KR102403216B1 - Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae - Google Patents

Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae Download PDF

Info

Publication number
KR102403216B1
KR102403216B1 KR1020220032242A KR20220032242A KR102403216B1 KR 102403216 B1 KR102403216 B1 KR 102403216B1 KR 1020220032242 A KR1020220032242 A KR 1020220032242A KR 20220032242 A KR20220032242 A KR 20220032242A KR 102403216 B1 KR102403216 B1 KR 102403216B1
Authority
KR
South Korea
Prior art keywords
parts
weight
protecting
semiconductor manufacturing
coating composition
Prior art date
Application number
KR1020220032242A
Other languages
Korean (ko)
Inventor
조병선
이경미
남현일
Original Assignee
(주)위드엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)위드엘씨 filed Critical (주)위드엘씨
Priority to KR1020220032242A priority Critical patent/KR102403216B1/en
Application granted granted Critical
Publication of KR102403216B1 publication Critical patent/KR102403216B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Abstract

The present invention relates to a coating composition for protecting an anodic oxide layer and a unit of a semiconductor manufacturing apparatus using the same. In particular, the composition is for forming a coating layer capable of protecting an anodic oxide layer (for example, an AAO film) formed on the unit of the semiconductor manufacturing apparatus, and contains fluorobutane as a solvent and tetrafluoroethylene as a fluororesin in a specific ratio, thereby forming the coating layer capable of protecting the anodic oxide layer formed on the unit of the semiconductor manufacturing apparatus, and, in this case, having an effect of increasing a withstand voltage without cracking on the unit.

Description

양극산화층 보호용 코팅 조성물 및 이를 이용한 반도체 제조 장비의 부품{Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae}Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae

본 발명은 양극산화층 보호용 코팅 조성물에 대한 것으로, 특히 반도체 제조 장비의 부품에 형성된 양극산화층을 보호할 수 있는 코팅층을 형성하기 위한 조성물이며, 상기 부품의 내전압 및 물적 특성을 높일 수 있는 양극산화층 보호용 코팅 조성물 및 이를 이용한 반도체 제조 장비의 부품에 관한 것이다. The present invention relates to a coating composition for protecting an anodization layer, particularly a composition for forming a coating layer capable of protecting an anodization layer formed on a component of semiconductor manufacturing equipment, and a coating for protecting an anodization layer that can increase the withstand voltage and physical properties of the component It relates to a composition and a component of a semiconductor manufacturing equipment using the same.

[과제고유번호]D2121017[Project unique number] D2121017

[부처명] 경기도[Buddhist name] Gyeonggi-do

[연구관리전문기관] (재)경기도경제과학진흥원[Research and Management Specialized Institution] Gyeonggi-do Economic Science Promotion Agency

[연구사업명] 기업주도(일반)[Research project name] Company-led (general)

[연구과제명] 내전압, 내식성 강화를 위한 반도체 장비 부품 표면처리 공정기술 개발[Research project name] Development of surface treatment process technology for semiconductor equipment parts to enhance withstand voltage and corrosion resistance

[기여율] 1/1[Contribution rate] 1/1

[주관기관] (주)위드엘씨[Organizer] WithLC Co., Ltd.

[연구기간] 2021.08.01.~2022.07.31.[Research period] 2021.08.01.~2022.07.31.

CVD(chemical vapor deposition) 장치, PVD(physical vapor deposition) 장치 및 건식 식각 장치 등 반도체 및 FPD의 제조 공정에 사용되는 진공 챔버 내부에는 반응 가스, 식각 가스 및 세정 가스로서 Cl, F 및 Br과 같은 할로겐 원소를 포함하는 부식성 가스가 도입된다. 그래서, 진공 챔버의 각 부품 즉, 챔버 월 (chamber wall), 히터(heater)류, 전극(electrode), 라이너(liner)류, 쉴드(shield)류, 척(chuck)류 및 페데스탈(pedestal)류 등은 부식성에 대한 내식성이 요구된다. 또한, 진공 챔버 내에는 상기 부식성 가스 를 비롯하여 할로겐계 플라즈마를 발생시키는 경우 역시 빈번하므로, 플라즈마에 대한 내식성 또한 중요시 된다. Halogen such as Cl, F and Br as reaction gas, etching gas and cleaning gas inside the vacuum chamber used in the manufacturing process of semiconductor and FPD such as CVD (chemical vapor deposition) device, PVD (physical vapor deposition) device, and dry etching device A corrosive gas containing the element is introduced. So, each part of the vacuum chamber, that is, chamber wall, heaters, electrodes, liners, shields, chucks, and pedestals. Etc. is required to have corrosion resistance against corrosion. In addition, since halogen-based plasma including the corrosive gas is frequently generated in the vacuum chamber, corrosion resistance to plasma is also important.

그러나, 현재 진공 챔버의 부품들은 충분한 가스 내식성 및 플라즈마 내식성을 가지지 못하는 알루미늄(Al) 및/또는 알루미늄 합금(Al-alloy)으로 형성되어 있으므로, 부품 표면이 쉽게 부식된다. 이와 같이, 부품 표면이 부식되면, 부품 표면에 AlF3또는 AlCl3와 같은 할로겐계 물질과의 반응 미립자 등이 생성되거나, 플라즈마에 의한 이온 등이 발생되어, 부품 표면을 오염시키게 된다. However, current vacuum chamber components are formed of aluminum (Al) and/or aluminum alloy (Al-alloy), which do not have sufficient gas corrosion resistance and plasma corrosion resistance, so that the surface of the components is easily corroded. As such, when the surface of the component is corroded, fine particles reacted with a halogen-based material such as AlF 3 or AlCl 3 are generated on the surface of the component, or ions by plasma are generated, thereby contaminating the surface of the component.

종래에는 이러한 문제점을 해결하기 위하여, 알루미늄 및/또는 알루미늄 합금으로 된 장비 부품 표면에 양극 산화법 또는 플라즈마 스프레이(plasma spray)법에 의하여 표면 보호막을 형성하고 있다. Conventionally, in order to solve this problem, a surface protective film is formed on the surface of equipment parts made of aluminum and/or aluminum alloy by anodization or plasma spray method.

양극 산화법에 의한 표면 보호막 형성 방법은 대한민국 공개특허 제2002-78242호에 개시된 바와 같이, 황산과 같은 전해질 용액에 부품을 담근 다음, 10 내지 15 ℃의 온도 범위에서 100V 미만, 예를 들어 20 내지 80V) 전압과 1 내지 2 A/dm 2(dm2=10cm×10cm)의 전류를 인가하여, 부품 표면에 양극 산화막, 즉 알루미나층 (alumina)을 형성하고 있다. As disclosed in Korean Patent Application Laid-Open No. 2002-78242, the method for forming a surface protective film by anodization is immersed in an electrolyte solution such as sulfuric acid, and then is less than 100V in a temperature range of 10 to 15°C, for example, 20 to 80V ) voltage and a current of 1 to 2 A/dm 2 (dm 2 =10 cm×10 cm) are applied to form an anodized film, that is, an alumina layer, on the surface of the part.

또한, 플라즈마 스프레이법에 의한 표면 보호막 형성방법은 대한민국 공개특허 제 2002-93267호에 개시된 바와 같이, 고속의 플라즈마 불꽃(plasma flame)내에 소정의 와이어 또는 분말 형태의 재료를 공급하여, 이들 와이어 또는 분말이 용융되도록 함으로써 부품 표면에 보호막을 형성하고 있다. In addition, as disclosed in Korean Patent Application Laid-Open No. 2002-93267, a method for forming a surface protection film by plasma spraying supplies a predetermined wire or powder-type material in a high-speed plasma flame, and the wire or powder By allowing this to melt, a protective film is formed on the surface of the part.

그러나, 상기한 양극 산화법 및 플라즈마 스프레이법에 의한 표면 보호막 제조방법은 다음과 같은 문제점 을 갖는다. However, the method for manufacturing a surface protection film by the anodization method and the plasma spray method has the following problems.

먼저, 종래의 양극 산화법에 의하여 형성된 알루미나층은 그 표면에 크랙 발생과 같은 다수의 표면 결함을 가진다. 이러한 표면 결함은 부품 표면의 결함이 그대로 반영된 것이므로, 양질의 막 특성을 가질 수 없다. 또한, 종래의 양극 산화법에 의한 알루미나층은 그 두께가 50 ㎛ 정도에 지나지 않아, 절연 파괴(breakdown) 가능성이 높고, 반도체 또는 FPD 공정의 내화학성 및 내마 모성 조건에 부합하지 않는다. 또한, 종래의 양극 산화법에 의한 알루미나층은 특정한 각도에서 피크치가 존재 하지 않으므로, 비정질 상태를 갖는다는 것을 유추할 수 있으며, 알루미나층이 비정질 상태를 가짐에 따라 매우 불안정한 상태를 갖게 된다. First, the alumina layer formed by the conventional anodization method has a number of surface defects such as cracks on the surface thereof. Since these surface defects reflect defects on the surface of the component as they are, they cannot have good film properties. In addition, since the alumina layer by the conventional anodization method has a thickness of only about 50 μm, the possibility of breakdown is high, and it does not meet the chemical resistance and wear resistance conditions of semiconductor or FPD processes. In addition, since the alumina layer by the conventional anodization method does not have a peak value at a specific angle, it can be inferred that it has an amorphous state, and as the alumina layer has an amorphous state, it has a very unstable state.

한편, 플라즈마 스프레이법에 의하여 형성된 표면 보호막은 보호막과 부품과의 결합력이 매우 낮아, 쉽게 박리되는 문제점이 있다. 이로 인하여 보호막과 부품사이에 파티클이 잔류하게 되는 문제점이 있다. 또한, 플라즈마 스프레이법은 보호막 형성 메카니즘(예컨대, 용사 코팅)에 의해 보호막내에 다수의 기공 (voids)이 형성될 수밖에 없고, 이러한 기공을 통하여 플라즈마 공정시 부식성이 강한 라디칼(radical)들 이 부품쪽으로 침투하여, 부품을 손상시킨다. 또한, 공정중에 잔류하는 성분에 의하여 쉽게 오염이 증대되 어, 웨이퍼 불량을 유발할 수 있고, 부품의 교환 주기를 단축시킨다는 문제점 또한 상존하고 있다.On the other hand, the surface protective film formed by the plasma spraying method has a problem in that the bonding force between the protective film and the parts is very low, and thus it is easily peeled off. Due to this, there is a problem in that particles remain between the protective film and the parts. In addition, in the plasma spray method, a number of voids are inevitably formed in the protective film by the protective film forming mechanism (eg, thermal spray coating), and through these pores, corrosive radicals during plasma processing are directed toward the part. Penetrates and damages parts. In addition, contamination is easily increased by the components remaining in the process, which can cause wafer defects, and there are also problems of shortening the replacement cycle of parts.

이에 따라, 반도체 제조 장비의 부품에 형성된 양극 산화막을 보호할 수 있는 코팅층 및 상기 부품의 내전압 및 물적 특성을 높일 수 있는 양극산화층 보호용 코팅 조성물의 개발에 대한 필요성은 항시 존재하고 있는 실정이다. Accordingly, there is a need for development of a coating layer capable of protecting an anodized film formed on a component of semiconductor manufacturing equipment and a coating composition for protecting an anodized layer capable of increasing the withstand voltage and physical properties of the component.

대한민국 공개특허 제10-2002-0078242호 (공개일 : 2002.10.18)Republic of Korea Patent Publication No. 10-2002-0078242 (published date: October 18, 2002) 대한민국 공개특허 제10-2002-0093267호 (공개일 : 2002.12.16)Republic of Korea Patent Publication No. 10-2002-0093267 (published date: December 16, 2002)

본 발명은 상기한 문제점을 해결하기 위한 것으로, 반도체 제조 장비의 부품에 형성된 양극산화층(예를 들어, AAO 피막)을 보호할 수 있는 코팅층을 형성할 수 있고, 상기 부품에 크랙이 생기지 않으면서도 내전압을 높일 수 있는 양극산화층 보호용 코팅 조성물을 제공하는 것이 목적이다.The present invention is to solve the above problems, and it is possible to form a coating layer capable of protecting the anodization layer (eg, AAO film) formed on the parts of semiconductor manufacturing equipment, and the withstanding voltage without cracking the parts It is an object to provide a coating composition for protecting the anodization layer that can increase the

또한, 본 발명은 반도체 제조 공정용 장비 챔버 부품의 양극산화층을 강화시킴으로써, 상기 부품의 내전압, 내식성, 경도, 내마모성, 내식성과 같은 특성을 향상시키고, 부품의 교체 주기를 늘려서 생산 효율을 향상 시키고자 하는 것이다. In addition, the present invention is to improve the characteristics such as withstand voltage, corrosion resistance, hardness, wear resistance, corrosion resistance of the component by strengthening the anodization layer of the equipment chamber component for the semiconductor manufacturing process, and to improve the production efficiency by increasing the replacement cycle of the component will do

상기한 목적을 달성하기 위한 본 발명의 일 실시형태에 따른 양극산화층 보호용 코팅 조성물은, 용매로서 플루오로부탄(fluorobutane) 100 중량부; 및 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene) 1 내지 8 중량부;를 포함하는 것이 특징이다. A coating composition for protecting an anodization layer according to an embodiment of the present invention for achieving the above object, 100 parts by weight of fluorobutane as a solvent; and 1 to 8 parts by weight of tetrafluoroethylene as a fluororesin.

여기서, 상기 플루오로부탄은 메톡시-노나플루오로부탄(methoxy-nonafluorobutane)이고, 상기 테트라플로로에틸렌은 PTFE(Polytetrafluoroethylene) 및 ETFE(Ethylenetetrafluoroethylene)로 이루어진 군에서 선택된 하나 이상인 것이 가능하다. Here, the fluorobutane is methoxy-nonafluorobutane, and the tetrafluoroethylene may be at least one selected from the group consisting of PTFE (Polytetrafluoroethylene) and ETFE (Ethylenetetrafluoroethylene).

그리고, 상기 테트라플로로에틸렌은 3 내지 7 중량부로 포함되는 것일 수 있다. And, the tetrafluoroethylene may be included in 3 to 7 parts by weight.

본 발명의 일 구현예는, 용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 포함하는 코팅액 90 중량부 ; 및 무기제로서 산화알루미늄(aluminium oxide, Al2O3) 1 내지 3 중량부;를 포함하는, 양극산화층 보호용 코팅 조성물이다.One embodiment of the present invention, 90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin; and 1 to 3 parts by weight of aluminum oxide as an inorganic agent (aluminum oxide, Al 2 O 3 ); It is a coating composition for protecting an anodized layer, including.

본 발명은 상기 산화알루미늄을 분산시킨 이소프로필알콜(IPA) 10 중량부를 더 포함하는 것이 가능하다. The present invention may further include 10 parts by weight of isopropyl alcohol (IPA) in which the aluminum oxide is dispersed.

상기 산화알루미늄은 불산 용액에 혼합된 후 감압여과로 표면개질된 것일 수 있다. The aluminum oxide may be surface-modified by filtration under reduced pressure after being mixed with a hydrofluoric acid solution.

본 발명의 다른 일 구현예는, 용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 포함하는 코팅액 90 중량부; 및 무기제로서 산화이트륨(Yttrium(III) oxide, Y2O3) 0.1 내지 0.6 중량부;를 포함하는, 양극산화층 보호용 코팅 조성물이다.Another embodiment of the present invention, 90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin; And yttrium oxide as an inorganic agent (Yttrium (III) oxide, Y 2 O 3 ) 0.1 to 0.6 parts by weight; Containing, is a coating composition for protecting the anodization layer.

본 발명은 상기 산화이트륨을 분산시킨 이스프로필알콜(IPA) 10 중량부를 더 포함하는 것이 가능하다. The present invention may further include 10 parts by weight of ispropyl alcohol (IPA) in which the yttrium oxide is dispersed.

상기 산화이트륨은 불산 용액에 혼합된 후 감압여과로 표면개질된 것일 수 있다. The yttrium oxide may be surface-modified by filtration under reduced pressure after being mixed with a hydrofluoric acid solution.

본 발명의 또 다른 일 구현예는, 반도체 제조 장비의 부품에 형성된 양극산화층을 보호하기 위한, 반도체 제조 장비 부품의 양극산화층 보호용 코팅 조성물이다.Another embodiment of the present invention is a coating composition for protecting an anodization layer of a semiconductor manufacturing equipment component, for protecting an anodization layer formed on a component of a semiconductor manufacturing equipment component.

본 발명의 다른 일 실시형태는, 반도체 제조 장비의 부품; 상기 부품 표면에 형성된 양극산화층; 및 상기한 본 발명에 따른 조성물에 의하여, 상기 양극산화층 표면에 형성된 보호코팅층;을 포함하는 반도체 제조 장비의 부품이다.Another embodiment of the present invention is a component of semiconductor manufacturing equipment; an anodization layer formed on the surface of the component; and a protective coating layer formed on the surface of the anodization layer by the composition according to the present invention.

상기 양극산화층은 알루미늄의 어노다이징(anodizing)에 의해 형성된 양극 산화 알루미늄(Anodic Aluminum Oxide : AAO) 피막인 것이 가능하다. The anodization layer may be an anodic aluminum oxide (AAO) film formed by anodizing aluminum.

기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다. The details of other embodiments are included in the detailed description and drawings.

이러한 본 발명에 따른 양극산화층 보호용 코팅 조성물은, 용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 특정한 비율로 포함하는 것을 특징으로 하여, 반도체 제조 장비의 부품에 형성된 양극산화층(예를 들어, AAO 피막)을 보호할 수 있는 코팅층을 형성할 수 있고, 이 경우 상기 부품에 크랙이 생기지 않으면서도 내전압을 높일 수 있는 효과가 있다. The coating composition for protecting an anodization layer according to the present invention is characterized in that it contains fluorobutane as a solvent and tetrafluoroethylene as a fluororesin in a specific ratio, the anode formed on parts of semiconductor manufacturing equipment A coating layer capable of protecting the oxide layer (eg, AAO film) may be formed, and in this case, there is an effect of increasing the withstand voltage without generating cracks in the component.

또한, 본 발명은 용매와 불소수지를 포함하는 양극산화층 보호용 코팅 조성물에 무기제로서 산화알루미늄(aluminium oxide, Al2O3) 또는 산화이트륨(Yttrium(III) oxide, Y2O3)을 더 포함하는 것을 특징으로 하여, 반도체 제조 장비의 부품에 크랙이 생기지 않으면서도 내전압을 현저히 우수하게 높일 수 있는 효과가 있다. In addition, the present invention further comprises aluminum oxide (aluminum oxide, Al 2 O 3 ) or yttrium oxide (Yttrium (III) oxide, Y 2 O 3 ) as an inorganic agent in the coating composition for protecting the anodization layer comprising a solvent and a fluororesin Characterized in that, there is an effect that can significantly increase the withstand voltage without cracks occurring in the parts of the semiconductor manufacturing equipment.

이러한 본 발명에 의하면, 반도체 제조 공정용 장비 챔버 부품의 양극산화층을 강화시킴으로써, 상기 부품의 내전압, 내식성, 경도, 내마모성, 내식성과 같은 특성을 향상시키고, 부품의 교체 주기를 늘려서 생산 효율을 향상 시킬 수 있다.According to the present invention, by strengthening the anodization layer of the equipment chamber component for the semiconductor manufacturing process, the characteristics such as withstand voltage, corrosion resistance, hardness, abrasion resistance, corrosion resistance of the component are improved, and the replacement cycle of the component is increased to improve production efficiency. can

도 1은 본 발명의 일 실시예에 따른 양극산화층 보호용 코팅 조성물을 이용하여, 반도체 제조 장비의 부품(Al 기판) 표면에 형성된 양극산화층(AAO 피막) 위에 보호코팅층(코팅막)을 형성한 일례를 나타내는 모식도이다. 1 shows an example in which a protective coating layer (coating film) is formed on an anodization layer (AAO film) formed on the surface of a component (Al substrate) of semiconductor manufacturing equipment using a coating composition for protecting an anodization layer according to an embodiment of the present invention it is a schematic diagram

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.

도 1은 본 발명의 일 실시예에 따른 양극산화층 보호용 코팅 조성물을 이용하여, 반도체 제조 장비의 부품(예를 들어, Al 기판) 표면에 형성된 양극산화층(예를 들어, AAO 피막) 위에 보호코팅층(코팅막)을 형성한 일례를 나타내는 모식도이다. 1 is a protective coating layer (eg, AAO film) on an anodization layer (eg, AAO film) formed on the surface of a component (eg, Al substrate) of semiconductor manufacturing equipment by using the coating composition for protecting an anodization layer according to an embodiment of the present invention; It is a schematic diagram showing an example in which a coating film) was formed.

본 발명은 양극산화층 보호용 코팅 조성물에 대한 것으로, 특히 반도체 제조 장비의 부품에 형성된 양극산화층을 보호할 수 있는 코팅층을 형성하기 위한 조성물이며, 상기 부품의 내전압 및 물적 특성을 높일 수 있는 양극산화층 보호용 코팅 조성물 및 이를 이용한 반도체 제조 장비의 부품에 관한 것이다. The present invention relates to a coating composition for protecting an anodization layer, particularly a composition for forming a coating layer capable of protecting an anodization layer formed on a component of semiconductor manufacturing equipment, and a coating for protecting an anodization layer that can increase the withstand voltage and physical properties of the component It relates to a composition and a component of a semiconductor manufacturing equipment using the same.

본 명세서에서 반도체 제조 장비는 특별히 제한되지 않고, 이 기술분야에 널리 알려진 CVD 장치, PVD 장치, 및 건식 식각 장치 등 반도체 및 FPD의 제조 공정에 사용되는 장치나 진공 챔버를 포함한다. In the present specification, semiconductor manufacturing equipment is not particularly limited, and includes a vacuum chamber or an apparatus used in the manufacturing process of semiconductors and FPDs, such as a CVD apparatus, a PVD apparatus, and a dry etching apparatus, which are well known in the art.

또한, 본 명세서에서 반도체 제조 장비의 부품은 특별히 제한되지 않고, 상기 반도체 제조 장비에 포함되는 다양한 부품을 의미하며, 예를 들어 진공 챔버의 각 부품 즉, 챔버 월 (chamber wall), 히터(heater)류, 전극(electrode), 라이너(liner)류, 쉴드(shield)류, 척(chuck)류 및 페데스탈(pedestal)류 등을 포함할 수 있다. In addition, in the present specification, the parts of the semiconductor manufacturing equipment are not particularly limited, and refer to various parts included in the semiconductor manufacturing equipment, for example, each part of the vacuum chamber, that is, a chamber wall (chamber wall), a heater (heater) It may include types, electrodes, liners, shields, chucks, pedestals, and the like.

본 발명의 일 실시형태에 따른 양극산화층 보호용 코팅 조성물은, 용매로서 플루오로부탄(fluorobutane) 100 중량부; 및 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene) 1 내지 8 중량부;를 포함하는 것이 특징이다. The coating composition for protecting an anodization layer according to an embodiment of the present invention includes 100 parts by weight of fluorobutane as a solvent; and 1 to 8 parts by weight of tetrafluoroethylene as a fluororesin.

본 발명자들은 양극산화층 보호용 코팅 조성물로서 용매로 플루오로부탄과 불소수지로 테트라플로로에틸렌을 특정한 비율로 포함하는 경우, 그렇지 않은 경우보다 반도체 제조 장비 부품의 내전압 및 물적 특성을 높일 수 있다는 것을 확인한 후, 본 발명을 완성하였다. After confirming that the present inventors can increase the withstand voltage and physical properties of semiconductor manufacturing equipment parts compared to the case where fluorobutane and tetrafluoroethylene as a solvent are included in a specific ratio as a solvent as a coating composition for protecting the anodization layer, , the present invention was completed.

구체적으로, 후술하는 실시예 1 및 실험예 1에서 확인할 수 있는 바와 같이, 용매로서 플루오로부탄 100 중량부에 대하여, 테트라플로로에틸렌 함량이 증가할 수록 내전압 수준도 커졌지만, 테트라플로로에틸렌이 10중량부에 달하는 경우 내전압이 오히려 감소하였고, 크랙도 발생하였다. 이에 따라, 가장 적합한 테트라플로로에틸렌의 함량은 1 내지 8 중량부이고, 더욱 바람직하게는 3 내지 7 중량부인 것을 확인할 수 있었다. Specifically, as can be seen in Example 1 and Experimental Example 1 to be described later, with respect to 100 parts by weight of fluorobutane as a solvent, as the tetrafluoroethylene content increases, the withstand voltage level also increases, but the tetrafluoroethylene When it reached 10 parts by weight, the withstand voltage was rather decreased, and cracks were also generated. Accordingly, it was confirmed that the most suitable content of tetrafluoroethylene is 1 to 8 parts by weight, and more preferably 3 to 7 parts by weight.

상기 플루오로부탄은 특별히 제한되지는 않지만 메톡시-노나플루오로부탄(methoxy-nonafluorobutane)인 것이 바람직하고, 상기 테트라플로로에틸렌 역시 특별히 제한되지 않으며 PTFE(Polytetrafluoroethylene) 및 ETFE(Ethylenetetrafluoroethylene)로 이루어진 군에서 선택된 하나 이상인 것이 바람직하다. The fluorobutane is not particularly limited, but methoxy-nonafluorobutane is preferable, and the tetrafluoroethylene is also not particularly limited, and from the group consisting of PTFE (Polytetrafluoroethylene) and ETFE (Ethylenetetrafluoroethylene) At least one selected is preferred.

본 발명의 일 구현예는, 용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 포함하는 코팅액 90 중량부 ; 및 무기제로서 산화알루미늄(aluminium oxide, Al2O3) 1 내지 3 중량부;를 포함하는, 양극산화층 보호용 코팅 조성물이다.One embodiment of the present invention, 90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin; and 1 to 3 parts by weight of aluminum oxide as an inorganic agent (aluminum oxide, Al 2 O 3 ); It is a coating composition for protecting an anodized layer, including.

본 발명자들은 양극산화층 보호용 코팅 조성물로서, 용매로 플루오로부탄과 불소수지로 테트라플로로에틸렌을 포함하는 코팅액에 대하여 무기제로서 산화알루미늄을 더 포함하거나, 또는 특정한 비율로 포함하는 경우, 그렇지 않은 경우보다 반도체 제조 장비 부품의 내전압 및 물적 특성을 현저히 높일 수 있다는 것을 확인한 후, 본 발명을 완성하였다. As a coating composition for protecting an anodized layer, the present inventors further include aluminum oxide as an inorganic agent with respect to a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin, or include in a specific ratio, otherwise After confirming that the withstand voltage and physical properties of semiconductor manufacturing equipment parts can be significantly improved, the present invention has been completed.

구체적으로, 후술하는 실시예 2 및 실험예 2에서 확인할 수 있는 바와 같이, 용매로서 플루오로부탄과 불소수지로서 테트라플로로에틸렌을 포함하는 코팅액 90 중량부에 대하여, 무기제로서 산화알루미늄(Al2O3)을 더 포함하는 Al2O3-불소 코팅액을 이용하면, 상기 산화알루미늄을 포함하지 않는 실시예 1의 경우와 비교하여, 내전압이 크게 상승하였음을 확인하였다. Specifically, as can be seen in Example 2 and Experimental Example 2 to be described later, with respect to 90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin, aluminum oxide (Al 2 ) O 3 ) When using the Al 2 O 3 -fluorine coating solution further containing, compared to the case of Example 1 not containing the aluminum oxide, it was confirmed that the withstand voltage was significantly increased.

또한, 전체적으로 산화알루미늄 함량이 증가할 수록 내전압 수준도 커졌지만, 산화알루미늄이 5중량부에 달하는 경우 내전압이 오히려 감소하였고, 크랙도 발생함을 확인하였다. 이에 따라, 가장 적합한 산화알루미늄의 함량은 1 내지 4 중량부이고, 더욱 바람직하게는 1 내지 3 중량부인 것을 확인할 수 있었다. In addition, it was confirmed that the withstand voltage level increased as the aluminum oxide content increased as a whole, but when the aluminum oxide amounted to 5 parts by weight, the withstand voltage was rather decreased and cracks occurred. Accordingly, it was confirmed that the most suitable content of aluminum oxide is 1 to 4 parts by weight, and more preferably 1 to 3 parts by weight.

여기서, 상기 산화알루미늄은 산화알루미늄을 분산시킨 이소프로필알콜(IPA)일 수 있고, 이러한 이소프로필알콜(IPA)은 10 중량부로 포함되는 것이 바람직하다. 산화알루미늄을 이소프로필알콜(IPA)에 분산시키면 상기 코팅액과의 혼합이 더잘되는 장점이 있어서 바람직하다. Here, the aluminum oxide may be isopropyl alcohol (IPA) in which aluminum oxide is dispersed, and the isopropyl alcohol (IPA) is preferably included in an amount of 10 parts by weight. Dispersing aluminum oxide in isopropyl alcohol (IPA) is preferable because it has the advantage of better mixing with the coating solution.

또한, 상기 산화알루미늄은 불산 용액에 혼합된 후 감압여과로 표면개질된 것일 수 있다. 예를 들어, 산화알루미늄을 불산 용액에 혼합하고, 감압여과를 진행한 후, 감압증류함으로서 표면이 개질된 산화알루미늄을 얻을 수 있다. 이렇게 표면 개질된 산화알루미늄을 무기제로 이용하면, 불소수지와의 반응성이 높아져서 더욱 유리한 효과를 얻을 수 있는 효과가 있다. In addition, the aluminum oxide may be surface-modified by filtration under reduced pressure after being mixed with a hydrofluoric acid solution. For example, aluminum oxide with a modified surface can be obtained by mixing aluminum oxide with a hydrofluoric acid solution, filtration under reduced pressure, and distillation under reduced pressure. When the surface-modified aluminum oxide is used as an inorganic agent, the reactivity with the fluororesin is increased to obtain more advantageous effects.

본 발명의 다른 일 구현예는, 용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 포함하는 코팅액 90 중량부; 및 무기제로서 산화이트륨(Yttrium(III) oxide, Y2O3) 0.1 내지 0.6 중량부;를 포함하는, 양극산화층 보호용 코팅 조성물이다.Another embodiment of the present invention, 90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin; And yttrium oxide as an inorganic agent (Yttrium (III) oxide, Y 2 O 3 ) 0.1 to 0.6 parts by weight; Containing, is a coating composition for protecting the anodization layer.

본 발명자들은 양극산화층 보호용 코팅 조성물로서, 용매로 플루오로부탄과 불소수지로 테트라플로로에틸렌을 포함하는 코팅액에 대하여 무기제로서 산화이트륨을 더 포함하거나, 또는 특정한 비율로 포함하는 경우, 그렇지 않은 경우보다 반도체 제조 장비 부품의 내전압 및 물적 특성을 현저히 높일 수 있다는 것을 확인한 후, 본 발명을 완성하였다. The present inventors have disclosed that, as a coating composition for protecting an anodization layer, yttrium oxide is further included as an inorganic agent with respect to a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin, or when it contains yttrium oxide in a specific ratio, otherwise After confirming that the withstand voltage and physical properties of semiconductor manufacturing equipment parts can be significantly improved, the present invention has been completed.

구체적으로, 후술하는 실시예 3 및 실험예 3에서 확인할 수 있는 바와 같이, 용매로서 플루오로부탄과 불소수지로서 테트라플로로에틸렌을 포함하는 코팅액 90 중량부에 대하여, 무기제로서 산화이트륨을 더 포함하는 Y2O3-불소 코팅액을 이용하면, 상기 산화이트륨을 포함하지 않는 실시예 1의 경우와 비교하여, 내전압이 크게 상승하였음을 확인하였다. Specifically, as can be seen in Example 3 and Experimental Example 3 to be described later, with respect to 90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin, yttrium oxide is further included as an inorganic agent By using the Y 2 O 3 -fluorine coating solution, it was confirmed that the withstand voltage was significantly increased compared to the case of Example 1 not containing the yttrium oxide.

또한, 전체적으로 산화이트륨 함량이 증가할 수록 내전압 수준도 커졌지만, 산화이트륨이 1.0 중량부에 달하는 경우 증가폭이 거의 없었고, 크랙도 발생함을 확인하였다. 이에 따라, 가장 적합한 산화이트륨의 함량은 0.1 내지 0.7 중량부이고, 더욱 바람직하게는 0.3 내지 0.5 중량부인 것을 확인할 수 있었다. In addition, as the overall yttrium oxide content increased, the withstand voltage level also increased, but when the yttrium oxide reached 1.0 parts by weight, there was little increase and cracks were also observed. Accordingly, it was confirmed that the most suitable content of yttrium oxide is 0.1 to 0.7 parts by weight, more preferably 0.3 to 0.5 parts by weight.

여기서, 상기 산화이트륨은 산화이트륨을 분산시킨 이소프로필알콜(IPA)일 수 있고, 이러한 이소프로필알콜(IPA)은 10 중량부로 포함되는 것이 바람직하다. 산화이트륨을 이소프로필알콜(IPA)에 분산시키면 상기 코팅액과의 혼합이 더잘되는 장점이 있어서 바람직하다. Here, the yttrium oxide may be isopropyl alcohol (IPA) in which yttrium oxide is dispersed, and the isopropyl alcohol (IPA) is preferably included in an amount of 10 parts by weight. Dispersing yttrium oxide in isopropyl alcohol (IPA) is preferable because it has the advantage of better mixing with the coating solution.

또한, 상기 산화이트륨은 불산 용액에 혼합된 후 감압여과로 표면개질된 것일 수 있다. 예를 들어, 산화이트륨을 불산 용액에 혼합하고, 감압여과를 진행한 후, 감압증류함으로서 표면이 개질된 산화이트륨을 얻을 수 있다. 이렇게 표면 개질된 산화이트륨을 무기제로 이용하면, 불소수지와의 반응성이 높아져서 더욱 유리한 효과를 얻을 수 있는 효과가 있다. In addition, the yttrium oxide may be surface-modified by filtration under reduced pressure after being mixed with a hydrofluoric acid solution. For example, yttrium oxide with a modified surface can be obtained by mixing yttrium oxide with a hydrofluoric acid solution, filtration under reduced pressure, and distillation under reduced pressure. When the surface-modified yttrium oxide is used as an inorganic agent, the reactivity with the fluororesin increases, thereby obtaining more advantageous effects.

본 발명의 또 다른 일 구현예는, 반도체 제조 장비의 부품에 형성된 양극산화층을 보호하기 위한, 반도체 제조 장비 부품의 양극산화층 보호용 코팅 조성물이다.Another embodiment of the present invention is a coating composition for protecting an anodization layer of a semiconductor manufacturing equipment component, for protecting an anodization layer formed on a component of a semiconductor manufacturing equipment component.

즉, 본 발명에 따른 상기 양극산화층 보호용 코팅 조성물은 반도체 제조 장비의 부품에 형성된 양극산화층을 보호하기 위한 것이다. That is, the coating composition for protecting the anodization layer according to the present invention is to protect the anodization layer formed on the components of semiconductor manufacturing equipment.

또한, 상기 양극산화층은 어노다이징(anodizing)에 의해 형성된 양극 산화 금속 피막일 수 있고, 예를 들어 알루미늄, 마그네슘, 아연, 티타늄 등을 양극 산화해서 제조한 피막일 수 있으며, 그 중에서도 양극 산화 알루미늄(AAO) 피막인 것이 바람직하다. In addition, the anodization layer may be an anodized metal film formed by anodizing, for example, a film produced by anodizing aluminum, magnesium, zinc, titanium, etc., among them, anodized aluminum (AAO) It is preferable that it is a film.

본 발명의 다른 일 실시형태는, 반도체 제조 장비의 부품; 상기 부품 표면에 형성된 양극산화층; 및 상기한 본 발명에 따른 조성물에 의하여, 상기 양극산화층 표면에 형성된 보호코팅층;을 포함하는 반도체 제조 장비의 부품이다.Another embodiment of the present invention is a component of semiconductor manufacturing equipment; an anodization layer formed on the surface of the component; and a protective coating layer formed on the surface of the anodization layer by the composition according to the present invention.

상기 반도체 제조 장비의 부품 및 양극산화층은 상술한 바와 같다. The components and the anodization layer of the semiconductor manufacturing equipment are the same as described above.

본 발명은 반도체 제조 장비의 부품에 형성된 양극산화층을 보호하기 위하여 보호코팅층을 형성하되, 특별히 상기한 바와 같은 본 발명에 따른 조성물을 이용하여 보호코팅층을 형성하는 것이 특징이다. The present invention is characterized in that the protective coating layer is formed to protect the anodization layer formed on the components of semiconductor manufacturing equipment, and the protective coating layer is formed using the composition according to the present invention as described above.

상기 양극산화층은 알루미늄의 어노다이징(anodizing)에 의해 형성된 양극 산화 알루미늄(Anodic Aluminum Oxide : AAO) 피막인 것이 가능하다. The anodization layer may be an anodic aluminum oxide (AAO) film formed by anodizing aluminum.

이러한 본 발명에 따른 반도체 제조 장비의 부품은 크랙이 생기지 않으면서도 내전압이 현저히 우수한 효과를 가진다. The components of the semiconductor manufacturing equipment according to the present invention have the effect of remarkably excellent withstand voltage without generating cracks.

이러한 본 발명에 의하면, 반도체 제조 공정용 장비 챔버 부품의 양극산화층을 강화시킴으로써, 상기 부품의 내전압, 내식성, 경도, 내마모성, 내식성과 같은 특성을 향상시키고, 부품의 교체 주기를 늘려서 생산 효율을 향상 시킬 수 있다.According to the present invention, by strengthening the anodization layer of the equipment chamber component for the semiconductor manufacturing process, the characteristics such as withstand voltage, corrosion resistance, hardness, abrasion resistance, corrosion resistance of the component are improved, and the replacement cycle of the component is increased to improve production efficiency. can

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해 될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며, 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The present invention may be better understood by the following examples, which are for illustrative purposes of the present invention and are not intended to limit the scope of protection defined by the appended claims.

<실시예 1> 불소 코팅액의 제조 및 코팅층의 형성<Example 1> Preparation of Fluorine Coating Solution and Formation of Coating Layer

메톡시-노나플루오로부탄(methoxy-nonafluorobutane) 용매 100중량부에 불소수지인 테트라플로로에틸렌(듀퐁사, SLA-NEW) 3 중량부(실시예 1.1), 5 중량부(실시예 1.2), 7 중량부(실시예 1.3), 10 중량부(실시예 1.4)를 각각 별도로 혼합하여 불소 코팅액을 제조하였다. 3 parts by weight (Example 1.1), 5 parts by weight (Example 1.2) of fluororesin tetrafluoroethylene (DuPont, SLA-NEW) in 100 parts by weight of a methoxy-nonafluorobutane solvent; 7 parts by weight (Example 1.3) and 10 parts by weight (Example 1.4) were separately mixed to prepare a fluorine coating solution.

Al 6061 소재(50mm x 50mm x 5T) 시편에, 양극산화 공정으로 AAO(Anodic Aluminum Oxide) 피막을 50um 두께로 형성하였다. 그런 다음, 상기 제조한 불소 코팅액에 침지해서 딥코팅을 실시하여 불소 코팅층을 형성하였다. On an Al 6061 material (50mm x 50mm x 5T) specimen, an anodic aluminum oxide (AAO) film was formed to a thickness of 50 μm by an anodization process. Then, the fluorine coating layer was formed by dip coating by immersion in the prepared fluorine coating solution.

<실험예 1> 불소 코팅층이 형성된 Al 소재의 특성 측정<Experimental Example 1> Measurement of properties of Al material with fluorine coating layer

상기 실시예 1에 따라 불소 코팅층이 형성된 Al 소재를, 대기중에서 1h 동안 자연건조 한 후, 80℃ 에서 열풍건조를 4시간 진행한 다음, 내전압과 크랙 발생 여부를 확인하였다. The Al material on which the fluorine coating layer was formed according to Example 1 was naturally dried in the air for 1 h, followed by hot air drying at 80° C. for 4 hours, and then the withstand voltage and cracks were checked.

내전압은 TOS9201(KIKUSUI社) 내전압 측정 장비를 사용하여 voltage를 상승시키면서 절연층의 파괴되는 방법으로 내전압을 측정하였고, 크랙은 image analyzer을 사용하여 코팅 전 후를 비교하여 표면의 이미지를 측정하는 방법으로 확인하였다. The withstand voltage was measured by breaking the insulating layer while increasing the voltage using TOS9201 (KIKUSUI) withstand voltage measuring equipment. Confirmed.

그 결과는 하기 표 1에 나타난 바와 같다. The results are shown in Table 1 below.

테트라플로로에틸렌tetrafluoroethylene 내전압withstand voltage 크랙crack 실시예 1.1Example 1.1 3 중량부3 parts by weight 1.411.41 없음doesn't exist 실시예 1.2Example 1.2 5 중량부5 parts by weight 1.491.49 없음doesn't exist 실시예 1.3Example 1.3 7 중량부7 parts by weight 1.561.56 없음doesn't exist 실시예 1.4Example 1.4 10 중량부10 parts by weight 1.551.55 발생함occurred

상기 표 1에 나타난 바와 같이, 전체적으로 테트라플로로에틸렌 함량이 증가할 수록 내전압 수준도 커졌지만, 테트라플로로에틸렌이 10중량부에 달하는 경우 내전압이 오히려 감소하였고, 크랙도 발생함을 확인하였다. As shown in Table 1, as the overall tetrafluoroethylene content increased, the withstand voltage level also increased, but when the tetrafluoroethylene content reached 10 parts by weight, the withstand voltage was rather decreased, and it was confirmed that cracks occurred.

이에 따라, 가장 적합한 테트라플로로에틸렌의 함량은 1 내지 8 중량부이고, 더욱 바람직하게는 3 내지 7 중량부인 것을 확인할 수 있었다. Accordingly, it was confirmed that the most suitable content of tetrafluoroethylene is 1 to 8 parts by weight, and more preferably 3 to 7 parts by weight.

<실시예 2> Al<Example 2> Al 22 OO 33 -불소 코팅액의 제조 및 코팅층의 형성-Preparation of fluorine coating solution and formation of coating layer

먼저, 무기제로서 30nm의 산화알루미늄(Al2O3) 5 중량부를 1,000 중량부의 불산 용액에 혼합하고, 교반기를 이용하여 300~700rpm의 회전속도로 12시간 진행 후 감압여과를 진행하였다. 그런 다음, 상기 감압여과한 여과액을 감압증류하여 표면개질된 산화알루미늄을 준비하였다. First, as an inorganic agent, 5 parts by weight of 30 nm aluminum oxide (Al 2 O 3 ) was mixed with 1,000 parts by weight of a hydrofluoric acid solution, followed by 12 hours at a rotation speed of 300 to 700 rpm using a stirrer, followed by filtration under reduced pressure. Then, the filtrate filtered under reduced pressure was distilled under reduced pressure to prepare surface-modified aluminum oxide.

이어서, 상기 표면개질된 산화알루미늄 1 중량부(실시예 2.1), 3 중량부(실시예 2.2), 5 중량부(실시예 2.3)를 각각 이소프로필알콜(IPA) 10중량부에 분산시킨 후, 상기 실시예 1.3으로 제조한 코팅액 90중량부에 혼합하여 Al2O3-불소 코팅액을 제조하였다. Then, 1 part by weight (Example 2.1), 3 parts by weight (Example 2.2), and 5 parts by weight (Example 2.3) of the surface-modified aluminum oxide were dispersed in 10 parts by weight of isopropyl alcohol (IPA), respectively, Al 2 O 3 -Fluorine coating solution was prepared by mixing 90 parts by weight of the coating solution prepared in Example 1.3.

Al 6061 소재(50mm x 50mm x 5T) 시편에, 양극산화 공정으로 AAO(Anodic Aluminum Oxide) 피막을 50um 두께로 형성하였다. 그런 다음, 상기 제조한 Al2O3-불소 코팅액에 침지해서 딥코팅을 실시하여 Al2O3-불소 코팅층을 형성하였다. On an Al 6061 material (50mm x 50mm x 5T) specimen, an anodic aluminum oxide (AAO) film was formed to a thickness of 50 μm by an anodization process. Then, by dipping in the prepared Al 2 O 3 -fluorine coating solution, dip coating was performed to form an Al 2 O 3 -fluorine coating layer.

<실험예 2> Al<Experimental Example 2> Al 22 OO 33 -불소 코팅층이 형성된 Al 소재의 특성 측정-Measurement of properties of Al material with fluorine coating layer

상기 실시예 2에 따라 Al2O3-불소 코팅층이 형성된 Al 소재를, 대기중에서 1h 동안 자연건조 한 후, 80℃ 에서 열풍건조를 4시간 진행한 다음, 내전압과 크랙 발생 여부를 확인하였다. According to Example 2, the Al material with the Al 2 O 3 -fluorine coating layer formed thereon was naturally dried in the air for 1 h, followed by hot air drying at 80° C. for 4 hours, and then the withstand voltage and cracks were checked.

내전압 측정 및 크랙 확인 방법은 상술한 바와 동일하다. The method for measuring the withstand voltage and checking for cracks is the same as described above.

그 결과는 하기 표 2에 나타난 바와 같다. The results are shown in Table 2 below.

표면개질된 산화알루미늄Surface-modified aluminum oxide 내전압withstand voltage 크랙crack 실시예 2.1Example 2.1 1 중량부1 part by weight 1.731.73 없음doesn't exist 실시예 2.2Example 2.2 3 중량부3 parts by weight 1.851.85 없음doesn't exist 실시예 2.3Example 2.3 5 중량부5 parts by weight 1.781.78 발생함occurred

상기 표 2에 나타난 바와 같이, 무기제로서 산화알루미늄(Al2O3)을 더 포함하는 Al2O3-불소 코팅액을 이용하면, 상기 산화알루미늄을 포함하지 않는 실시예 1의 경우와 비교하여, 내전압이 크게 상승하였음을 확인하였다. As shown in Table 2 above, when using the Al 2 O 3 -fluorine coating solution further containing aluminum oxide (Al 2 O 3 ) as an inorganic agent, compared to the case of Example 1 that does not contain the aluminum oxide, It was confirmed that the withstand voltage increased significantly.

또한, 전체적으로 산화알루미늄 함량이 증가할 수록 내전압 수준도 커졌지만, 산화알루미늄이 5중량부에 달하는 경우 내전압이 오히려 감소하였고, 크랙도 발생함을 확인하였다. 이에 따라, 가장 적합한 산화알루미늄의 함량은 1 내지 4 중량부이고, 더욱 바람직하게는 1 내지 3 중량부인 것을 확인할 수 있었다. In addition, it was confirmed that the withstand voltage level increased as the content of aluminum oxide increased as a whole, but when the amount of aluminum oxide reached 5 parts by weight, the withstand voltage was rather decreased and cracks occurred. Accordingly, it was confirmed that the most suitable content of aluminum oxide is 1 to 4 parts by weight, and more preferably 1 to 3 parts by weight.

<실시예 3> Y<Example 3> Y 22 OO 33 -불소 코팅액의 제조 및 코팅층의 형성-Preparation of fluorine coating solution and formation of coating layer

먼저, 무기제로서 30nm의 산화이트륨(Yttrium(III) oxide, Y2O3) 5 중량부를 1,000 중량부의 불산 용액에 혼합하고, 교반기를 이용하여 300~700rpm의 회전속도로 12시간 진행 후 감압여과를 진행하였다. 그런 다음, 상기 감압여과한 여과액을 감압증류하여 표면개질된 산화이트륨을 준비하였다. First, as an inorganic agent, 5 parts by weight of 30 nm yttrium oxide (Yttrium (III) oxide, Y 2 O 3 ) were mixed with 1,000 parts by weight of a hydrofluoric acid solution, followed by 12 hours at a rotation speed of 300 to 700 rpm using a stirrer, followed by filtration under reduced pressure. proceeded. Then, the filtrate filtered under reduced pressure was distilled under reduced pressure to prepare a surface-modified yttrium oxide.

이어서, 상기 표면개질된 산화이트륨 0.3 중량부(실시예 3.1), 0.5 중량부(실시예 3.2), 0.1 중량부(실시예 3.3)를 각각 이소프로필알콜(IPA) 10중량부에 분산시킨 후, 상기 실시예 1.3으로 제조한 코팅액 90중량부에 혼합하여 Y2O3-불소 코팅액을 제조하였다. Then, 0.3 parts by weight of the surface-modified yttrium oxide (Example 3.1), 0.5 parts by weight (Example 3.2), and 0.1 parts by weight (Example 3.3) were dispersed in 10 parts by weight of isopropyl alcohol (IPA), respectively, By mixing 90 parts by weight of the coating solution prepared in Example 1.3, Y 2 O 3 -fluorine coating solution was prepared.

Al 6061 소재(50mm x 50mm x 5T) 시편에, 양극산화 공정으로 AAO(Anodic Aluminum Oxide) 피막을 50um 두께로 형성하였다. 그런 다음, 상기 제조한 Y2O3-불소 코팅액에 침지해서 딥코팅을 실시하여 Y2O3-불소 코팅층을 형성하였다. On an Al 6061 material (50mm x 50mm x 5T) specimen, an anodic aluminum oxide (AAO) film was formed to a thickness of 50 μm by an anodization process. Then, by immersing in the prepared Y 2 O 3 -fluorine coating solution, dip coating was performed to form a Y 2 O 3 -fluorine coating layer.

<실험예 3> Y<Experimental Example 3> Y 22 OO 33 -불소 코팅층이 형성된 Al 소재의 특성 측정-Measurement of properties of Al material with fluorine coating layer

상기 실시예 3에 따라 Y2O3-불소 코팅층이 형성된 Al 소재를, 대기중에서 1h 동안 자연건조 한 후, 80℃ 에서 열풍건조를 4시간 진행한 다음, 내전압과 크랙 발생 여부를 확인하였다. According to Example 3, Y 2 O 3 -Al material with a fluorine coating layer formed thereon was naturally dried in the air for 1 h, followed by hot air drying at 80° C. for 4 hours, and then the withstand voltage and cracks were checked.

내전압 측정 및 크랙 확인 방법은 상술한 바와 동일하다. The method for measuring the withstand voltage and checking for cracks is the same as described above.

그 결과는 하기 표 3에 나타난 바와 같다. The results are shown in Table 3 below.

표면개질된 산화이트륨Surface-modified yttrium oxide 내전압withstand voltage 크랙crack 실시예 3.1Example 3.1 0.3 중량부0.3 parts by weight 1.681.68 없음doesn't exist 실시예 3.2Example 3.2 0.5 중량부0.5 parts by weight 1.761.76 없음doesn't exist 실시예 3.3Example 3.3 1.0 중량부1.0 part by weight 1.771.77 발생함occurred

상기 표 3에 나타난 바와 같이, 무기제로서 산화이트륨(Y2O3)을 더 포함하는 Y2O3-불소 코팅액을 이용하면, 상기 산화이트륨을 포함하지 않는 실시예 1의 경우와 비교하여, 내전압이 크게 상승하였음을 확인하였다. As shown in Table 3, when using the Y 2 O 3 -fluorine coating solution further containing yttrium oxide (Y 2 O 3 ) as an inorganic agent, compared to Example 1 not containing the yttrium oxide, It was confirmed that the withstand voltage increased significantly.

또한, 전체적으로 산화이트륨 함량이 증가할 수록 내전압 수준도 커졌지만, 산화이트륨이 1.0 중량부에 달하는 경우 증가폭이 거의 없었고, 크랙도 발생함을 확인하였다. 이에 따라, 가장 적합한 산화이트륨의 함량은 0.1 내지 0.7 중량부이고, 더욱 바람직하게는 0.3 내지 0.5 중량부인 것을 확인할 수 있었다. In addition, as the overall yttrium oxide content increased, the withstand voltage level increased, but when the yttrium oxide reached 1.0 parts by weight, there was little increase and cracks were also observed. Accordingly, it was confirmed that the most suitable content of yttrium oxide is 0.1 to 0.7 parts by weight, more preferably 0.3 to 0.5 parts by weight.

<비교예> <Comparative example>

비교예 1Comparative Example 1

Al 6061 소재(50mm x 50mm x 5T) 시편에, 양극산화 공정으로 AAO(Anodic Aluminum Oxide) 피막을 50um 두께로 형성하였다. AAO 피막이 50um 두께로 형성된 Al 소재를, 대기중에서 1h 동안 자연건조 한 후, 80℃ 에서 열풍건조를 4시간 진행한 다음, 내전압과 크랙 발생 여부를 확인하였다. 내전압 측정 및 크랙 확인 방법은 상술한 바와 동일하다.On an Al 6061 material (50mm x 50mm x 5T) specimen, an anodic aluminum oxide (AAO) film was formed to a thickness of 50 μm by an anodization process. The Al material with an AAO film formed to a thickness of 50 μm was naturally dried in the air for 1 h, followed by hot air drying at 80° C. for 4 hours, and then the withstand voltage and cracks were checked. The method for measuring the withstand voltage and checking for cracks is the same as described above.

비교예 2Comparative Example 2

Al 6061 소재(50mm x 50mm x 5T) 시편에, 양극산화 공정으로 AAO(Anodic Aluminum Oxide) 피막을 80um 두께로 형성하였다. AAO 피막이 80um 두께로 형성된 Al 소재를, 대기중에서 1h 동안 자연건조 한 후, 80℃ 에서 열풍건조를 4시간 진행한 다음, 내전압과 크랙 발생 여부를 확인하였다. 내전압 측정 및 크랙 확인 방법은 상술한 바와 동일하다.An AAO (Anodic Aluminum Oxide) film was formed to a thickness of 80 μm on an Al 6061 material (50 mm x 50 mm x 5T) specimen by an anodization process. The Al material with an AAO film formed to a thickness of 80 μm was naturally dried in the air for 1 h, followed by hot air drying at 80° C. for 4 hours, and then the withstand voltage and cracks were checked. The method for measuring the withstand voltage and checking for cracks is the same as described above.

비교예 3Comparative Example 3

Al 6061 소재(50mm x 50mm x 5T) 시편을, 상기 실시예 2.2에 따른 Al2O3-불소 코팅액에 침지해서 딥코팅을 실시하여 Al2O3-불소 코팅층을 형성하였다. 그리고, 상기 Al2O3-불소 코팅층이 형성된 Al 소재를, 대기중에서 1h 동안 자연건조 한 후, 80℃ 에서 열풍건조를 4시간 진행한 다음, 내전압과 크랙 발생 여부를 확인하였다. 내전압 측정 및 크랙 확인 방법은 상술한 바와 동일하다. An Al 6061 material (50mm x 50mm x 5T) specimen was immersed in the Al 2 O 3 -fluorine coating solution according to Example 2.2 and dip coating was performed to form an Al 2 O 3 -fluorine coating layer. Then, the Al 2 O 3 -Al material with the fluorine coating layer was dried naturally for 1 h in the air, followed by hot air drying at 80° C. for 4 hours, and then the withstand voltage and cracks were checked. The method of measuring the withstand voltage and checking the crack is the same as described above.

그 결과는 하기 표 4에 나타난 바와 같다. The results are shown in Table 4 below.

AAO 피막AAO film 코팅층coating layer 내전압withstand voltage 크랙crack 비교예 1Comparative Example 1 50um50um 없음doesn't exist 1.121.12 없음doesn't exist 비교예 2Comparative Example 2 80um80um 없음doesn't exist 1.141.14 없음doesn't exist 비교예 3Comparative Example 3 없음doesn't exist Al2O3-불소 코팅액Al 2 O 3 -fluorine coating solution 1.081.08 발생함occurred

상기 표 4에 나타난 바와 같이, 본 발명에 따른 코팅층이 없거나 AAO 피막이 없는 경우, 내전압 크기가 현저히 작았고, AAO 피막이 없는 경우에는 크랙도 발생하였음을 확인하였다.As shown in Table 4, when there is no coating layer according to the present invention or no AAO film, the magnitude of the withstand voltage is remarkably small, and it was confirmed that cracks occurred in the absence of the AAO film.

상기에서는 본 발명을 특정의 바람직한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 마련되는 본 발명의 기술적 특징이나 분야를 이탈하지 않는 한도 내에서 본 발명이 다양하게 개조 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 명백한 것이다. Although the present invention has been shown and described in relation to specific preferred embodiments, the present invention may be modified and changed in various ways without departing from the technical features or fields of the present invention provided by the following claims. It will be apparent to one of ordinary skill in the art.

Claims (12)

삭제delete 삭제delete 삭제delete 용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 포함하는 코팅액 90 중량부 ; 및
무기제로서 산화알루미늄(aluminium oxide, Al2O3) 1 내지 3 중량부;를 포함하는, 양극산화층 보호용 코팅 조성물.
90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin; and
1 to 3 parts by weight of aluminum oxide as an inorganic agent (aluminum oxide, Al 2 O 3 ); Containing, a coating composition for protecting an anodized layer.
제4항에 있어서,
상기 산화알루미늄을 분산시킨 이스프로필알콜(IPA) 10 중량부를 더 포함하는 것을 특징으로 하는, 양극산화층 보호용 코팅 조성물.
5. The method of claim 4,
The coating composition for protecting the anodization layer, characterized in that it further comprises 10 parts by weight of ispropyl alcohol (IPA) in which the aluminum oxide is dispersed.
제4항에 있어서,
상기 산화알루미늄은 불산 용액에 혼합된 후 감압여과로 표면개질된 것임을 특징으로 하는, 양극산화층 보호용 코팅 조성물.
5. The method of claim 4,
The aluminum oxide is mixed with a hydrofluoric acid solution, and then surface-modified by filtration under reduced pressure, the coating composition for the protection of the anodization layer.
용매로서 플루오로부탄(fluorobutane)과 불소수지로서 테트라플로로에틸렌(tetrafluoroethylene)을 포함하는 코팅액 90 중량부; 및
무기제로서 산화이트륨(Yttrium(III) oxide, Y2O3) 0.1 내지 0.6 중량부;를 포함하는, 양극산화층 보호용 코팅 조성물.
90 parts by weight of a coating solution containing fluorobutane as a solvent and tetrafluoroethylene as a fluororesin; and
As an inorganic agent, yttrium oxide (Yttrium (III) oxide, Y 2 O 3 ) 0.1 to 0.6 parts by weight; Containing, a coating composition for protecting an anodized layer.
제7항에 있어서,
상기 산화이트륨을 분산시킨 이소프로필알콜(IPA) 10 중량부를 더 포함하는 것을 특징으로 하는, 양극산화층 보호용 코팅 조성물.
8. The method of claim 7,
The coating composition for protecting the anodization layer, characterized in that it further comprises 10 parts by weight of isopropyl alcohol (IPA) in which the yttrium oxide is dispersed.
제7항에 있어서,
상기 산화이트륨은 불산 용액에 혼합된 후 감압여과로 표면개질된 것임을 특징으로 하는, 양극산화층 보호용 코팅 조성물.
8. The method of claim 7,
The yttrium oxide is mixed with a hydrofluoric acid solution and then surface-modified by filtration under reduced pressure, the coating composition for the protection of the anodization layer.
제4항 내지 제9항 중 어느 한 항에 있어서,
반도체 제조 장비의 부품에 형성된 양극산화층을 보호하기 위한,
반도체 제조 장비 부품의 양극산화층 보호용 코팅 조성물.
10. The method according to any one of claims 4 to 9,
To protect the anodization layer formed on the parts of semiconductor manufacturing equipment,
A coating composition for protecting the anodization layer of semiconductor manufacturing equipment parts.
반도체 제조 장비의 부품;
상기 부품 표면에 형성된 양극산화층; 및
제4항 내지 제9항 중 어느 한 항에 따른 조성물에 의하여, 상기 양극산화층 표면에 형성된 보호코팅층;을 포함하는 반도체 제조 장비의 부품.
parts of semiconductor manufacturing equipment;
an anodization layer formed on the surface of the component; and
A component of a semiconductor manufacturing equipment comprising a; by the composition according to any one of claims 4 to 9, a protective coating layer formed on the surface of the anodization layer.
제11항에 있어서,
상기 양극산화층은 알루미늄의 어노다이징(anodizing)에 의해 형성된 양극 산화 알루미늄(Anodic Aluminum Oxide : AAO) 피막인 것을 특징으로 하는, 반도체 제조 장비의 부품.
12. The method of claim 11,
The anodization layer is an anodic aluminum oxide (AAO) film formed by anodizing aluminum, a component of a semiconductor manufacturing equipment, characterized in that.
KR1020220032242A 2022-03-15 2022-03-15 Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae KR102403216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220032242A KR102403216B1 (en) 2022-03-15 2022-03-15 Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220032242A KR102403216B1 (en) 2022-03-15 2022-03-15 Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae

Publications (1)

Publication Number Publication Date
KR102403216B1 true KR102403216B1 (en) 2022-05-30

Family

ID=81796697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220032242A KR102403216B1 (en) 2022-03-15 2022-03-15 Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae

Country Status (1)

Country Link
KR (1) KR102403216B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078242A (en) 2001-04-06 2002-10-18 두라금속공업 (주) aluminum surface treatment method
KR20020093267A (en) 2001-06-07 2002-12-16 엘지전자 주식회사 Fabrication Method of Using Plasma Spray Coation
JP2017502175A (en) * 2014-01-03 2017-01-19 ザ・ボーイング・カンパニーThe Boeing Company Composition and method for preventing corrosion of anodized materials
JP2020185567A (en) * 2019-05-09 2020-11-19 ポール・コーポレーションPall Corporation Porous membrane having fluoropolymer as surface treatment agent
KR20210103699A (en) * 2020-02-14 2021-08-24 (주)지엠씨텍 Frame for semiconductor processing equipment comprising anodizing layer and antistatic layer and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020078242A (en) 2001-04-06 2002-10-18 두라금속공업 (주) aluminum surface treatment method
KR20020093267A (en) 2001-06-07 2002-12-16 엘지전자 주식회사 Fabrication Method of Using Plasma Spray Coation
JP2017502175A (en) * 2014-01-03 2017-01-19 ザ・ボーイング・カンパニーThe Boeing Company Composition and method for preventing corrosion of anodized materials
JP2020185567A (en) * 2019-05-09 2020-11-19 ポール・コーポレーションPall Corporation Porous membrane having fluoropolymer as surface treatment agent
KR20210103699A (en) * 2020-02-14 2021-08-24 (주)지엠씨텍 Frame for semiconductor processing equipment comprising anodizing layer and antistatic layer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI629167B (en) Corrosion resistant aluminum coating on plasma chamber components
JP6312278B2 (en) Emissivity-tuned coating for semiconductor chamber components
JP5978236B2 (en) Method for coating semiconductor processing equipment with protective film containing yttrium
CN1249789C (en) Plasma processing container internal parts
US6776873B1 (en) Yttrium oxide based surface coating for semiconductor IC processing vacuum chambers
US8282987B2 (en) Aluminum-plated components of semiconductor material and methods of manufacturing the components
US20100323124A1 (en) Sealed plasma coatings
US20140127911A1 (en) Palladium plated aluminum component of a plasma processing chamber and method of manufacture thereof
CN112553592B (en) Method for processing electrostatic chuck by using ALD (atomic layer deposition) process
KR102403216B1 (en) Coating composition for protecting anodic oxide layer and element of semiconductor manufacturing apparatus using the smae
JP2006082474A (en) Resin member
JP2009029686A (en) Corrosion-resistant member, its production method, and its treatment apparatus
KR102443973B1 (en) Anodized Al or Al alloy member having good decay resistance and insulation property and the method for manufacturing the member
TW202202652A (en) Yttrium fluoride films and methods of preparing and using yttrium fluoride films
CN112713072B (en) Internal parts of plasma processing chamber and method for manufacturing the same
KR102507838B1 (en) Coating composition for protecting anodic oxide layer, having fluorine-containing alkoxy silane
KR102662552B1 (en) Method for forming oxide film on materials containing aluminum and aluminum-containing materials resulting therefrom
KR100558536B1 (en) Method for manufacturing surface protection layer on the parts of apparatus for manufacturing semiconductor and the parts of apparatus for semiconductor formed the surface protection layer
EP4202079A1 (en) Corrosion-resistant member
KR20230107643A (en) Articles coated with crack-resistant fluoro-annealed films and manufacturing methods
KR20230027298A (en) Erosion-resistant metal fluoride coated articles, methods of making and using them
CN116356319A (en) Preparation method of high-compactness corrosion-resistant high-cleanness composite coating

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant