JP6595355B2 - Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method - Google Patents

Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method Download PDF

Info

Publication number
JP6595355B2
JP6595355B2 JP2016012676A JP2016012676A JP6595355B2 JP 6595355 B2 JP6595355 B2 JP 6595355B2 JP 2016012676 A JP2016012676 A JP 2016012676A JP 2016012676 A JP2016012676 A JP 2016012676A JP 6595355 B2 JP6595355 B2 JP 6595355B2
Authority
JP
Japan
Prior art keywords
magnetic core
core member
unit
current transformer
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016012676A
Other languages
Japanese (ja)
Other versions
JP2017135212A (en
Inventor
信司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2016012676A priority Critical patent/JP6595355B2/en
Publication of JP2017135212A publication Critical patent/JP2017135212A/en
Application granted granted Critical
Publication of JP6595355B2 publication Critical patent/JP6595355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、磁心部材の劣化診断技術に関する。   Embodiments described herein relate generally to a deterioration diagnosis technique for a magnetic core member.

変圧器が有する鉄心の劣化を診断するために、クランプ式の高周波CTを変圧器の接地線に取り付けることで、変圧器から出力される部分放電電流を検出する装置がある。この装置では、高周波CTにより検出された部分放電電流信号と予め記憶された部分放電特性のデータとに基づいて、変圧器の劣化状態を診断している(例えば、特許文献1参照)。   In order to diagnose deterioration of the iron core of the transformer, there is a device that detects a partial discharge current output from the transformer by attaching a clamp-type high-frequency CT to the ground line of the transformer. In this apparatus, the deterioration state of the transformer is diagnosed based on the partial discharge current signal detected by the high frequency CT and the data of the partial discharge characteristics stored in advance (see, for example, Patent Document 1).

特開平11−326429号公報JP 11-326429 A

しかしながら、変圧器から出力される部分放電電流は、微弱な電流であるため、SN比が悪く、ノイズの影響が大きくなるので、この部分放電電流を受動的に検出して鉄心(磁心部材)の劣化状態(劣化度)の診断を行うと、ノイズが発生した場合に部分放電電流の検出値を正確に取得できず、鉄心の劣化状態が誤って診断されてしまうという課題がある。   However, since the partial discharge current output from the transformer is a weak current, the S / N ratio is poor and the influence of noise increases. Therefore, the partial discharge current is passively detected to detect the iron core (magnetic core member). When the deterioration state (deterioration degree) is diagnosed, the detection value of the partial discharge current cannot be obtained accurately when noise occurs, and the deterioration state of the iron core is erroneously diagnosed.

本発明の実施形態はこのような事情を考慮してなされたもので、経年使用した磁心部材の劣化度の診断を正確に行うことができる磁心部材の劣化診断技術を提供することを目的とする。   Embodiments of the present invention have been made in view of such circumstances, and an object of the present invention is to provide a deterioration diagnosis technique for a magnetic core member that can accurately diagnose the deterioration degree of a magnetic core member that has been used over time. .

本発明の実施形態に係る磁心部材の劣化診断装置は、磁心部材に巻回された巻回コイル部を電気的に閉じられたループ状のコイルとしたときに、このコイルに取り付け可能なクランプ式のカレントトランス部と、前記カレントトランス部と同じ回路に設けられ、前記カレントトランス部に特定の交流電圧を特定の周波数で付与する発振部と、前記カレントトランス部、前記巻回コイル部、および前記磁心部材の相互間で作用する電磁誘導現象が生じているときに、少なくとも前記カレントトランス部に流れる電流に基づく検出情報を取得する取得部と、初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶部と、前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断部と、を備えることを特徴とする。 The deterioration diagnosis device for a magnetic core member according to an embodiment of the present invention is a clamp type that can be attached to a coil when the wound coil portion wound around the magnetic core member is an electrically closed loop coil. Current transformer unit, an oscillation unit that is provided in the same circuit as the current transformer unit and applies a specific AC voltage to the current transformer unit at a specific frequency, the current transformer unit, the winding coil unit, and the Based on detection information corresponding to the magnetic core member in the initial state, and an acquisition unit for acquiring detection information based on at least the current flowing in the current transformer unit when an electromagnetic induction phenomenon acting between the magnetic core members occurs Determination information is set, a storage unit that stores the determination information, detection information corresponding to the magnetic core member that has been used for a while from the initial state, and the determination information Zui it, characterized in that it comprises a diagnosis unit for diagnosing the deterioration degree, the.

本発明の実施形態に係る磁心部材の劣化診断方法は、磁心部材に巻回された巻回コイル部を電気的に閉じられたループ状のコイルとしたときに、このコイルにクランプ式のカレントトランス部を取り付ける取付ステップと、前記カレントトランス部と同じ回路に設けられた発振部により、前記カレントトランス部に特定の交流電圧を特定の周波数で付与する発振ステップと、前記カレントトランス部、前記巻回コイル部、および前記磁心部材の相互間で作用する電磁誘導現象が生じているときに、少なくとも前記カレントトランス部に流れる電流に基づく検出情報を取得する取得ステップと、初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶ステップと、前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断ステップと、を含むことを特徴とする。 In the deterioration diagnosis method for a magnetic core member according to an embodiment of the present invention, when a wound coil portion wound around the magnetic core member is an electrically closed loop coil, a clamp-type current transformer is connected to the coil. An attaching step for attaching the current transformer unit , an oscillation step for applying a specific AC voltage to the current transformer unit at a specific frequency by an oscillation unit provided in the same circuit as the current transformer unit, the current transformer unit, the winding An acquisition step of acquiring detection information based on at least a current flowing in the current transformer unit when an electromagnetic induction phenomenon acting between the coil unit and the magnetic core member occurs, and corresponding to the magnetic core member in an initial state Determination information is set based on the detection information, a storage step for storing the determination information, and a magnetic field that has been used over time from the initial state. Based the detection information corresponding to the member and the determination information, characterized in that it comprises a diagnostic step of diagnosing the deterioration degree, the.

本発明の実施形態により、経年使用した磁心部材の劣化度の診断を正確に行うことができる磁心部材の劣化診断技術が提供される。   The embodiment of the present invention provides a deterioration diagnosis technique for a magnetic core member that can accurately diagnose the deterioration degree of a magnetic core member that has been used over time.

本実施形態の劣化診断装置を示す図。The figure which shows the deterioration diagnostic apparatus of this embodiment. 劣化診断装置の構成を示す回路図。The circuit diagram which shows the structure of a deterioration diagnostic apparatus. 劣化診断装置を構成するパソコンを示すブロック図。The block diagram which shows the personal computer which comprises a deterioration diagnostic apparatus. 劣化診断の手順を示すフローチャート。The flowchart which shows the procedure of deterioration diagnosis.

以下、本発明の実施形態を添付図面に基づいて説明する。図1に示すように、本実施形態の劣化診断装置は、トランス1(変圧器)が有する磁心部材2の劣化度を診断するための装置である。磁心部材2は、四角形状(環状)を成す部材として形成されている。なお、磁心部材2は、軟磁性体で構成された金属部材である。この磁心部材2の図中左側には、外部の電源から所定電圧の交流電力が供給される1次コイルとしての第1巻回コイル部3が捲回されている。本実施形態では、所定周波数(例えば、50〜60Hz)の交流電力が第1巻回コイル部3に入力される。また、磁心部材2の図中右側には、第1巻回コイル部3に供給される電圧を変化させて出力する2次コイルとしての第2巻回コイル部4が捲回されている。なお、トランス1は、第1巻回コイル部3と第2巻回コイル部4との巻き線比に応じて電圧を変化させる機能を有する電気機器である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the deterioration diagnosis device of the present embodiment is a device for diagnosing the deterioration degree of the magnetic core member 2 included in the transformer 1 (transformer). The magnetic core member 2 is formed as a member having a quadrangular shape (annular shape). The magnetic core member 2 is a metal member made of a soft magnetic material. On the left side of the magnetic core member 2 in the figure, a first winding coil portion 3 is wound as a primary coil to which AC power of a predetermined voltage is supplied from an external power source. In the present embodiment, AC power having a predetermined frequency (for example, 50 to 60 Hz) is input to the first winding coil unit 3. Further, on the right side of the magnetic core member 2 in the drawing, a second winding coil portion 4 as a secondary coil that changes and outputs a voltage supplied to the first winding coil portion 3 is wound. The transformer 1 is an electrical device having a function of changing a voltage according to a winding ratio between the first winding coil unit 3 and the second winding coil unit 4.

また、トランス1は、メンテナンスを行うときなどに接地線15に接続可能になっている。例えば、トランス1のメンテナンス時には、第1巻回コイル部3の2本の配線16と、電源から延びる2本の電力供給線17との間のスイッチ14(遮断器)をOFFにする。さらに、第1巻回コイル部3の2本の配線16と、2本の接地線15との間のスイッチ13(遮断器)をONにする。この接地線15が第1巻回コイル部3に接続されることで、第1巻回コイル部3は、接地を介して電気的に閉じられたループ状のコイル(短絡ループコイル)となる(図2参照)。なお、電気的に閉じられることとは、電気回路において他の部分と電流の出入りがない状態と示す。   The transformer 1 can be connected to the ground line 15 when performing maintenance or the like. For example, at the time of maintenance of the transformer 1, the switch 14 (breaker) between the two wires 16 of the first winding coil unit 3 and the two power supply lines 17 extending from the power source is turned off. Further, the switch 13 (breaker) between the two wires 16 of the first winding coil unit 3 and the two ground wires 15 is turned ON. By connecting the grounding wire 15 to the first winding coil unit 3, the first winding coil unit 3 becomes a loop-like coil (short-circuiting loop coil) that is electrically closed through grounding ( (See FIG. 2). It should be noted that being electrically closed indicates that there is no current flowing in and out of other parts in the electric circuit.

また、トランス1の磁心部材2は、磁束の通路(磁路)を形成するものであって、インダクタンスを増加させるために高透磁率材により作成される。この磁心部材2は、薄板状を成す鉄部材が複数積層により形成され、各層は渦電流を抑制するために絶縁されている。この磁心部材2は、長年の使用により劣化することがある。例えば、積層された鉄部材の間の絶縁が悪化することがある。すると、磁心部材2の渦電流損失(鉄損)が増加し、磁心部材2の温度が通常時よりも上昇する。   The magnetic core member 2 of the transformer 1 forms a magnetic flux path (magnetic path), and is made of a high permeability material in order to increase inductance. The magnetic core member 2 is formed by laminating a plurality of thin iron members, and each layer is insulated to suppress eddy currents. The magnetic core member 2 may be deteriorated by long-term use. For example, insulation between laminated iron members may deteriorate. Then, the eddy current loss (iron loss) of the magnetic core member 2 increases, and the temperature of the magnetic core member 2 rises more than usual.

そこで、本実施形態では、経年使用された磁心部材2の劣化を診断する劣化診断装置(劣化診断システム)が設けられている。この劣化診断装置は、クランプ式のカレントトランス部10(クランプCT)と、各種処理を行うことで劣化の診断を行うパソコン11(PC)と、カレントトランス部10がケーブルを介して接続された測定装置12と、を含む。また、カレントトランス部10は、第1巻回コイル部3に接続された接地線15をクランプする(挟み込む)。   Therefore, in this embodiment, a deterioration diagnosis device (deterioration diagnosis system) for diagnosing deterioration of the magnetic core member 2 used over time is provided. This degradation diagnosis apparatus includes a clamp-type current transformer unit 10 (clamp CT), a personal computer 11 (PC) that diagnoses degradation by performing various processes, and a measurement in which the current transformer unit 10 is connected via a cable. Device 12. Further, the current transformer unit 10 clamps (pinches) the ground wire 15 connected to the first winding coil unit 3.

なお、一般的にクランプCTとは、センサコイル27が巻回された環状をなす磁気コア28を有し(図2参照)、この磁気コア28内に挿通された電線に流れる電流を測定する器具である。また、磁気コア28は、半分に分割された開閉可能な部材となっている。この磁気コア28が測定対象となる電線をクランプすることで、電線を分断することなく電流を測定することができる。本実施形態では、このクランプCTをカレントトランス部10として用いている。   In general, the clamp CT has an annular magnetic core 28 around which the sensor coil 27 is wound (see FIG. 2), and an instrument for measuring the current flowing through the electric wire inserted into the magnetic core 28. It is. The magnetic core 28 is a member that can be opened and closed divided in half. When the magnetic core 28 clamps the electric wire to be measured, the current can be measured without breaking the electric wire. In the present embodiment, this clamp CT is used as the current transformer unit 10.

図2に示すように、測定装置12は、カレントトランス部10に接続される電気回路を有している。なお、カレントトランス部10のセンサコイル27が磁気コア28に巻回されている。この磁気コア28が第1巻回コイル部3に接続された接地線15に取り付けられている。さらに、第1巻回コイル部3が磁心部材2の一部を取り囲んでいる。また、電気回路は、カレントトランス部10に所定(一定)の電圧振幅で1kHz以上の高周波数(特定の周波数)の交流電力を出力する発振部23を含む。   As shown in FIG. 2, the measuring device 12 has an electric circuit connected to the current transformer unit 10. The sensor coil 27 of the current transformer unit 10 is wound around the magnetic core 28. This magnetic core 28 is attached to the ground wire 15 connected to the first winding coil portion 3. Further, the first winding coil portion 3 surrounds a part of the magnetic core member 2. The electric circuit also includes an oscillating unit 23 that outputs AC power having a high frequency (specific frequency) of 1 kHz or more with a predetermined (constant) voltage amplitude to the current transformer unit 10.

さらに、測定装置12は、カレントトランス部10の電圧値を測定する電圧計24と、電気回路の電流値を測定する電流計25と、が設けられる。また、発振部23とカレントトランス部10のセンサコイル27との間には、共振用のコンデンサ26が直列に設けられる。発振部23とカレントトランス部10のセンサコイル27とコンデンサ26とで共振回路が構成される。   Further, the measuring device 12 is provided with a voltmeter 24 that measures the voltage value of the current transformer unit 10 and an ammeter 25 that measures the current value of the electric circuit. A resonance capacitor 26 is provided in series between the oscillation unit 23 and the sensor coil 27 of the current transformer unit 10. The oscillation circuit 23, the sensor coil 27 of the current transformer 10 and the capacitor 26 constitute a resonance circuit.

本実施形態では、発振部23から電流が出力されると、カレントトランス部10のセンサコイル27と磁気コア28との相互間で作用する電磁誘導現象が生じる。そして、磁気コア28の電磁誘導現象により第1巻回コイル部3に電磁誘導現象が生じ、さらに、この第1巻回コイル部3を介して磁心部材2に電磁誘導現象が生じる。このときに、電圧計24の電圧値と電流計25の電流値とを解析することによって、カレントトランス部10(センサコイル27)の測定値(検出情報)を取得できる。なお、この測定値は、カレントトランス部10のリアクタンス値や抵抗値であっても良い。また、カレントトランス部10に流れる電流の周波数や位相が変化した値を測定値としても良い。そして、この取得した測定値をパソコン11で解析することで、磁心部材2の渦電流損失(鉄損)と比例して変化する値に相当する損失特性値を求めることができる。   In the present embodiment, when a current is output from the oscillating unit 23, an electromagnetic induction phenomenon that acts between the sensor coil 27 and the magnetic core 28 of the current transformer unit 10 occurs. An electromagnetic induction phenomenon occurs in the first winding coil portion 3 due to the electromagnetic induction phenomenon of the magnetic core 28, and further, an electromagnetic induction phenomenon occurs in the magnetic core member 2 via the first winding coil portion 3. At this time, by measuring the voltage value of the voltmeter 24 and the current value of the ammeter 25, the measured value (detection information) of the current transformer unit 10 (sensor coil 27) can be acquired. The measured value may be a reactance value or a resistance value of the current transformer unit 10. Further, a value obtained by changing the frequency or phase of the current flowing through the current transformer unit 10 may be used as the measurement value. Then, by analyzing the acquired measurement value with the personal computer 11, a loss characteristic value corresponding to a value that changes in proportion to the eddy current loss (iron loss) of the magnetic core member 2 can be obtained.

なお、本実施形態では、電気回路の要素を最小限にして単純化したものを例示しているが、その他の要素が含まれる電気回路であっても良い。また、前述したカレントトランス部10を接地線15から取り外すと、カレントトランス部10および測定装置12を持ち運ぶことができる。このようにカレントトランス部10および測定装置12のハンディ化が実現される。また、測定装置12には、使用者が持ち運ぶときに使用する把持部を設けても良い。   In the present embodiment, the simplified example is shown in which the elements of the electric circuit are minimized, but an electric circuit including other elements may be used. Further, when the current transformer unit 10 described above is removed from the ground wire 15, the current transformer unit 10 and the measuring device 12 can be carried. In this way, the current transformer unit 10 and the measuring device 12 can be handheld. In addition, the measuring device 12 may be provided with a grip portion used when the user carries it.

さらに、測定装置12は、電気回路を制御する制御部20と、パソコン11とケーブルを用いて通信を行う通信部21と、電気回路から取得される各種情報を解析する解析部22と、を含む。なお、通信部21や解析部22は、制御部20にそれぞれ接続されて制御される。   Furthermore, the measuring device 12 includes a control unit 20 that controls the electric circuit, a communication unit 21 that communicates with the personal computer 11 using a cable, and an analysis unit 22 that analyzes various information acquired from the electric circuit. . Note that the communication unit 21 and the analysis unit 22 are connected to and controlled by the control unit 20, respectively.

発振部23の出力の電流値や電圧値や周波数値などは、制御部20により制御される。また、電圧計24の電圧値や、電流計25の電流値は、制御部20に入力される。また、解析部22は、FFT(高速フーリエ変換)などの解析を行うためのアナライザなどを含む。   The control unit 20 controls the output current value, voltage value, frequency value, and the like of the oscillation unit 23. Further, the voltage value of the voltmeter 24 and the current value of the ammeter 25 are input to the control unit 20. The analysis unit 22 includes an analyzer for performing analysis such as FFT (Fast Fourier Transform).

例えば、制御部20は、解析部22に解析を行わせることで、電圧計24の電圧値と電流計25の電流値とに基づいて、カレントトランス部10(センサコイル27)に流れる電流の周波数や位相に関する情報を取得できる。なお、制御部20は、カレントトランス部10とコンデンサ26とにより生じる共振状態を最大化する自動チューニング機能を有する。   For example, the control unit 20 causes the analysis unit 22 to perform analysis, so that the frequency of the current flowing through the current transformer unit 10 (sensor coil 27) based on the voltage value of the voltmeter 24 and the current value of the ammeter 25 is determined. And information about the phase. The control unit 20 has an automatic tuning function that maximizes the resonance state caused by the current transformer unit 10 and the capacitor 26.

また、測定装置12の制御部20の各種制御内容は、通信部21を介して接続されたパソコン11により指示される。また、測定装置12の制御部20が取得した測定値(情報)は、通信部21を介してパソコン11に送信される。   Various control contents of the control unit 20 of the measuring device 12 are instructed by the personal computer 11 connected via the communication unit 21. In addition, the measurement value (information) acquired by the control unit 20 of the measurement device 12 is transmitted to the personal computer 11 via the communication unit 21.

図3に示すように、本実施形態のパソコン11は、CPU30やROM31やRAM32やHDD33などのハードウエア資源を有し、各種プログラムを実行して各種制御を行うコンピュータである。また、パソコン11は、ディスプレイなどの各種情報を出力可能な出力装置34や、キーボードなどの各種情報を入力可能な入力装置35や、測定装置12とケーブルを用いて通信を行う通信部36などを有する。   As shown in FIG. 3, the personal computer 11 according to the present embodiment is a computer that has hardware resources such as a CPU 30, a ROM 31, a RAM 32, and an HDD 33 and executes various programs to perform various controls. Further, the personal computer 11 includes an output device 34 that can output various information such as a display, an input device 35 that can input various information such as a keyboard, a communication unit 36 that communicates with the measuring device 12 using a cable, and the like. Have.

また、CPU30には、測定装置12から送信された情報に基づいてカレントトランス部10の測定値を取得する取得部40が設けられる。さらに、CPU30には、カレントトランス部10の測定値に基づいて磁心部材2の損失特性値を算出する算出部41が設けられる。さらに、CPU30には、劣化した磁心部材2、つまり、劣化度が既知の磁心部材2がシミュレート(推定)されるシミュレーション部42が設けられる。さらに、CPU30には、診断対象となる磁心部材2の損失特性値(検出情報)と所定の判定値(判定情報)とに基づいて劣化診断を行う劣化診断部43が設けられる。   In addition, the CPU 30 is provided with an acquisition unit 40 that acquires the measurement value of the current transformer unit 10 based on the information transmitted from the measurement device 12. Further, the CPU 30 is provided with a calculation unit 41 that calculates the loss characteristic value of the magnetic core member 2 based on the measurement value of the current transformer unit 10. Further, the CPU 30 is provided with a simulation unit 42 that simulates (estimates) the deteriorated magnetic core member 2, that is, the magnetic core member 2 with a known deterioration degree. Further, the CPU 30 is provided with a deterioration diagnosis unit 43 that performs deterioration diagnosis based on the loss characteristic value (detection information) of the magnetic core member 2 to be diagnosed and a predetermined determination value (determination information).

また、HDD33は、各種情報を記憶する記憶装置である。このHDD33には、磁心部材2の劣化診断を行うときに用いる判定値を判定情報として記憶する判定情報記憶部44が設けられる。さらに、HDD33には、測定装置12から送信される測定値(情報)などの検出情報を記憶する検出情報記憶部45が設けられる。   The HDD 33 is a storage device that stores various types of information. The HDD 33 is provided with a determination information storage unit 44 that stores, as determination information, a determination value used when a deterioration diagnosis of the magnetic core member 2 is performed. Further, the HDD 33 is provided with a detection information storage unit 45 that stores detection information such as measurement values (information) transmitted from the measurement device 12.

次に、磁心部材2の劣化診断を行うときの手順について図4を用いて説明する(適宜図1から図3を参照)。本実施形態では、経年使用した磁心部材2、つまり劣化診断の対象となる磁心部材2の診断を行う前に、劣化診断に用いる判定値(閾値)を設定するようにしている。   Next, a procedure for performing deterioration diagnosis of the magnetic core member 2 will be described with reference to FIG. 4 (refer to FIGS. 1 to 3 as appropriate). In the present embodiment, a determination value (threshold value) used for deterioration diagnosis is set before diagnosing the magnetic core member 2 that has been used for a long time, that is, the magnetic core member 2 to be subjected to deterioration diagnosis.

まず、カレントトランス部10を初期状態のトランス1に取り付けた状態にする。つまり、初期状態の磁心部材2の周囲を囲んだ状態の第1巻回コイル部3に接続された接地線15に、カレントトランス部10(クランプCT)を取り付ける(S11:取付ステップ)。なお、本実施形態において、初期状態のトランス1とは、磁心部材2が劣化していない状態のトランス1のことである。例えば、初期状態のトランス1として、所定の使用場所に設置されたばかりの新品のトランス1を用いる。なお、製造工場から出荷される直前の状態のトランス1を用いても良い。また、使用を開始したトランス1であっても新品に近い状態であれば初期状態とする。   First, the current transformer unit 10 is set in a state of being attached to the initial transformer 1. That is, the current transformer part 10 (clamp CT) is attached to the ground wire 15 connected to the first winding coil part 3 in a state surrounding the magnetic core member 2 in the initial state (S11: attachment step). In the present embodiment, the transformer 1 in the initial state is the transformer 1 in a state where the magnetic core member 2 is not deteriorated. For example, a new transformer 1 just installed at a predetermined place of use is used as the transformer 1 in the initial state. Note that the transformer 1 in a state immediately before being shipped from the manufacturing factory may be used. Moreover, even if it is the state near the new article even if it is the transformer 1 which started use, it will be set as an initial state.

そして、測定装置12の制御部20は、発振部23から高周波数の交流を所定の電圧で出力させる。このとき、高周波数の交流(電流)がカレントトランス部10を流れる(S12:発振ステップ)。   Then, the control unit 20 of the measuring device 12 outputs a high-frequency alternating current from the oscillation unit 23 at a predetermined voltage. At this time, high-frequency alternating current (current) flows through the current transformer unit 10 (S12: oscillation step).

さらに、制御部20の取得部40は、電圧計24の電圧値と電流計25の電流値とを解析することによって、カレントトランス部10(センサコイル27)の測定値を取得する(S13:取得ステップ)。このとき、発振部23から出力される電流(電力)がカレントトランス部10に流れると、カレントトランス部10と第1巻回コイル部3との相互間で作用する電磁誘導現象が生じる。さらに、第1巻回コイル部3と磁心部材2との相互間で作用する電磁誘導現象が生じる。そのため、カレントトランス部10の測定値は、磁心部材2の渦電流損失(鉄損)の影響を受ける。具体的には、カレントトランス部10は、第1巻回コイル部3を介して磁心部材2から生じる磁場の影響を受ける。   Furthermore, the acquisition unit 40 of the control unit 20 acquires the measurement value of the current transformer unit 10 (sensor coil 27) by analyzing the voltage value of the voltmeter 24 and the current value of the ammeter 25 (S13: acquisition). Step). At this time, when a current (power) output from the oscillating unit 23 flows to the current transformer unit 10, an electromagnetic induction phenomenon that acts between the current transformer unit 10 and the first winding coil unit 3 occurs. Furthermore, the electromagnetic induction phenomenon which acts between the 1st coil part 3 and the magnetic core member 2 arises. Therefore, the measured value of the current transformer unit 10 is affected by the eddy current loss (iron loss) of the magnetic core member 2. Specifically, the current transformer unit 10 is affected by a magnetic field generated from the magnetic core member 2 via the first winding coil unit 3.

また、測定装置12の制御部20は、初期状態のトランス1に取り付けたカレントトランス部10の測定値をパソコン11に送信する。そして、パソコン11のCPU30は、受信した測定値を検出情報としてHDD33の検出情報記憶部45に記憶する。   Further, the control unit 20 of the measuring device 12 transmits the measurement value of the current transformer unit 10 attached to the transformer 1 in the initial state to the personal computer 11. Then, the CPU 30 of the personal computer 11 stores the received measurement value as detection information in the detection information storage unit 45 of the HDD 33.

そして、パソコン11のCPU30は、検出情報記憶部45に記憶された各測定値に基づいて、初期状態の磁心部材2の損失特性値を算出する(S14:算出ステップ)。具体的には、初期状態のトランス1に取り付けたカレントトランス部10の測定値から、トランス1に取り付けていない状態のカレントトランス部10の測定値を減算した値(差分)が、初期状態の磁心部材2の損失特性値に相当する値となる。なお、この損失特性値の算出は、CPU30の算出部41により実行される。また、パソコン11のCPU30は、算出した初期状態の磁心部材2の損失特性値を検出情報としてHDD33の検出情報記憶部45に記憶する。   And CPU30 of the personal computer 11 calculates the loss characteristic value of the magnetic core member 2 of an initial state based on each measured value memorize | stored in the detection information storage part 45 (S14: calculation step). Specifically, a value (difference) obtained by subtracting a measurement value of the current transformer unit 10 not attached to the transformer 1 from a measurement value of the current transformer unit 10 attached to the transformer 1 in the initial state is a magnetic core in the initial state. This is a value corresponding to the loss characteristic value of the member 2. The calculation of the loss characteristic value is executed by the calculation unit 41 of the CPU 30. Further, the CPU 30 of the personal computer 11 stores the calculated loss characteristic value of the magnetic core member 2 in the initial state in the detection information storage unit 45 of the HDD 33 as detection information.

次に、パソコン11のCPU30は、初期状態の磁心部材2の損失特性値に基づいて、経年使用して劣化した磁心部材2、つまり、劣化度が既知の磁心部材2の損失特性値をシミュレート(推定)する(S15:シミュレーションステップ)。なお、このシミュレーションは、CPU30のシミュレーション部42により実行される。また、パソコン11のCPU30は、算出した劣化度が既知の磁心部材2の損失特性値をHDD33の検出情報記憶部45に記憶する。このシミュレーションを行うことで、実際に経年使用した磁心部材2が入手できない状態であっても、劣化後の磁心部材2の損失特性値を取得できる。   Next, the CPU 30 of the personal computer 11 simulates the loss characteristic value of the magnetic core member 2 that has deteriorated over time based on the loss characteristic value of the magnetic core member 2 in the initial state. (Estimate) (S15: Simulation step). This simulation is executed by the simulation unit 42 of the CPU 30. In addition, the CPU 30 of the personal computer 11 stores the loss characteristic value of the magnetic core member 2 whose calculated degree of deterioration is known in the detection information storage unit 45 of the HDD 33. By performing this simulation, the loss characteristic value of the deteriorated magnetic core member 2 can be acquired even if the magnetic core member 2 that has actually been used over time is not available.

なお、磁心部材2が劣化した状態では、積層された鉄部材の間の絶縁が一部悪化することで、磁心部材2の渦電流損失が増加する。そのため、劣化後の磁心部材2の損失特性値は、初期状態の磁心部材2の損失特性値よりも大きくなる。なお、シミュレートする磁心部材2は、初期状態から5年使用した状態を想定しても良いし、初期状態から10年使用した状態を想定しても良いし、初期状態から20年使用した状態を想定しても良い。また、経年使用した期間が長くなるに従って磁心部材2の損失特性値は大きくなるので、初期状態の磁心部材2の損失特性値を割り増した値を、劣化後の磁心部材2の損失特性値としても良い。   In the state where the magnetic core member 2 is deteriorated, the insulation between the laminated iron members is partially deteriorated, so that the eddy current loss of the magnetic core member 2 increases. Therefore, the loss characteristic value of the magnetic core member 2 after deterioration becomes larger than the loss characteristic value of the magnetic core member 2 in the initial state. The magnetic core member 2 to be simulated may be assumed to be used for 5 years from the initial state, may be assumed to be used for 10 years from the initial state, or is used for 20 years from the initial state. May be assumed. Further, since the loss characteristic value of the magnetic core member 2 increases as the period of use over time increases, the value obtained by increasing the loss characteristic value of the magnetic core member 2 in the initial state is used as the loss characteristic value of the deteriorated magnetic core member 2. good.

次に、CPU30は、シミュレートした劣化後の磁心部材2の損失特性値に基づいて、劣化診断に用いる判定値(閾値)を設定し、HDD33の判定情報記憶部44に記憶する(S16:記憶ステップ)。   Next, the CPU 30 sets a determination value (threshold value) used for deterioration diagnosis based on the simulated loss characteristic value of the magnetic core member 2 after deterioration, and stores it in the determination information storage unit 44 of the HDD 33 (S16: storage). Step).

なお、この判定値は常に一定の値でなくても良い。例えば、劣化診断の対象となるトランス1が置かれた室温に応じて判定値が変化するものでも良い。また、測定装置12の発振部23が出力する電流の電流値や電圧値や周波数値に応じて判定値が変化するものであっても良い。   Note that this determination value may not always be a constant value. For example, the determination value may change according to the room temperature where the transformer 1 to be subjected to deterioration diagnosis is placed. Further, the determination value may be changed according to the current value, voltage value, or frequency value of the current output from the oscillation unit 23 of the measuring device 12.

次に、劣化度の診断対象のトランス1の劣化診断を行う。まず、カレントトランス部10を診断対象のトランス1に取り付けた状態にする。つまり、診断対象の磁心部材2の周囲を囲んだ状態の第1巻回コイル部3に接続された接地線15に、カレントトランス部10(クランプCT)を取り付ける(S17:取付ステップ)。   Next, deterioration diagnosis of the transformer 1 to be diagnosed for deterioration degree is performed. First, the current transformer unit 10 is mounted on the transformer 1 to be diagnosed. That is, the current transformer unit 10 (clamp CT) is attached to the ground wire 15 connected to the first winding coil portion 3 in a state surrounding the periphery of the magnetic core member 2 to be diagnosed (S17: attachment step).

そして、測定装置12の制御部20は、発振部23から高周波数の交流を所定の電圧で出力させる。このとき、高周波数の交流(電流)がカレントトランス部10を流れる(S18:発振ステップ)。   Then, the control unit 20 of the measuring device 12 outputs a high-frequency alternating current from the oscillation unit 23 at a predetermined voltage. At this time, high-frequency alternating current (current) flows through the current transformer unit 10 (S18: oscillation step).

さらに、制御部20の取得部40は、電圧計24の電圧値と電流計25の電流値とを解析することによって、カレントトランス部10(センサコイル27)の測定値を取得する(S19:取得ステップ)。このとき、発振部23から出力される電流(電力)がカレントトランス部10に流れると、カレントトランス部10と第1巻回コイル部3との相互間で作用する電磁誘導現象が生じる。さらに、第1巻回コイル部3と磁心部材2との相互間で作用する電磁誘導現象が生じる。そのため、カレントトランス部10の測定値は、磁心部材2の渦電流損失(鉄損)の影響を受ける。具体的には、カレントトランス部10は、磁心部材2から生じる磁場の影響を受ける。なお、診断対象の磁心部材2が劣化している場合には、初期状態の磁心部材2を巻回する第1巻回コイル部3に取り付けたカレントトランス部10の測定値との間で差分が生じるようになる。   Furthermore, the acquisition unit 40 of the control unit 20 acquires the measurement value of the current transformer unit 10 (sensor coil 27) by analyzing the voltage value of the voltmeter 24 and the current value of the ammeter 25 (S19: acquisition). Step). At this time, when a current (power) output from the oscillating unit 23 flows to the current transformer unit 10, an electromagnetic induction phenomenon that acts between the current transformer unit 10 and the first winding coil unit 3 occurs. Furthermore, the electromagnetic induction phenomenon which acts between the 1st coil part 3 and the magnetic core member 2 arises. Therefore, the measured value of the current transformer unit 10 is affected by the eddy current loss (iron loss) of the magnetic core member 2. Specifically, the current transformer unit 10 is affected by a magnetic field generated from the magnetic core member 2. In addition, when the magnetic core member 2 to be diagnosed is deteriorated, there is a difference between the measured value of the current transformer unit 10 attached to the first winding coil unit 3 that winds the magnetic core member 2 in the initial state. It comes to occur.

また、測定装置12の制御部20は、診断対象のトランス1に取り付けたカレントトランス部10の測定値をパソコン11に送信する。そして、パソコン11のCPU30は、受信した測定値を検出情報としてHDD33の検出情報記憶部45に記憶する。   Further, the control unit 20 of the measuring device 12 transmits the measurement value of the current transformer unit 10 attached to the transformer 1 to be diagnosed to the personal computer 11. Then, the CPU 30 of the personal computer 11 stores the received measurement value as detection information in the detection information storage unit 45 of the HDD 33.

そして、パソコン11のCPU30は、検出情報記憶部45に記憶された各測定値に基づいて、診断対象の磁心部材2の損失特性値を算出する(S20:算出ステップ)。具体的には、診断対象のトランス1に取り付けたカレントトランス部10の測定値から、トランス1に取り付けていない状態のカレントトランス部10の測定値を減算した値(差分)が、診断対象の磁心部材2の損失特性値に相当する値となる。なお、この損失特性値の算出は、CPU30の算出部41により実行される。また、パソコン11のCPU30は、算出した診断対象の磁心部材2の損失特性値を検出情報としてHDD33の検出情報記憶部45に記憶する。   Then, the CPU 30 of the personal computer 11 calculates the loss characteristic value of the magnetic core member 2 to be diagnosed based on each measurement value stored in the detection information storage unit 45 (S20: calculation step). Specifically, a value (difference) obtained by subtracting the measured value of the current transformer 10 not attached to the transformer 1 from the measured value of the current transformer 10 attached to the transformer 1 to be diagnosed is a magnetic core to be diagnosed. This is a value corresponding to the loss characteristic value of the member 2. The calculation of the loss characteristic value is executed by the calculation unit 41 of the CPU 30. Further, the CPU 30 of the personal computer 11 stores the calculated loss characteristic value of the magnetic core member 2 to be diagnosed in the detection information storage unit 45 of the HDD 33 as detection information.

次に、パソコン11のCPU30は、診断対象の磁心部材2の損失特性値と判定情報記憶部44に記憶された判定値とに基づいて劣化診断を行う(S21:診断ステップ)。具体的には、診断対象の磁心部材2の損失特性値が判定値以上か否かを判定する。そして、この損失特性値が判定値以上であると判定された場合には、診断対象の磁心部材2が劣化していると判定される。また、判定値以上でないと判定された場合には、診断対象の磁心部材2が劣化していないと判定される。そして、パソコン11のCPU30は、診断結果を出力装置34により出力する。   Next, the CPU 30 of the personal computer 11 performs a deterioration diagnosis based on the loss characteristic value of the magnetic core member 2 to be diagnosed and the determination value stored in the determination information storage unit 44 (S21: diagnosis step). Specifically, it is determined whether or not the loss characteristic value of the magnetic core member 2 to be diagnosed is greater than or equal to a determination value. When it is determined that the loss characteristic value is equal to or greater than the determination value, it is determined that the magnetic core member 2 to be diagnosed has deteriorated. Moreover, when it determines with it not being more than a determination value, it determines with the magnetic core member 2 to be diagnosed not deteriorating. Then, the CPU 30 of the personal computer 11 outputs the diagnosis result by the output device 34.

このように、診断対象となるトランス1(対象装置)の軟磁性体の磁心部材2の劣化診断を行う際に、カレントトランス部10に能動的に電流(電力)を付与して測定値を取得するので、磁心部材2の劣化度の診断を正確に行うことができる。   As described above, when performing a deterioration diagnosis of the soft magnetic core member 2 of the transformer 1 (target device) to be diagnosed, a current (power) is actively applied to the current transformer unit 10 to obtain a measurement value. Therefore, the deterioration degree of the magnetic core member 2 can be accurately diagnosed.

さらに、劣化度の診断の対象となる磁心部材2を有するトランス1(電気機器)が設置されて稼働した後の期間であっても、トランス1のメンテナンス時などに、磁心部材2に巻かれている第1巻回コイル部3をループ状のコイルとし、カレントトランス部10を取り付けることで、劣化度の診断を容易に行うことができる。   Further, even during a period after the transformer 1 (electrical equipment) having the magnetic core member 2 to be diagnosed for deterioration is installed and operated, the transformer 1 is wound around the magnetic core member 2 during maintenance. The first winding coil portion 3 is a loop coil, and the current transformer portion 10 is attached, so that the deterioration degree can be easily diagnosed.

また、接地線15からカレントトランス部10を取り外すと、カレントトランス部10および測定装置12の持ち運ぶことができる。そして、劣化度の対象となるトランス1に、接地線15を接続してカレントトランス部10を取り付けることで、劣化度の診断を容易に行うことができる。つまり、複数個のトランス1の劣化診断を行う場合には、1台のカレントトランス部10および1台の測定装置12があれば良く、カレントトランス部10をトランス1の接地線15に順次付け替えることができる。   Further, when the current transformer unit 10 is removed from the ground wire 15, the current transformer unit 10 and the measuring device 12 can be carried. Then, the deterioration degree can be easily diagnosed by connecting the ground wire 15 to the transformer 1 that is the target of the deterioration degree and attaching the current transformer unit 10. That is, when performing deterioration diagnosis of a plurality of transformers 1, it is sufficient to have one current transformer unit 10 and one measuring device 12, and the current transformer unit 10 is sequentially replaced with the ground line 15 of the transformer 1. Can do.

また、シミュレートされた劣化度が既知の磁心部材2に基づいて判定値が設定されるので、診断対象の磁心部材2の損失特性値(検出情報)と判定値とを比較することで磁心部材の劣化度の診断処理を容易に行うことができる。   In addition, since the determination value is set based on the magnetic core member 2 whose simulated degree of deterioration is known, the magnetic core member is compared by comparing the loss characteristic value (detection information) of the magnetic core member 2 to be diagnosed with the determination value. It is possible to easily perform the diagnosis process of the degree of deterioration.

また、測定装置12の発振部23が出力(発振)する交流の周波数を1kHz以上の高周波数とすることで、小型のコンデンサ26を用いて測定装置12を製作することができる。そのため、測定装置12の小型化を図ることができる。なお、発振部23が出力する交流の周波数は、10kH以上、100kHz以上、1MHz以上、10MHz以上、または100MHz以上の高周波数であっても良い。   Further, by setting the AC frequency output (oscillated) by the oscillating unit 23 of the measuring device 12 to a high frequency of 1 kHz or more, the measuring device 12 can be manufactured using a small capacitor 26. Therefore, the measuring device 12 can be downsized. The AC frequency output from the oscillating unit 23 may be a high frequency of 10 kHz or higher, 100 kHz or higher, 1 MHz or higher, 10 MHz or higher, or 100 MHz or higher.

また、トランス1の第1巻回コイル部3に接地線15を接続することで、既存の第1巻回コイル部3を電気的に閉じられたループ状のコイルとする作業を容易に行える。なお、本実施形態では、第1巻回コイル部3に接地線15を接続しているが、第2巻回コイル部4に接地線15を接続しても良い。そして、既存の第2巻回コイル部4を電気的に閉じられたループ状のコイルとして、この接地線15にカレントトランス部10を取り付けることで、磁心部材2の劣化診断を行うようにしても良い。   Further, by connecting the ground wire 15 to the first winding coil portion 3 of the transformer 1, it is possible to easily perform the operation of making the existing first winding coil portion 3 an electrically closed loop coil. In the present embodiment, the ground wire 15 is connected to the first winding coil portion 3, but the ground wire 15 may be connected to the second winding coil portion 4. Then, the existing second winding coil portion 4 is formed as an electrically closed loop coil, and the current transformer portion 10 is attached to the ground wire 15 so that the deterioration diagnosis of the magnetic core member 2 is performed. good.

また、本実施形態では、初期状態のトランス1と診断対象となるトランス1とが別物として説明しているが、初期状態のトランス1と診断対象となるトランス1とが同一物であっても良い。つまり、トランス1の製造時に、その磁心部材2の損失特性値を取得して判定値を設定し、トランス1の経年使用後に、その磁心部材2の損失特性値を取得して判定値と比較することで、磁心部材2の劣化度(劣化状態)を診断しても良い。   In this embodiment, the transformer 1 in the initial state and the transformer 1 to be diagnosed are described as separate objects. However, the transformer 1 in the initial state and the transformer 1 to be diagnosed may be the same. . That is, when the transformer 1 is manufactured, the loss characteristic value of the magnetic core member 2 is acquired and a determination value is set. After the transformer 1 is used over time, the loss characteristic value of the magnetic core member 2 is acquired and compared with the determination value. Thus, the degree of deterioration (deterioration state) of the magnetic core member 2 may be diagnosed.

なお、本実施形態では、初期状態の磁心部材2の損失特性値に基づいて判定値を設定し、劣化診断の対象の磁心部材2の損失特性値と判定値とに基づいて劣化診断を行っているが、劣化診断を行うために取得する検出情報は、損失特性値でなくても良い。例えば、測定装置12が取得した測定値に基づいて磁心部材2の温度を特定、または、損失特性値に基づいて磁心部材2の温度を特定するようにし、この温度に基づいて磁心部材2の劣化診断を行うようにしても良い。   In the present embodiment, the determination value is set based on the loss characteristic value of the magnetic core member 2 in the initial state, and the deterioration diagnosis is performed based on the loss characteristic value and the determination value of the magnetic core member 2 to be subjected to the deterioration diagnosis. However, the detection information acquired for performing the deterioration diagnosis may not be the loss characteristic value. For example, the temperature of the magnetic core member 2 is specified based on the measured value acquired by the measuring device 12, or the temperature of the magnetic core member 2 is specified based on the loss characteristic value, and the deterioration of the magnetic core member 2 is determined based on this temperature. A diagnosis may be performed.

なお、本実施形態では、磁心部材2の劣化診断に用いる測定値を、リアクタンス値や抵抗値や、或いは電流の周波数や位相が変化した値としているが、その他の値を測定値としても良い。例えば、カレントトランス部10(センサコイル27)の電流値の変化に基づいて、磁心部材2の劣化診断を行っても良い。また、カレントトランス部10の電圧値の変化に基づいて、磁心部材2の劣化診断を行っても良い。また、カレントトランス部10に流れる電流の周波数や位相が変化した値に基づいて、磁心部材2の劣化診断を行っても良い。   In the present embodiment, the measured value used for the deterioration diagnosis of the magnetic core member 2 is a reactance value, a resistance value, or a value in which the frequency or phase of the current has changed, but other values may be used as the measured value. For example, the deterioration diagnosis of the magnetic core member 2 may be performed based on a change in the current value of the current transformer unit 10 (sensor coil 27). Further, the deterioration diagnosis of the magnetic core member 2 may be performed based on a change in the voltage value of the current transformer unit 10. Further, the deterioration diagnosis of the magnetic core member 2 may be performed based on a value in which the frequency or phase of the current flowing through the current transformer unit 10 is changed.

なお、本実施形態では、劣化度が既知の磁心部材2の損失特性値をシミュレートするようにしているが、その他の態様で劣化度が既知の磁心部材2の損失特性値を取得しても良い。例えば、実際に経年使用して劣化した磁心部材2を有するトランス1にカレントトランス部10を取り付けて測定値を取得し、この取得した測定値をパソコン11で解析することで、劣化度が既知の磁心部材2の損失特性値を取得するようにしても良い。このように、実際に経年使用した磁心部材2の損失特性値に基づいて、劣化診断に用いる判定値を設定しても良い。実際に経年使用した磁心部材2を用いることで、シミュレーションを行う手間を省くことができる。また、診断対象の磁心部材2の損失特性値(検出情報)を判定値と比較することで磁心部材の劣化度の診断処理を容易に行うことができる。   In the present embodiment, the loss characteristic value of the magnetic core member 2 having a known deterioration degree is simulated. However, even if the loss characteristic value of the magnetic core member 2 having a known deterioration degree is acquired in other manners. good. For example, by attaching a current transformer unit 10 to a transformer 1 having a magnetic core member 2 that has actually deteriorated over time, a measured value is obtained, and the obtained measured value is analyzed by a personal computer 11 so that the degree of deterioration is known. The loss characteristic value of the magnetic core member 2 may be acquired. Thus, the determination value used for the deterioration diagnosis may be set based on the loss characteristic value of the magnetic core member 2 actually used over time. By using the magnetic core member 2 that has actually been used over time, it is possible to save the trouble of performing the simulation. Further, by comparing the loss characteristic value (detection information) of the magnetic core member 2 to be diagnosed with the determination value, the diagnosis process of the degree of deterioration of the magnetic core member can be easily performed.

なお、本実施形態では、トランス1の磁心部材2の劣化診断を行う劣化診断装置を例示しているが、この劣化診断装置を用いてリアクトルの劣化診断を行っても良い。また、劣化診断装置は、磁心部材を有する電気機器であれば劣化診断を行うことができる。例えば、この劣化診断装置を用いて、電磁石などの磁心部材の劣化診断を行っても良いし、電流によって形成される磁場にエネルギーを蓄えることができるインダクタ(受動素子)などが有する磁心部材の劣化診断を行っても良い。   In the present embodiment, a deterioration diagnosis device that performs deterioration diagnosis of the magnetic core member 2 of the transformer 1 is illustrated, but reactor deterioration diagnosis may be performed using this deterioration diagnosis device. Further, the deterioration diagnosis device can perform deterioration diagnosis as long as it is an electric device having a magnetic core member. For example, this deterioration diagnosis device may be used to perform deterioration diagnosis of a magnetic core member such as an electromagnet, or deterioration of a magnetic core member included in an inductor (passive element) that can store energy in a magnetic field formed by an electric current. A diagnosis may be made.

なお、本実施形態の所定の値と判定値との判定において「判定値以上か否か」の判定をしているが、この判定は、「判定値を超えているか否か」の判定でも良いし、「判定値以下か否か」の判定でも良いし、「判定値未満か否か」の判定でも良い。   In the determination of the predetermined value and the determination value according to the present embodiment, “whether or not the determination value is exceeded” is determined, but this determination may be a determination of “whether or not the determination value is exceeded”. The determination may be “whether it is less than or equal to the determination value” or the determination “whether it is less than the determination value”.

以上説明した実施形態によれば、カレントトランス部10に特定の交流電圧を特定の周波数で付与する発振部23を持つことにより、経年使用した磁心部材2の劣化度の診断を正確に行うことができる。   According to the embodiment described above, it is possible to accurately diagnose the deterioration degree of the magnetic core member 2 used over time by having the oscillation unit 23 that applies a specific AC voltage at a specific frequency to the current transformer unit 10. it can.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…トランス、2…磁心部材、3…第1巻回コイル部、4…第2巻回コイル部、10…カレントトランス部、11…パソコン、12…測定装置、13…スイッチ、14…スイッチ、15…接地線、16…配線、17…電力供給線、20…制御部、21…通信部、22…解析部、23…発振部、24…電圧計、25…電流計、26…コンデンサ、27…センサコイル、28…磁気コア、30…CPU、31…ROM、32…RAM、33…HDD、34…出力装置、35…入力装置、36…通信部、40…取得部、41…算出部、42…シミュレーション部、43…劣化診断部、44…判定情報記憶部、45…検出情報記憶部。 DESCRIPTION OF SYMBOLS 1 ... Transformer, 2 ... Magnetic core member, 3 ... 1st winding coil part, 4 ... 2nd winding coil part, 10 ... Current transformer part, 11 ... Personal computer, 12 ... Measuring apparatus, 13 ... Switch, 14 ... Switch, DESCRIPTION OF SYMBOLS 15 ... Ground line, 16 ... Wiring, 17 ... Power supply line, 20 ... Control part, 21 ... Communication part, 22 ... Analysis part, 23 ... Oscillation part, 24 ... Voltmeter, 25 ... Ammeter, 26 ... Capacitor, 27 ... Sensor coil, 28 ... Magnetic core, 30 ... CPU, 31 ... ROM, 32 ... RAM, 33 ... HDD, 34 ... Output device, 35 ... Input device, 36 ... Communication unit, 40 ... Acquisition unit, 41 ... Calculation unit, 42 ... Simulation unit, 43 ... Deterioration diagnosis unit, 44 ... Determination information storage unit, 45 ... Detection information storage unit.

Claims (5)

磁心部材に巻回された巻回コイル部を電気的に閉じられたループ状のコイルとしたときに、このコイルに取り付け可能なクランプ式のカレントトランス部と、
前記カレントトランス部と同じ回路に設けられ、前記カレントトランス部に特定の交流電圧を特定の周波数で付与する発振部と、
前記カレントトランス部、前記巻回コイル部、および前記磁心部材の相互間で作用する電磁誘導現象が生じているときに、少なくとも前記カレントトランス部に流れる電流に基づく検出情報を取得する取得部と、
初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶部と、
前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断部と、
を備えることを特徴とする磁心部材の劣化診断装置。
When the wound coil portion wound around the magnetic core member is an electrically closed loop coil, a clamp-type current transformer portion that can be attached to the coil;
An oscillating unit that is provided in the same circuit as the current transformer unit and applies a specific AC voltage to the current transformer unit at a specific frequency;
An acquisition unit that acquires detection information based on a current flowing through at least the current transformer unit when an electromagnetic induction phenomenon acting between the current transformer unit, the wound coil unit, and the magnetic core member is generated;
Determination information is set based on detection information corresponding to the magnetic core member in the initial state, and a storage unit that stores the determination information;
Based on the detection information corresponding to the magnetic core member used over time from the initial state and the determination information, a diagnosis unit that diagnoses the degree of deterioration;
An apparatus for diagnosing deterioration of a magnetic core member, comprising:
前記特定の周波数は、1kHz以上の高周波数であることを特徴とする請求項1に記載の磁心部材の劣化診断装置。 2. The deterioration diagnosis apparatus for a magnetic core member according to claim 1, wherein the specific frequency is a high frequency of 1 kHz or more. 磁心部材に巻回された巻回コイル部を電気的に閉じられたループ状のコイルとしたときに、このコイルに取り付け可能なクランプ式のカレントトランス部と、
前記カレントトランス部に特定の交流電圧を特定の周波数で付与する発振部と、
前記カレントトランス部、前記巻回コイル部、および前記磁心部材の相互間で作用する電磁誘導現象が生じているときに、少なくとも前記カレントトランス部に流れる電流に基づく検出情報を取得する取得部と、
初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶部と、
前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断部と、
を備え、
前記判定情報は、前記初期状態の磁心部材に対応する検出情報と、前記劣化度が既知の磁心部材に対応する検出情報と、に基づいて設定されることを特徴とする磁心部材の劣化診断装置。
When the wound coil portion wound around the magnetic core member is an electrically closed loop coil, a clamp-type current transformer portion that can be attached to the coil;
An oscillating unit that applies a specific AC voltage to the current transformer unit at a specific frequency;
An acquisition unit that acquires detection information based on a current flowing through at least the current transformer unit when an electromagnetic induction phenomenon acting between the current transformer unit, the wound coil unit, and the magnetic core member is generated;
Determination information is set based on detection information corresponding to the magnetic core member in the initial state, and a storage unit that stores the determination information;
Based on the detection information corresponding to the magnetic core member used over time from the initial state and the determination information, a diagnosis unit that diagnoses the degree of deterioration;
With
The judgment information includes a detection information corresponding to the magnetic core members of the initial state, deterioration of the detection information and, characterized in that it is set on the basis of the magnetic center member, wherein the degree of degradation corresponds to a known magnetic core member Diagnostic device.
磁心部材に巻回された巻回コイル部を電気的に閉じられたループ状のコイルとしたときに、このコイルに取り付け可能なクランプ式のカレントトランス部と、
前記カレントトランス部に特定の交流電圧を特定の周波数で付与する発振部と、
前記カレントトランス部、前記巻回コイル部、および前記磁心部材の相互間で作用する電磁誘導現象が生じているときに、少なくとも前記カレントトランス部に流れる電流に基づく検出情報を取得する取得部と、
初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶部と、
前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断部と、
を備え、
前記巻回コイル部に接地線を接続することで前記ループ状のコイルとし、前記接地線に前記カレントトランス部が取り付けられることを特徴とする磁心部材の劣化診断装置。
When the wound coil portion wound around the magnetic core member is an electrically closed loop coil, a clamp-type current transformer portion that can be attached to the coil;
An oscillating unit for applying a specific AC voltage to the current transformer unit at a specific frequency;
An acquisition unit that acquires detection information based on a current flowing through at least the current transformer unit when an electromagnetic induction phenomenon acting between the current transformer unit, the wound coil unit, and the magnetic core member is generated;
Determination information is set based on detection information corresponding to the magnetic core member in the initial state, and a storage unit that stores the determination information;
Based on the detection information corresponding to the magnetic core member used over time from the initial state and the determination information, a diagnosis unit that diagnoses the degree of deterioration;
With
The winding coil portion and the loop coil by connecting the ground line, the deterioration diagnosis device for the you, characterized in that the current transformer unit is attached magnetic center member to the ground line.
磁心部材に巻回された巻回コイル部を電気的に閉じられたループ状のコイルとしたときに、このコイルにクランプ式のカレントトランス部を取り付ける取付ステップと、
前記カレントトランス部と同じ回路に設けられた発振部により、前記カレントトランス部に特定の交流電圧を特定の周波数で付与する発振ステップと、
前記カレントトランス部、前記巻回コイル部、および前記磁心部材の相互間で作用する電磁誘導現象が生じているときに、少なくとも前記カレントトランス部に流れる電流に基づく検出情報を取得する取得ステップと、
初期状態の磁心部材に対応する検出情報に基づいて判定情報が設定され、この判定情報を記憶する記憶ステップと、
前記初期状態から経年使用した磁心部材に対応する検出情報と前記判定情報とに基づいて、その劣化度を診断する診断ステップと、
を含むことを特徴とする磁心部材の劣化診断方法。
An attachment step of attaching a clamp-type current transformer to the coil when the wound coil portion wound around the magnetic core member is an electrically closed loop-shaped coil;
An oscillation step of applying a specific AC voltage to the current transformer unit at a specific frequency by an oscillation unit provided in the same circuit as the current transformer unit ;
An acquisition step of acquiring detection information based on a current flowing through at least the current transformer unit when an electromagnetic induction phenomenon acting between the current transformer unit, the wound coil unit, and the magnetic core member is generated;
Determination information is set based on detection information corresponding to the magnetic core member in the initial state, and a storage step for storing the determination information;
Diagnostic step of diagnosing the degree of deterioration based on the detection information corresponding to the magnetic core member used over time from the initial state and the determination information
A method for diagnosing deterioration of a magnetic core member, comprising:
JP2016012676A 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method Active JP6595355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016012676A JP6595355B2 (en) 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016012676A JP6595355B2 (en) 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method

Publications (2)

Publication Number Publication Date
JP2017135212A JP2017135212A (en) 2017-08-03
JP6595355B2 true JP6595355B2 (en) 2019-10-23

Family

ID=59503911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016012676A Active JP6595355B2 (en) 2016-01-26 2016-01-26 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method

Country Status (1)

Country Link
JP (1) JP6595355B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735488B (en) * 2018-05-18 2020-05-29 云南电网有限责任公司电力科学研究院 Transformer design method based on self-excited oscillation wave
CN110970216B (en) * 2018-09-28 2021-04-02 德宙佑电股份有限公司 Wire twisting mechanism of special inductance machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041207B2 (en) * 1994-11-07 2000-05-15 三菱電機ビルテクノサービス株式会社 Oil-filled transformer insulation diagnostic device
JPH11326429A (en) * 1998-05-20 1999-11-26 Toshiba Corp Insulation diagnostic method and device for dry insulation equipment
JP3847556B2 (en) * 2000-12-22 2006-11-22 三菱電機株式会社 Soundness evaluation method and test method for electromagnetic induction equipment

Also Published As

Publication number Publication date
JP2017135212A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
Nurmanova et al. A new transformer FRA measurement technique to reach smart interpretation for inter-disk faults
Gutten et al. Maintenance diagnostics of transformers considering the influence of short-circuit currents during operation
Hu et al. Transfer function characterization for HFCTs used in partial discharge detection
JP2007234593A (en) Coaxial cable and testing method thereof
US20240103098A1 (en) Method and device for analysing the state, condition and power quality of transformers in power grids
JP6595355B2 (en) Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method
Usha et al. Inter disc fault location in transformer windings using SFRA
US5072186A (en) Method and apparatus for interturn and/or interlayer fault testing of coils
Gutten et al. Measurement of short-circuit effects on transformer winding with SFRA method and impact test
JP2020510815A5 (en)
Solomon et al. Application of pseudo-random impulse perturbation for characterizing capacitor voltage transformer frequency responses
JP6595356B2 (en) Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method, electrical equipment
KR20150108955A (en) Switchboard For Measuring Current And Electric Power By Magnetic Field
JP2007271607A (en) Abnormality detection device
JP6466634B2 (en) Conductivity meter and its initial state setting method
Ushakov et al. Traditional Electrical Diagnostic Methods
US20210208207A1 (en) Method and device for identifying an inter-turn short circuit in parallel windings
JP6182695B2 (en) Complex permeability measuring device and its measuring method and application.
US20120090390A1 (en) Apparatus and method for testing an edge of a workpiece for sharpness
JP2012078349A (en) Pulse excitation type inspection device, and pulse excitation type inspection method
JP2021523376A (en) State analysis of guided operating means
Yasid et al. The effect of short circuit fault on one winding to other windings in FRA
Siada et al. High frequency transformer computer modeling
US11695366B2 (en) Short circuit detection device, and short circuit detection method for rotating electric machine
Pütter et al. Reliable demagnetization of transformer cores

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190926

R150 Certificate of patent or registration of utility model

Ref document number: 6595355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150