JP3847556B2 - Soundness evaluation method and test method for electromagnetic induction equipment - Google Patents

Soundness evaluation method and test method for electromagnetic induction equipment Download PDF

Info

Publication number
JP3847556B2
JP3847556B2 JP2000390752A JP2000390752A JP3847556B2 JP 3847556 B2 JP3847556 B2 JP 3847556B2 JP 2000390752 A JP2000390752 A JP 2000390752A JP 2000390752 A JP2000390752 A JP 2000390752A JP 3847556 B2 JP3847556 B2 JP 3847556B2
Authority
JP
Japan
Prior art keywords
electromagnetic induction
iron core
voltage
soundness
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000390752A
Other languages
Japanese (ja)
Other versions
JP2002190419A (en
Inventor
宏嗣 田辺
美雅 赤木
拡 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000390752A priority Critical patent/JP3847556B2/en
Publication of JP2002190419A publication Critical patent/JP2002190419A/en
Application granted granted Critical
Publication of JP3847556B2 publication Critical patent/JP3847556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、変圧器、変流器、交流器または計器用変圧器などの電磁誘導機器の鉄心の健全性評価方法および試験方法に関する。
【0002】
【従来の技術】
従来、変圧器、変流器または計器用変圧器(以下まとめて変圧器と記す)の鉄心の健全性は図5に示す回路によって評価されている。10は供試変圧器、11は供試変圧器定格周波数と同一周波数の交流電源、12はこの交流試験電源11に接続された遮断器、13はこの遮断器12の出力側に接続された電圧調整器、14はこの電圧調整器13に接続された昇圧変圧器、15はこの昇圧変圧器14の二次側に接続された変流器、16はこの変流器15の二次側に接続された電流計、17は変流器15の二次側に接続された電流測定用シャント抵抗器、18はシャント抵抗器17で電圧に変換された供試変圧器の励磁電流波形を観測する記憶装置、この場合はオシロスコープである。
【0003】
まず、遮断器12を投入し、電圧調整器13によって交流試験電圧11の電圧を調整して供試変圧器10に定格電圧を印加する。この時の電流計16の指示及び記憶装置18の電流波形によって現地組立後の鉄心の健全性を評価している。また、簡易的な鉄心の健全性評価方法として、鉄心積み後に励磁巻線を鉄心に少数ターン巻き、鉄心を励磁することで健全性を確認する方法がある。
【0004】
【発明が解決しようとする課題】
従来の変圧器鉄心の健全性評価方法の問題点は下記の通りである。
変圧器の鉄心磁束を定格磁束レベルまで発生させることが必要であるため
(1)定格容量、定格電圧を印加するため大容量電源装置、昇圧変圧器が必要となる。
(2)定格電圧を印加するため、鉄心が油中にある高電圧機器では気中での測定が出来ず、変圧器組立完成後にしか評価できない。
(3)(2)項のため異常と診断された鉄心修復が面倒であるため、時間がかかり人件費等のコストが高くなる。
(4)定格磁束レベル以上の磁束を発生させての鉄心の健全性を評価できない。
【0005】
また、励磁巻線を鉄心に少数ターン巻いての健全性確認での問題として
(1)変圧器の鉄心磁束を定格磁束レベルまであげることが困難である。
(2)鉄心積み後に健全性を評価できるが変圧器組立完成後には評価できない。
【0006】
この発明は上記の問題点を解決するためになされたもので、低周波、低電圧で健全性を評価できるようにして、大容量電源装置、昇圧変圧器を必要とせず、異常と診断された後の修復を簡易にすると共に、定格磁束レベル以上の磁束を発生させて、容易に鉄心の健全性評価方法および試験方法を得ることを目的とする。
【0007】
【課題を解決するための手段】
(1)この発明の請求項1による電磁誘導機器の健全性評価方法は、変圧器等の鉄心を有する電磁誘導機器の健全性評価方法において、上記電磁誘導機器へ定格周波数・定格電圧を印加したときの鉄心の磁束と同等になるように、上記定格周波数・定格電圧よりも低い低周波・低電圧を印加し、印加時の励磁電流と磁束の特性及び励磁電流波形に基づいて上記鉄心の健全性を評価するものである。
【0008】
(2)この発明の請求項2による電磁誘導機器の健全性評価方法は、変圧器等の鉄心を有する電磁誘導機器の健全性評価方法において、上記電磁誘導機器の定格周波数・定格電圧よりも低い低周波・低電圧を印加すると共に、上記低周波の周波数および上記低電圧の電圧値の少なくともいずれか一方を変化して上記鉄心に定格励磁レベル以上の磁束を発生させ、その時の励磁電流と磁束の関係に基づいて上記鉄心の健全性を評価するものである。
【0009】
(3)この発明の請求項3による電磁誘導機器の試験方法は、請求項1または請求項2の健全性評価方法を、電磁誘導機器の製造工場出荷前、および分解輸送して据え付け現地において組み立てる際に実施するものである。
【0010】
(4)この発明の請求項4による電磁誘導機器の試験方法は、請求項1または請求項2の健全性評価方法を、既設の電磁誘導機器に実施して、上記電磁誘導機器の鉄心の異常を診断するものである。
【0011】
【発明の実施の形態】
実施の形態1.
図1にこの発明の実施の形態1における変圧器の鉄心健全性評価のための回路構成を示す。1は供試変圧器、2は低周波交流電源、3はこの低周波交流電源2に接続されたスイッチ、4はスイッチ3の出力側に接続された限流抵抗、5は低周波電源2に接続された分圧抵抗、6はこの分圧抵抗5で分圧された励磁電圧を入力する積分器、7は低周波交流電源2に接続された電流測定用シャント抵抗器、8は積分器6の出力電圧及び電流測定用シャント抵抗器で電圧に変換された励磁電流を入力とし、各々X軸、Y軸方向に表示するためのXYレコーダ、この場合はオシロスコープである。
次に実施の形態1における変圧器の鉄心健全性評価方法について説明する。
一般に変圧器巻線の誘導起電力Eは、電圧の周波数をf、変圧器巻線の巻数をn、鉄心の磁束をΦとしたとき(1)式の関係が成り立つ。
E=4.44fnΦ ―――――(1)
すなわち、磁束ΦはE/fに比例する。このことから以下の手順を得る。
【0012】
(1)印加する電圧の周波数を決定する。
印加電圧の初期電圧値を、汎用的な低周波交流電源装置2の出力電圧である約100Vとする。例えば、対象となる変圧器の定格周波数が50Hzで定格電圧が100kVとすると、(1)式より磁束ΦはE/fに比例することから、印加する低電圧の周波数は、
(100V/100kV)×50Hz=0.05Hz
となる。
なお、一般的に変圧器の低圧巻線の定格電圧は200kV以下であるため、励磁電圧の周波数は0.1Hz以下とすることが実用的である。
【0013】
(2)鉄心を励磁する。
上記(1)で決定した初期電圧・周波数で励磁を開始する。この時XYレコーダ8で、X軸に電流測定用シャント抵抗器で電圧に変換された励磁電流を、Y軸に励磁電圧を積分器6で積分したことにより得られる磁束を入力し描かせた結果の例を図2、3、4に示す。図2は健全な鉄心の励磁電流と磁束の特性及び励磁電流波形、図3は鉄心積み時に鉄心に歪みが発生しロスが増大したときの励磁電流と磁束の特性及び励磁電流波形、図4は鉄心積み時に鉄心にずれが生じ、gap発生時の励磁電流と磁束の特性及び励磁電流波形を示す。
【0014】
(3)鉄心の健全性を評価
上記(2)で描かせた励磁電流と磁束の特性が図2であれば鉄心が健全であると評価する。また図3、図4のように、図2と違う特性が描かれた時は鉄心に異常があると評価する。また、評価の一手段として過去に健全であると評価された励磁電流と磁束の特性とも比較することによる評価も実施する。
【0015】
実施の形態2.
従来は定格磁束レベル程度の磁束しか発生できなかったが、この実施の形態2では、実施の形態1の低周波・低電圧を印加することを適用して、定格磁束レベル以上の磁束を発生して、鉄心の異常診断を行う。
低周波電源2から低周波・低電圧を発生させ、周波数・電圧の少なくともいずれか一方を調整して変圧器1の鉄心に定格励磁レベル以上の磁束を発生させる。
この時XYレコーダ8で、X軸に電流測定用シャント抵抗器7で電圧に変換された励磁電流を、Y軸に励磁電圧を積分器6で積分したことにより得られる磁束を入力し、励磁電流と磁束の関係を描かせる。定格磁束レベル以上の磁束を発生させたときの励磁電流と磁束の特性のサンプルを増やしていくことで、鉄心の異常診断が可能となる。
【0016】
実施の形態3.
実施の形態1、2は製造工場で鉄心積み後に実施することを基本とするが、この実施の形態3は、分解輸送形変圧器の輸送後の据え付け現地での鉄心積み後の鉄心健全性確認にも適用するものである。
まず、分解輸送形変圧器の鉄心を工場で実施の形態1により健全性を確認する。その後変圧器を分解し現地まで輸送し輸送された変圧器を現地にて再組立を行った後、鉄心を再度実施の形態1により励磁電流の特性を測定し、工場組立後の励磁電流の特性と比較する。以上の過程で分解輸送変圧器の現地組立後の健全性確認を行う。
【0017】
実施の形態4.
なお、実施の形態1,2の評価方法は、既設の電磁誘導機器に対しても適用できる。
また、この発明は変圧器以外の鉄心を有する電磁誘導機器、例えば変流器、計器用変圧器または交流機器の鉄心の健全性評価にも有益である。
【0018】
【発明の効果】
以上のように、この発明の請求項1および請求項2によれば、低周波・低電圧を用いたので昇圧変圧器等の大容量、高電圧の試験器材を必要とせずに鉄心の健全性が評価できる。
【0019】
この発明の請求項3および請求項4によれば、電磁誘導機器に高電圧を発生させずに済むため、製造工場においても、据え付け現場においても、また、既設の電磁誘導機器に対しても容易に試験できる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における変圧器の鉄心健全性を評価するための回路構成を示す図である。
【図2】 この発明の実施の形態1における健全な変圧器鉄心に電圧印加時の励磁電流と磁束の特性及び電流波形を示す図である。
【図3】 この発明の実施の形態1におけるロスが増大した変圧器鉄心に電圧印加時の励磁電流と磁束の特性及び電流波形を示す図である。
【図4】 この発明の実施の形態1におけるgapが発生した変圧器鉄心に電圧印加時の励磁電流と磁束の特性及び電流波形を示す図である。
【図5】 従来の変圧器の鉄心健全性を評価するための回路構成を示す図である。
【符号の説明】
1:供試変圧器 2:低周波交流電源 3:スイッチ 4:限流抵抗
5:分圧抵抗 6:積分器 7:電流測定用シャント抵抗器
8:XYレコーダ 10:供試変圧器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soundness evaluation method and a test method for iron cores of electromagnetic induction devices such as transformers, current transformers, alternators, and instrument transformers.
[0002]
[Prior art]
Conventionally, the soundness of iron cores of transformers, current transformers, or instrument transformers (hereinafter collectively referred to as transformers) has been evaluated by the circuit shown in FIG. 10 is a test transformer, 11 is an AC power supply having the same frequency as the rated frequency of the test transformer, 12 is a circuit breaker connected to the AC test power supply 11, and 13 is a voltage connected to the output side of the circuit breaker 12. The regulator 14 is a step-up transformer connected to the voltage regulator 13, 15 is a current transformer connected to the secondary side of the step-up transformer 14, and 16 is connected to the secondary side of the current transformer 15. 17 is a current measuring shunt resistor connected to the secondary side of the current transformer 15, and 18 is a memory for observing the excitation current waveform of the test transformer converted into a voltage by the shunt resistor 17. A device, in this case an oscilloscope.
[0003]
First, the circuit breaker 12 is turned on, the voltage of the AC test voltage 11 is adjusted by the voltage regulator 13, and the rated voltage is applied to the test transformer 10. The soundness of the iron core after on-site assembly is evaluated based on the instruction of the ammeter 16 and the current waveform of the storage device 18 at this time. In addition, as a simple method for evaluating the soundness of an iron core, there is a method of confirming soundness by exciting the iron core by winding a few turns around the iron core after stacking the iron core.
[0004]
[Problems to be solved by the invention]
The problems of the conventional method for evaluating the soundness of transformer cores are as follows.
Since it is necessary to generate the iron core magnetic flux of the transformer up to the rated magnetic flux level, (1) a large capacity power supply device and a step-up transformer are required to apply the rated capacity and rated voltage.
(2) Since a rated voltage is applied, high voltage equipment with an iron core in oil cannot be measured in the air and can only be evaluated after the transformer is assembled.
(3) Since repair of the iron core diagnosed as abnormal due to the item (2) is troublesome, it takes time and costs such as labor costs increase.
(4) The soundness of the iron core by generating a magnetic flux higher than the rated magnetic flux level cannot be evaluated.
[0005]
In addition, as a problem in soundness confirmation when an exciting winding is wound around an iron core for a few turns, (1) it is difficult to raise the iron core magnetic flux of the transformer to the rated magnetic flux level.
(2) Soundness can be evaluated after iron core loading, but not after transformer assembly is completed.
[0006]
The present invention has been made to solve the above-mentioned problems, and has been diagnosed as abnormal without requiring a large-capacity power supply device and a step-up transformer so that soundness can be evaluated at low frequency and low voltage. The purpose of the present invention is to simplify the subsequent repair and generate a magnetic flux higher than the rated magnetic flux level to easily obtain a soundness evaluation method and a test method for an iron core.
[0007]
[Means for Solving the Problems]
(1) A method for evaluating the soundness of an electromagnetic induction device according to claim 1 of the present invention is the method for evaluating the soundness of an electromagnetic induction device having an iron core such as a transformer, wherein a rated frequency and a rated voltage are applied to the electromagnetic induction device. Apply a low frequency / low voltage lower than the rated frequency / rated voltage so that it is equivalent to the magnetic flux of the core, and based on the excitation current and magnetic flux characteristics and excitation current waveform , It is to evaluate sex.
[0008]
(2) The soundness evaluation method for an electromagnetic induction device according to claim 2 of the present invention is lower than the rated frequency / rated voltage of the electromagnetic induction device in the soundness evaluation method for an electromagnetic induction device having an iron core such as a transformer. While applying a low frequency / low voltage, change the frequency of the low frequency and / or the voltage value of the low voltage to generate a magnetic flux exceeding the rated excitation level in the iron core, and the excitation current and magnetic flux at that time The soundness of the iron core is evaluated based on the relationship.
[0009]
(3) The electromagnetic induction device testing method according to claim 3 of the present invention assembles the soundness evaluation method of claim 1 or claim 2 before shipping the electromagnetic induction device manufacturing factory, and disassembles and transports it at the installation site. It is something to be done.
[0010]
(4) According to a fourth aspect of the present invention, there is provided a test method for electromagnetic induction equipment, wherein the soundness evaluation method according to claim 1 or 2 is applied to an existing electromagnetic induction equipment, and the iron core of the electromagnetic induction equipment is abnormal. Is to diagnose.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 shows a circuit configuration for evaluating the integrity of the iron core of the transformer according to the first embodiment of the present invention. 1 is a test transformer, 2 is a low frequency AC power supply, 3 is a switch connected to the low frequency AC power supply 2, 4 is a current limiting resistor connected to the output side of the switch 3, and 5 is a low frequency power supply 2 The connected voltage dividing resistor, 6 is an integrator for inputting the excitation voltage divided by the voltage dividing resistor 5, 7 is a shunt resistor for current measurement connected to the low-frequency AC power supply 2, and 8 is an integrator 6. Are an XY recorder, in this case, an oscilloscope for displaying in the X-axis and Y-axis directions, respectively, with the output voltage and the excitation current converted into voltage by the current measuring shunt resistor as inputs.
Next, a method for evaluating the core integrity of the transformer according to the first embodiment will be described.
In general, the induced electromotive force E of the transformer winding satisfies the relationship of the formula (1) when the voltage frequency is f, the number of turns of the transformer winding is n, and the magnetic flux of the iron core is Φ.
E = 4.44 fnΦ ――――― (1)
That is, the magnetic flux Φ is proportional to E / f. From this, the following procedure is obtained.
[0012]
(1) The frequency of the voltage to be applied is determined.
The initial voltage value of the applied voltage is about 100 V, which is the output voltage of the general-purpose low-frequency AC power supply device 2. For example, if the rated frequency of the target transformer is 50 Hz and the rated voltage is 100 kV, the magnetic flux Φ is proportional to E / f from the equation (1), so the frequency of the applied low voltage is
(100V / 100kV) × 50Hz = 0.05Hz
It becomes.
Since the rated voltage of the low-voltage winding of the transformer is generally 200 kV or less, it is practical to set the excitation voltage frequency to 0.1 Hz or less.
[0013]
(2) Exciting the iron core.
Excitation is started at the initial voltage and frequency determined in (1) above. At this time, the result obtained by the XY recorder 8 inputting and drawing the excitation current converted into the voltage by the shunt resistor for current measurement on the X axis and the magnetic flux obtained by integrating the excitation voltage by the integrator 6 on the Y axis. Examples of this are shown in FIGS. Fig. 2 shows the excitation current and magnetic flux characteristics and excitation current waveform of a healthy iron core. Fig. 3 shows the excitation current and magnetic flux characteristics and excitation current waveform when the iron core is distorted and the loss increases. When the iron core is stacked, the iron core is displaced, and the excitation current and magnetic flux characteristics and the excitation current waveform when gap occurs are shown.
[0014]
(3) Evaluation of soundness of iron core If the characteristics of the exciting current and magnetic flux drawn in (2) above are the same as those in FIG. 2, it is evaluated that the iron core is sound. As shown in FIGS. 3 and 4, when the characteristic different from that shown in FIG. 2 is drawn, it is evaluated that the iron core is abnormal. In addition, as one means of evaluation, evaluation is also performed by comparing the excitation current and magnetic flux characteristics that have been evaluated to be sound in the past.
[0015]
Embodiment 2. FIG.
Conventionally, only a magnetic flux of the rated magnetic flux level could be generated, but in the second embodiment, the application of the low frequency / low voltage of the first embodiment is applied to generate a magnetic flux that exceeds the rated magnetic flux level. To diagnose abnormalities in the iron core.
A low frequency / low voltage is generated from the low frequency power supply 2 and at least one of the frequency / voltage is adjusted to generate a magnetic flux higher than the rated excitation level in the iron core of the transformer 1.
At this time, the XY recorder 8 inputs the excitation current converted into the voltage by the current measuring shunt resistor 7 on the X axis, and the magnetic flux obtained by integrating the excitation voltage by the integrator 6 on the Y axis. And draw the relationship of magnetic flux. By increasing the number of excitation current and magnetic flux characteristics samples when a magnetic flux exceeding the rated magnetic flux level is generated, it is possible to diagnose the abnormality of the iron core.
[0016]
Embodiment 3 FIG.
The first and second embodiments are basically carried out after the iron core is stacked in the manufacturing plant, but this third embodiment is the confirmation of the soundness of the iron core after the iron core stacking at the installation site after the dismantling and transporting transformer is installed. It also applies to.
First, the soundness of the iron core of the disassembled transport type transformer is confirmed at the factory according to the first embodiment. After disassembling the transformer and transporting it to the site, reassembling the transported transformer on site, measuring the characteristics of the exciting current of the iron core again according to the first embodiment, and the characteristics of the exciting current after factory assembly Compare with Through the above process, the soundness of the disassembled transport transformer after the on-site assembly is confirmed.
[0017]
Embodiment 4 FIG.
Note that the evaluation methods of Embodiments 1 and 2 can also be applied to existing electromagnetic induction devices.
The present invention is also useful for evaluating the soundness of an iron core of an electromagnetic induction device having an iron core other than a transformer, such as a current transformer, an instrument transformer, or an AC device.
[0018]
【The invention's effect】
As described above, according to the first and second aspects of the present invention, since the low frequency and low voltage are used, the soundness of the iron core can be obtained without requiring large capacity and high voltage test equipment such as a step-up transformer. Can be evaluated.
[0019]
According to the third and fourth aspects of the present invention, since it is not necessary to generate a high voltage in the electromagnetic induction device, it is easy even at the manufacturing factory, at the installation site, or for the existing electromagnetic induction device. Can be tested.
[Brief description of the drawings]
FIG. 1 is a diagram showing a circuit configuration for evaluating iron core soundness of a transformer according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing excitation current and magnetic flux characteristics and a current waveform when a voltage is applied to a healthy transformer core according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing excitation current and magnetic flux characteristics and a current waveform when a voltage is applied to the transformer core with increased loss in the first embodiment of the present invention.
FIG. 4 is a diagram showing excitation current and magnetic flux characteristics and a current waveform when a voltage is applied to the transformer core in which gap occurs in Embodiment 1 of the present invention;
FIG. 5 is a diagram showing a circuit configuration for evaluating iron core soundness of a conventional transformer.
[Explanation of symbols]
1: Test transformer 2: Low frequency AC power supply 3: Switch 4: Current limiting resistor 5: Voltage dividing resistor 6: Integrator 7: Shunt resistor for current measurement 8: XY recorder 10: Test transformer

Claims (4)

変圧器等の鉄心を有する電磁誘導機器の健全性評価方法において、上記電磁誘導機器へ定格周波数・定格電圧を印加したときの鉄心の磁束と同等になるように、上記定格周波数・定格電圧よりも低い低周波・低電圧を印加し、印加時の励磁電流と磁束の特性及び励磁電流波形に基づいて上記鉄心の健全性を評価することを特徴とする電磁誘導機器の健全性評価方法。In the soundness evaluation method for electromagnetic induction devices with iron cores such as transformers, the above rated frequency and rated voltage should be set to be equivalent to the magnetic flux of the iron core when the rated frequency and rated voltage are applied to the electromagnetic induction devices. A method for evaluating the soundness of an electromagnetic induction device, wherein a low low frequency and a low voltage are applied, and the soundness of the iron core is evaluated based on the excitation current and magnetic flux characteristics and the excitation current waveform at the time of application. 変圧器等の鉄心を有する電磁誘導機器の健全性評価方法において、上記電磁誘導機器の定格周波数・定格電圧よりも低い低周波・低電圧を印加すると共に、上記低周波の周波数および上記低電圧の電圧値の少なくともいずれか一方を変化して上記鉄心に定格励磁レベル以上の磁束を発生させ、その時の励磁電流と磁束の関係に基づいて上記鉄心の健全性を評価することを特徴とする電磁誘導機器の健全評価方法。In the soundness evaluation method for electromagnetic induction equipment having an iron core such as a transformer, a low frequency / low voltage lower than the rated frequency / rated voltage of the electromagnetic induction equipment is applied, and the low frequency and low voltage are applied. Electromagnetic induction characterized in that at least one of the voltage values is changed to generate a magnetic flux above the rated excitation level in the iron core, and the soundness of the iron core is evaluated based on the relationship between the excitation current and the magnetic flux at that time Equipment health assessment method. 請求項1または請求項2の健全性評価方法を、電磁誘導機器の製造工場出荷前、および分解輸送して据え付け現地において組み立てる際に実施することを特徴とする電磁誘導機器の試験方法。  A method for testing electromagnetic induction equipment, comprising performing the soundness evaluation method according to claim 1 or 2 before shipping the electromagnetic induction equipment at a manufacturing factory and when disassembling and transporting and assembling the equipment at the installation site. 請求項1または請求項2の健全性評価方法を、既設の電磁誘導機器に実施して、上記電磁誘導機器の鉄心の異常を診断することを特徴とする電磁誘導機器の試験方法。  A test method for an electromagnetic induction device, wherein the soundness evaluation method according to claim 1 or 2 is applied to an existing electromagnetic induction device to diagnose an abnormality of an iron core of the electromagnetic induction device.
JP2000390752A 2000-12-22 2000-12-22 Soundness evaluation method and test method for electromagnetic induction equipment Expired - Fee Related JP3847556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390752A JP3847556B2 (en) 2000-12-22 2000-12-22 Soundness evaluation method and test method for electromagnetic induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390752A JP3847556B2 (en) 2000-12-22 2000-12-22 Soundness evaluation method and test method for electromagnetic induction equipment

Publications (2)

Publication Number Publication Date
JP2002190419A JP2002190419A (en) 2002-07-05
JP3847556B2 true JP3847556B2 (en) 2006-11-22

Family

ID=18857057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390752A Expired - Fee Related JP3847556B2 (en) 2000-12-22 2000-12-22 Soundness evaluation method and test method for electromagnetic induction equipment

Country Status (1)

Country Link
JP (1) JP3847556B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8635034B2 (en) * 2010-12-16 2014-01-21 General Electric Company Method and system for monitoring transformer health
CN102565587B (en) * 2012-01-11 2013-12-25 陕西电力科学研究院 Test method of electromagnetic compatibility of electronic instrument transformer
JP6595355B2 (en) * 2016-01-26 2019-10-23 株式会社東芝 Magnetic core member deterioration diagnosis device, magnetic core member deterioration diagnosis method
CN109884570A (en) * 2017-12-07 2019-06-14 广东电网有限责任公司东莞供电局 A kind of electronic current lift

Also Published As

Publication number Publication date
JP2002190419A (en) 2002-07-05

Similar Documents

Publication Publication Date Title
García et al. Transformer tank vibration modeling as a method of detecting winding deformations-part II: experimental verification
Masoum et al. Online transformer internal fault detection based on instantaneous voltage and current measurements considering impact of harmonics
Bhide et al. Analysis of winding inter-turn fault in transformer: A review and transformer models
Cabanas et al. A new online method based on leakage flux analysis for the early detection and location of insulating failures in power transformers: Application to remote condition monitoring
CN103176148B (en) Testing device and testing method for silicon steel core limit hysteresis loop
CN112904108B (en) Fault diagnosis method for electromagnetic unit of capacitor voltage transformer
Ballal et al. Interturn faults detection of transformers by diagnosis of neutral current
Cabanas et al. Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysis
CN106291123A (en) A kind of method of direct measurement magnetic cell winding loss
JP3847556B2 (en) Soundness evaluation method and test method for electromagnetic induction equipment
CN113670188B (en) Testing device and evaluation method for radial deformation of single pancake coil of transformer
CN203117408U (en) Testing device of silicon steel iron core ultimate hysteresis loop
Cabanas et al. Detection of insulation faults on disc-type winding transformers by means of leakage flux analysis
Albert et al. Power transformer hysteresis measurement
Würde et al. Influence of the Power Factor on the Vibration Behavior of Transformers for Primary and Secondary Distribution
Masoum et al. Finite element performance evaluation of online transformer internal fault detection based on instantaneous voltage and current measurements
Akiror Model for core loss prediction at high frequency and high flux density
RU2354982C1 (en) Method of diagnosing transformer core
Yasid et al. The effect of short circuit fault on one winding to other windings in FRA
Freiburg Testing and diagnostics of medium-and high-voltage instrument transformers
Engelen et al. On-Site Dry-type Power Transformer Condition Assessment based on Partial Discharge Activity
Wu et al. Mechanical properties of transformer insulations under dc bias condition
Mahvi et al. Power Auto-transformer Mechanical Faults Diagnosis‎ Using Finite Element based FRA
CN110187246A (en) A kind of seawater variable-ratio generator motor rotor core magnetic examination method
RU2374656C1 (en) Method of forming test parametre when performing tests of electromagnetic energy converters

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060823

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees