KR20200045794A - Lead-acid battery with activated carbon powder additive - Google Patents

Lead-acid battery with activated carbon powder additive Download PDF

Info

Publication number
KR20200045794A
KR20200045794A KR1020180126736A KR20180126736A KR20200045794A KR 20200045794 A KR20200045794 A KR 20200045794A KR 1020180126736 A KR1020180126736 A KR 1020180126736A KR 20180126736 A KR20180126736 A KR 20180126736A KR 20200045794 A KR20200045794 A KR 20200045794A
Authority
KR
South Korea
Prior art keywords
activated carbon
acid battery
lead
powder additive
carbon powder
Prior art date
Application number
KR1020180126736A
Other languages
Korean (ko)
Inventor
최석모
이응래
조용현
양지수
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020180126736A priority Critical patent/KR20200045794A/en
Publication of KR20200045794A publication Critical patent/KR20200045794A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a lead acid battery added with an activated carbon powder additive. More specifically, the present invention relates to a lead acid battery added with an activated carbon powder additive. To this end, an activated carbon powder additive is added during a positive electrode active material mixing process to support an active material structure using small porous characteristics. A plurality of pores secure a space in active material particles to allow a larger amount of electrolytic solution to penetrate, causing lead sulfate to react to produce lead oxide and improve basic performance.

Description

활성탄 분말 첨가제를 투입한 납축전지{Lead-acid battery with activated carbon powder additive}Lead-acid battery with activated carbon powder additive

본 발명은 활성탄 분말 첨가제를 투입한 납축전지에 관한 것으로써, 보다 상세하게는 양극 활물질 혼합과정에서 활성탄 분말 첨가제를 투입하여 입자가 작은 다공성 특성을 이용하여 활물질 구조를 지지하면서 활물질 입자내에 다수의 기공이 공간을 확보하여 기존보다 더 많은 양의 전해액 침투가 가능케하여 황산납이 반응하여 납산화물을 생성하여 기초 성능을 향상하는 활성탄 분말 첨가제를 투입한 납축전지에 관한 것이다. The present invention relates to a lead acid battery in which an activated carbon powder additive is added, and more specifically, by introducing an activated carbon powder additive in a positive electrode active material mixing process, supporting a structure of an active material by using a small porosity characteristic of a small number of pores in the active material particles The present invention relates to a lead acid battery in which an activated carbon powder additive is added to improve the basic performance by securing lead and reacting with lead sulfate to generate lead oxide.

본 발명은 납축전지의 음극판에 도포하는 활물질과 그 제조방법에 관한 것이다. The present invention relates to an active material applied to a negative electrode plate of a lead acid battery and a method of manufacturing the same.

일반적으로 자동차 등에 사용되는 납축전지는 충전과 방전이 가능한 2차 전지이다. In general, lead acid batteries used in automobiles and the like are secondary batteries capable of charging and discharging.

이는 전해액으로서 희황산(H2SO4)이 사용되고, 극판의 활물질로서 양극(+)에 이산화납(PbO2)을, 음극(-)에 해면상(海綿狀)납(Pb)을 도포하여, 외부회로에 연결하면 전기가 흐르면서 그 양극(+)과 음극(-)의 활물질이 황산납(PbSO4)으로 변화(방전)되고, 반대로 외부에서 전류를 흘려주면 그 황산납이 다시 이산화연(+)과 해면상납(-)으로 변화(충전)되는 원리를 이용한 것이다. Dilute sulfuric acid (H2SO4) is used as the electrolyte, and if you connect lead dioxide (PbO2) to the positive electrode (+) and sea level lead (Pb) to the negative electrode (-) as an active material of the electrode plate, connect it to an external circuit. As it flows, the active materials of the positive electrode (+) and the negative electrode (-) change (discharge) to lead sulfate (PbSO4). Conversely, when an electric current flows from the outside, the lead sulfate is again lead dioxide (+) and lead on the sea surface (-) It is to use the principle of change (charge).

이 중 양극과 음극은 전기적인 신호를 발생시키는 활물질과 이 전기적인 신호의 통로 및 활물질을 지지시켜주는 기판으로 이루어진 것으로 활물질의 중량에 따라서 납축전지의 성능과 용량이 변화하며, 기판은 납축전지의 크기에 따라 변화한다.Among them, the positive electrode and the negative electrode are made of an active material that generates an electrical signal, and a substrate that supports the passage and active material of the electrical signal, and the performance and capacity of the lead acid battery varies depending on the weight of the active material. Varies with size.

종래의 납축전지의 활물질은 일반적으로 연분(鉛粉)과 황산수용액을 기본으로 하며, 양극과 음극 특성에 따라서 기타 첨가제를 배합한 후, 혼합하여 활물질을 만든다. The active material of a conventional lead acid battery is generally based on an aqueous solution of sulfuric acid and sulfuric acid, and other additives are mixed according to the characteristics of the anode and cathode, and then mixed to make an active material.

이렇게 만들어진 활물질은 기판에 바르는 작업인 도포 작업을 거쳐, 양/음극 특성에 따라 숙성공정 및 건조공정을 거친 후, 준비된 양극판과 음극판을 여러 장 교호로 중첩하며, 이때, 극판 간에 전기적 단락을 방지하기 위하여 비전도성 격리판을 설치하여, 양극판과 음극판 및 격리판이 극판군(群)을 이루도록 구성되어 있다. The active material made in this way is applied to a substrate, and then subjected to a aging process and a drying process according to the positive / negative electrode properties, and then the prepared positive and negative plates are superimposed in alternating sheets, and at this time, to prevent electrical shorts between the electrode plates. In order to install a non-conductive separator, the positive electrode plate, the negative electrode plate, and the separator plate are configured to form a pole plate group.

극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조안에 수용된다. A number of pole plates are connected in series according to the storage battery capacity, and are accommodated in the rolling tank.

상기 수용된 극판군은 전기적인 성질을 가질 수 있도록 초충전인 화성공정을 거치게 되는데, 이때 양극판의 활물질은 이산화납(PbO2)이 형성되고 특성상, 산화된 납의 미립자가 무수히 결합되어 있으며 다공성이 풍부하여 입자간을 전해액이 자유로이 확산, 침투하도록 되어 있다. 또한 음극판의 활물질은 해면상납(海綿狀鉛, Pb)으로 역시 다공성과 반응성이 풍부하여 전해액이 자유로이 확산, 침투하도록 된 것이다. The accommodated electrode plate group is subjected to a supercharged chemical conversion process so as to have electrical properties. At this time, the active material of the positive electrode plate is formed of lead dioxide (PbO2), and due to its characteristics, fine particles of oxidized lead are bound innumerably and particles are rich in porosity. The electrolyte is free to diffuse and penetrate the liver. In addition, the active material of the negative electrode plate is spongy lead (海綿 狀 鉛, Pb), which is also rich in porosity and reactivity, allowing the electrolyte to diffuse and penetrate freely.

이렇게 만들어진 제품은 비로소 시장에서 사용할 수 있게 되는 것이다.Products made in this way can only be used in the market.

상기 과정 중, 초충전 과정을 원활히 하며, 제품의 내구성을 향상시키기 위하여 극성별로 별도의 숙성건조공정을 거치게 된다. Among the above processes, the super-charging process is smoothly performed, and a separate aging and drying process is performed for each polarity in order to improve the durability of the product.

양극판의 숙성공정은 제품의 내구성을 증대시키는 중요한 공정으로서 스팀(steam)의 뜨거운 온도(약 70 ~ 100℃)와 수분(습도 99%이상)으로 활물질의 구성성분인 납(Pb)을 산화납(PbO)으로 변화시킬 뿐 만 아니라, 활물질의 결정구조를 변화시킨다. The aging process of the positive electrode plate is an important process to increase the durability of the product, and lead (Pb), which is a component of the active material, is supplied with lead oxide (Pb) as the hot temperature (about 70 to 100 ° C) of steam and moisture (at least 99% humidity). PbO) as well as the crystal structure of the active material.

음극판은 별도 공정 없이 자연 상태에서 방치하면 숙성 및 건조를 동시에 할 수 있다. The cathode plate can be aged and dried at the same time if left in a natural state without a separate process.

하지만, 충분한 숙성 및 건조가 이루어지지 않으면 극판군을 형성하는 조립과정에서 극판과 극판끼리 달라붙으며, 수분이 존재하여 활물질의 내구력이 떨어져 기판사이에 박혀 있는 활물질은 조그마한 충격에도 손쉽게 떨어지게 된다. However, if sufficient maturation and drying are not achieved, the electrode plates and the electrode plates stick together in the assembly process of forming the electrode plate group, and moisture is present, so the durability of the active material is reduced and the active material embedded between the substrates is easily dropped even with a small impact.

이와 같은 과정을 거쳐 만들어진 납축전지는 충,방전의 횟수가 증가함에 따라 납과 황산의 반응에 의해서 활물질은 기판에서 더욱 쉽게 떨어지게 되며, 떨어진 활물질들은 더 이상 반응에 참가할 수 없기 때문에, 결국 납축전지의 성능을 저하시켜 납축전지의 수명을 통상 1~2년에 불과하게 만들었다.As the number of charge and discharge increases, the lead-acid battery made through this process is more likely to fall off the substrate by the reaction of lead and sulfuric acid, and the fallen active materials can no longer participate in the reaction. By reducing the performance, the lead-acid battery's lifespan is usually only 1 to 2 years.

상기 제품의 초충전을 용이하게 하기 위하여, 음극판에 충분한 숙성 및 건조가 이루어지지 않으면 제품 내구성이 떨어지게 된다. 음극판의 경우 자연 숙성 및 건조를 행하고 있으나, 제작된 극판에 수분을 함유하고 있기 때문이다. In order to facilitate supercharging of the product, product durability is deteriorated unless sufficient aging and drying are performed on the negative electrode plate. This is because the negative electrode plate is naturally aged and dried, but contains moisture in the prepared electrode plate.

본 발명에 관한 선행문헌으로는 '특허문헌 1','특허문헌 2' 및 '특허문헌 3'이 있다. Prior documents related to the present invention include 'Patent Document 1', 'Patent Document 2', and 'Patent Document 3'.

특허문헌 1은 다공성 실리콘 입자를 초음파 처리하여 나노크기의 실리콘 입자를 합성하는 방법에 관한 것이다.Patent Document 1 relates to a method of synthesizing nano-sized silicon particles by ultrasonic treatment of porous silicon particles.

실리콘은 리튬 이차전지용 음극 재료로서 탄소 재료를 대체할 수 있는 물질이다. Silicon is a material that can replace the carbon material as a negative electrode material for a lithium secondary battery.

현재 상용화된 흑연질 재료의 경우, 이론 용량이 372 mAh/g이나 실리콘은 4000 mAh/g 이상의 이론 용량을 지니고 있다. In the case of the currently commercialized graphite material, the theoretical capacity is 372 mAh / g, but the silicon has a theoretical capacity of 4000 mAh / g or more.

그러나, 실리콘의 경우 리튬과의 합금화(alloying) / 비합금화(de-alloying) 과정에서 많은 부피 변화 (310 %)를 겪게되어 전극이 열화되기 때문에, 용량이 급격히 감소하는 문제점이 있었으나, 특허문헌 1에서는 이러한 문제점을 해결하였다.However, in the case of silicon, the electrode undergoes many volume changes (310%) in the process of alloying / dealloying with lithium, and thus the electrode is deteriorated. Has solved this problem.

특허문헌 2는 이차 전지용 금속 산화물을 주체로 하는 활물질원료에 규조토 및 카본을 함유하거나 또는 규조토를 함유하며, 카본의 함유 질량이, 마이너스 4.6×10-1에 규조토의 함유 질량을 곱셈한 값에 4.9를 가산하는 일차식에서 나타내지는 함수가 그리는 직선이 나타내는 값을 포함하고, 한편, 직선이 나타내는 값을 넘는 값의 범위에 대해서도 결정되는“0”을 포함한 카본의 함유 질량과“0”을 포함하지 않는 규조토의 함유 질량의 화의 값“S”를 활물질원료의 질량“A”에 대해서“S/A×100”질량 퍼센트 이상을 함유 시킨 혼합물로부터 완성되는 것을 특징으로 하는 2차 전지용 음극 조성물에 관한 것이다. Patent Literature 2 contains diatomaceous earth and carbon in an active material raw material mainly composed of a metal oxide for a secondary battery, or contains diatomaceous earth, and the content of carbon is minus 4.6 x 10-1 multiplied by the content of diatomaceous earth to 4.9. It contains the value indicated by the straight line drawn by the function represented by the linear equation that adds, and does not contain the carbon content and "0", including "0", which is also determined for the range of values beyond the value indicated by the straight line. It relates to a negative electrode composition for a secondary battery, characterized in that the value "S" of the mass of diatomaceous earth is made from a mixture containing at least "S / Ax100" mass percent relative to the mass "A" of the active material raw material. .

종래의 기술로서, 특허문헌 3인 등록특허 10-0483246 '음극활물질 및 그 제조방법 그리고 납축전지'는 리그닌이 납분말에 첨가되어 이루어지는 것을 특징으로 하는 음극(負極)활물질에 관한 기술을 개시한 바 있다. 그러나 상기의 기술은 활물질의 수명을 향상시킨 효과는 기대할 수 있으나 표면적의 증대 및 전해액의 투과력 증대 효과를 기대하기는 어려웠다.As a conventional technique, Patent Literature 3, Patent No. 10-0483246 discloses a technology for a negative electrode active material characterized in that 'cathode active material and its manufacturing method and lead acid battery' are made by adding lignin to lead powder. have. However, the above technique can expect an effect of improving the life of the active material, but it was difficult to expect an effect of increasing the surface area and increasing the permeability of the electrolyte.

그러나, 종래 기술의 문제점은, However, the problems of the prior art,

납축전지의 전극을 개선하여 일시 제품 성능의 향상을 도모할 수는 있으나 구체적으로 양극 활물질과 전해액의 반응 면적을 넓히고 기초성능 및 내구성을 제공할 수 있는 기술이 아니었다. Although it is possible to improve the temporary product performance by improving the electrode of the lead acid battery, it was not a technology that can specifically increase the reaction area between the positive electrode active material and the electrolyte and provide basic performance and durability.

대한민국공개특허공보 10-2004-0082876 (2004년09월30일)Republic of Korea Patent Publication No. 10-2004-0082876 (September 30, 2004) 일본공개특허공보 2010-225564 (2010년10월07일)Japanese Patent Publication No. 2010-225564 (October 7, 2010) 대한민국등록특허 10-0483246 (2002년05월16일)Korea Registered Patent 10-0483246 (May 16, 2002)

본 발명의 목적은 납축전지의 기초성능 및 내구성이 향상을 시키고자 하여 활성탄 분말 첨가제를 투입한 납축전지를 제공하고자 한다. An object of the present invention is to provide a lead acid battery in which an activated carbon powder additive is added in order to improve the basic performance and durability of the lead acid battery.

본 발명의 다른 목적은 충방전 과정에서는 활물질과 전해액간의 반응 면적이 넓히어 기초성능이 향상된 활성탄 분말 첨가제를 투입한 납축전지를 제공하고자 한다. Another object of the present invention is to provide a lead acid battery in which an active carbon powder additive having improved basic performance is increased by increasing a reaction area between an active material and an electrolyte during charging and discharging.

본 발명은 상기 서술한 문제점에 대하여 보완하고 목적을 달성하기 위하여 안출되었다.The present invention has been devised to supplement the above-described problems and to achieve the object.

목재를 분쇄하는 단계(S100);와 Crushing wood (S100); and

탄화물 제조단계(S200);와Carbide manufacturing step (S200); and

화학적 처리단계(S300);와Chemical treatment step (S300); and

활성탄 세정 단계(S400);와Activated carbon cleaning step (S400); and

활성탄 건조단계(S500);의 제조방법으로 된 활성탄:과 Activated carbon drying step (S500);

연분 100 중량부 대비 상기 활성탄 1 내지 3중량부의 비율로 다른 첨가제와 혼합하여 연분 투입후에 첨가하는 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지를 제공하고자 한다. It is intended to provide a lead acid battery in which an activated carbon powder additive is added, characterized in that it is added after mixing with other additives at a ratio of 1 to 3 parts by weight of the activated carbon compared to 100 parts by weight of the powder.

본 발명으로 인한 활성탄 분말 첨가제를 투입한 납축전지는 종래의 납축전지보다 기초성능 및 내구성이 향상되게 하였다. The lead acid battery in which the activated carbon powder additive according to the present invention is added has improved basic performance and durability compared to a conventional lead acid battery.

도 1은 목분에 기공이 형성된 사진이다.
도 2는 활성탄 제조 단계의 일실시예이다.
도 3은 목분 기공을 통하여 전해질이 활물질과 접촉하는 모델링 도면이다.
1 is a photograph of pores formed in the wood flour.
2 is an embodiment of the activated carbon production step.
3 is a modeling diagram in which the electrolyte contacts the active material through the pores of the wood flour.

이하 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 2는 활성탄 제조 단계의 일실시예이다. 2 is an embodiment of the activated carbon production step.

1) 목재를 이용한 활성탄의 제조 1) Preparation of activated carbon using wood

목재를 600 ~ 900℃의 온도로 탄화시켜 분쇄한 분말을 일컫는다. 결정구조는 비정질형이며, 다양한 크기의 기공(Macropore)갖기 때문에 넓은 비표면적을 갖는 것을 특징으로 한다. Refers to the powder crushed by carbonizing wood at a temperature of 600 to 900 ° C. The crystal structure is amorphous and has a wide specific surface area because it has various sizes of pores.

주로 쓰이는 원료 목재는 참나무, 대나무, 코코넛 등이 있다. The main raw materials used are oak, bamboo, and coconut.

(a) 목재를 분쇄하는 단계(S100); (A) crushing wood (S100);

목재는 탄화 열처리 전, 미분화될 수 있는데, 이러한 미분화는 회전 하는 원통 내에 목재를 집어넣어 원료를 분쇄하는 볼 밀(ball mill), 회전축에 부착된 다수의 해머에 의해 분쇄하는 해머 밀(hammer mill), 볼과 함께 고속으로 회전하여 분쇄하는 마멸 분쇄기(attrition mill) 및 기류를 이용하는 제트 분쇄기(jet mill)의 방법에 의하여 수행될 수 있다. Wood may be finely divided before carbonization heat treatment, and this fine powder is crushed by a ball mill that crushes raw materials by putting wood into a rotating cylinder, and a hammer mill that is crushed by a plurality of hammers attached to a rotating shaft. , It can be performed by a method of a jet mill using an attrition mill and air flow to pulverize by rotating at a high speed with a ball.

분쇄에 의해 0.01 내지 0.6mm의 입자크기(평균 입자크기)로 미분화될 수 있다. 0.01 내지 0.6mm의 입자크기로 미분화된 목분을 탄화열처리(b) 단계 및 화학적 활성화 처리(c) 단계를 함으로써, 활성탄에 열린 구조의 기공이 균질하게 형성되어 활성탄의 비표면적을 향상시킬 수 있다.It can be finely divided to a particle size (average particle size) of 0.01 to 0.6mm by grinding. By performing the carbonization heat treatment (b) and chemical activation treatment (c) of the finely divided wood powder to a particle size of 0.01 to 0.6 mm, pores of an open structure are formed homogeneously in the activated carbon to improve the specific surface area of the activated carbon.

(b) 분쇄된 목재(목분)를 비활성 분위기에서 600 내지 900℃로 1시간 내지 3시간 열처리하여 탄화물을 제조하는 단계; (탄화물 제조단계(S200));(b) preparing a carbide by heat-treating the crushed wood (wood flour) in an inert atmosphere at 600 to 900 ° C. for 1 to 3 hours; (Carbide production step (S200));

탄화 열처리시의 비활성 분위기는 비활성 기체 분위기를 의미할 수 있으며, 비활성 기체는 질소, 아르곤 또는 이들의 혼합 가스를 포함할 수 있다. The inert atmosphere at the time of carbonization heat treatment may mean an inert gas atmosphere, and the inert gas may include nitrogen, argon or a mixed gas thereof.

비활성 분위기는 비활성 기체가 100-1000cc/min으로 흐르는 분위기일 수 있다. The inert atmosphere may be an atmosphere in which an inert gas flows at 100-1000 cc / min.

비활성 기체가 100-1000cc/min으로 흐르는 분위기에서 탄화 열처리를 수행함으로써, 열처리시 발생하는 가스상의 생성물을 제거하여 보다 신속하게 목분을 탄화시킬 수 있으며, 산소에 의한 산화를 최소화할 수 있다.By performing carbonization heat treatment in an atmosphere in which an inert gas flows at 100-1000 cc / min, the gaseous product generated during heat treatment can be removed to carbonize wood powder more quickly, and oxidation by oxygen can be minimized.

탄화 열처리는 600 내지 900℃의 온도에서 이루어질 수 있는데, 600℃ 미만에서는 열처리가 적절히 이루어지지 않아 물리적 특성의 증가가 높지 않으며, 900℃를 초과하는 온도에서는 목분이 산화되어 최종수율이 감소할 수 있으며, 고온 열처리에 따른 생산 비용의 과도한 증가 발생할 수 있다. The carbonization heat treatment may be performed at a temperature of 600 to 900 ° C. When the temperature is less than 600 ° C, the heat treatment is not properly performed, so the increase in physical properties is not high, and at a temperature exceeding 900 ° C, the wood powder is oxidized to reduce the final yield. However, excessive increase in production cost due to high temperature heat treatment may occur.

탄화 열처리가 수행되는 시간은 목분의 충분한 탄화가 발생하는 시간이면 무방하다. The time at which the carbonization heat treatment is performed may be sufficient as long as sufficient carbonization of wood powder occurs.

탄화 열처리는 1시간 내지 3시간 동안 수행될 수 있다.Carbonization heat treatment may be performed for 1 hour to 3 hours.

(c) NaOH와 상기 탄화물(탄화된 목분)을 730℃의 반응온도로 60분 반응을 시키는 화학적 처리단계; (화학적 처리단계(S300));(c) a chemical treatment step of reacting NaOH with the carbide (carbonized wood powder) at a reaction temperature of 730 ° C. for 60 minutes; (Chemical treatment step (S300));

화학적 활성화는 물리적 활성화와 다르게 활성탄으로 제조할 원료 및 탄화물(탄화된 목분)에 화학약품인 활성화제를 침적시켜 가열하며, 약품의 탈수 및 산화반응에 의하여 미세한 세공을 갖는 다공성의 활성탄을 제조하는 방법이다.Chemical activation is a method of producing porous activated carbon having fine pores by dehydrating and oxidizing reaction of chemicals by heating by depositing an activator, which is a chemical, to raw materials and carbides (carbonized wood powder) to be produced from activated carbon, unlike physical activation. to be.

화학적 활성화 공정에 있어 활성화 온도는 매우 중요한 요인으로 세공구조의 형성 및 흡착성능에 영향을 줄 수 있다.In the chemical activation process, the activation temperature is a very important factor and may affect the formation and adsorption performance of the pore structure.

NaOH와 C의 반응에 있어 가장 활성화조건에 유리한 반응식은 다음과 같다.In the reaction of NaOH and C, the reaction formula most favorable to the activation condition is as follows.

Figure pat00001
------- 식1
Figure pat00001
------- Equation 1

위의 식1에서 Gibbsfreeenergy 변화량(ΔG) 값은 730℃ 이상에서 음의 값(ΔG<0)을 가지므로 730℃을 반응온도로 설정하였다.In Equation 1 above, the Gibbsfreeenergy change (ΔG) value has a negative value (ΔG <0) above 730 ℃, so 730 ℃ is set as the reaction temperature.

??

(d) 활성탄 세정 단계(S400); (d) activated carbon cleaning step (S400);

세정은 활성탄의 세공내부와 표면에 잔류하는 활성화제와 가스, 금속원소 (Na)등을 제거하기 위한 공정이라 할 수 있다.Cleaning can be said to be a process for removing activators, gases, metal elements (Na), etc. remaining in the pores and surfaces of activated carbon.

세정방법은 활성탄의 10배의 부피에 해당하는 5M 염산을 활성탄에 가해 1회 진탕하여 중화시키고 이후 활성탄에 10배의 부피에 해당하는 증류수를 가하고 진탕 세척하는 방법를 이용하여 5회에 걸쳐 진탕하여 세척하는 방법을 설정하였다The washing method is neutralized by adding 5M hydrochloric acid equivalent to 10 times the volume of activated carbon to activated carbon and shaking it once to neutralize it, and then adding a distilled water equivalent to 10 times the volume to activated carbon and shaking it with shaking 5 times. How to set

(e) 활성탄 건조단계(S500);(e) activated carbon drying step (S500);

세정후 105±5℃의 온도로 약 12시간 건조한다.After washing, it is dried for about 12 hours at a temperature of 105 ± 5 ℃.

본 발명에서의 비표면적(specific surface area, specific surface, 比表面積)이란 재료의 표면적을 그 무게로 나눈 값(㎠/g)을 의미한다. The specific surface area (specific surface area, specific surface, specific surface area) in the present invention means a value (cm 2 / g) obtained by dividing the surface area of a material by its weight.

(실시예)(Example)

상기와 같은 제조방법으로 된 활성탄을 이용하여, Using the activated carbon in the production method as described above,

시료를 4개로 하기 위하여 전극물질인 활성탄을 연분 100 중량부 대비 활성탄 0 중량부 (시료 1), 2 중량부 (시료 2), 4 중량부 (시료 3), 6 중량부 (시료 4)로 각각 물과 황산 기타 첨가제와 함께 혼합기에 넣어 제조한 뒤 1g을 기준으로 채취하여 비표면적 측정 장치(상품명:Macsorb1210, 마운텍사제)를 사용하여, 가스 흡착법에 의해 비표면적을 측정했다.In order to make four samples, the activated carbon, which is an electrode material, was compared to 100 parts by weight of activated carbon as 0 parts by weight (sample 1), 2 parts by weight (sample 2), 4 parts by weight (sample 3), and 6 parts by weight (sample 4), respectively. After preparing it in a mixer with water and sulfuric acid and other additives, it was collected based on 1 g and the specific surface area was measured by a gas adsorption method using a specific surface area measuring device (trade name: Macsorb1210, manufactured by Mount Tech).

연분 100 중량부 대비
활성탄의 중량
100 parts by weight per year
Weight of activated carbon
시료 1
(0 중량부)
Sample 1
(0 parts by weight)
시료 2
(2 중량부)
Sample 2
(2 parts by weight)
시료 3
(4 중량부)
Sample 3
(4 parts by weight)
시료 4
(6중량부)
Sample 4
(6 parts by weight)
비표면적 (㎠/g)Specific surface area (㎠ / g) 12981298 13461346 13551355 13671367

표 1을 보면, 시료 1대비 시료 2, 3, 4의 비표면적 향상율은 각각 3.7 %, 4.4 %, 5.3 %에 해당한다. Referring to Table 1, the specific surface area improvement rates of Samples 2, 3, and 4 compared to Sample 1 correspond to 3.7%, 4.4%, and 5.3%, respectively.

활성탄이 너무 많은량 투입되면 활물질의 점도가 떨어져 양극으로부터 이탈할 가능성이 높아진다. When too much activated carbon is added, the viscosity of the active material decreases, and the possibility of separation from the positive electrode increases.

따라서, 그러한 점을 고려하여 본 발명에서는 3% 내지 4% 사이의 값이 가장 적절한 정도로 보았다. Therefore, in view of such a point, values between 3% and 4% were considered to be the most appropriate in the present invention.

따라서, 납분 100중량부 대비 4 중량부 이상은 적절하지 않다고 판단된다.Therefore, it is judged that 4 parts by weight or more compared to 100 parts by weight of lead is not appropriate.

본 발명에서는 3% 내지 4% 사이의 값이 가장 적절한 정도로 보았다. In the present invention, values between 3% and 4% were considered to be the most appropriate.

따라서, 납분 100중량부 대비 1 중량부 내지 3중량부의 범위가 활성탄의 혼합비로서 가장 적정하다. Therefore, the range of 1 part by weight to 3 parts by weight compared to 100 parts by weight of lead is most suitable as a mixing ratio of activated carbon.

(저온 시동 시험)(Low temperature starting test)

상기 활성탄의 시료별로 축전지를 제작하여 완충을 하였다.A storage battery was prepared for each sample of the activated carbon and buffered.

충전이 완료된 후 -18 ± 1 ℃가 되도록 24시간 이상 안정화 시킨다. After charging is completed, stabilize for more than 24 hours to be -18 ± 1 ° C.

608 A로 10초간 방전한 후, 365 A로 방전하여 방전 종지 전압이 6.0 V에 도달할 때까지 방전을 계속한다. 이때의 방전 시간을 비교한다.After 10 seconds of discharge at 608 A, discharge at 365 A is continued until the discharge end voltage reaches 6.0 V. The discharge time at this time is compared.

저온 시동 성능 평가 결과로 활성탄 함량별 시간에 따른 방전 전압의 변화를 나타내었다. As a result of evaluating the low-temperature starting performance, the discharge voltage was changed over time for each activated carbon content.

-18 ℃의 챔버에서 24Hr 방치한 다음 608 A로 10초간 방전하고, 방전 전류의 60%인 365 A로 6.0 V가 도달할 때까지 방전을 진행하여 그 결과를 비교하였다. After leaving 24Hr in a chamber at -18 ° C, it was discharged for 10 seconds at 608 A, and discharge was performed until 6.0 V reached 365 A, which is 60% of the discharge current, and the results were compared.

표 2는 365A로 방전되는 시간 값을 나타낸 것으로, 함량이 증가할수록 저온시동 특성은 향상되는 것을 확인할 수 있다. Table 2 shows the discharge time to 365A, and it can be seen that the low-temperature start-up characteristics are improved as the content is increased.

활성탄이 첨가되지 않은 사례 1의 저온 시동 성능은 130.1초, 시료 2 내지 시료 4는 다소 향상되는 결과를 나타내었다.The low-temperature starting performance of Case 1 without activated carbon was 130.1 seconds, and Samples 2 to 4 showed a slightly improved result.

음극 활물질Cathode active material 시료sample 시료 1Sample 1 시료 2Sample 2 시료 3Sample 3 시료 4Sample 4 365 A, 6.0 V 도달시간 (초)365 A, 6.0 V arrival time (sec) 130.1130.1 142.5142.5 143.2 143.2 144.2144.2

표 2는 각 시료별 저온 시동시 방전 시간을 나타낸 표이다.Table 2 is a table showing the discharge time at low temperature start-up for each sample.

상기 표 2를 보면, 비표면적이 늘어남에 따라, 기초성능도 향상됨을 알 수 있다. Looking at Table 2, it can be seen that as the specific surface area increased, the basic performance also improved.

도 3은 목분 기공을 통하여 전해질이 활물질과 접촉하는 모델링 도면이다. 3 is a modeling diagram in which the electrolyte contacts the active material through the pores of the wood flour.

도 3을 보면, 황산수용액이 기공을 통하여 흘러 들어가는 것을 알 수 있다. 3, it can be seen that the aqueous sulfuric acid solution flows through the pores.

상기 서술한 내용 중 도면에 표시되지 않은 내용은 상기 서술된 내용을 바탕으로 당업자가 충분히 이해할 수 있는 내용으로 이하 도면에 표시되지 않아도 본 발명의 권리에 포함되어야 한다.Among the above-mentioned contents, contents not indicated in the drawings are contents that can be sufficiently understood by those skilled in the art based on the above-described contents and should be included in the rights of the present invention even if not shown in the drawings.

이상에서와 같은 내용의 본 발명이 속하는 기술분야의 당업자는 본 발명의 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시된 것이며 한정적인 것이 아닌 것으로 이해해야만 한다.Those skilled in the art to which the present invention pertains as described above may understand that the present invention may be implemented in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplified in all respects and are not limiting.

본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구 범위의 의미 및 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims rather than the above detailed description, and all modifications or variations derived from the meaning of the claims and their equivalent concepts should be interpreted to be included in the scope of the present invention. .

S100 : 목재를 분쇄하는 단계
S200 : 탄화물 제조 단계
S300 : 화학적 처리 단계
S400 : 활성탄 세정 단계
S500 : 활성탄 건조 단계
S100: Step of crushing wood
S200: carbide manufacturing step
S300: chemical treatment step
S400: activated carbon cleaning step
S500: activated carbon drying step

Claims (6)

연분 100 중량부 대비 활성탄 1 이상의 비율로 다른 첨가제와 혼합하여 연분 투입후에 첨가하는 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지.
A lead acid battery in which an activated carbon powder additive is added, which is added after mixing with other additives at a ratio of 100 parts by weight or more of activated carbon to 1 part by weight.
제 1항에 있어서,
상기 활성탄은 목재를 분쇄하는 단계(S100);와
탄화물 제조단계(S200);와
화학적 처리단계(S300);와
활성탄 세정 단계(S400);로 제조된 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지.
According to claim 1,
The activated carbon is crushed wood (S100); and
Carbide manufacturing step (S200); and
Chemical treatment step (S300); and
Activated carbon cleaning step (S400); a lead acid battery containing an activated carbon powder additive, characterized in that produced by.
제 1항 있어서,
상기 활성탄은 목재를 분쇄하는 단계(S100);와
탄화물 제조단계(S200);와
화학적 처리단계(S300);와
활성탄 세정 단계(S400);와
활성탄 건조 단계(S500);로 제조된 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지.
According to claim 1,
The activated carbon is crushed wood (S100); and
Carbide manufacturing step (S200); and
Chemical treatment step (S300); and
Activated carbon cleaning step (S400); and
Activated carbon drying step (S500); a lead acid battery containing an activated carbon powder additive, characterized in that produced by.
제2항에 있어서,
상기 화학적처리단계에서 NaOH와 상기 탄화물(탄화된 목분)을 730℃의 반응온도로 60분 반응을 시키는 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지.
According to claim 2,
A lead acid battery in which an activated carbon powder additive is added, characterized in that NaOH and the carbide (carbonized wood powder) are reacted at a reaction temperature of 730 ° C. for 60 minutes in the chemical treatment step.
제2항에 있어서,
상기 목재는 참나무, 대나무, 코코넛 인 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지.
According to claim 2,
The wood is a lead acid battery containing an activated carbon powder additive, characterized in that the oak, bamboo, coconut.
제2항에 있어서,
상기 탄화물 제조단계는,
분쇄된 목재(목분)를 비활성 분위기에서 600 내지 900℃로 1시간 내지 3시간 열처리하여 탄화물을 제조하는 것을 특징으로 하는 활성탄 분말 첨가제를 투입한 납축전지.
According to claim 2,
The carbide manufacturing step,
A lead acid battery in which an activated carbon powder additive is added, wherein the crushed wood (wood flour) is heat-treated in an inert atmosphere at 600 to 900 ° C. for 1 to 3 hours to produce carbide.
KR1020180126736A 2018-10-23 2018-10-23 Lead-acid battery with activated carbon powder additive KR20200045794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180126736A KR20200045794A (en) 2018-10-23 2018-10-23 Lead-acid battery with activated carbon powder additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180126736A KR20200045794A (en) 2018-10-23 2018-10-23 Lead-acid battery with activated carbon powder additive

Publications (1)

Publication Number Publication Date
KR20200045794A true KR20200045794A (en) 2020-05-06

Family

ID=70737691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180126736A KR20200045794A (en) 2018-10-23 2018-10-23 Lead-acid battery with activated carbon powder additive

Country Status (1)

Country Link
KR (1) KR20200045794A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220010861A (en) * 2020-07-20 2022-01-27 인하대학교 산학협력단 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage
KR20220042723A (en) * 2020-09-28 2022-04-05 한국앤컴퍼니 주식회사 method for manufacturing a negative electrode plate of a lead acid battery that increases the surface area between the electrolyte and the active material by applying expanded perlite
KR20230056845A (en) 2021-10-20 2023-04-28 전남대학교산학협력단 Edgeless activated carbon, manufacturing method thereof, lead-carbon battery including the same and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082876A (en) 2003-03-20 2004-09-30 주식회사 엘지화학 Preparation method for porous silicon and nano-sized silicon powder, and application for anode material in lithium secondary batteries
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery
JP2010225564A (en) 2008-04-04 2010-10-07 Ntt Data Intellilink Corp Negative electrode composition for secondary battery, intermediate composition for generating the same, and secondary battery using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483246B1 (en) 2000-11-09 2005-04-15 가부시키가이샤 유아사코오포레이션 Negative electrode active material, process for its production and lead storage battery
KR20040082876A (en) 2003-03-20 2004-09-30 주식회사 엘지화학 Preparation method for porous silicon and nano-sized silicon powder, and application for anode material in lithium secondary batteries
JP2010225564A (en) 2008-04-04 2010-10-07 Ntt Data Intellilink Corp Negative electrode composition for secondary battery, intermediate composition for generating the same, and secondary battery using them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220010861A (en) * 2020-07-20 2022-01-27 인하대학교 산학협력단 Manufacturing method of activated carbon derived from coconut shells by chemical activation and silica elimination for hydrogen storage
KR20220042723A (en) * 2020-09-28 2022-04-05 한국앤컴퍼니 주식회사 method for manufacturing a negative electrode plate of a lead acid battery that increases the surface area between the electrolyte and the active material by applying expanded perlite
KR20230056845A (en) 2021-10-20 2023-04-28 전남대학교산학협력단 Edgeless activated carbon, manufacturing method thereof, lead-carbon battery including the same and method for producing the same

Similar Documents

Publication Publication Date Title
EP3170871B1 (en) Carbon blacks and use in electrodes for lead acid batteries
KR101775363B1 (en) Manufacturing method of active material for lead-acid battery
EP3597597A1 (en) Spherical sioc particulate electrode material
EP1968140B1 (en) Process for producing negative electrode material for lithium ion secondary battery
JP5131913B2 (en) Carbon coating method for particles used for electrode material and secondary battery
KR20200045794A (en) Lead-acid battery with activated carbon powder additive
KR20170052698A (en) Active material compositions comprising high surface area carbonaceous materials
KR20120103562A (en) Composite capacitor negative electrode plate for lead acid storage battery, and lead acid storage battery
KR101816731B1 (en) method for preparing a 3D-hierarchical porous graphene aerogel including macro pores and meso pores and graphene aerogel by using the same method
CN110649256A (en) Single-particle and secondary-particle mixed high-energy-density graphite negative electrode material and preparation method thereof
KR101670353B1 (en) Method for synthesis of Silicon/Carbon/CNT as the lithium secondary battery anode material
JPH07230803A (en) Carbon negative electrode material for lithium secondary battery
CN114094068A (en) Cobalt-coated positive electrode material, preparation method thereof, positive plate and lithium ion battery
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
TW201535847A (en) Valve-regulated lead-acid storage battery
KR101981242B1 (en) COPPER DOPED CARBON-SILICON OXIDE(C-SiOx) ANODE MATERIAL FOR LI-ION BATTERIES, AND METHOD FOR PREPARING THE SAME
KR20190057571A (en) Anode Active Materails With Long Life Cycle For Li Secondary Battery And Manufacturing Methods Thereof
JP2003109589A (en) Lithium battery negative electrode activator, manufacturing method of the same, and negative electrode using the same
JP2002222650A (en) Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
KR20190048588A (en) Manufacture method of active material for lead acid batteries using nano-porous activated carbon
KR102040379B1 (en) Method for manufacturing activated carbon for electrode material
EP3188288A1 (en) Positive electrode plate for lead storage battery, and lead storage battery using same
EP3588633A1 (en) Lead acid storage battery
JPH11162456A (en) Lead-acid battery

Legal Events

Date Code Title Description
E601 Decision to refuse application