KR102419383B1 - Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same - Google Patents

Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same Download PDF

Info

Publication number
KR102419383B1
KR102419383B1 KR1020220026392A KR20220026392A KR102419383B1 KR 102419383 B1 KR102419383 B1 KR 102419383B1 KR 1020220026392 A KR1020220026392 A KR 1020220026392A KR 20220026392 A KR20220026392 A KR 20220026392A KR 102419383 B1 KR102419383 B1 KR 102419383B1
Authority
KR
South Korea
Prior art keywords
weight
concrete
water
liquid latex
cement
Prior art date
Application number
KR1020220026392A
Other languages
Korean (ko)
Inventor
김종환
Original Assignee
김종환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종환 filed Critical 김종환
Priority to KR1020220026392A priority Critical patent/KR102419383B1/en
Application granted granted Critical
Publication of KR102419383B1 publication Critical patent/KR102419383B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/005Methods or materials for repairing pavings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • E01C7/14Concrete paving
    • E01C7/147Repairing concrete pavings, e.g. joining cracked road sections by dowels, applying a new concrete covering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

The present invention provides an ultra-fast hardening concrete composition and a concrete road repairing method using the same. The ultra-fast hardening concrete composition includes 10 to 20 wt% of ultra-fast hardening cement, 0.5 to 1.0 wt% of activated silica, 1.0 to 5.0 wt% of liquid latex (40 to 50 % of solid content), 40 to 50 wt% of sand, and 30 to 40 wt% of aggregate, and 5 to 10 wt% of water. The composition ratio of active silica to liquid latex is 1 : 2.4 to 1 : 3.0 in a weight ratio.

Description

초속경 콘크리트 조성물 및 이를 이용한 콘크리트 도로 보수공법{Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same}Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

본 발명은 초속경 콘크리트 조성물 및 이를 이용한 콘크리트 도로 보수방법에 관한 것으로, 보다 상세하게는 수분침투율이 낮고, 동결융해저항성이 높아 열화 및 균열이 억제되고, 압축강도, 휨강도가 우수함과 동시에 내구성이 커 수명이 오래가고 유지보수가 간단하면서도 이에 소요되는 비용을 크게 절감할 수 있는 초속경 콘크리트 조성물 및 이를 이용한 콘크리트 도로 보수방법에 관한 것이다.The present invention relates to a super-velocity concrete composition and a method for repairing a concrete road using the same, and more particularly, it has a low moisture permeability and high freeze-thaw resistance, so deterioration and cracking are suppressed, and it has excellent compressive strength and flexural strength and high durability. It relates to a super-fast concrete composition that has a long life and simple maintenance and can greatly reduce the cost required for this, and a concrete road repair method using the same.

교량과 같은 콘크리트 구조물은 철근 콘크리트로 만들어진 콘크리트 거더 위에 콘크리트를 타설하여 그 위에 다시 콘크리트 포장을 하여 만들어진다. 이러한 콘크리트 포장에 물이 흡수되면 거더 콘크리트와 포장 콘크리트사이에 고이게 되고 온도가 영하 이하로 떨어지게 되면 물이 팽창하여 포장 콘크리트를 밀쳐내게 되어 콘크리트를 열화시킨다. 또 일부 물은 교각 하단으로 흘러 콘크리트 중성화 균열 등 구조체에 좋지 않은 영향을 미치게 된다. 특히 겨울철 해빙을 위하여 뿌린 염화물이 물에 녹아 하부 철근 콘크리트로 흘러 들어가면 인장 강도 향상을 위해 사용된 철근에 심각한 영향을 주게 된다. 일반적으로 철근 콘크리트를 구성하는 시멘트는 강 알칼리로 되어 있어 이 강 알칼리가 철근 표면에 부동태 막을 형성하여 철근의 녹 발생을 억제하는 효과를 가져 온다.Concrete structures such as bridges are made by pouring concrete on a concrete girder made of reinforced concrete, and then re-concrete paving on it. When water is absorbed into the concrete pavement, it accumulates between the girder concrete and the pavement concrete, and when the temperature falls below zero, the water expands and pushes the pavement concrete away, which deteriorates the concrete. In addition, some water flows to the bottom of the pier and adversely affects the structure such as neutralization cracks in concrete. In particular, if the chloride sprayed for thawing in winter dissolves in water and flows into the reinforced concrete below, it will seriously affect the reinforcement used to improve the tensile strength. In general, the cement constituting the reinforced concrete is made of strong alkali, and this strong alkali forms a passivation film on the surface of the reinforcing bar, which has the effect of suppressing the occurrence of rust in the reinforcing bar.

이러한 시멘트와 골재를 이용하여 만든 철근콘크리트는 많은 모세관 등으로 수분의 이동 경로가 생기게 되며 이러한 다양한 경로에 의해 들어온 이산화 탄소에 의해 강 알칼리의 부동태 막은 중성으로 변하게 되어 방청의 기능을 상실하게 되며 철근에 녹이 발생하게 된다. 또한 다양한 경로에 의해 들어온 염화물은 철근에 국부적으로 심하게 부식을 발생시켜 철근의 변형을 유도하여 철근콘크리트 자체의 강도가 저하되어 미관은 물론 구조체에 심각한 영향을 주게 된다.Reinforced concrete made using these cements and aggregates creates a path for moisture to move through many capillaries, etc., and the passivation film of strong alkali is changed to neutral due to carbon dioxide entering through these various paths, and the rust prevention function is lost. rust will occur. In addition, chlorides coming in through various routes cause local severe corrosion on the reinforcing bars and induce deformation of the reinforcing bars, which lowers the strength of the reinforced concrete itself, which seriously affects the aesthetics as well as the structure.

기존의 초속경 시멘트는 속경 CSA 시멘트(또는 알루미나 시멘트)와 석고 등을 이용하였으며 여기에 소량의 유동화제와 재 분산성 분말 수지를 사용하였다. 이러한 조성물은 압축강도나 휨강도가 취약하고, 투수율이 높아 콘크리트 구조체에 많은 모세관을 만들어 주고 있으며 일반 콘크리트 또한 같다.Existing super fast cement used fast CSA cement (or alumina cement) and gypsum, and a small amount of fluidizing agent and redispersible powder resin were used here. These compositions have weak compressive strength or flexural strength, and high water permeability, making many capillaries in the concrete structure, and general concrete is the same.

한편, 현재 사용되고 있는 초속경 콘크리트 제조과정에는 액상의 폴리머 수지(latex))를 콘크리트 제조할 때 혼합기에 시멘트, 골재와 함께 혼합하여 사용하는데, 현장에서 작업자들에 의한 사용량이 일정치가 아니하여 콘크리트 품질 차이가 있었으며, 구조체가 치밀하지 않아 투수성이 높으며, 또한 부착성이 떨어지고 그 틈으로 수분이 침투하여 들뜸 등의 현상이 발생하여 포장체의 균열 및 파손의 원인으로 구조물의 수명을 단축시키는 등의 많은 문제가 있어왔다.On the other hand, in the currently used super-velocity concrete manufacturing process, a liquid polymer resin (latex) is mixed with cement and aggregate in a mixer when manufacturing concrete. There was a difference in quality, and the structure was not dense, so it had high water permeability, and also had poor adhesion and moisture permeated through the cracks and floated. There have been many problems of

본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 목적은 수분침투율이 낮고, 동결융해저항성이 높아 열화 및 균열이 억제되고, 압축강도, 휨강도가 우수함과 동시에 내구성이 커 수명이 오래가고 유지보수가 간단하면서도 이에 소요되는 비용을 크게 절감할 수 있는 초속경 콘크리트 조성물 및 이를 이용한 콘크리트 도로 보수방법을 제공함에 있다.The present invention was devised to solve the problems of the prior art as described above. An object of the present invention is to provide a super-fast concrete composition that has a long life and is simple to maintain and can significantly reduce the cost required for this, and a concrete road repair method using the same.

상기한 바와 같은 본 발명의 기술적 과제는 다음과 같은 수단에 의해 달성되어진다.The technical problem of the present invention as described above is achieved by the following means.

(1) 초속경 시멘트 10~20 중량%, 활성실리카 0.5~1.0 중량%, 액상 라텍스 1.0~5.0 중량%(고형분 기준 40~50%), 모래 40~50 중량%, 골재 30~40 중량%, 및 물 5~10 중량%를 포함하되, 활성실리카와 액상 라텍스의 조성비가 중량비로 1:2.4~1:3.0인 것을 특징으로 하는 초속경 콘크리트 조성물.(1) cement 10-20% by weight per second cement, 0.5-1.0% by weight of activated silica, 1.0-5.0% by weight of liquid latex (40-50% by weight based on solid content), 40-50% by weight of sand, 30-40% by weight of aggregate; and 5 to 10% by weight of water, wherein the composition ratio of activated silica and liquid latex is 1:2.4 to 1:3.0 by weight.

(2) 상기 (1)에 있어서,(2) in (1) above,

액상 라텍스는 솔비탄지방산에스테르, 라우린산 디에타놀아미드, 및 염화디스테아릴디메틸암모늄에서 선택된 적어도 1종의 화합물을 액상 라텍스의 중량대비 0.1~1.0중량% 포함하는 것을 특징으로 하는 초속경 콘크리트 조성물.Liquid latex is sorbitan fatty acid ester, lauric acid dietanolamide, and at least one compound selected from distearyldimethylammonium chloride in 0.1 to 1.0% by weight based on the weight of the liquid latex Concrete composition .

(3) 상기 (1)에 있어서,(3) in (1) above,

액상 라텍스는 염화벤잘코늄 및 스테아르산을 각각 0.1~0.2 중량% 포함하는 것을 특징으로 하는 초속경 콘크리트 조성물.The liquid latex is an ultra-fast concrete composition, characterized in that it contains 0.1 to 0.2 wt% of benzalkonium chloride and stearic acid, respectively.

(4) 상기 (2)에 있어서,(4) in (2) above,

액상 라텍스는 솔비탄지방산에스테르, 라우린산 디에타놀아미드, 및 염화디스테아릴디메틸암모늄을 포함하되, 중량비로 1:0.5:0.5로 조성된 것을 특징으로 하는 초속경 콘크리트 조성물.The liquid latex contains sorbitan fatty acid ester, dietanolamide lauric acid, and distearyldimethylammonium chloride, but in a weight ratio of 1:0.5:0.5.

(5) 상기 (1) 내지 (4)의 콘크리트 조성물을, 포장절삭되어 평삭작업 및 건조단계가 완료된 도로의 단면에 포설하는 단계를 포함하는 콘크리트 도로 보수방법.(5) A concrete road repair method comprising the step of installing the concrete composition of (1) to (4) above on the cross section of the road where the pavement is cut and the leveling operation and the drying step are completed.

상기와 같이 본 발명에 의하면, 수분침투율이 낮고, 동결융해저항성이 높아 열화 및 균열이 억제되고, 압축강도, 휨강도가 우수함과 동시에 내구성이 커 수명이 오래가고 유지보수가 간단하면서도 이에 소요되는 비용을 크게 절감할 수 있는 효과를 제공한다.As described above, according to the present invention, the water penetration rate is low, the freeze-thaw resistance is high, so deterioration and cracking are suppressed, the compressive strength and flexural strength are excellent, and at the same time, the durability is large, the service life is long, maintenance is simple, and the cost required for this is reduced It provides significant savings.

본 발명에 따른 초속경 콘크리트 조성물은 초속경 시멘트 10~20 중량%, 활성실리카 0.5~1.0 중량%, 액상 라텍스 1.0~5.0 중량%(고형분 기준 40~50%), 모래 40~50 중량%, 골재 30~40 중량%, 및 물 5~10 중량%를 포함한다.The super fast concrete composition according to the present invention contains 10 to 20 wt% of super fast cement, 0.5 to 1.0 wt% of activated silica, 1.0 to 5.0 wt% of liquid latex (40 to 50% by weight based on solids), 40 to 50 wt% of sand, and aggregate 30-40% by weight, and 5-10% by weight of water.

상기에서 초속경 시멘트는 시판되고 있는 일반적인 초속경용 시멘트를 사용하면 충분하고, 모래 및 골재에 관하여도 종래 초속경용 콘크리트 조성물에 일반적으로 채택되는 것을 그대로 사용할 수 있음은 물론이다.In the above, it is sufficient to use a commercially available cement for cementing per sec., and it goes without saying that those generally adopted for concrete compositions for sec. per sec. can be used as it is with respect to sand and aggregate.

포졸란 반응을 활성화시키는 활성실리카는 0.5~1.0 중량% 포함된다. 본 발명에서는 활성실리카와 함께 포졸란 반응의 활성화를 보다 증대하기 위해 바람직하게는 활성실리카의 중량을 기준으로, 이산화규소(SiO2) 0.7 ~ 0.8 중량부, 산화알루미늄(Al2O3) 0.08 ~ 0.15 중량부, 산화철(Fe2O3) 0.03 ~ 0.05 중량부, 산화칼슘(CaO) 0.01 ~ 0.05 중량부, 산화마그네슘(MgO) 0.01 ~ 0.05 중량부, 납유리 0.005 ~ 0.015 중량부, 및 염화나트륨(NaCl) 0.0002 ~ 0.0005 중량부를 포함하는 것이 바람직하다.Activated silica for activating the pozzolan reaction is included in an amount of 0.5 to 1.0 wt%. In the present invention, in order to further increase the activation of the pozzolan reaction together with the activated silica, preferably, based on the weight of the activated silica, silicon dioxide (SiO 2 ) 0.7 to 0.8 parts by weight, aluminum oxide (Al 2 O 3 ) 0.08 to 0.15 parts by weight, iron oxide (Fe 2 O 3 ) 0.03 to 0.05 parts by weight, calcium oxide (CaO) 0.01 to 0.05 parts by weight, magnesium oxide (MgO) 0.01 to 0.05 parts by weight, lead glass 0.005 to 0.015 parts by weight, and sodium chloride (NaCl) It is preferable to include 0.0002 to 0.0005 parts by weight.

바람직하게는 상기 활성실리카는 비중이 2.5 ~ 2.7 이고, 분말도가 3100 ~ 3900 ㎠/g 이며, 강열감량이 2 ~ 6%인 것이 바람직하다.Preferably, the activated silica has a specific gravity of 2.5 to 2.7, a fineness of 3100 to 3900 cm2/g, and a loss on ignition of 2 to 6%.

이러한 활성실리카는 콘크리트 양생시 미세공극을 충전하여 수밀성을 증진시켜 균열발생을 억제한다. 아울러, 열화인자(동절기 포설되는 염화칼슘 등)의 침투를 방지하고, 장기내구성을 증진시키는 역활을 한다.This activated silica fills micropores during curing of concrete to enhance watertightness and suppress cracks. In addition, it prevents penetration of deterioration factors (such as calcium chloride installed in winter) and plays a role in enhancing long-term durability.

액상 라텍스는 방수성, 부착성, 저온안정성 및 균열저항 등을 개선하기 위한 목적으로 1.0~5.0 중량% 첨가되어진다. 1.0 중량% 미만이 혼합되면 부착강도가 약하고 외부 요인으로 인한 균열저항이 약하며 5.0 중량%의 초과는 콘크리트의 보호 효과에 차이가 없으면서 작업성이 떨어질 수 있다. The liquid latex is added in an amount of 1.0 to 5.0% by weight for the purpose of improving water resistance, adhesion, low temperature stability and cracking resistance. When less than 1.0% by weight is mixed, the adhesion strength is weak and the crack resistance due to external factors is weak, and when it exceeds 5.0% by weight, the workability may be deteriorated while there is no difference in the protective effect of concrete.

이때, 라텍스는 바람직하게는 부타디엔, 스티렌, 비닐아세테이트, 및 아크릴 단위체 중 선택된 적어도 1종 이상의 단위체를 이용해 통상적인 중합반응을 통해 형성된 5,000~10,000 Mw 정도의 것을 사용한다. 상기 본 발명에서 액상 라텍스는 고형분 기준 40~50% 정도의 것을 사용하는 것이 바람직하다.In this case, the latex is preferably about 5,000 to 10,000 Mw formed through a conventional polymerization reaction using at least one unit selected from butadiene, styrene, vinyl acetate, and acryl units. In the present invention, the liquid latex is preferably used in an amount of about 40 to 50% based on the solid content.

바람직하게는 상기 본 발명에 따른 액상 라텍스는 액상 조성 내에 라텍스 이자의 액상 내에서 뿐만 아니라 콘크리트 조성 내에서의 분산성을 보다 개선하기 위해 솔비탄지방산에스테르, 라우린산 디에타놀아미드, 및 염화디스테아릴디메틸암모늄에서 선택된 적어도 1종의 화합물, 바람직하게는 3종의 화합물을 중량비로 1:0.5:0.5로 조성된 것을 액상 라텍스의 중량대비 0.1~1.0중량% 포함된다.Preferably, the liquid latex according to the present invention is a sorbitan fatty acid ester, lauric acid dietanolamide, and distearic chloride in order to further improve the dispersibility in the concrete composition as well as in the liquid phase of the latex interest in the liquid composition. At least one compound selected from reyldimethylammonium, preferably 0.1 to 1.0% by weight of the composition of the three compounds in a weight ratio of 1:0.5:0.5, based on the weight of the liquid latex.

기존 액상 라텍스를 초속경 시멘트 및 골재 등과 혼합하고, 물에 배합하는 것만으로는 콘크리트 전체에 대하여 충분히 분산되지 않아 특정 부위에서 균열이 발생하거나 탈착되는 경우가 발생하는데, 상기 화합물은 이러한 단점을 지해 준다.Mixing existing liquid latex with super-velocity cement and aggregate and mixing it with water does not sufficiently disperse the entire concrete, resulting in cracks or detachment in specific areas. The compound overcomes these disadvantages .

보다 바람직하게는 상기 액상 라텍스는 균열저항을 강화하기 위해 액상 라텍스의 중량대비 염화벤잘코늄 및 스테아르산을 각각 0.1~0.2 중량% 첨가한 것을 사용한다. 염화벤잘코늄과 스테아르산은 각각 콘크리트 조성 내 함유된 각종 양이온 들과의 흡열반응을 통해 특히 균열저항성을 강화한다.More preferably, the liquid latex uses 0.1 to 0.2 wt% of benzalkonium chloride and stearic acid, respectively, based on the weight of the liquid latex to strengthen crack resistance. Benzalkonium chloride and stearic acid, respectively, strengthen crack resistance through endothermic reactions with various cations contained in the concrete composition.

본 발명에서는 상기 활성실리카와 액상 라텍스의 배합비에 따른 초속경 콘크리트 물성의 비교를 통해 최적 배합비를 도출한다. 실험결과 초속경 콘크리트에서 활성실리카와 액상 라텍스의 최적 배합비는 콘크리트 물성(예로, 부착성 및 내구성)에 중요한 역할을 하는 것으로 보이며 그 배합비는 1:3으로 나타난다. 다양한 실험결과 즉, 비교예 1(배합비 1:2) 및 비교예 2(배합비 1:4)의 경우 부착성과 내구성을 포함한 콘크리트 물성에 있어서 본 발명 실시예에 비해 저하되는 결과가 나타나 상기와 같은 배합비를 유지하는 것이 필요하다.In the present invention, the optimum mixing ratio is derived by comparing the physical properties of the super-fast concrete according to the mixing ratio of the active silica and liquid latex. As a result of the experiment, the optimum mixing ratio of activated silica and liquid latex in ultra-velocity concrete appears to play an important role in concrete properties (eg, adhesion and durability), and the mixing ratio is 1:3. In the case of various experimental results, that is, Comparative Example 1 (mixing ratio 1:2) and Comparative Example 2 (mixing ratio 1:4), the results of lowering compared to the present invention Example in concrete physical properties including adhesion and durability were shown. It is necessary to maintain

바람직하게는 상기 초속경 시멘트에 혼화재로써, 상기 혼화재의 전체 중량대비 플라이애쉬 15~35중량%, 고로슬래그 22.5~63중량%, 백토 7.5~35중량%, 알칼리활성제 1~10중량%, 버미큐라이트 1~10 중량%, 산화칼슘(CaO) 1~5 중량%가 포함되고, 상기 혼화재는 초속경 시멘트 전체 중량에 대하여 5~20중량% 첨가될 수 있다.Preferably, as an admixture to the super-velocity cement, 15 to 35% by weight of fly ash, 22.5 to 63% by weight of blast furnace slag, 7.5 to 35% by weight of white clay, 1 to 10% by weight of alkali activator, Vermicue relative to the total weight of the admixture 1 to 10% by weight of light, and 1 to 5% by weight of calcium oxide (CaO) may be included, and the admixture may be added in an amount of 5 to 20% by weight based on the total weight of the cement for sec.

또한, 본 발명에 따른 시멘트 혼화재는 감수제를 추가로 함유하는 것이 바람직하다. 감수제로서는 감수제, AE 감수제, 고성능 감수제, 고성능 AE 감수제 등의 콘크리트에 사용되는 감수제로서 공지된 것을 제한없이 적용할 수 있다. 이 중에서도 폴리카르복실산계의 감수제는, 상기 플라이애쉬, 고로글래그 및 백토의 첨가에 따른 콘크리트의 유동성 저하를 억제할 수 있어, 유동성을 양호하게 유지하여 작업성을 향상시키는 점에서 바람직하다. 감수제는 시멘트 조성물 중 0.2 내지 1.0 중량% 포함되는 것이 바람직하다.In addition, the cement admixture according to the present invention preferably further contains a water reducing agent. As the water-reducing agent, known water-reducing agents used in concrete, such as water-reducing agents, AE water-reducing agents, high-performance water-reducing agents, and high-performance AE water reducing agents, can be applied without limitation. Among them, the polycarboxylic acid water-reducing agent is preferable in that it can suppress the decrease in fluidity of concrete caused by the addition of fly ash, blast furnace glag and clay, and maintain good fluidity and improve workability. The water reducing agent is preferably contained in an amount of 0.2 to 1.0% by weight in the cement composition.

상기와 같이 조성된 본 발명에 따른 초속경 콘크리트 조성물은 물과 함께 배합하여 보수가 요구되는 도로의 포장을 절삭하고, 평삭작업, 청소 및 및 건조단계를 거친 상태의 도로의 단면에 간단하게 포설하는 것으로 간단하게 보수할 수 있으며, 이에 의하면, 수분침투율이 낮고, 동결융해저항성이 높아 열화 및 균열이 억제되고, 압축강도, 휨강도가 우수함과 동시에 내구성이 커 수명이 오래가고 유지보수가 간단하면서도 이에 소요되는 비용을 크게 절감할 수 있는 장점을 갖게 된다. The super-velocity concrete composition according to the present invention composed as described above is mixed with water to cut the pavement of the road requiring repair, and to be simply laid on the cross section of the road that has undergone the leveling operation, cleaning and drying steps. According to this, deterioration and cracking are suppressed due to low moisture permeability and high freeze-thaw resistance, and it has excellent compressive and flexural strength, and at the same time has a long service life, and maintenance is simple and required. This has the advantage of greatly reducing costs.

이하 본 발명의 내용을 실시예 내지 실험예를 참조하여 보다 상세하게 설명하고자 한다. 다만 하기 예시된 실시예 등은 본 발명의 이해를 돕기 위해 제시되는 것일 뿐 이에 의해 본 발명의 권리범위가 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the contents of the present invention will be described in more detail with reference to Examples or Experimental Examples. However, the following examples and the like are only presented to help the understanding of the present invention, and should not be construed as limiting the scope of the present invention.

[실시예 1][Example 1]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of cement per second, 0.8% by weight of activated silica, 2.4% by weight of liquid latex (solid content 47%), 44% by weight of sand, and 33% by weight of coarse aggregate were added to a mixer and stirred, and the remaining amount of water (up to 100% by weight) and stirred for 10 minutes.

[실시예 2][Example 2]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(솔비탄지방산에스테르 1.0중량% 함유, 고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of cement per second, 0.8% by weight of activated silica, 2.4% by weight of liquid latex (containing 1.0% by weight of sorbitan fatty acid ester, 47% by weight of solid content), 44% by weight of sand, and 33% by weight of coarse aggregate were added to the mixer. After stirring, the remaining amount of water (up to 100% by weight) was added and stirred for 10 minutes.

[실시예 3][Example 3]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(라우린산 디에타놀아미드 1.0중량% 함유, 고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.In a mixer, 16% by weight of super-hard cement, 0.8% by weight of activated silica, 2.4% by weight of liquid latex (containing 1.0% by weight of dietanolamide lauric acid, 47% by solid content), 44% by weight of sand, and 33% by weight of coarse aggregate After adding and stirring, the remaining amount of water (up to 100% by weight) was added and stirred for 10 minutes.

[실시예 4][Example 4]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(염화디스테아릴디메틸암모늄 1.0중량% 함유, 고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.In a mixer, 16% by weight of ultra-fast cement, 0.8% by weight of activated silica, 2.4% by weight of liquid latex (containing 1.0% by weight of distearyldimethylammonium chloride, 47% solid content), 44% by weight of sand, and 33% by weight of coarse aggregate After adding and stirring, the remaining amount of water (up to 100% by weight) was added and stirred for 10 minutes.

[실시예 5][Example 5]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(솔비탄지방산에스테르 0.5중량%+라우린산 디에타놀아미드 0.25중량%+염화디스테아릴디메틸암모늄 0.25중량% 함유, 고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of cement per second, 0.8% by weight of activated silica, liquid latex (0.5% by weight of sorbitan fatty acid ester + 0.25% by weight of dietanolamide lauric acid + 0.25% by weight of distearyldimethylammonium chloride, solid content 47%) 2.4% by weight, 44% by weight of sand, and 33% by weight of coarse aggregate were added to a mixer and stirred, and then the remaining amount of water (up to 100% by weight) was added and stirred for 10 minutes.

[실시예 6][Example 6]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(솔비탄지방산에스테르 0.25중량%+라우린산 디에타놀아미드 0.5중량%+염화디스테아릴디메틸암모늄 0.25중량% 함유, 고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of cement per second, 0.8% by weight of activated silica, liquid latex (0.25% by weight of sorbitan fatty acid ester + 0.5% by weight of dietanolamide lauric acid + 0.25% by weight of distearyldimethylammonium chloride, solid content 47%) 2.4% by weight, 44% by weight of sand, and 33% by weight of coarse aggregate were added to a mixer and stirred, and then the remaining amount of water (up to 100% by weight) was added and stirred for 10 minutes.

[실시예 7][Example 7]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(솔비탄지방산에스테르 0.25중량%+라우린산 디에타놀아미드 0.25중량%+염화디스테아릴디메틸암모늄 0.5중량% 함유, 고형분 함량 47%) 2.4 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of cement per second, 0.8% by weight of activated silica, liquid latex (0.25% by weight of sorbitan fatty acid ester + 0.25% by weight of dietanolamide lauric acid + 0.5% by weight of distearyldimethylammonium chloride, solid content 47%) 2.4% by weight, 44% by weight of sand, and 33% by weight of coarse aggregate were added to a mixer and stirred, and then the remaining amount of water (up to 100% by weight) was added and stirred for 10 minutes.

[실시예 8][Example 8]

실시예 5에서 액상 라텍스의 액상에 염화벤잘코늄 및 스테아르산을 각각 0.1 중량% 첨가한 것을 제외하고 동일하게 콘크리트 조성물을 조성하였다. A concrete composition was prepared in the same manner as in Example 5, except that 0.1 wt% of benzalkonium chloride and 0.1 wt% of stearic acid were added to the liquid phase of the liquid latex.

[비교예 1][Comparative Example 1]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(고형분 함량 47%) 1.6 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of cement per second, 0.8% by weight of activated silica, 1.6% by weight of liquid latex (solid content 47%), 44% by weight of sand, and 33% by weight of coarse aggregate were added to the mixer and stirred, and the remaining amount of water (up to 100% by weight) and stirred for 10 minutes.

[비교예 2][Comparative Example 2]

초속경 시멘트 16 중량%, 활성실리카 0.8 중량%, 액상 라텍스(고형분 함량 47%) 3.2 중량%, 모래 44 중량%, 및 굵은 골재 33 중량%를 믹서에 투입하여 교반한 후, 잔량의 물(up to 100중량%)을 투입하여 10분간 교반하였다.16% by weight of super-velocity cement, 0.8% by weight of activated silica, 3.2% by weight of liquid latex (solid content 47%), 44% by weight of sand, and 33% by weight of coarse aggregate were added to the mixer and stirred, and the remaining amount of water (up to 100% by weight) and stirred for 10 minutes.

[실험예 1] [Experimental Example 1]

상기 각 실시예에 따른 초속경 콘크리트 조성물과 비교예에 의해 제조된 초속경 콘크리트 시멘트 조성물을 공시된 방법에 따라 압축강도, 휨강도, 투수성, 동결융해 저항성(내구성) 및 부착강도에 관하여 실험한 결과는 하기 표 1에 나타내었다.The results of experiments with respect to compressive strength, flexural strength, water permeability, freeze-thaw resistance (durability) and adhesion strength of the super-velocity concrete composition according to each Example and the super-velocity concrete cement composition prepared by the comparative example according to the disclosed method is shown in Table 1 below.

시험항목Test Items 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7 실시예8Example 8 비교
예1
compare
Example 1
비교예2Comparative Example 2
압축강도
(Kg/㎠):3hrs
compressive strength
(Kg/㎠): 3hrs
230230 233233 233233 234234 238238 235235 235235 242242 229229 229229
휨강도
(Kg/㎠):3hrs
flexural strength
(Kg/㎠): 3hrs
3333 3636 3838 3838 4343 4040 4040 4646 3232 3333
투수시험(g)Pitcher test (g) 2.82.8 2.52.5 2.62.6 2.52.5 2.22.2 2.42.4 2.42.4 2.32.3 2.92.9 3.03.0 내구성 지수durability index 8888 9090 9090 9191 9595 9393 9393 9898 8484 8585 부착강도
(N/㎟)
Adhesive strength
(N/㎟)
1.211.21 1.371.37 1.361.36 1.371.37 1.421.42 1.401.40 1.391.39 1.481.48 1.051.05 1.101.10

* 압축강도: KS F 2405, 휨강도: KS F 2408, 투수시험: KS F 4916, 동결융해 저항성[내구성]: KS F 2456, 부착강도: KS F 4716* Compressive strength: KS F 2405, Bending strength: KS F 2408, Permeability test: KS F 4916, Freeze and thaw resistance [Durability]: KS F 2456, Adhesive strength: KS F 4716

상기 표 1에 의하면, 본 발명에 따른 초속경 콘크리트 조성물이 제반 물성에 있어서, 비교예 1 및 비교예 2의 조성물에 비하여 전반적으로 크게 개선이 있음을 확인할 수 있다. 이는 활성실리카와 액상 라텍스의 조성비를 달리한 것만으로도 내구성과 부착강도가 크게 개선되어지는 것을 보여준다.According to Table 1, it can be seen that the super-velocity concrete composition according to the present invention has a significant improvement in general compared to the compositions of Comparative Examples 1 and 2 in general physical properties. This shows that durability and adhesion strength are greatly improved just by changing the composition ratio of activated silica and liquid latex.

또한, 액상 라텍스에 솔비탄지방산에스테르, 라우린산 디에타놀아미드, 및 염화디스테아릴디메틸암모늄을 첨가한 실시예 5 내지 7이 가장 효과가 개선되는 것으로 나타났으며, 이 중 1:0.5:0.5의 비율로 혼합한 실시예 5에서 특히 부착강도와 내구성이 크게 향상된 것으로 나타났다.In addition, Examples 5 to 7 in which sorbitan fatty acid ester, lauric acid dietanolamide, and distearyldimethylammonium chloride were added to liquid latex showed the most improved effect, of which 1:0.5:0.5 In Example 5, which was mixed in a ratio of

특히 액상 라텍스의 액상에 염화벤잘코늄 및 스테아르산을 첨가한 실시예 8의 경우 투수시험에서는 다소 실시예 5에 비해 하락하는 경향을 보였으나 부착강도와 내구성의 면에서 가장 우수한 것으로 나타났다.In particular, in the case of Example 8, in which benzalkonium chloride and stearic acid were added to the liquid phase of the liquid latex, the permeability test showed a tendency to decrease somewhat compared to Example 5, but it was found to be the most excellent in terms of adhesion strength and durability.

상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention within the scope without departing from the spirit and scope of the present invention described in the claims below. You will understand that it can be done.

Claims (2)

초속경 시멘트 10~20 중량%, 활성실리카 0.5~1.0 중량%, 액상 라텍스 1.0~5.0 중량%(고형분 기준 40~50%), 모래 40~50 중량%, 골재 30~40 중량%, 및 물 5~10 중량%를 포함하되, 활성실리카와 액상 라텍스의 조성비가 중량비로 1:3이며, 라텍스는 부타디엔, 스티렌, 비닐아세테이트, 및 아크릴 단위체 중 선택된 적어도 1종 이상의 단위체를 중합반응을 통해 형성된 5,000~10,000 Mw의 것임을 특징으로 하는 초속경 콘크리트 조성물.10-20% by weight of cement per second, 0.5-1.0% by weight of activated silica, 1.0-5.0% by weight of liquid latex (40-50% by weight on a solids basis), 40-50% by weight of sand, 30-40% by weight of aggregate, and water 5 Including ~10% by weight, the composition ratio of active silica and liquid latex is 1:3 by weight, and the latex is 5,000~ formed by polymerization of at least one unit selected from butadiene, styrene, vinyl acetate, and acrylic units A concrete composition with an initial velocity of 10,000 Mw. 제 1항의 콘크리트 조성물을, 포장절삭되어 평삭작업 및 건조단계가 완료된 도로의 단면에 포설하는 단계를 포함하는 콘크리트 도로 보수공법.
A concrete road repair method comprising the step of installing the concrete composition of claim 1 on the cross section of the road on which the pavement is cut and the leveling work and the drying step are completed.
KR1020220026392A 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same KR102419383B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220026392A KR102419383B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210106972A KR102374614B1 (en) 2021-08-12 2021-08-12 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR1020220026392A KR102419383B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020210106972A Division KR102374614B1 (en) 2021-08-12 2021-08-12 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

Publications (1)

Publication Number Publication Date
KR102419383B1 true KR102419383B1 (en) 2022-07-08

Family

ID=80816711

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020210106972A KR102374614B1 (en) 2021-08-12 2021-08-12 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR1020220026391A KR102415641B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR1020220026392A KR102419383B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR1020220026393A KR102415682B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020210106972A KR102374614B1 (en) 2021-08-12 2021-08-12 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR1020220026391A KR102415641B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220026393A KR102415682B1 (en) 2021-08-12 2022-02-28 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same

Country Status (1)

Country Link
KR (4) KR102374614B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751186B1 (en) * 2016-08-05 2017-06-29 김종환 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR101923552B1 (en) * 2018-04-05 2018-11-29 주식회사 다솜이앤지 Road pavement composition of very early strength repairing method thereof
KR102137713B1 (en) * 2019-07-09 2020-07-24 주식회사 유니온 Fast Curing Concrete Composition And Method For Repairing And Rehabilitating Road Pavement thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101751186B1 (en) * 2016-08-05 2017-06-29 김종환 Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
KR101923552B1 (en) * 2018-04-05 2018-11-29 주식회사 다솜이앤지 Road pavement composition of very early strength repairing method thereof
KR102137713B1 (en) * 2019-07-09 2020-07-24 주식회사 유니온 Fast Curing Concrete Composition And Method For Repairing And Rehabilitating Road Pavement thereof

Also Published As

Publication number Publication date
KR102374614B1 (en) 2022-03-15
KR102415682B1 (en) 2022-07-01
KR102415641B1 (en) 2022-07-01

Similar Documents

Publication Publication Date Title
KR100782044B1 (en) High on the strength seal inorganic polymer mortar and it's manufacture method with cross sectional repair of a reinforcement concrete structure old part, and the class formation for waterproofing
KR101665945B1 (en) Mortar composition of ultra rapid hardening type for repairing and reinforcing with enhanced freezing and thawing durability, salt damage resistance and crack resistance, and method of repairing and reinforcing deteriorated part of road, runway and L-type side gutter using the same
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
KR101562542B1 (en) Water Permeable Concrete Composition and Constructing Methods Using Thereof
KR101914735B1 (en) Crack inhibition type cement concrete composition with excellent corrosion and wear resistance and maintenance method for road pavement therewith
KR101873782B1 (en) Cement mortar composition for repairing concrete structure with improved durability and repairing method of concrete structure therewith
KR101363896B1 (en) Accelerate dry concrete mix composition
KR101891567B1 (en) Cement mortar composition for repairing concrete structure with improved strength and durability and repairing· reinforcement method of concrete structure therewith
KR101545170B1 (en) High-early strengthening concrete composition containing polymer and repairing method of concrete structure using the composition
KR102133439B1 (en) Latex modified ultra rapid harding cement concrete compositions with high strength and performance and repairing method of road pavement using the same
US20120234209A1 (en) Hydraulic binder comprising a ground blast furnace slag
KR100854987B1 (en) High speed hardening cement composition for water-proof and paving method thereof
KR102424551B1 (en) Concrete composition for revealing early strength
KR101621199B1 (en) Mortar composition for repairing and reinforcing concrete structure of road gutter and small-damaged part of road, and method of repairing and reinforcing concrete structure of road gutter and small-damaged part of road using the same
KR20130011560A (en) Rapid setting concrete compound containing hydrophobic emulsion and repairing method of concrete structure using the compound
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
KR100908213B1 (en) Rapid hardening concrete composition and repairing method using the same
KR101489653B1 (en) polymer modified waterproof mortar composite having fast hardening and repairing method of road using the composite
KR100971226B1 (en) Cement mixture for chloride resistance in road pavement and repair
KR101877528B1 (en) Cement composition having rapid hardening properties for runway reparing and runway repairing method using the same
KR102372576B1 (en) Polymer admixture modified rapid setting concrete composite and method for reparing and reinforcing concrete structures road pavement using the same
WO2020199907A1 (en) Low-shrinkage alkali-activated dry mix repair mortar
KR101755639B1 (en) Granite slabs remelting heat shield coating composition and coating method
KR102419383B1 (en) Ultra Rapid Hardening Concrete Composition and Road Concrete Repairing Method Using The Same
US7717999B1 (en) Titanium production waste byproduct as partial cement replacement

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant