KR102403661B1 - Chiller apparatus for semiconductor process - Google Patents

Chiller apparatus for semiconductor process Download PDF

Info

Publication number
KR102403661B1
KR102403661B1 KR1020200020296A KR20200020296A KR102403661B1 KR 102403661 B1 KR102403661 B1 KR 102403661B1 KR 1020200020296 A KR1020200020296 A KR 1020200020296A KR 20200020296 A KR20200020296 A KR 20200020296A KR 102403661 B1 KR102403661 B1 KR 102403661B1
Authority
KR
South Korea
Prior art keywords
channel
line
control
channels
tank
Prior art date
Application number
KR1020200020296A
Other languages
Korean (ko)
Other versions
KR20210105616A (en
Inventor
지옥규
오치훈
김영래
Original Assignee
(주)피티씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피티씨 filed Critical (주)피티씨
Priority to KR1020200020296A priority Critical patent/KR102403661B1/en
Priority to CN202110191290.2A priority patent/CN113280538A/en
Publication of KR20210105616A publication Critical patent/KR20210105616A/en
Application granted granted Critical
Publication of KR102403661B1 publication Critical patent/KR102403661B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

채널별 탱크의 레벨 밸런싱 제어 시에도 온도 제어의 영향을 최소화할 수 있는 칠러 장치가 개시된다. 공정챔버에 연결되는 핫 존(hot zone)과 콜드 존(cold zone)의 두 채널에 대응하여 구성되고, 상기 콜드 존에 연결되는 제1채널에서, 회수라인부터 공급라인까지 탱크, 순환펌프, 상기 냉동사이클에 결합된 증발기, 및 라인 히터가 순차 배치되어 설치되고, 상기 핫존에 연결되는 제2채널에서, 회수라인에서 공급라인까지 탱크, 순환펌프, 냉각수 열교환기, 및 라인 히터가 순차 배치되어 설치되며, 각 채널을 흐르는 냉매는, 상기 제1채널의 증발기와 상기 제2채널의 냉각수 열교환기에서 냉각 제어되고 상기 제1 및 제2채널의 라인 히터에서 가열 제어된다.Disclosed is a chiller device capable of minimizing the influence of temperature control even during level balancing control of tanks for each channel. It is configured to correspond to two channels of a hot zone and a cold zone connected to the process chamber, and in the first channel connected to the cold zone, a tank, a circulation pump, The evaporator coupled to the refrigerating cycle and the line heater are sequentially arranged and installed, and in the second channel connected to the hot zone, the tank, the circulation pump, the cooling water heat exchanger, and the line heater are sequentially arranged and installed from the recovery line to the supply line The refrigerant flowing through each channel is controlled to be cooled by the evaporator of the first channel and the coolant heat exchanger of the second channel, and heated by the line heaters of the first and second channels.

Figure R1020200020296
Figure R1020200020296

Description

반도체 공정용 칠러 장치{Chiller apparatus for semiconductor process}Chiller apparatus for semiconductor process

본 발명은 반도체 공정용 칠러 장치에 관한 것으로, 특히 채널별 탱크의 레벨 밸런싱 제어 시에도 온도 제어의 영향을 최소화할 수 있는 기술에 관련한다.The present invention relates to a chiller device for a semiconductor process, and more particularly, to a technique capable of minimizing the influence of temperature control even when controlling the level balancing of a tank for each channel.

반도체 시장의 3D 메모리 관련 기술개발이 활발히 이뤄지고 있다. 3D 메모리 기술은 기존 2D 반도체 제조에서 미세 공정기술로는 한계를 느껴 반도체 소자를 수직으로 여러 층의 소자를 적층하는 방법이다.3D memory-related technology development in the semiconductor market is being actively carried out. 3D memory technology is a method of vertically stacking semiconductor devices in multiple layers, feeling the limitations of micro-processing technology in the existing 2D semiconductor manufacturing.

이러한 3D 메모리 공정은 대용량, 고속 처리가 요구되는 4차 산업시대의 꼭 필요한 기술로 시장 규모가 급격히 성장하고 있다. 3D 메모리 공정을 수행함에 있어 높은 생산성과 효율성을 확보하기 위해서는 기존 공정보다 폭 넓은 온도 범위와 빠른 응답성을 요구하고 있다.The 3D memory process is an essential technology in the 4th industrial age that requires large-capacity and high-speed processing, and the market size is rapidly growing. In order to secure high productivity and efficiency in performing the 3D memory process, a wider temperature range and faster response than the existing process are required.

이러한 공정이 이루어지는 챔버의 내부 온도와 웨이퍼 표면의 온도를 제어 하는 정전 척(ESC CHUCK)의 정밀 온도제어를 유지시켜 주는 장치가 반도체용 칠러 장치이다.The device that maintains precise temperature control of the electrostatic chuck (ESC CHUCK) that controls the internal temperature of the chamber where this process is performed and the temperature of the wafer surface is a semiconductor chiller device.

예를 들어, 본 출원인에 의한 국내 등록특허 제2070455호에 "반도체 공정용 칠러 장치 및 그 온도제어 방법"이 개시되어 있다.For example, "a chiller apparatus for a semiconductor process and a temperature control method thereof" is disclosed in Korean Patent Registration No. 2070455 by the present applicant.

최근에는 기존의 공정 온도범위, 가령 -20℃ ~ 90℃에서 필요한 설정값에 따라 시스템의 온도를 올리고 내리는데 많은 시간을 소비하는 공정을 개선하고자 핫 존(hot zone)과 콜드 존(cold zone)의 두 채널을 가지고 믹싱 또는 스위칭하여 빠른 온도 대응을 진행하고자 하는 공정이 늘어나고 있다. Recently, in order to improve the process that spends a lot of time raising and lowering the temperature of the system according to the required set value in the existing process temperature range, for example, -20℃ ~ 90℃, the hot zone and cold zone Processes that want to quickly respond to temperature by mixing or switching with two channels are increasing.

그런데 믹싱 또는 스위칭 공정을 진행함에 있어 두 개의 온도 영역이 섞이며 온도가 헌팅하는 부분이 문제가 되고 있다.However, in the mixing or switching process, two temperature regions are mixed and the temperature hunting part becomes a problem.

또한, 믹싱 또는 스위칭 공정시 발생하는 탱크 간 냉매의 쏠림, 즉 냉매 유량의 불균형으로 인해 칠러 장치의 온도 제어성에 악영향을 미친다.In addition, the temperature controllability of the chiller device is adversely affected due to the inclination of the refrigerant between the tanks, that is, the imbalance in the refrigerant flow rate, which occurs during the mixing or switching process.

따라서, 본 발명의 목적은 공정 온도 변화에 빠르게 대응할 수 있는 칠러 장치를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a chiller device capable of quickly responding to process temperature changes.

본 발명의 다른 목적은 채널별 탱크의 레벨 밸런싱 제어 시에도 온도 제어의 영향을 최소화할 수 있는 칠러 장치를 제공하는 것이다.Another object of the present invention is to provide a chiller device capable of minimizing the influence of temperature control even during level balancing control of tanks for each channel.

본 발명의 다른 목적은 순간 가열에 의해 온도 응답성을 향상시킬 수 있는 칠러 장치를 제공하는 것이다.Another object of the present invention is to provide a chiller device capable of improving temperature response by instantaneous heating.

상기의 목적은, 냉동사이클과 공정챔버 사이에 설치되는 온도제어모듈을 구비한 반도체 공정용 칠러 장치로서, 상기 온도제어모듈은, 상기 공정챔버에 연결되는 핫 존(hot zone)과 콜드 존(cold zone)의 두 채널에 대응하여 구성되고, 상기 콜드 존에 연결되는 제1채널에서, 회수라인부터 공급라인까지 탱크, 순환펌프, 상기 냉동사이클에 결합된 증발기, 및 라인 히터가 순차 배치되어 설치되고, 상기 핫존에 연결되는 제2채널에서, 회수라인에서 공급라인까지 탱크, 순환펌프, 냉각수 열교환기, 및 라인 히터가 순차 배치되어 설치되며, 각 채널을 흐르는 냉매는, 상기 제1채널의 증발기와 상기 제2채널의 냉각수 열교환기에서 냉각 제어되고 상기 제1 및 제2채널의 라인 히터에서 가열 제어되는 것을 특징으로 하는 반도체 공정용 칠러 장치에 의해 달성된다.The above object is a chiller device for a semiconductor process having a temperature control module installed between a refrigeration cycle and a process chamber, wherein the temperature control module includes a hot zone and a cold zone connected to the process chamber. zone), and in the first channel connected to the cold zone, a tank, a circulation pump, an evaporator coupled to the refrigeration cycle, and a line heater are sequentially arranged and installed from the recovery line to the supply line , in the second channel connected to the hot zone, a tank, a circulation pump, a cooling water heat exchanger, and a line heater are sequentially arranged and installed from the recovery line to the supply line, and the refrigerant flowing through each channel is combined with the evaporator of the first channel It is achieved by a chiller apparatus for a semiconductor process, characterized in that cooling is controlled by the cooling water heat exchanger of the second channel and heating is controlled by the line heaters of the first and second channels.

바람직하게, 각 채널의 라인 히터의 후단에 각 채널의 회수라인에 더 연결되는 3방밸브가 설치되어 각 채널의 공급라인의 유량을 조절할 수 있다.Preferably, a three-way valve further connected to the recovery line of each channel is installed at the rear end of the line heater of each channel to control the flow rate of the supply line of each channel.

바람직하게, 상기 콜드 존과 상기 핫존은, 3방밸브의 궤도 조절을 통한 믹싱(mixing) 제어 또는 양방향 솔레노이드 밸브의 온/오프 제어에 의한 스위칭(switching) 제어가 수행된다.Preferably, the cold zone and the hot zone, mixing (mixing) control through the orbit control of the three-way valve or switching (switching) control by the on/off control of the two-way solenoid valve is performed.

본 발명에 의하면, 각 채널에서 탱크 후단에서 순환 과정 중 온도를 제어하기 때문에 탱크 간 밸런싱 제어 시에도 온도 제어의 영향을 최소화할 수 있고 제어 응답성이 향상된다.According to the present invention, since the temperature during the circulation process is controlled at the rear end of the tank in each channel, the influence of temperature control can be minimized even during balancing between tanks and the control responsiveness is improved.

그 결과, 순환 과정 중 냉매의 온도 제어, 즉 냉각 제어와 가열 제어를 통해 칠러 장치내 핫존과 콜드 존은 항상 일정한 온도 유지가 가능하며 외부에서의 유량 분배 문제가 발생하여 칠러 장치의 탱크간 레벨 밸런싱 제어시에도 온도제어에 영향을 미치지 않는다.As a result, the temperature control of the refrigerant during the circulation process, i.e., cooling control and heating control, makes it possible to always maintain a constant temperature in the hot zone and cold zone in the chiller unit, and the flow rate distribution problem from the outside causes level balancing between the tanks of the chiller unit. It does not affect temperature control even during control.

또한, 탱크 내에서 히터 가열을 수행하지 않고 순환 과정에서 배관내 라인 히터를 적용함으로써 더 작은 체적을 순간 가열할 수 있어 온도 응답성 또한 우수하다.In addition, since a smaller volume can be instantaneously heated by applying a line heater in the pipe in the circulation process without heating the heater in the tank, the temperature response is also excellent.

도 1은 본 발명의 실시 예에 의한 칠러 장치의 계통도를 나타낸다.
도 2는 온도제어모듈의 구성을 보여준다.
1 shows a schematic diagram of a chiller device according to an embodiment of the present invention.
2 shows the configuration of the temperature control module.

본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.It should be noted that the technical terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. In addition, the technical terms used in the present invention should be interpreted as meanings generally understood by those of ordinary skill in the art to which the present invention belongs, unless otherwise defined in the present invention. It should not be construed in the meaning of a human being or in an excessively reduced meaning. In addition, when the technical term used in the present invention is an incorrect technical term that does not accurately express the spirit of the present invention, it should be understood by being replaced with a technical term that can be correctly understood by those skilled in the art. In addition, the general terms used in the present invention should be interpreted according to the definition in the dictionary or according to the context before and after, and should not be interpreted in an excessively reduced meaning.

이하, 첨부한 도면을 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 실시 예에 의한 칠러 장치의 계통도를 나타내고, 도 2는 온도제어모듈의 구성을 보여준다.1 shows a schematic diagram of a chiller device according to an embodiment of the present invention, and FIG. 2 shows a configuration of a temperature control module.

칠러 장치는, 압축기와 응축기를 구비한 냉동사이클(10)과 공정 챔버(20) 사이에 구비된 온도제어모듈(100)을 포함한다.The chiller device includes a temperature control module 100 provided between a refrigeration cycle 10 having a compressor and a condenser and a process chamber 20 .

온도제어모듈(100)은 공정챔버(20)의 정전 척에 연결되는 핫 존(hot zone)과 콜드 존(cold zone)의 두 채널에 대응하여 구성된다.The temperature control module 100 is configured to correspond to two channels of a hot zone and a cold zone connected to the electrostatic chuck of the process chamber 20 .

다시 말해, 반도체 공정용 칠러 장치의 경우, 공정 온도 변환시 칠러 장치내 온도 상승 및 하강 시간과 안정화되고 난 후 공정 진행시작까지 걸리는 시간을 단축하기 위해 3방밸브의 궤도 조절을 통한 믹싱 제어 또는 양방향 솔레노이드 밸브의 온/오프 제어에 의한 스위칭 제어가 도입되고 있다.In other words, in the case of a chiller device for a semiconductor process, mixing control or bidirectional solenoid through orbital control of a 3-way valve to shorten the time it takes for the temperature to rise and fall within the chiller device and the time it takes to start the process after stabilization during process temperature conversion Switching control by on/off control of a valve has been introduced.

본 발명의 온도제어모듈(100)은 여기에 대응하여, 가령 -40℃의 콜드 존과 +90℃의 핫존의 개별 채널을 상시 준비 제어를 하며 일정한 유량제어를 통해 각각의 온도를 공급하게 되면 공정 챔버(20)에서 -30℃ 내지 +80℃ 사이에서 공정의 원하는 온도를 맞출 수 있다.The temperature control module 100 of the present invention responds to this, for example, when the individual channels of the cold zone of -40°C and the hot zone of +90°C are always prepared and controlled, and each temperature is supplied through a constant flow rate control. The desired temperature of the process can be adjusted in chamber 20 between -30°C and +80°C.

도 1을 보면, 공정챔버(20)의 콜드 존에 연결되는 제1채널은 회수라인(110)과 공급라인(120)으로 구성되어 순환 라인을 구성하고, 핫존에 연결되는 제2채널은 회수라인(210)과 공급라인(220)으로 구성되어 순환 라인을 구성한다.Referring to FIG. 1 , the first channel connected to the cold zone of the process chamber 20 is composed of a recovery line 110 and a supply line 120 to constitute a circulation line, and the second channel connected to the hot zone is a recovery line. 210 and the supply line 220 constitute a circulation line.

제1채널에서, 탱크(120), 순환펌프(130), 증발기(140), 및 라인 히터(150)가 순차 배치되어 설치되며, 제1채널은 냉동사이클을 구성하여 증발기(140)에서 냉각 제어되고 라인 히터(150)에서 가열 제어된다.In the first channel, the tank 120 , the circulation pump 130 , the evaporator 140 , and the line heater 150 are sequentially arranged and installed, and the first channel constitutes a refrigeration cycle to control cooling in the evaporator 140 . and heating is controlled by the line heater 150 .

제2채널에서, 탱크(220), 순환펌프(230), 냉각수 열교환기(240), 및 라인 히터(250)가 순차 배치되어 설치되며, 제2채널은 냉각수 냉각사이클을 구성하여 냉각수 열교환기(240)에서 냉각 제어되고 라인 히터(250)에서 가열 제어된다.In the second channel, the tank 220, the circulation pump 230, the coolant heat exchanger 240, and the line heater 250 are sequentially arranged and installed, and the second channel constitutes a coolant cooling cycle to form a coolant heat exchanger ( The cooling is controlled in 240 and heating is controlled in the line heater 250 .

따라서, 제1채널을 통하여 공정챔버(20)의 척 → 제1채널 탱크(120) → 제1채널 순환펌프(130) → 증발기(140) → 제1채널 히터(150) → 척의 순서로 냉매 흐름이 이루어지고, 제2채널을 통하여 척 → 제2채널 탱크(220) → 제2채널 순환펌프(230) → 냉각수 열교환기(240) → 제2채널 히터(250)의 순서로 냉매 흐름이 이루어진다.Accordingly, the refrigerant flows in the order of the chuck of the process chamber 20 through the first channel → the first channel tank 120 → the first channel circulation pump 130 → the evaporator 140 → the first channel heater 150 → the chuck. This is made, and the refrigerant flows in the order of chuck → second channel tank 220 → second channel circulation pump 230 → cooling water heat exchanger 240 → second channel heater 250 through the second channel.

이 과정에서, 냉매는 제1채널의 증발기(140)와 제2채널의 냉각수 열교환기(240)에서 냉각 제어되고, 제1채널의 히터(150)와 제2채널의 히터(250)에서 가열 제어된다.In this process, the refrigerant is controlled to be cooled by the evaporator 140 of the first channel and the coolant heat exchanger 240 of the second channel, and heating is controlled by the heater 150 of the first channel and the heater 250 of the second channel. do.

일반적으로, 각 채널별로 척에 공급되는 냉매의 유량이 온도에 따라 다르기 때문에 결과적으로 척으로부터 회수되는 냉매의 유량도 다를 수밖에 없고, 그 결과 각 채널별 탱크(120, 220)의 수위가 달라진다. 이를 방지하기 위해 탱크(120, 220) 간 연결 밸브(170)를 통해 수위를 조절하게 되는데, 이때 각각 채널별 다른 온도로 제어 중인 냉매가 섞이면서 온도 제어 헌팅이 발생된다.In general, since the flow rate of the refrigerant supplied to the chuck for each channel varies depending on the temperature, the flow rate of the refrigerant recovered from the chuck is consequently also different, as a result, the water level of the tanks 120 and 220 for each channel varies. In order to prevent this, the water level is adjusted through the connection valve 170 between the tanks 120 and 220. At this time, the refrigerant being controlled at a different temperature for each channel is mixed, and temperature control hunting occurs.

그러나 본 발명과 같이, 각 채널에서 탱크(120, 220) 후단에서 순환 과정 중 온도를 제어하기 때문에 탱크 간 밸런싱 제어 시에도 온도 제어의 영향을 최소화할 수 있고 제어 응답성이 향상된다.However, as in the present invention, since the temperature during the circulation process is controlled at the rear end of the tanks 120 and 220 in each channel, the influence of the temperature control can be minimized even when balancing between the tanks is controlled, and the control responsiveness is improved.

이와 같이, 순환 과정 중 냉매의 온도 제어, 즉 냉각 제어와 가열 제어를 통해 칠러 장치내 핫존과 콜드 존은 항상 일정한 온도 유지가 가능하며 외부에서의 유량 분배 문제가 발생하여 칠러 장치의 탱크간 밸런싱 제어시에도 온도제어에 영향을 미치지 않는다.In this way, through the temperature control of the refrigerant during the circulation process, that is, the cooling control and heating control, the hot zone and the cold zone in the chiller device can always maintain a constant temperature, and the flow rate distribution problem from the outside occurs, thereby controlling the balancing between the tanks of the chiller device. It does not affect the temperature control even during operation.

또한, 탱크 내에서 히터 가열을 수행하지 않고 순환 과정에서 배관내 라인 히터(150, 160)를 적용함으로써 더 작은 체적을 순간 가열할 수 있어 온도 응답성 또한 우수하다.In addition, by applying the line heaters 150 and 160 in the pipe in the circulation process without heating the heater in the tank, a smaller volume can be instantaneously heated, so the temperature response is also excellent.

다시 도 2를 보면, 각 채널의 회수라인(110, 210)과 탱크(120, 220)에 연결되는 버퍼 탱크(320)가 설치되어 배관내 드레인시 집수용으로 사용될 수 있다.Referring to FIG. 2 again, the buffer tanks 320 connected to the recovery lines 110 and 210 of each channel and the tanks 120 and 220 are installed, so that they can be used for collecting water when draining the pipe.

또한, 각 채널의 라인 히터(150, 250)의 후단에는 회수라인(110, 210)에 더 연결되는 3방밸브(160, 260)가 설치되어 공급라인(112, 212)의 유량을 조절할 수 있다.In addition, three-way valves 160 and 260 that are further connected to the recovery lines 110 and 210 are installed at the rear ends of the line heaters 150 and 250 of each channel to adjust the flow rate of the supply lines 112 and 212 . .

이상에서는 본 발명의 실시 예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경을 가할 수 있음은 물론이다. 따라서, 본 발명의 권리범위는 상기한 실시 예에 한정되어 해석될 수 없으며, 이하에 기재되는 청구범위에 의해 해석되어야 한다.Although the above description has been focused on the embodiments of the present invention, it goes without saying that various changes may be made at the level of those skilled in the art. Accordingly, the scope of the present invention cannot be construed as being limited to the above-described embodiments, and should be construed by the claims described below.

10: 냉동사이클
20: 공정챔버
100: 온도제어모듈
110, 210: 회수라인
112, 212; 공급라인
120, 220: 탱크
130, 230: 순환펌프
140: 증발기
150, 250: 라인 히터(line heater)
160, 260: 3방밸브
240: 냉각수 열교환기
10: refrigeration cycle
20: process chamber
100: temperature control module
110, 210: recovery line
112, 212; supply line
120, 220: tank
130, 230: circulation pump
140: evaporator
150, 250: line heater (line heater)
160, 260: 3-way valve
240: coolant heat exchanger

Claims (3)

냉동사이클과 공정챔버 사이에 설치되는 온도제어모듈을 구비한 반도체 공정용 칠러 장치로서,
상기 온도제어모듈은, 상기 공정챔버에 연결되는 핫 존(hot zone)과 콜드 존(cold zone)의 두 채널에 대응하여 구성되고,
상기 콜드 존에 연결되는 제1채널에서, 회수라인부터 공급라인까지 탱크, 순환펌프, 상기 냉동사이클에 결합되는 냉각 제어용 증발기, 및 가열 제어용 라인 히터가 순차 배치되어 설치되고,
상기 핫존에 연결되는 제2채널에서, 회수라인에서 공급라인까지 탱크, 순환펌프, 상기 냉동사이클에 결합되는 냉각 제어용 냉각수 열교환기, 및 가열 제어용 라인 히터가 순차 배치되어 설치되며,
상기 제1 및 제2채널의 탱크는 각각 연결 밸브를 개재하여 직접 연결되어 각 탱크의 수위가 조절되고,
각 채널을 흐르는 냉매는, 상기 제1채널의 증발기와 상기 제2채널의 냉각수 열교환기에서 냉각 제어된 후, 상기 제1 및 제2채널의 라인 히터에서 신속하게 가열 제어되어 상기 공정챔버에 공급됨으로써, 상기 제1 및 제2채널의 탱크간 밸런싱 제어시 상기 공정챔버에 공급되는 냉매의 온도제어에 영향을 최소화하는 것을 특징으로 하는 반도체 공정용 칠러 장치.
A chiller device for a semiconductor process having a temperature control module installed between a refrigeration cycle and a process chamber,
The temperature control module is configured to correspond to two channels of a hot zone and a cold zone connected to the process chamber,
In the first channel connected to the cold zone, a tank, a circulation pump, an evaporator for cooling control coupled to the refrigeration cycle, and a line heater for heating control are sequentially arranged and installed from the recovery line to the supply line,
In the second channel connected to the hot zone, a tank, a circulation pump, a cooling water heat exchanger for cooling control coupled to the refrigeration cycle, and a line heater for heating control are sequentially arranged and installed from the recovery line to the supply line,
The tanks of the first and second channels are directly connected through a connection valve, respectively, so that the water level of each tank is adjusted,
The refrigerant flowing through each channel is controlled to be cooled by the evaporator of the first channel and the coolant heat exchanger of the second channel, and then is rapidly heated and controlled by the line heaters of the first and second channels and supplied to the process chamber. , Chiller apparatus for a semiconductor process, characterized in that when controlling the balancing between the tanks of the first and second channels, the influence on the temperature control of the refrigerant supplied to the process chamber is minimized.
청구항 1에서,
각 채널의 라인 히터의 후단에 각 채널의 회수라인에 더 연결되는 3방밸브가 설치되어 각 채널의 공급라인의 유량을 조절하는 것을 특징으로 하는 반도체 공정용 칠러 장치.
In claim 1,
A three-way valve further connected to the recovery line of each channel is installed at the rear end of the line heater of each channel to control the flow rate of the supply line of each channel.
청구항 1에서,
상기 콜드 존과 상기 핫존은, 3방밸브의 궤도 조절을 통한 믹싱(mixing) 제어 또는 양방향 솔레노이드 밸브의 온/오프 제어에 의한 스위칭(switching) 제어가 수행되는 것을 특징으로 하는 반도체 공정용 칠러 장치.
In claim 1,
The cold zone and the hot zone, a chiller apparatus for a semiconductor process, characterized in that the switching (switching) control by mixing (mixing) control through the orbit control of the three-way valve or the on/off control of the two-way solenoid valve is performed.
KR1020200020296A 2020-02-19 2020-02-19 Chiller apparatus for semiconductor process KR102403661B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200020296A KR102403661B1 (en) 2020-02-19 2020-02-19 Chiller apparatus for semiconductor process
CN202110191290.2A CN113280538A (en) 2020-02-19 2021-02-19 Cooling device for semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200020296A KR102403661B1 (en) 2020-02-19 2020-02-19 Chiller apparatus for semiconductor process

Publications (2)

Publication Number Publication Date
KR20210105616A KR20210105616A (en) 2021-08-27
KR102403661B1 true KR102403661B1 (en) 2022-05-31

Family

ID=77275877

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200020296A KR102403661B1 (en) 2020-02-19 2020-02-19 Chiller apparatus for semiconductor process

Country Status (2)

Country Link
KR (1) KR102403661B1 (en)
CN (1) CN113280538A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473401B2 (en) * 2020-06-03 2024-04-23 株式会社ディスコ Processing water supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367086B1 (en) 2013-10-17 2014-02-24 (주)테키스트 Temperature control system for semiconductor manufacturing system
KR101975007B1 (en) * 2018-09-19 2019-05-07 (주)본씨앤아이 cooling system for semiconductor parts cooling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925236B1 (en) * 2007-10-18 2009-11-05 주식회사 글로벌스탠다드테크놀로지 Temperature control system for Semiconductor Manufacturing Device
US20090126378A1 (en) * 2007-11-20 2009-05-21 Hyun-Myung Oh Chiller of etch equipment for semiconductor processing
JP5912439B2 (en) * 2011-11-15 2016-04-27 東京エレクトロン株式会社 Temperature control system, semiconductor manufacturing apparatus, and temperature control method
JP5841281B1 (en) * 2015-06-15 2016-01-13 伸和コントロールズ株式会社 Chiller device for plasma processing equipment
JP6714696B2 (en) * 2016-06-01 2020-06-24 株式会社アドテックス Cooling device for semiconductor inspection equipment
JP2018076995A (en) * 2016-11-08 2018-05-17 株式会社ナカヤ Circulation liquid temperature control method using parameter control-by-area type chiller by remote control, and maintenance method
KR101910347B1 (en) * 2016-12-05 2018-10-23 주식회사 글로벌스탠다드테크놀로지 High-Tech Temperature Control Device for Semiconductor Manufacturing Facilities

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367086B1 (en) 2013-10-17 2014-02-24 (주)테키스트 Temperature control system for semiconductor manufacturing system
KR101975007B1 (en) * 2018-09-19 2019-05-07 (주)본씨앤아이 cooling system for semiconductor parts cooling

Also Published As

Publication number Publication date
KR20210105616A (en) 2021-08-27
CN113280538A (en) 2021-08-20

Similar Documents

Publication Publication Date Title
KR101109730B1 (en) Chiller apparatus for semiconductor process and Method for controlling temperature in the same
KR101739369B1 (en) Temperature Control System for Chiller of Semiconductor Device
JP6063895B2 (en) Temperature control system for semiconductor manufacturing equipment
KR101975007B1 (en) cooling system for semiconductor parts cooling
CN204026991U (en) heating hot water supply system
KR20090039420A (en) Temperature control system for semiconductor manufacturing device
KR20090054597A (en) Chiller apparatus for semiconductor process equipment
KR102179060B1 (en) Apparatus for mixing heating medium and Chiller apparatus using the same
WO2006075592A1 (en) Refrigerating device
CN209841590U (en) Temperature control device for rapid cold and hot impact test
KR102403661B1 (en) Chiller apparatus for semiconductor process
CN100437966C (en) Static chuck system capable of controlling temperature partitionedly
JP5762493B2 (en) Circulating fluid temperature control method using area-specific parameter control hybrid chiller
KR102345640B1 (en) Chiller apparatus for semiconductor process
KR101923433B1 (en) Dual cooling system for semiconductor parts cooling
KR20190078791A (en) Semiconductor cooling system for improving the temperature deviation of semiconductor test
JP5319502B2 (en) Heat pump heating system
KR100404651B1 (en) Chiller of Semiconductor Manufacturing Equipment
KR101501175B1 (en) Method for controlling temperature in chiller device
CN109916758A (en) A kind of temperature control device for quick-cooling, heating shock-testing
CN114534651A (en) Reactor temperature control method
JP2018169108A5 (en)
KR100653455B1 (en) Chiller for semiconductor progress having high temperature type and low temperature type heater exchanger
JPH06174388A (en) Two-channel liquid cooling apparatus
KR101438182B1 (en) Attachment for controlling the flow rate and temperature of brine

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant