KR102406425B1 - Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof - Google Patents

Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof Download PDF

Info

Publication number
KR102406425B1
KR102406425B1 KR1020200127158A KR20200127158A KR102406425B1 KR 102406425 B1 KR102406425 B1 KR 102406425B1 KR 1020200127158 A KR1020200127158 A KR 1020200127158A KR 20200127158 A KR20200127158 A KR 20200127158A KR 102406425 B1 KR102406425 B1 KR 102406425B1
Authority
KR
South Korea
Prior art keywords
current
excitation
excitation circuit
calculated
winding
Prior art date
Application number
KR1020200127158A
Other languages
Korean (ko)
Other versions
KR20220043590A (en
Inventor
전명수
Original Assignee
전명수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전명수 filed Critical 전명수
Priority to KR1020200127158A priority Critical patent/KR102406425B1/en
Publication of KR20220043590A publication Critical patent/KR20220043590A/en
Application granted granted Critical
Publication of KR102406425B1 publication Critical patent/KR102406425B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Abstract

본 발명은 실시간으로 절연열화를 진단할 수 있는 전기기기의 절연열화 진단장치 및 진단방법에 관한 것이다.
일례로, 1차권선과 2차권선을 갖는 전기기기에서 권선에 흐르는 전류와 전압을 검출하는 검출 단계; 상기 검출 단계에서 검출된 전류와 전압으로 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 또는 철손(W0)의 값을 계산하는 연산 단계; 및 상기 연산 단계에서 계산된 값을 각각 실시간으로 저장하고, 각각의 계산된 값이 기준 범위를 벗어나면 권선이 열화된 것으로 판단하는 저장 판단 단계;를 포함하고, 상기 여자전류(I0)는 다음 수학식에 의해 계산되며,

Figure 112020104082393-pat00075
Figure 112020104082393-pat00076

Figure 112020104082393-pat00077

여기서, N1은 1차권선의 권선수, N2는 2차권선의 권선수, I12는 1차권선 유출전류, I21은 2차권선 유출전류, I0r은 여자전류 유효분, I0x는 여자전류 무효분, θ0는 여자전류 역률각, V10는 여자회로 공급전압, XC는 여자회로 용량성 리액턴스, XL은 여자회로 유도성 리액턴스를 나타내는 것을 특징으로 하는 전기기기의 절연열화 진단방법을 개시한다.The present invention relates to an apparatus for diagnosing insulation deterioration of an electric device and a method for diagnosing insulation deterioration in real time.
For example, in an electric device having a primary winding and a secondary winding, a detection step of detecting a current and a voltage flowing through the windings; Calculate the values of excitation current (I 0 ), excitation circuit resistance (R 0 ), excitation circuit inductance (L 0 ), excitation circuit capacitance (C 0 ) or iron loss (W 0 ) with the current and voltage detected in the detection step arithmetic step; and a storage determination step of storing the values calculated in the calculation step in real time, respectively, and determining that the winding is deteriorated when each calculated value is out of a reference range; including, wherein the excitation current (I 0 ) is It is calculated by the formula,
Figure 112020104082393-pat00075
Figure 112020104082393-pat00076

Figure 112020104082393-pat00077

Here, N1 is the number of turns of the primary winding, N2 is the number of turns of the secondary winding, I 12 is the primary winding outflow current, I 21 is the secondary winding outflow current, I 0r is the effective amount of excitation current, and I 0x is the excitation Insulation deterioration diagnosis method of electrical equipment, characterized in that θ 0 is the excitation current power factor angle, V1 0 is the excitation circuit supply voltage, X C is the excitation circuit capacitive reactance, and X L is the excitation circuit inductive reactance to start

Description

전기기기의 절연열화 진단장치 및 진단 방법{Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof}TECHNICAL FIELD [0002] Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof

본 발명은 전기기기의 절연열화 진단장치 및 진단 방법에 관한 것이다.The present invention relates to an apparatus and method for diagnosing insulation deterioration of electrical equipment.

일반적으로 변압기, 발전기, 전동기 등 절연된 코일을 철심에 감아서 만들어지는 전기기기는 권선의 인덕턴스, 저항과 캐패시턴스 및 누설저항이 존재하며, 설비의 절연이 열화되거나 구조가 변형되면 이러한 소자들의 값이 변화게 된다. 또한, 이러한 소자들의 값이 기준값 이상으로 변화되면 절연이 파괴되어 사고를 유발하게 된다. 한편, 사고에 도달하기 전에 부분방전(PD) 또는 절연유에 가스가 발생하는 등의 징후가 나타나므로, PD측정, 가스분석을 통해 예방진단을 하고 있다. 그러나, 코일의 내부 코어와 인접부근에서 PD가 발생하면 코어로 흡수되므로 검출이 어렵고, 가스가 절연유로 흡수되어 검출되기까지는 시간이 오래 걸리므로, 절연 파괴에 대한 효과적인 예방진단에 어려움이 있다.In general, electrical equipment made by winding an insulated coil such as a transformer, generator, or electric motor around an iron core has inductance, resistance, capacitance, and leakage resistance of the windings. will change In addition, when the value of these elements is changed by more than the reference value, the insulation is broken and an accident is caused. On the other hand, since signs such as partial discharge (PD) or gas generation in insulating oil appear before an accident occurs, preventive diagnosis is being conducted through PD measurement and gas analysis. However, when PD occurs in and near the inner core of the coil, it is difficult to detect because it is absorbed into the core.

본 발명은 권선에 유입 및/또는 유출되는 전류의 기본파 성분과 고조파 성분을 분석하여, 여자전류, 저항, 인덕턴스, 캐패시턴스 및 철손의 값을 검출하고, 실시간으로 절연열화를 진단할 수 있는 전기기기의 절연열화 진단장치 및 진단방법을 제공한다.The present invention analyzes the fundamental and harmonic components of the current flowing in and/or out of the winding, detecting the values of the excitation current, resistance, inductance, capacitance, and iron loss, and diagnosing insulation deterioration in real time. A diagnostic device and method for diagnosing insulation deterioration of

본 발명에 의한 전기기기의 절연열화 진단방법은 1차권선과 2차권선을 갖는 전기기기에서 권선에 흐르는 전류와 전압을 검출하는 검출 단계; 상기 검출 단계에서 검출된 전류와 전압으로 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 또는 철손(W0)의 값을 계산하는 연산 단계; 및 상기 연산 단계에서 계산된 값을 각각 실시간으로 저장하고, 각각의 계산된 값이 기준 범위를 벗어나면 권선이 열화된 것으로 판단하는 저장 판단 단계;를 포함하고, 상기 여자전류(I0)는 다음 수학식에 의해 계산되며,A method for diagnosing insulation deterioration of an electric device according to the present invention comprises the steps of: detecting a current and a voltage flowing through a winding in an electric device having a primary winding and a secondary winding; Calculate the values of excitation current (I 0 ), excitation circuit resistance (R 0 ), excitation circuit inductance (L 0 ), excitation circuit capacitance (C 0 ) or iron loss (W 0 ) with the current and voltage detected in the detection step arithmetic step; and a storage determination step of storing the values calculated in the calculation step in real time, respectively, and determining that the winding is deteriorated when each calculated value is out of a reference range; including, wherein the excitation current (I 0 ) is It is calculated by the formula,

Figure 112020104082393-pat00001
Figure 112020104082393-pat00001

Figure 112020104082393-pat00002
Figure 112020104082393-pat00002

Figure 112020104082393-pat00003
Figure 112020104082393-pat00003

여기서, N1은 1차권선의 권선수, N2는 2차권선의 권선수, I12는 1차권선 유출전류, I21은 2차권선 유출전류, I0r은 여자전류 유효분, I0x는 여자전류 무효분, θ0는 여자전류 역률각, V10는 여자회로 공급전압, XC는 여자회로 용량성 리액턴스, XL은 여자회로 유도성 리액턴스를 나타낼 수 있다.Here, N1 is the number of turns of the primary winding, N2 is the number of turns of the secondary winding, I 12 is the primary winding outflow current, I 21 is the secondary winding outflow current, I 0r is the effective amount of excitation current, and I 0x is the excitation Current ineffective, θ 0 is the excitation current power factor angle, V10 is the excitation circuit supply voltage, X C is the excitation circuit capacitive reactance, and X L is the excitation circuit inductive reactance.

상기 연산 단계에서 N차 고조파 여자전류(IN0)는 다음 수학식에 의해 계산되며,In the calculation step, the Nth harmonic excitation current (I N0 ) is calculated by the following equation,

Figure 112020104082393-pat00004
Figure 112020104082393-pat00004

Figure 112020104082393-pat00005
Figure 112020104082393-pat00005

Figure 112020104082393-pat00006
Figure 112020104082393-pat00006

여기서, N은 고조파 차수, 1차권선의 권선수, N2는 2차권선의 권선수, I12는 1차권선 유출전류, I21은 2차권선 유출전류, IN0는 N차 고조파 여자전류, IN0r은 N차 고조파 여자전류 유효분, IN0x는 N차 고조파 여자전류 무효분, θN0는 N차 고조파 여자전류 역률각, V1N0는 N차 고조파 여자회로 공급전압, XC는 여자회로 용량성 리액턴스, XL은 여자회로 유도성 리액턴스를 나타낼 수 있다.where N is the harmonic order, the number of turns of the primary winding, N2 is the number of turns of the secondary winding, I 12 is the primary winding outflow current, I 21 is the secondary winding outflow current, I N0 is the Nth harmonic excitation current, I N0r is the effective component of the Nth harmonic excitation current, I N0x is the invalid component of the Nth harmonic excitation current, θ N0 is the Nth harmonic excitation current power factor angle, V1 N0 is the Nth harmonic excitation circuit supply voltage, X C is the excitation circuit capacity The sexual reactance, X L , can represent the excitation circuit inductive reactance.

상기 철손(W0)은 다음 수학식에 의해 계산되고,The iron loss (W 0 ) is calculated by the following equation,

Figure 112020104082393-pat00007
Figure 112020104082393-pat00007

상기 여자회로 저항(R0)은 다음 수학식The excitation circuit resistance (R 0 ) is the following equation

Figure 112020104082393-pat00008
Figure 112020104082393-pat00008

에 의해 계산될 수 있다.can be calculated by

상기 여자회로 인덕턴스(L0)는 다음 수학식에 의해 계산되고,The excitation circuit inductance (L 0 ) is calculated by the following equation,

Figure 112020104082393-pat00009
Figure 112020104082393-pat00009

상기 여자회로 유도성 리액턴스(XL)는 다음 수학식에 의해 계산되며,The excitation circuit inductive reactance (X L ) is calculated by the following equation,

Figure 112020104082393-pat00010
Figure 112020104082393-pat00010

Figure 112020104082393-pat00011
Figure 112020104082393-pat00011

일 수 있다.can be

상기 여자회로 캐패시턴스(C0)는 다음 수학식에 의해 계산되고,The excitation circuit capacitance (C 0 ) is calculated by the following equation,

Figure 112020104082393-pat00012
Figure 112020104082393-pat00012

상기 여자회로 용량성 리액턴스(XC)는 다음 수학식에 의해 계산되며,The excitation circuit capacitive reactance (X C ) is calculated by the following equation,

Figure 112020104082393-pat00013
Figure 112020104082393-pat00013

여기서, IN0x 는 N차 고조파 여자전류 무효분으로Here, I N0x is the Nth harmonic excitation current invalid.

Figure 112020104082393-pat00014
Figure 112020104082393-pat00014

일 수 있다.can be

상기 연산 단계에서 누설 전류는 다음 수학식에 의해 계산되며,In the calculation step, the leakage current is calculated by the following equation,

Figure 112020104082393-pat00015
Figure 112020104082393-pat00015

Figure 112020104082393-pat00016
Figure 112020104082393-pat00016

Figure 112020104082393-pat00017
Figure 112020104082393-pat00017

여기서, I11은 1차권선 유입전류, I12은 1차권선 유출전류, Igr은 누설전류 유효분, Igx는 누설전류 무효분, θ0는 누설전류 역률각이고, 절연 저항(Rg)과 누설 캐패시턴스(Cg)는 다음 수학식Here, I 11 is the primary winding inrush current, I 12 is the primary winding outflow current, I gr is the effective leakage current component, I gx is the leakage current invalid component, θ 0 is the leakage current power factor angle, and the insulation resistance (R g ) and leakage capacitance (C g ) are expressed by the following equation

Figure 112020104082393-pat00018
,
Figure 112020104082393-pat00019
Figure 112020104082393-pat00018
,
Figure 112020104082393-pat00019

에 의해 계산될 수 있다.can be calculated by

상기 연산 단계에서 유전 정접(tanδ)은 다음 수학식에 의해 계산되고,In the calculation step, the dielectric loss tangent (tanδ) is calculated by the following equation,

Figure 112020104082393-pat00020
Figure 112020104082393-pat00020

상기 저장 판단 단계에서, 상기 유전 정접(tanδ)이 설정된 기준값보다 크면 권선이 열화된 것으로 판단할 수 있다.In the storage determination step, if the dielectric loss tangent tanδ is greater than a set reference value, it may be determined that the winding is deteriorated.

상기 연산 단계에서 유전체 손실(Wg)은 다음 수학식에 의해 계산되고,In the calculation step, the dielectric loss (Wg) is calculated by the following equation,

Figure 112020104082393-pat00021
Figure 112020104082393-pat00021

상기 저장 판단 단계에서, 상기 유전체 손실(Wg)이 설정된 기준값보다 크면 권선이 열화된 것으로 판단할 수 있다.In the storage determination step, if the dielectric loss Wg is greater than a set reference value, it may be determined that the winding is deteriorated.

상기 전기기기가 승압용 변압기 또는 발전기인 경우에는, Ig를 Ig2로, V10를 V20로 변경하여, 누설 전류, 절연 저항, 유전 정접, 유전체 손실값, 및 누설 캐패시턴스를 구하고If the electric device is a step-up transformer or generator, change Ig to Ig 2 and V10 to V2 0 to obtain leakage current, insulation resistance, dielectric loss tangent, dielectric loss value, and leakage capacitance,

Figure 112020104082393-pat00022
Figure 112020104082393-pat00022

Figure 112020104082393-pat00023
Figure 112020104082393-pat00023

여기서, I22은 2차권선 유입전류, I21은 2차권선 유출전류를 나타낼 수 있다.Here, I 22 may represent the secondary winding inrush current, and I 21 may represent the secondary winding outflow current.

상기 전기기기가 승압용 변압기인 경우에는, 상기 여자전류(I0)에 다음 식을 대입하여, When the electric device is a step-up transformer, by substituting the following formula for the excitation current (I 0 ),

Figure 112020104082393-pat00024
Figure 112020104082393-pat00024

여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0)의 값 및 철손(W0)을 구하며, I11은 1차권선 유입전류, I21은 2차권선 유출전류를 나타낼 수 있다.Find the values of excitation circuit resistance (R 0 ), excitation circuit inductance (L 0 ), excitation circuit capacitance (C 0 ) and iron loss (W 0 ), where I 11 is the primary winding inrush current, I 21 is the secondary winding outflow. current can be represented.

본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치 및 진단방법은 권선에 유입 및/또는 유출되는 전류의 기본파 성분과 고조파 성분을 분석하여, 여자전류, 저항, 인덕턴스, 캐패시턴스 및 철손의 값을 검출하고, 이를 통해 권선의 열화를 실시간으로 판단할 수 있다. 이에 따라, 본 발명에 따른 전기기기의 절연열화 진단장치 및 진단방법은 열화측정 시간 및 비용을 절감할 수 있으며, 전기기기의 안전성을 향상시킬 수 있다.An apparatus and method for diagnosing insulation deterioration of an electric device according to an embodiment of the present invention analyze the fundamental and harmonic components of the current flowing in and/or flowing out of the winding to determine the excitation current, resistance, inductance, capacitance and iron loss. By detecting the value, it is possible to determine the deterioration of the winding in real time. Accordingly, the apparatus and method for diagnosing insulation deterioration of an electric device according to the present invention can reduce deterioration measurement time and cost, and improve the safety of the electric equipment.

도 1은 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치를 도시한 블럭도이다.
도 2a는 전기기기 중 변압기를 도시한 회로도이고, 도 2b는 도 2a의 등가회로이다.
1 is a block diagram illustrating an apparatus for diagnosing insulation deterioration of an electric device according to an embodiment of the present invention.
FIG. 2A is a circuit diagram illustrating a transformer among electric devices, and FIG. 2B is an equivalent circuit of FIG. 2A.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.Examples of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art, and the following examples may be modified in various other forms, and the scope of the present invention is as follows It is not limited to an Example. Rather, these examples are provided so that this disclosure will be more thorough and complete, and will fully convey the spirit of the invention to those skilled in the art.

또한, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.Also, in the drawings, the same reference numerals refer to the same elements. As used herein, the term “and/or” includes any one and all combinations of one or more of those listed items.

본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is used to describe specific embodiments, not to limit the present invention. As used herein, the singular form may include the plural form unless the context clearly dictates otherwise. Also, as used herein, “comprise, include” and/or “comprising, including” refer to the referenced shapes, numbers, steps, actions, members, elements, and/or groups thereof. It specifies the presence and does not exclude the presence or addition of one or more other shapes, numbers, movements, members, elements and/or groups.

또한, 본 발명에 따른 저장 판단부 및/또는 다른 관련 기기 또는 부품은 임의의 적절한 하드웨어, 펌웨어(예를 들어, 주문형 반도체), 소프트웨어, 또는 소프트웨어, 펌웨어 및 하드웨어의 적절한 조합을 이용하여 구현될 수 있다. 예를 들어, 본 발명에 따른 저장 판단부 및/또는 다른 관련 기기 또는 부품의 다양한 구성 요소들은 하나의 집적회로 칩 상에, 또는 별개의 집적회로 칩 상에 형성될 수 있다. 또한, 저장 판단부의 다양한 구성 요소는 가요성 인쇄 회로 필름 상에 구현 될 수 있고, 테이프 캐리어 패키지, 인쇄 회로 기판, 또는 저장 판단부와 동일한 서브스트레이트 상에 형성될 수 있다. 또한, 저장 판단부의 다양한 구성 요소는, 하나 이상의 컴퓨팅 장치에서, 하나 이상의 프로세서에서 실행되는 프로세스 또는 쓰레드(thread)일 수 있고, 이는 이하에서 언급되는 다양한 기능들을 수행하기 위해 컴퓨터 프로그램 명령들을 실행하고 다른 구성 요소들과 상호 작용할 수 있다. 컴퓨터 프로그램 명령은, 예를 들어, 랜덤 액세스 메모리와 같은 표준 메모리 디바이스를 이용한 컴퓨팅 장치에서 실행될 수 있는 메모리에 저장된다. 컴퓨터 프로그램 명령은 또한 예를 들어, CD-ROM, 플래시 드라이브 등과 같은 다른 비-일시적 컴퓨터 판독 가능 매체(non-transitory computer readable media)에 저장될 수 있다. 또한, 본 발명에 관련된 당업자는 다양한 컴퓨팅 장치의 기능이 상호간 결합되거나, 하나의 컴퓨팅 장치로 통합되거나, 또는 특정 컴퓨팅 장치의 기능이, 본 발명의 예시적인 실시예를 벗어나지 않고, 하나 이상의 다른 컴퓨팅 장치들에 분산될 수 될 수 있다는 것을 인식해야 한다.In addition, the storage determination unit and/or other related devices or components according to the present invention may be implemented using any suitable hardware, firmware (eg, application specific semiconductor), software, or a suitable combination of software, firmware and hardware. have. For example, various components of the storage determination unit and/or other related devices or parts according to the present invention may be formed on one integrated circuit chip or on separate integrated circuit chips. In addition, various components of the storage determination unit may be implemented on a flexible printed circuit film, and may be formed on a tape carrier package, a printed circuit board, or the same substrate as the storage determination unit. In addition, various components of the storage determination unit, in one or more computing devices, may be processes or threads executing in one or more processors, which execute computer program instructions to perform various functions mentioned below and other functions. You can interact with the components. The computer program instructions are stored in a memory that can be executed in a computing device using a standard memory device, such as, for example, a random access memory. The computer program instructions may also be stored in other non-transitory computer readable media such as, for example, a CD-ROM, flash drive, and the like. In addition, those skilled in the art related to the present invention will know that the functions of various computing devices are combined with each other, integrated into one computing device, or the functions of a specific computing device are one or more other computing devices without departing from the exemplary embodiments of the present invention. It should be recognized that they can be distributed among

도 1은 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치를 도시한 블럭도이다.1 is a block diagram illustrating an apparatus for diagnosing insulation deterioration of an electric device according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치(100)는 검출부(110), 연산부(120), 저장 판단부(140) 및 신호 출력부(150)를 포함할 수 있다. 여기서, 전기기기는 절연된 코일을 철심에 감아서 만들어지는, 즉, 권선을 구비하는 전기기기를 말한다. 예를 들어, 상기 전기기기는 변압기, 발전기, 모터, 리액터 또는 전동기를 포함할 수 있다. 이러한 전기기기는 전기적, 기계적 충격이 발생하면 권선의 누설전류 및 여자전류의 크기가 변하고 그 유효/무효 전류의 구성 비율도 변하게 된다. 따라서, 본 발명에서는 이를 감시하여 열화 정도를 예측하고 사고를 예방할 수 있는 진단방법 및 장치를 제공한다. Referring to FIG. 1 , an apparatus 100 for diagnosing insulation deterioration of an electric device according to an embodiment of the present invention includes a detection unit 110 , an operation unit 120 , a storage determination unit 140 , and a signal output unit 150 . can do. Here, the electric machine refers to an electric machine made by winding an insulated coil around an iron core, that is, having a winding. For example, the electric device may include a transformer, a generator, a motor, a reactor, or an electric motor. In these electrical devices, when an electrical or mechanical shock occurs, the magnitude of the leakage current and the excitation current of the winding changes, and the composition ratio of the effective/reactive current also changes. Accordingly, the present invention provides a diagnostic method and apparatus capable of predicting the degree of deterioration by monitoring it and preventing an accident.

상기 검출부(110)는 열화를 진단하려는 전기기기에서 권선에 유입 및/또는 유출되는 전류와 인가되는 전압을 실시간으로 검출할 수 있다. 또한, 상기 검출부(110)에서 검출된 전류 및 전압은 연산부(120)로 전달된다. 여기서, 상기 검출부(110)는 별도의 측정기를 사용하여 권선에 유입 및/또는 유출되는 전류와 인가되는 전압을 측정할 수 있으나, 본 발명에서 그 방법을 한정하는 것은 아니다.The detection unit 110 may detect in real time a current flowing in and/or flowing out of a winding and a voltage applied to the electrical device for diagnosing deterioration. In addition, the current and voltage detected by the detection unit 110 are transmitted to the operation unit 120 . Here, the detection unit 110 may measure the current flowing into and/or flowing out of the winding and the applied voltage using a separate measuring device, but the present invention is not limited thereto.

상기 연산부(120)는 상기 검출부(110)에서 검출된 전류 및/또는 전압의 기본파 성분 및 고조파 성분을 분석할 수 있다. 일부 예에서, 상기 연산부(120)는 검출된 전류 및/또는 전압을 이용하여 권선의 여자전류, 저항, 인덕턴스, 캐패시턴스 및 철손의 값을 계산할 수 있다. The operation unit 120 may analyze a fundamental component and a harmonic component of the current and/or voltage detected by the detection unit 110 . In some examples, the calculator 120 may calculate values of an excitation current, resistance, inductance, capacitance, and iron loss of the winding using the detected current and/or voltage.

상기 저장 판단부(130)는 상기 연산부(120)에서 계산된 권선의 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 및 철손(W0)의 값을 실시간으로 저장하고, 저장된 값을 분석하여 열화 상태를 판단할 수 있다. 일부 예에서, 저장 판단부(130)는 권선의 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 및 철손(W0)의 값이 기준 범위를 벗어나면 열화가 발생된 것으로 판단할 수 있다. 여기서, 권선의 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 및 철손(W0)의 기준 범위에 대한 값은 저장 판단부(130)에 미리 저장되어 있다.The storage determination unit 130 calculates the excitation current (I 0 ) of the winding calculated by the operation unit 120 , the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), the excitation circuit capacitance (C 0 ), and the iron loss. The value of (W 0 ) may be stored in real time, and the deterioration state may be determined by analyzing the stored value. In some examples, the storage determination unit 130 is the excitation current (I 0 ) of the winding, the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), the excitation circuit capacitance (C 0 ) and the iron loss (W 0 ) of If the value is out of the reference range, it may be determined that deterioration has occurred. Here, the values for the reference ranges of the excitation current (I 0 ) of the winding, the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), the excitation circuit capacitance (C 0 ) and the iron loss (W 0 ) are stored in the storage decision unit (130) is stored in advance.

상기 신호 출력부(140)는 상기 저장 판단부(130)의 판단 결과에 따른 신호를 출력할 수 있다. 일부 예에서, 상기 신호 출력부(140)는 저장 판단부(130)가 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 또는 철손(W0)의 값 중 어느 하나가 기준 범위를 벗어난 것으로 판단하면, 알람을 발생시켜 사용자에게 알려줄 수 있다. The signal output unit 140 may output a signal according to the determination result of the storage determination unit 130 . In some examples, the signal output unit 140 is the storage determination unit 130 excitation current (I 0 ), excitation circuit resistance (R 0 ), excitation circuit inductance (L 0 ), excitation circuit capacitance (C 0 ) or If it is determined that any one of the values of the iron loss W 0 is out of the reference range, an alarm may be generated and the user may be informed.

다음으로 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치가 변압기의 열화를 진단하는 방법을 설명하기로 한다. Next, a method for diagnosing deterioration of a transformer by the apparatus for diagnosing insulation deterioration of an electric device according to an embodiment of the present invention will be described.

도 2a는 전기기기 중 변압기를 도시한 회로도이고, 도 2b는 도 2a의 등가회로이다. 여기서, 도 2b는 1차권선과 2차권선의 권선수가 동일한 경우(N1=N2)를 도시한 등가회로이다. 더불어, 도 2b에 도시된 변압기는 강압용 변압기(V1>V2)인 것을 예로 설명한다. 일부 예에서, 도 2b에 도시된 전기기기는 V1>V2 인 경우, 예를 들어, 리액터 또는 전동기에도 동일하게 적용될 수 있다.FIG. 2A is a circuit diagram illustrating a transformer among electric devices, and FIG. 2B is an equivalent circuit of FIG. 2A. Here, FIG. 2B is an equivalent circuit illustrating a case where the number of turns of the primary winding and the secondary winding is the same (N1 = N2). In addition, the transformer shown in FIG. 2b will be described as a step-down transformer (V1>V2) as an example. In some examples, the electric device shown in FIG. 2B may be equally applied to, for example, a reactor or an electric motor when V1>V2.

도 2a 및 도 2b에 도시된 바와 같이, 변압기는 1차권선과 2차권선을 포함한다. 본 발명에 따른 전기기기의 절연열화 진단장치(100)는 여자전류(I0) 값의 변화에 따른 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0)의 값 및 철손(W0)의 변화를 검출하여 전자기기의 절연 열화를 진단할 수 있다. 이때, 연산부(120)가 검출부(110)로부터 전류 및 전압을 입력 받아, 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 및 철손(W0)을 구할 수 있다. 2A and 2B, the transformer includes a primary winding and a secondary winding. The apparatus 100 for diagnosing insulation deterioration of electrical equipment according to the present invention is the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), and the excitation circuit capacitance (C 0 ) according to the change in the excitation current (I 0 ) value. It is possible to diagnose insulation deterioration of an electronic device by detecting changes in the value and the iron loss (W 0 ). At this time, the operation unit 120 receives the current and voltage from the detection unit 110, the excitation current (I 0 ), the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), the excitation circuit capacitance (C 0 ) and The iron loss (W 0 ) can be obtained.

상기 연산부(120)는 기본파 여자 전류(I0)를 다음 수학식으로부터 계산할 수 있다. The calculator 120 may calculate the fundamental excitation current I 0 from the following equation.

Figure 112020104082393-pat00025
Figure 112020104082393-pat00025

Figure 112020104082393-pat00026
Figure 112020104082393-pat00026

Figure 112020104082393-pat00027
Figure 112020104082393-pat00027

여기서, N1은 1차권선의 권선수, N2는 2차권선의 권선수, I12는 1차권선 유출전류, I21은 2차권선 유출전류, I0는 여자전류, I0r은 여자전류 유효분, I0x는 여자전류 무효분, θ0는 여자전류 역률각, V10는 여자회로 공급전압, XC는 여자회로 용량성 리액턴스, XL은 여자회로 유도성 리액턴스를 나타낸다. Here, N1 is the number of turns of the primary winding, N2 is the number of turns of the secondary winding, I 12 is the primary winding outflow current, I 21 is the secondary winding outflow current, I 0 is the excitation current, and I 0r is the effective excitation current. Min, I 0x is the ineffective excitation current, θ 0 is the excitation current power factor angle, V10 is the excitation circuit supply voltage, X C is the excitation circuit capacitive reactance, and X L is the excitation circuit inductive reactance.

또한, 상기 연산부(120)는 N차 고조파 여자 전류(IN0)를 다음 수학식으로부터 계산할 수 있다. In addition, the calculator 120 may calculate the Nth harmonic excitation current I N0 from the following equation.

Figure 112020104082393-pat00028
Figure 112020104082393-pat00028

Figure 112020104082393-pat00029
Figure 112020104082393-pat00029

Figure 112020104082393-pat00030
Figure 112020104082393-pat00030

여기서, N은 고조파 차수, 1차권선의 권선수, N2는 2차권선의 권선수, I12는 1차권선 유출전류, I21은 2차권선 유출전류, IN0는 N차 고조파 여자전류, IN0r은 N차 고조파 여자전류 유효분, IN0x는 N차 고조파 여자전류 무효분, θN0는 N차 고조파 여자전류 역률각, V1N0는 N차 고조파 여자회로 공급전압, XC는 여자회로의 용량성 리액턴스, XL은 여자회로의 유도성 리액턴스를 나타낸다.where N is the harmonic order, the number of turns of the primary winding, N2 is the number of turns of the secondary winding, I 12 is the primary winding outflow current, I 21 is the secondary winding outflow current, I N0 is the Nth harmonic excitation current, I N0r is the effective component of the Nth harmonic excitation current, I N0x is the invalid component of the Nth harmonic excitation current, θ N0 is the Nth harmonic excitation current power factor angle, V1 N0 is the Nth harmonic excitation circuit supply voltage, X C is the excitation circuit’s The capacitive reactance, X L , represents the inductive reactance of the excitation circuit.

1차권선 유출전류(I12)와 2차권선 유출전류(I21)는 검출부(110)로부터 측정될 수 있다.The primary winding outflow current I 12 and the secondary winding outflow current I 21 may be measured from the detection unit 110 .

또한, 여자회로 공급전압(V10)은 다음 수학식으로 계산할 수 있다. In addition, the excitation circuit supply voltage (V1 0 ) can be calculated by the following equation.

Figure 112020104082393-pat00031
Figure 112020104082393-pat00031

여기서, I11은 1차권선 유입전류, V1은 1차측 공급전압, R1은 1차권선 저항, X1은 1차권선 유도성 리액턴스를 나타낸다.Here, I 11 is the primary winding inrush current, V1 is the primary supply voltage, R1 is the primary winding resistance, and X1 is the primary winding inductive reactance.

상기 연산부(120)는 철손(W0)을 이용하여 여자회로 저항(R0)을 다음과 같이 구할 수 있다. The operation unit 120 may obtain the excitation circuit resistance (R 0 ) by using the iron loss (W 0 ) as follows.

Figure 112020104082393-pat00032
Figure 112020104082393-pat00032

Figure 112020104082393-pat00033
Figure 112020104082393-pat00033

상기 연산부(120)는 기본파 전류와 고조파 전류를 이용하여, 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0)를 다음과 같이 구할 수 있다. The calculator 120 may obtain the excitation circuit inductance (L 0 ) and the excitation circuit capacitance (C 0 ) as follows by using the fundamental current and the harmonic current.

Figure 112020104082393-pat00034
---- 식(1)
Figure 112020104082393-pat00034
---- Equation (1)

Figure 112020104082393-pat00035
---- 식(2)
Figure 112020104082393-pat00035
---- Equation (2)

여기서, N은 고조파 차수, V1N0 은 해당차수 고조파 전압, IN0x 은 해당차수 고조파 전류를 나타낸다. 다시 말해, I0x 는 기본파 여자전류 무효분, IN0x 는 N차 고조파 여자전류 무효분, V10 는 기본파 여자회로 공급전압, V1N0 는 N차 고조파 여자회로 공급전압을 나타낸다. XC는 여자회로 용량성 리액턴스, XL은 여자회로 유도성 리액턴스를 나타낸다.Here, N is the harmonic order, V1 N0 is the corresponding harmonic voltage, and I N0x is the corresponding harmonic current. In other words, I 0x represents the fundamental wave excitation current invalid component, I N0x represents the Nth harmonic excitation current invalid component, V10 represents the fundamental wave excitation circuit supply voltage, and V1 N0 represents the Nth harmonic excitation circuit supply voltage. X C is the excitation circuit capacitive reactance, and X L is the excitation circuit inductive reactance.

상기 연산부(120)는 여자회로 인덕턴스(L0)를 다음과 같은 수학식으로부터 구할 수 있다. The operation unit 120 may obtain the excitation circuit inductance (L 0 ) from the following equation.

Figure 112020104082393-pat00036
Figure 112020104082393-pat00036

여기서, f는 주파수를 나타내고, XL은 기본파 전류를 구하는 식(1)로부터 다음과 같이 구할 수 있다. Here, f represents the frequency, and X L can be obtained as follows from Equation (1) for obtaining the fundamental current.

Figure 112020104082393-pat00037
---- 식(3)
Figure 112020104082393-pat00037
---- Equation (3)

상기 연산부(120)는 여자회로 캐패시턴스(C0)를 다음과 같은 수학식으로부터 구할 수 있다.The operation unit 120 may obtain the excitation circuit capacitance (C 0 ) from the following equation.

Figure 112020104082393-pat00038
Figure 112020104082393-pat00038

여기서, XC은 고조파 전류를 구하는 식(2)에 XL 을 구하는 식(3)을 대입하여 다음과 같이 구할 수 있다. Here, X C can be obtained as follows by substituting Equation (3) for obtaining X L into Equation (2) for obtaining the harmonic current.

Figure 112020104082393-pat00039
Figure 112020104082393-pat00039

Figure 112020104082393-pat00040
Figure 112020104082393-pat00040

Figure 112020104082393-pat00041
Figure 112020104082393-pat00041

Figure 112020104082393-pat00042
Figure 112020104082393-pat00042

Figure 112020104082393-pat00043
Figure 112020104082393-pat00043

상기와 같이, 연산부(120)는 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 및 철손(W0)을 구할 수 있고, 저장 판단부(130)는 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 또는 철손(W0)의 값이 기준 범위를 벗어나면 열화가 발생된 것으로 판단할 수 있다.As described above, the operation unit 120 can obtain the excitation current (I 0 ), the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), the excitation circuit capacitance (C 0 ) and the iron loss (W 0 ), The storage determination unit 130 determines that the value of the excitation current (I 0 ), the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), the excitation circuit capacitance (C 0 ) or the iron loss (W 0 ) is out of the reference range. It can be judged that surface deterioration has occurred.

또한, 연산부(120)는 권선의 누설전류(Ig)로부터 유전 정접과 유전체 손실을 구할 수 있다. 저장 판단부(130)는 연산부(120)로부터 계산된 유전 정접이 미리 설정된 기준값보다 크면 열화가 발생한 것으로 판단할 수 있다. 또한, 저장 판단부(130)는 연산부(120)로부터 계산된 유전체 손실이 미리 설정된 기준값보다 크면 열화가 발생한 것으로 판단할 수 있다. Also, the calculator 120 may obtain a dielectric loss tangent and a dielectric loss from the leakage current Ig of the winding. The storage determination unit 130 may determine that deterioration has occurred when the dielectric loss tangent calculated by the operation unit 120 is greater than a preset reference value. Also, the storage determination unit 130 may determine that deterioration has occurred when the dielectric loss calculated by the operation unit 120 is greater than a preset reference value.

상기 연산부(120)는 누설전류(Ig)를 다음과 같은 수학식으로부터 구할 수 있다. The calculator 120 may obtain the leakage current Ig from the following equation.

Figure 112020104082393-pat00044
Figure 112020104082393-pat00044

Figure 112020104082393-pat00045
Figure 112020104082393-pat00045

Figure 112020104082393-pat00046
Figure 112020104082393-pat00046

여기서, I11은 1차권선 유입전류, I12은 1차권선 유출전류, Igr은 누설전류 유효분, Igx는 누설전류 무효분, θ0는 누설전류 역률각을 나타낸다. Here, I 11 is the primary winding inrush current, I 12 is the primary winding outflow current, I gr is the leakage current effective component, I gx is the leakage current invalid component, and θ 0 is the leakage current power factor angle.

또한, 절연 저항(Rg)과, 누설 캐패시턴스(Cg)는 다음 수학식으로부터 구할 수 있다.In addition, the insulation resistance (Rg) and the leakage capacitance (Cg) can be obtained from the following equation.

Figure 112020104082393-pat00047
Figure 112020104082393-pat00047

Figure 112020104082393-pat00048
Figure 112020104082393-pat00048

또한, 연산부(120)는 누설전류(Ig)로부터 유전 정접(tanδ)을 다음 수학식으로 구할 수 있다. In addition, the calculator 120 may obtain the dielectric loss tangent tanδ from the leakage current Ig by the following equation.

Figure 112020104082393-pat00049
Figure 112020104082393-pat00049

또한, 연산부(120)는 유전체 손실(Wg)을 다음 수학식으로 구할 수 있다. 여기서, 유전체 손실값은 와트 로스(Watt loss)라고 불리기도 한다.In addition, the operation unit 120 may obtain the dielectric loss (Wg) by the following equation. Here, the dielectric loss value is also called watt loss.

Figure 112020104082393-pat00050
Figure 112020104082393-pat00050

일부 예에서, 상기 전기기기가 승압용 변압기(V1<V2)인 경우에는 여자 전류(I0)에 다음 식을 대입하여 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0)의 값 및 철손(W0)을 구할 수 있다. In some examples, when the electric device is a step-up transformer (V1<V2), the excitation circuit resistance (R 0 ), the excitation circuit inductance (L 0 ), and the excitation circuit capacitance by substituting the following formula for the excitation current (I 0 ) The value of (C 0 ) and the iron loss (W 0 ) can be obtained.

Figure 112020104082393-pat00051
Figure 112020104082393-pat00051

여기서, I11은 1차권선 유입전류, I21은 2차권선 유출전류를 나타낸다.Here, I 11 is the primary winding inrush current, and I 21 is the secondary winding outflow current.

또한, 누설전류와 관련된 식에는 Ig를 Ig2로, V10를 V20로 변경하여, 누설 전류, 유전 정접 및 유전체 손실값을 구할 수 있다. In addition, by changing Ig to Ig 2 and V10 to V2 0 in the equation related to leakage current, leakage current, dielectric loss tangent and dielectric loss values can be obtained.

Figure 112020104082393-pat00052
Figure 112020104082393-pat00052

Figure 112020104082393-pat00053
Figure 112020104082393-pat00053

여기서, I22은 2차권선 유입전류, I21은 2차권선 유출전류를 나타낸다.Here, I 22 represents the secondary winding inrush current, and I 21 represents the secondary winding outflow current.

이상에서 설명한 것은 본 발명에 의한 전기기기의 절연열화 진단장치를 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only one embodiment for implementing the apparatus for diagnosing insulation deterioration of electric equipment according to the present invention, and the present invention is not limited to the above-described embodiment, and as claimed in the claims below, Without departing from the gist of the invention, it will be said that the technical spirit of the present invention exists to the extent that various modifications can be made by anyone with ordinary knowledge in the field to which the invention pertains.

110: 검출부
120: 연산부
130: 저장 판단부
140: 신호 출력부
110: detection unit
120: arithmetic unit
130: storage decision unit
140: signal output unit

Claims (10)

1차권선과 2차권선을 갖는 전기기기에서 권선에 흐르는 전류와 전압을 검출하는 검출 단계;
상기 검출 단계에서 검출된 전류와 전압으로 여자전류(I0), 여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0) 또는 철손(W0)의 값을 계산하는 연산 단계; 및
상기 연산 단계에서 계산된 값을 각각 실시간으로 저장하고, 각각의 계산된 값이 기준 범위를 벗어나면 권선이 열화된 것으로 판단하는 저장 판단 단계;를 포함하고, 상기 여자전류(I0)는 다음 수학식에 의해 계산되며,
Figure 112020104082393-pat00054

Figure 112020104082393-pat00055

Figure 112020104082393-pat00056

여기서, N1은 1차권선의 권선수, N2는 2차권선의 권선수, I12는 1차권선 유출전류, I21은 2차권선 유출전류, I0r은 여자전류 유효분, I0x는 여자전류 무효분, θ0는 여자전류 역률각, V10는 여자회로 공급전압, XC는 여자회로 용량성 리액턴스, XL은 여자회로 유도성 리액턴스를 나타내는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
A detection step of detecting the current and voltage flowing in the winding in an electric device having a primary winding and a secondary winding;
Calculate the values of excitation current (I 0 ), excitation circuit resistance (R 0 ), excitation circuit inductance (L 0 ), excitation circuit capacitance (C 0 ) or iron loss (W 0 ) with the current and voltage detected in the detection step arithmetic step; and
A storage determination step of storing the values calculated in the calculation step in real time, respectively, and determining that the winding is deteriorated when each calculated value is out of a reference range; includes, wherein the excitation current (I 0 ) is calculated using the following math It is calculated by the formula,
Figure 112020104082393-pat00054

Figure 112020104082393-pat00055

Figure 112020104082393-pat00056

Here, N1 is the number of turns of the primary winding, N2 is the number of turns of the secondary winding, I 12 is the primary winding outflow current, I 21 is the secondary winding outflow current, I 0r is the effective amount of excitation current, and I 0x is the excitation Insulation deterioration diagnosis method of electrical equipment, characterized in that θ 0 is the excitation current power factor angle, V1 0 is the excitation circuit supply voltage, X C is the excitation circuit capacitive reactance, and X L is the excitation circuit inductive reactance .
제 1 항에 있어서,
상기 철손(W0)은 다음 수학식에 의해 계산되고,
Figure 112020104082393-pat00057

상기 여자회로 저항(R0)은 다음 수학식
Figure 112020104082393-pat00058

에 의해 계산되는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
The method of claim 1,
The iron loss (W 0 ) is calculated by the following equation,
Figure 112020104082393-pat00057

The excitation circuit resistance (R 0 ) is the following equation
Figure 112020104082393-pat00058

Insulation deterioration diagnosis method of electrical equipment, characterized in that calculated by
제 1 항에 있어서,
상기 여자회로 인덕턴스(L0)는 다음 수학식에 의해 계산되고,
Figure 112020104082393-pat00059

상기 여자회로 유도성 리액턴스(XL)는 다음 수학식에 의해 계산되며,
Figure 112020104082393-pat00060

Figure 112020104082393-pat00061

인 것을 특징으로 하는 전기기기의 절연열화 진단방법.
The method of claim 1,
The excitation circuit inductance (L 0 ) is calculated by the following equation,
Figure 112020104082393-pat00059

The excitation circuit inductive reactance (X L ) is calculated by the following equation,
Figure 112020104082393-pat00060

Figure 112020104082393-pat00061

A method for diagnosing insulation deterioration of electrical equipment, characterized in that
제 1 항에 있어서,
상기 여자회로 캐패시턴스(C0)는 다음 수학식에 의해 계산되고,
Figure 112020104082393-pat00062

상기 여자회로 용량성 캐패시턴스(XC)는 다음 수학식에 의해 계산되며,
Figure 112020104082393-pat00063

여기서, IN0x 는 N차 고조파 여자전류 무효분으로
Figure 112020104082393-pat00064

인 것을 특징으로 하는 전기기기의 절연열화 진단방법.
The method of claim 1,
The excitation circuit capacitance (C 0 ) is calculated by the following equation,
Figure 112020104082393-pat00062

The excitation circuit capacitive capacitance (X C ) is calculated by the following equation,
Figure 112020104082393-pat00063

Here, I N0x is the Nth harmonic excitation current invalid.
Figure 112020104082393-pat00064

A method for diagnosing insulation deterioration of electrical equipment, characterized in that
제 1 항에 있어서,
상기 연산 단계에서 누설 전류는 다음 수학식에 의해 계산되며,
Figure 112020104082393-pat00065

Figure 112020104082393-pat00066

Figure 112020104082393-pat00067

여기서, I11은 1차권선 유입전류, I12은 1차권선 유출전류, Igr은 누설전류 유효분, Igx는 누설전류 무효분, θ0는 누설전류 역률각이고,
절연 저항(Rg)과 누설 캐패시턴스(Cg)는 다음 수학식
Figure 112020104082393-pat00068
,
Figure 112020104082393-pat00069

에 의해 계산되는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
The method of claim 1,
In the calculation step, the leakage current is calculated by the following equation,
Figure 112020104082393-pat00065

Figure 112020104082393-pat00066

Figure 112020104082393-pat00067

where I 11 is the primary winding inrush current, I 12 is the primary winding outflow current, I gr is the leakage current effective component, I gx is the leakage current invalid component, θ 0 is the leakage current power factor angle,
Insulation resistance (R g ) and leakage capacitance (C g ) are expressed by the following equation
Figure 112020104082393-pat00068
,
Figure 112020104082393-pat00069

Insulation deterioration diagnosis method of electrical equipment, characterized in that calculated by
제 5 항에 있어서,
상기 연산 단계에서 유전 정접(tanδ)은 다음 수학식에 의해 계산되고,
Figure 112020104082393-pat00070

상기 저장 판단 단계에서, 상기 유전 정접(tanδ)이 설정된 기준값보다 크면 권선이 열화된 것으로 판단하는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
6. The method of claim 5,
In the calculation step, the dielectric loss tangent (tanδ) is calculated by the following equation,
Figure 112020104082393-pat00070

In the storage determination step, when the dielectric loss tangent (tanδ) is greater than a set reference value, it is determined that the winding is deteriorated.
제 5 항에 있어서,
상기 연산 단계에서 유전체 손실(Wg)은 다음 수학식에 의해 계산되고,
Figure 112020104082393-pat00071

상기 저장 판단 단계에서, 상기 유전체 손실(Wg)이 설정된 기준값보다 크면 권선이 열화된 것으로 판단하는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
6. The method of claim 5,
In the calculation step, the dielectric loss (Wg) is calculated by the following equation,
Figure 112020104082393-pat00071

In the storage determination step, when the dielectric loss (Wg) is greater than a set reference value, it is determined that the winding is deteriorated.
제 5 항에 있어서,
상기 전기기기가 승압용 변압기 또는 발전기인 경우에는, Ig를 Ig2로, V10를 V20로 변경하여, 누설 전류, 절연 저항, 유전 정접, 유전체 손실값, 및 누설 캐패시턴스를 구하고
Figure 112020104082393-pat00072

Figure 112020104082393-pat00073

여기서, I22은 2차권선 유입전류, I21은 2차권선 유출전류를 나타내는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
6. The method of claim 5,
If the electric device is a step-up transformer or generator, change Ig to Ig 2 and V10 to V2 0 to obtain leakage current, insulation resistance, dielectric loss tangent, dielectric loss value, and leakage capacitance,
Figure 112020104082393-pat00072

Figure 112020104082393-pat00073

Here, I 22 is the secondary winding inflow current, I 21 is the secondary winding outflow current, the insulation deterioration diagnostic method of an electric device, characterized in that.
제 1 항에 있어서,
상기 전기기기가 승압용 변압기인 경우에는, 상기 여자전류(I0)에 다음 식을 대입하여,
Figure 112020104082393-pat00074

여자회로 저항(R0), 여자회로 인덕턴스(L0), 여자회로 캐패시턴스(C0)의 값 및 철손(W0)을 구하며, I11은 1차권선 유입전류, I21은 2차권선 유출전류를 나타내는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
The method of claim 1,
When the electric device is a step-up transformer, by substituting the following formula for the excitation current (I 0 ),
Figure 112020104082393-pat00074

Find the values of excitation circuit resistance (R 0 ), excitation circuit inductance (L 0 ), excitation circuit capacitance (C 0 ) and iron loss (W 0 ), where I 11 is the primary winding inrush current, I 21 is the secondary winding outflow. A method for diagnosing insulation deterioration of an electric device, characterized in that it indicates a current.
상기 제 1 항 내지 제 9 항 중 어느 한 항에 기재된 진단방법으로 전기기기의 절연열화를 진단하는 것을 특징으로 하는 전기기기의 절연열화 진단장치.10. An apparatus for diagnosing insulation deterioration of electric equipment, characterized in that the insulation deterioration of the electric equipment is diagnosed by the diagnostic method according to any one of claims 1 to 9.
KR1020200127158A 2020-09-29 2020-09-29 Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof KR102406425B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200127158A KR102406425B1 (en) 2020-09-29 2020-09-29 Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200127158A KR102406425B1 (en) 2020-09-29 2020-09-29 Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof

Publications (2)

Publication Number Publication Date
KR20220043590A KR20220043590A (en) 2022-04-05
KR102406425B1 true KR102406425B1 (en) 2022-06-08

Family

ID=81182244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200127158A KR102406425B1 (en) 2020-09-29 2020-09-29 Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof

Country Status (1)

Country Link
KR (1) KR102406425B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226474B1 (en) 2012-12-12 2013-01-28 주식회사유성계전 Prediction device deterioration of condenser bank and method rhereof
KR101297843B1 (en) 2013-05-16 2013-08-19 주식회사유성계전 Distributing board for measuring a capacity of a condenser and measuring method thereof
KR101402350B1 (en) 2013-10-23 2014-06-02 주식회사유성계전 Prediction method deterioration of condenser bank using dielectric tangent
KR101840980B1 (en) 2017-09-29 2018-05-04 전명수 Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2466322T3 (en) * 2010-12-17 2014-04-30 Abb Research Ltd Method and apparatus for transformer diagnosis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226474B1 (en) 2012-12-12 2013-01-28 주식회사유성계전 Prediction device deterioration of condenser bank and method rhereof
KR101297843B1 (en) 2013-05-16 2013-08-19 주식회사유성계전 Distributing board for measuring a capacity of a condenser and measuring method thereof
KR101402350B1 (en) 2013-10-23 2014-06-02 주식회사유성계전 Prediction method deterioration of condenser bank using dielectric tangent
KR101840980B1 (en) 2017-09-29 2018-05-04 전명수 Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof

Also Published As

Publication number Publication date
KR20220043590A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
Frosini et al. A novel approach to detect short circuits in low voltage induction motor by stray flux measurement
US20170038424A1 (en) Partial discharge measurement device
WO2009138370A1 (en) A method and a device for estimating the clamping force on a winding package of a transformer or a reactor
JP2007234593A5 (en)
JP6642230B2 (en) DC bias detection method for transformer core and DC bias detection system for transformer core
JP2013088284A (en) Fault diagnosis device of current sensor, sensor system, and fault diagnosis method of current sensor
CN106815437B (en) Method and device for determining vibration sensitive area of oil tank under steady-state working condition of transformer
KR102406425B1 (en) Diagnosis device for isolation deterioration of electric apparatus and diagnosis method thereof
Wesley et al. Evaluation of statistical interpretation methods for frequency response analysis based winding fault detection of transformers
CN100495848C (en) Device and method for the differential protection and electrical apparatus including such a device
Borucki et al. Evaluation of the technical condition of the active part of the high power transformer based on measurements and analysis of vibroacoustic signals
Lu et al. A novel online monitoring strategy for the localized grounding insulation defect of converter transformers based on converter switching states control
JP2009266988A (en) Diagnostic method of internal failure of oil-filled electric apparatus
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
Jensen et al. A more robust stator insulation failure prognosis for inverter-driven machines
KR20140033979A (en) Apparatus for diagnosing a power transformer
JP6595355B2 (en) Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method
CN115015713A (en) Insulation life prediction method and device based on PDIV and corona-resistant life
JP2007108058A (en) Device and program for determining winding quality
Barzegaran et al. 3-D FE wire modeling and analysis of electromagnetic signatures from electric power drive components and systems
KR101358038B1 (en) Method for analysis on characteristics of winding in cast resin transformer
KR101332675B1 (en) Apparatus of analysis on characteristics of winding in cast resin transformer
CN206353190U (en) Air reactor detecting system
KR101307315B1 (en) Method for analysis on characteristics of core in cast resin transformer
Nezhad et al. Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant