CO2 capture by KOH activation of African palm shells
CN110451509B (en) Method for preparing nitrogen-doped porous carbon material by using zinc nitrate as activating agent
JP5542146B2 (en) Very porous activated carbon with controlled oxygen content
US10016743B2 (en) Activated carbon having basic functional groups and method for producing same
CN110015662B (en) Adsorb CO2Preparation method of nitrogen-doped porous carbon material
CN112897525A (en) For capturing CO2Preparation method of nitrogen-rich carbon material
KR101631180B1 (en) Manufacturing method of active carbon derived from rice husks for hydrogen storage using chemical activation
Khoshnood Motlagh et al. A comparative study on rice husk and rice straw as bioresources for production of carbonaceous adsorbent and silica
Shao et al. Renewable N-doped microporous carbons from walnut shells for CO 2 capture and conversion
Joshi et al. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone
KR20210148749A (en) Carbon dioxide adsorbent using biochar, and production method of the same
Boonamnuayvitaya et al. The preparation and characterization of activated carbon from coffee residue
KR101631181B1 (en) Manufacturing method of activated carbon aerogel for carbon dioxide adsorption
KR101140990B1 (en) Method for producing activated carbons using sewage sludge
Xu et al. Preparation and characterization of activated carbon from reedy grass leaves in a two-step activation procedure
JP5388051B2 (en) Mesoporous carbon (MC-MCM-48) and method for producing the same
KR102424905B1 (en) Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage
JP2013112572A (en) Hydrogen occlusion method, and hydrogen occluding material
Ariharan et al. Phosphorous-doped porous carbon derived from paste of newly growing Ficus benghalensis as hydrogen storage material
Shao et al. Sustainable preparation of hierarchical porous carbon from discarded shells of crustaceans for efficient CO2 capture
KR102554306B1 (en) Manufacturing method of activated carbon for carbon dioxide adsorption based on pine cones by chemical activation and silica removal
KR102414318B1 (en) Manufacturing method of activated carbons derived from coffee wastes for hydrogen storage
KR101082590B1 (en) Preparing method of Carbon nanotube for hydrogen storage
KR102544657B1 (en) The Method of Producing Active Carbon by Using Physical Activation and the Active Carbon Produced by the Same
JP2016160170A (en) Carbon porous body, manufacturing method therefor and ammonia adsorbent

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant