KR102401216B1 - Insulation material containing polyisocyanurate with reduced toxic combustion gasL - Google Patents

Insulation material containing polyisocyanurate with reduced toxic combustion gasL Download PDF

Info

Publication number
KR102401216B1
KR102401216B1 KR1020200070030A KR20200070030A KR102401216B1 KR 102401216 B1 KR102401216 B1 KR 102401216B1 KR 1020200070030 A KR1020200070030 A KR 1020200070030A KR 20200070030 A KR20200070030 A KR 20200070030A KR 102401216 B1 KR102401216 B1 KR 102401216B1
Authority
KR
South Korea
Prior art keywords
weight
parts
acid
polyisocyanurate
insulating material
Prior art date
Application number
KR1020200070030A
Other languages
Korean (ko)
Other versions
KR20210153777A (en
Inventor
남중우
이은규
정민호
최영락
Original Assignee
디엘이앤씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디엘이앤씨 주식회사 filed Critical 디엘이앤씨 주식회사
Priority to KR1020200070030A priority Critical patent/KR102401216B1/en
Publication of KR20210153777A publication Critical patent/KR20210153777A/en
Application granted granted Critical
Publication of KR102401216B1 publication Critical patent/KR102401216B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/14Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0042Use of organic additives containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Building Environments (AREA)

Abstract

본 발명은 단열재층 및 표면층을 포함하고, 상기 단열재층은, 다공성 발포체이고, 폴리올 100 중량부, 상기 폴리올 100 중량부에 대해, 물리적 발포제 10 내지 20 중량부 및 폴리이소시아네이트 160 내지 250 중량부를 포함하고, 상기 폴리올 100 중량부는, 폴리에스테르 폴리올 혼합물 80 내지 100 중량부, 상기 폴리에스테르 폴리올 혼합물 100 중량부에 대해, 분자 양 끝단에 수산화기를 가진 수산화 화합물 1 내지 20 중량부, 수산화 칼륨과 1관능 유기산과의 에스테르화 반응으로 얻어진 폴리이소시아누레이트 전환촉매 0.1 내지 10 중량부, 분자 구조상에 NH2를 포함하는 아민 성분을 포함하는 우레탄 촉매 0.1 내지 10 중량부, 분자 구조상에 Si-0- 실록산을 포함하고, PO(Propylene Oxide)와 EO (Ethylene Oxide)의 부가반응으로 합성된 실록산 정포제 0.1 내지 5.0 중량부 및 분자 구조상에 인을 포함하는 액상형 인계 난연제 1 내지 30 중량부를 포함하는 폴리이소시아누레이트를 포함하는 단열재를 개시한다.The present invention includes a heat insulating material layer and a surface layer, wherein the heat insulating material layer is a porous foam, 100 parts by weight of a polyol, 10 to 20 parts by weight of a physical foaming agent and 160 to 250 parts by weight of a polyisocyanate based on 100 parts by weight of the polyol, , 100 parts by weight of the polyol, 80 to 100 parts by weight of the polyester polyol mixture, 100 parts by weight of the polyester polyol mixture, 1 to 20 parts by weight of a hydroxide compound having hydroxyl groups at both ends of the molecule, potassium hydroxide and a monofunctional organic acid 0.1 to 10 parts by weight of a polyisocyanurate conversion catalyst obtained by the esterification of , Polyisocyanurate containing 0.1 to 5.0 parts by weight of a siloxane stabilizer synthesized by the addition reaction of PO (Propylene Oxide) and EO (Ethylene Oxide) and 1 to 30 parts by weight of a liquid phosphorus-based flame retardant containing phosphorus in its molecular structure Disclosed is an insulating material.

Description

연소가스 유독성이 저감된 폴리이소시아누레이트를 포함하는 단열재{Insulation material containing polyisocyanurate with reduced toxic combustion gasL}Insulation material containing polyisocyanurate with reduced toxicity of combustion gas {Insulation material containing polyisocyanurate with reduced toxic combustion gasL}

본 발명은 연소가스 유독성이 저감된 폴리이소시아누레이트를 포함하는 단열재에 관한 것이다.The present invention relates to a heat insulating material containing polyisocyanurate with reduced flue gas toxicity.

이하에 기술되는 내용은 단순히 본 발명과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.The content described below merely provides background information related to the present invention and does not constitute the prior art.

실내 공간은 겨울철 난방이 이루어지고, 에어컨을 이용한 여름철 냉방이 수행되고 있으며, 이러한 실내 공간의 냉난방 효율의 증대는 단열을 통하여 얻을 수 있기 때문에, 다양한 단열재를 이용한 단열 시공이 이루어지고 있다.The indoor space is heated in winter, and cooling is performed in summer using an air conditioner. Since the increase in cooling and heating efficiency of this indoor space can be obtained through insulation, insulation construction using various heat insulating materials is being performed.

특히 최근 대형 화재사고로 많은 인명피해와 재산피해가 발생하였는데, 이 화재사고의 경우 건물의 외벽을 난연 성능 및 불연성능이 없는 단열재, 접착몰탈, 마감재로 시공을 하는 일명 '드라이비트 공법'으로 시공을 하여 화재 확산 속도가 빨랐고 이로 인해 피해가 더욱 커진 것이 원인으로 지목되고 있다.In particular, a large-scale fire accident recently caused a lot of casualties and property damage. In this case of fire, the exterior walls of the building were constructed using the so-called 'dry bit method', in which the building's exterior walls were constructed with insulation, adhesive mortar, and finishing materials without flame-retardant or non-combustible performance. This is attributed to the rapid spread of the fire, which in turn caused more damage.

이에 정부에서는 '건축물의 피난/방화구조 등의 기준에 관한 규칙'을 개정하여 건축물 마감재료의 화재안전성 기준을 대폭 강화하였으며, 2016년 4월부터 시행되고 있다.Accordingly, the government has significantly strengthened the fire safety standards for building finishing materials by amending the 'Rules on Standards for Evacuation/Fire Protection Structures of Buildings', and has been in effect since April 2016.

종래 단열 시공에 사용되는 단열재의 대표적인 예로는, 스티로폼, 발포 폴리우레탄, 발포 폴리에틸렌이 주종을 있다. 그 중에서도 폴리우레탄 계열이 가장 우수한 열전도 특성을 갖고 있어 많이 사용된다. 그러나, 단열재로 많이 사용되고 있는 발포 폴리우레탄의 경우, 화재 시 인화성이 높고, 화재 초기에 다량의 유독가스가 발생되는 문제로 인해 사용상의 많은 문제점을 갖고 있다.Representative examples of thermal insulation materials used in conventional insulation construction include styrofoam, polyurethane foam, and polyethylene foam. Among them, polyurethane is widely used because it has the best thermal conductivity. However, polyurethane foam, which is widely used as an insulator, has many problems in use due to its high flammability in case of fire and the generation of a large amount of toxic gas in the early stage of a fire.

종래 우수한 단열재를 제공하기 위하여 페놀 폼 단열재가 개발되기도 하였으나, 페놀 폼 단열재의 경우 강도가 비교적 약하고, 가공이 용이하지 않아 현장에서 단독으로 사용하기에는 한계가 있다.Conventionally, phenol foam insulation has been developed to provide an excellent insulation material, but in the case of phenol foam insulation material, the strength is relatively weak and processing is not easy, so there is a limit to use alone in the field.

본 발명은 난연성이 우수하며, 방수성이 우수하며, 화재발생시 유해가스의 발생을 현저히 줄일 수 있으며, 단열성이 우수하며, 경량으로 단열재의 설치가 용이하며, 강도가 우수하며, 외관이 수려하며, 동시에 내구성이 우수한 폴리이소시아누레이트를 포함하는 단열재 및 이를 생산성이 높게 제조하는 것이 가능한 폴리이소시아누레이트를 포함하는 단열재를 제공하는 것을 목적으로 한다.The present invention has excellent flame retardancy, excellent waterproofness, can significantly reduce the generation of harmful gases in case of fire, has excellent thermal insulation properties, is lightweight and easy to install, has excellent strength, has a beautiful appearance, and at the same time An object of the present invention is to provide an insulating material containing polyisocyanurate having excellent durability, and an insulating material containing polyisocyanurate capable of producing the same with high productivity.

한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art to which the present invention belongs from the description below. can be understood

본 발명의 실시예에 따른 폴리이소시아누레이트를 포함하는 단열재는 단열재층 및 표면층을 포함하고, 상기 단열재층은, 다공성 발포체이고, 폴리올 100 중량부, 상기 폴리올 100 중량부에 대해, 물리적 발포제 10 내지 20 중량부 및 폴리이소시아네이트 160 내지 250 중량부를 포함하고, 상기 폴리올 100 중량부는, 폴리에스테르 폴리올 혼합물 80 내지 100 중량부, 상기 폴리에스테르 폴리올 혼합물 100 중량부에 대해, 분자 양 끝단에 수산화기를 가진 수산화 화합물 1 내지 20 중량부, 수산화 칼륨과 1관능 유기산과의 에스테르화 반응으로 얻어진 폴리이소시아누레이트 전환촉매 0.1 내지 10 중량부, 분자 구조상에 NH2를 포함하는 아민 성분을 포함하는 우레탄 촉매 0.1 내지 10 중량부, 분자 구조상에 Si-0- 실록산을 포함하고, PO(Propylene Oxide)와 EO (Ethylene Oxide)의 부가반응으로 합성된 실록산 정포제 0.1 내지 5.0 중량부 및 분자 구조상에 인을 포함하는 액상형 인계 난연제 1 내지 30 중량부를 포함할 수 있다.The heat insulating material comprising polyisocyanurate according to an embodiment of the present invention includes a heat insulating material layer and a surface layer, and the heat insulating material layer is a porous foam, 100 parts by weight of polyol, 100 parts by weight of polyol, physical foaming agent 10 to 20 parts by weight and 160 to 250 parts by weight of polyisocyanate, 100 parts by weight of the polyol, 80 to 100 parts by weight of the polyester polyol mixture, 100 parts by weight of the polyester polyol mixture, a hydroxyl compound having hydroxyl groups at both ends of the molecule 1 to 20 parts by weight, 0.1 to 10 parts by weight of a polyisocyanurate conversion catalyst obtained by an esterification reaction of potassium hydroxide with a monofunctional organic acid, 0.1 to 10 parts by weight of a urethane catalyst comprising an amine component including NH 2 on the molecular structure A liquid phosphorus-based flame retardant containing 0.1 to 5.0 parts by weight of a siloxane stabilizer synthesized by an addition reaction of Si-0-siloxane and PO (Propylene Oxide) and EO (Ethylene Oxide) and phosphorus in the molecular structure. 1 to 30 parts by weight may be included.

또한, 상기 폴리에스테르 폴리올 혼합물 80 내지 100 중량부는, 관능기 수가 1 내지 3인 다관능 유기산 화합물과 관능기 수가 1 내지 6인 말단부에 OH를 가지는 다관능 수산화 화합물이 탈수축합에 의해 합성되고, 상기 다관능 유기산 화합물은 탄소 사이의 2중 결합과 단일 결합이 교대로 이루어진 방향족 유기산을 포함하며, Benzoic acid(BA), Phenylacetic acid, polyethyleneterephthalate(PET), Polybutylene terephthalate(PBT), terephthalic acid(TPA), trimethylopropane(TMP), dimethyleneterephthanlate (DMT), phthalic anhydride(PAn), Trimellilic acid(TMA) 및 trishydroxyethyl isocyanurate 중 적어도 하나를 포함할 수 있다.In addition, 80 to 100 parts by weight of the polyester polyol mixture is synthesized by dehydration condensation of a polyfunctional organic acid compound having 1 to 3 functional groups and a polyfunctional hydroxyl compound having OH at the terminal having 1 to 6 functional groups, and the polyfunctional Organic acid compounds include aromatic organic acids in which double bonds and single bonds between carbons are alternated, such as benzoic acid (BA), Phenylacetic acid, polyethyleneterephthalate (PET), Polybutylene terephthalate (PBT), terephthalic acid (TPA), trimethylopropane ( TMP), dimethyleneterephthanlate (DMT), phthalic anhydride (PAn), trimellilic acid (TMA), and may include at least one of trishydroxyethyl isocyanurate.

상기 다관능 유기산 화합물은 탄화수소 3 내지 12개를 가지는 선형구조의 유기산을 포함하며, Palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, galoleic acid, erucic acid, nervonic acid 및 linoleic acid 중 적어도 하나를 포함할 수 있다.The polyfunctional organic acid compound includes an organic acid having a linear structure having 3 to 12 hydrocarbons, and includes at least one of palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, galoleic acid, erucic acid, nervonic acid and linoleic acid. can

상기 다관능 수산화 화합물은, 분자 끝에 OH 분자를 가지는 개시제 수산화물에 Propylene Oxide(PO) 또는 Ethylene Oxide(EO) 첨가하여 형성된 고분자 물질일 수 있다.The polyfunctional hydroxide compound may be a polymer material formed by adding Propylene Oxide (PO) or Ethylene Oxide (EO) to an initiator hydroxide having an OH molecule at the end of the molecule.

본 발명의 실시예에 따르면, 난연성이 우수하며, 방수성이 우수하며, 화재발생시 유해가스의 발생을 현저히 줄일 수 있으며, 단열성이 우수하며, 경량으로 단열재의 설치가 용이하며, 강도가 우수하며, 외관이 수려하며, 동시에 내구성이 우수한 폴리이소시아누레이트를 포함하는 단열재 및 이를 생산성이 높게 제조하는 것이 가능하다.According to an embodiment of the present invention, it has excellent flame retardancy, excellent waterproofness, can significantly reduce the generation of harmful gases in case of fire, has excellent thermal insulation, is lightweight and easy to install, has excellent strength, and has excellent appearance. It is possible to manufacture an insulating material containing polyisocyanurate which is beautiful and has excellent durability at the same time, and the same with high productivity.

한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the following description. will be able

도 1은 본 발명의 일 실시예에 따른 폴리이소시아누레이트를 포함하는 단열재의 단면 모식도를 나타낸 것이다.
도 2는 본 발명의 다른 실시예에 따른 폴리이소시아누레이트를 포함하는 단열재의 단면 모식도를 나타낸 것이다.
1 is a cross-sectional schematic view of a heat insulating material including polyisocyanurate according to an embodiment of the present invention.
2 is a cross-sectional schematic view of a heat insulating material including polyisocyanurate according to another embodiment of the present invention.

이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되었다.Hereinafter, an embodiment of the present invention will be described in more detail with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. This embodiment is provided to more completely explain the present invention to those of ordinary skill in the art. Accordingly, the shapes of elements in the drawings are exaggerated to emphasize a clearer description.

본 발명이 해결하고자 하는 과제의 해결 방안을 명확하게 하기 위한 발명의 구성을 본 발명의 바람직한 실시 예에 근거하여 첨부 도면을 참조하여 상세히 설명하되, 도면의 구성요소들에 참조번호를 부여함에 있어서 동일 구성요소에 대해서는 비록 다른 도면상에 있더라도 동일 참조번호를 부여하였으며 당해 도면에 대한 설명 시 필요한 경우 다른 도면의 구성요소를 인용할 수 있음을 미리 밝혀둔다.The configuration of the invention for clarifying the solution to the problem to be solved by the present invention will be described in detail with reference to the accompanying drawings based on a preferred embodiment of the present invention, but the same in assigning reference numbers to the components of the drawings For the components, even if they are on different drawings, the same reference numbers are given, and it is noted in advance that the components of other drawings can be cited when necessary in the description of the drawings.

도 1은 본 발명의 일 실시예에 따른 폴리이소시아누레이트를 포함하는 단열재의 단면 모식도를 나타낸 것이다.1 is a cross-sectional schematic view of a heat insulating material including polyisocyanurate according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 단열재(100)는 상하부의 표면층(110, 130)과 이 사이에 배치된 단열재층(120)을 포함하는 단열재(100)로서, 상부 표면층(110)은 금속 시트(111)와 면재(112)가 결합되어 형성될 수 있고, 하부 표면층(130)은 면재(130)로 구성될 수 있다.1, the heat insulating material 100 according to an embodiment of the present invention is a heat insulating material 100 including upper and lower surface layers 110 and 130 and an insulating material layer 120 disposed therebetween, and the upper surface layer ( 110 may be formed by combining the metal sheet 111 and the face material 112 , and the lower surface layer 130 may be formed of the face material 130 .

상세히, 상부 표면층(110)은 금속 시트(111), 코팅츠(112), 면재(113) 및 금속 시트(114)가 순차적으로 적층되어 형성될 수 있다.In detail, the upper surface layer 110 may be formed by sequentially stacking a metal sheet 111 , a coating 112 , a face material 113 , and a metal sheet 114 .

상부 표면층(110)에서, 금속 시트(111, 114)는 박막의 금속으로 구성될 수 있으며, 가시광의 반사율이 약 70 내지 100% 범위의 금속으로 구성될 수 있다. In the upper surface layer 110 , the metal sheets 111 and 114 may be made of thin metal, and the reflectance of visible light may be in the range of about 70 to 100%.

이러한 금속 시트(111, 114)는 화재 시 발생하는 적외선 방사열을 효율적으로 반사하여 단열재층(120)의 열적 변형 및 열적 분해에 의한 유해가스 방출을 효과적으로 방지하는 역할을 수행할 수 있다.These metal sheets 111 and 114 can efficiently reflect infrared radiation heat generated during a fire to effectively prevent the release of harmful gases due to thermal deformation and thermal decomposition of the insulating material layer 120 .

구체적인 일 예에서, 금속시트(111, 114)는 알루미늄 박막으로 구성될 수 있다.In a specific example, the metal sheets 111 and 114 may be formed of an aluminum thin film.

면재(112)는 무기질 섬유가 합지된 난연 또는 준불연 면재로 구성될 수 있으며, 면적당 단위 중량 150 내지 250g/m2의 무기질 섬유를 포함할 수 있다.The face material 112 may be composed of a flame-retardant or semi-non-flammable cotton material laminated with inorganic fibers, and may include inorganic fibers having a unit weight of 150 to 250 g/m 2 per area.

이로써, 단열재층(120)과 상부 및 하부 면재 사이에 준불연 우레탄 단열재가 발포되는 경우, 제조과정에서 무기질 섬유가 재직된 면재에 단열재층(120)의 우레탄 조성물이 침투하는 것을 방지할 수 있다.Accordingly, when the semi-incombustible urethane insulating material is foamed between the insulating material layer 120 and the upper and lower face materials, the urethane composition of the insulating material layer 120 can be prevented from penetrating into the face material on which the inorganic fibers are woven during the manufacturing process.

한편, 면재(112)의 무기질 섬유는 단열재(100)에서 상대적으로 녹는점이 높아 화재 시 발생하는 화염과 단열재층(120)의 접촉을 효율적으로 차단하여, 단열재층(120)의 열분해를 효율적으로 방지하여 연소가스의 방출을 효과적으로 저감시킬 수 있다.On the other hand, the inorganic fiber of the face material 112 has a relatively high melting point in the heat insulating material 100 and effectively blocks the contact between the flame and the heat insulating material layer 120 generated in a fire, thereby effectively preventing the thermal decomposition of the insulating material layer 120 . Thus, it is possible to effectively reduce the emission of combustion gas.

한편, 면재(112)의 무기질 섬유는 소듐실리케이트 혹은 리튬실리케이트를 코팅한 무기질 섬유, 황원자를 포함한 황화수소 물질을 코팅한 무기질 섬유 및 아조다이카본아마이드가 포함된 수지를 코팅한 무기질 섬유가 각각 또는 혼합되어 구성될 수 있다.On the other hand, the inorganic fiber of the face material 112 is an inorganic fiber coated with sodium silicate or lithium silicate, an inorganic fiber coated with a hydrogen sulfide material containing a sulfur atom, and an inorganic fiber coated with a resin containing azodicarbonamide. can be configured.

한편, 소듐실리케이트 혹은 리튬실리케이트, 황화수소 물질 및 아조다이카본아마이드는 코팅층(113)을 이룰 수 있다.Meanwhile, sodium silicate or lithium silicate, a hydrogen sulfide material, and azodicarbonamide may form the coating layer 113 .

여기서, 소듐실리케이트 혹은 리튬실리케이트는 공기 중에서 수증기의 용해도가 매우 높은 물질로서, 화염이 무기질 면재에 침투되는 경우 소듐실리케이트 내의 수증기의 기화반응과 실리카의 소결과정이 동시에 발생하여 부피 팽창된 유리 발포층을 형성하여 화염에 의한 단열재층(120) 열적 변형과 열적분해에 의한 유해가스 방출을 효과적으로 방지할 수 있다.Here, sodium silicate or lithium silicate is a material with a very high solubility of water vapor in the air. When a flame penetrates the inorganic sheet, the vaporization reaction of water vapor in sodium silicate and the sintering process of silica occur simultaneously to form a volume-expanded glass foam layer. By forming it, it is possible to effectively prevent the thermal deformation of the insulating material layer 120 due to the flame and the emission of harmful gases due to thermal decomposition.

또한, 황화수소 화합물은 연소과정에서 형성된 높은 온도에서 황원자를 분리시키고, 분리된 황원자는 질소화합물의 연소과정에서 발생되는 유독성 가스인 시안화수소와 화학적반응을 일으킨다. 이러한 화학적반응 결과 티오시안화물 (Thiocyanate)을 형성하여 연소과정에서 발생하는 시안화수소의 농도를 저감시킬 수 있다.In addition, the hydrogen sulfide compound separates sulfur atoms at a high temperature formed in the combustion process, and the separated sulfur atoms cause a chemical reaction with hydrogen cyanide, a toxic gas generated in the combustion process of the nitrogen compound. As a result of this chemical reaction, thiocyanate is formed to reduce the concentration of hydrogen cyanide generated in the combustion process.

또한, 아조다이카본아마이드는 유기발포제로써 다른 화학적 발포제보다 분해온도가 높고, 가스 발생량이 많은 장점이 있다.In addition, as an organic foaming agent, azodicarbonamide has a higher decomposition temperature than other chemical foaming agents and a large amount of gas is generated.

한편, 상부 표면층(110)에서 금속 시트(111)와 면재(112)는 접착제를 통해 결합될 수 있다. 여기서, 접착제는 열경화성 특징을 갖는 우레탄 계열 접착제 및 에폭시 계열의 접착제 중 적어도 하나를 선택할 수 있다.Meanwhile, in the upper surface layer 110 , the metal sheet 111 and the face material 112 may be coupled through an adhesive. Here, the adhesive may be selected from at least one of a urethane-based adhesive and an epoxy-based adhesive having thermosetting characteristics.

이는 열가소성 열융착 접착제와 달리 화재 시 발생하는 고열 환경에서도 접착제의 형태를 유지하는 열결화성 물질로서, 금속 시트(111)와 면재(112)의 형태를 유지시켜 화염의 단열재층(120)의 열적 변형과 열적분해에 의한 유해가스 방출을 효과적으로 방지할 수 있다.This is a heat-setting material that maintains the shape of the adhesive even in a high-temperature environment that occurs in a fire, unlike the thermoplastic heat-sealing adhesive, and maintains the shape of the metal sheet 111 and the face material 112 to thermally deform the heat insulating material layer 120 of the flame. It can effectively prevent the release of harmful gases due to overthermal decomposition.

하부 표면층(130)은 상부 표면층(110)의 면재(112)와 동일 형상 및 기능을 수행할 수 있으며, 이하에서 상세한 설명은 생략한다.The lower surface layer 130 may perform the same shape and function as the face material 112 of the upper surface layer 110 , and a detailed description thereof will be omitted below.

한편, 상하부 표면층(110, 130) 각각은 1 내지 5 mm의 두께를 가지는 것이 바람직하다. 이러한 범위 내인 경우 난연성이 우수하며, 방수성이 우수하며, 화재발생시 유해가스의 발생을 현저히 줄일 수 있으며, 단열성이 우수하며, 경량으로 단열재의 설치가 용이하며, 강도가 우수하며, 외관이 수려하며, 동시에 내구성이 우수한 폴리이소시아누레이트를 포함하는 단열재를 제공할 수 있다.Meanwhile, each of the upper and lower surface layers 110 and 130 preferably has a thickness of 1 to 5 mm. If it is within this range, it has excellent flame retardancy, excellent waterproofness, can significantly reduce the generation of harmful gases in the event of a fire, has excellent thermal insulation properties, is lightweight and easy to install, has excellent strength, has a beautiful appearance, At the same time, it is possible to provide an insulating material including polyisocyanurate having excellent durability.

단열재층(120)은 상하부 표면층(110, 130) 사이에 개재되며, 다공성 발포체로 구성되고, 일 예로 경질 우레탄 보드 단열재로 구성될 수 있다.The insulating material layer 120 is interposed between the upper and lower surface layers 110 and 130, and is composed of a porous foam, and may be composed of, for example, a rigid urethane board insulating material.

여기서, 단열재층(120)은 후술할 우레탄 폼 조성물의 혼합물을 상하부 표면층(110) 사이에 주입하는 과정에서, 발포기 믹싱헤드 후단에 설치되는 분배기를 통해 액상의 우레탄 혼합체를 균질하게 분배시킬 수 있고, 이를 통해 분배된 우레탄 혼합체는 발포되는 과정에서 상하부 표면층(110, 130) 사이에서 동일한 부피 팽창율을 갖도록 팽창하여 균질한 주입이 가능할 수 있다.Here, in the process of injecting the mixture of the urethane foam composition to be described later between the upper and lower surface layers 110, the heat insulating material layer 120 may uniformly distribute the liquid urethane mixture through a distributor installed at the rear end of the mixing head of the foaming machine. , the urethane mixture distributed through this expands to have the same volume expansion rate between the upper and lower surface layers 110 and 130 in the process of foaming, so that it can be injected homogeneously.

또한, 상하부 표면층(110, 130) 사이에서 균질하게 분배된 우레탄 혼합체는 단열재(100)에서 부위별 발포 팽창율을 동일하게 하여 단열재(100)에서 국부적인 주입밀도의 편차를 최소화시킬 수 있다. 또한, 이러한 과정을 통해 발포체 기포의 결정형을 최대한 등방성(ISOTROPY)으로 형성하여 발포체 기포의 결정방향의 이방성으로 기인하는 이방성 치수변형을 최소화시킬 수 있다.In addition, the urethane mixture homogeneously distributed between the upper and lower surface layers 110 and 130 can minimize the variation in local injection density in the heat insulating material 100 by making the expansion and expansion rate of each region the same in the insulating material 100 . In addition, it is possible to minimize the anisotropic dimensional deformation caused by the anisotropy of the crystal direction of the foam cells by forming the crystal form of the foam cells as isotropic as possible through this process.

단열재층(120)은 폴리올의 합성 및 혼합 조성물 및 2.2 내지 2.7의 고관능기를 가진 이소시아네이트의 조성물로 구성될 수 있다.The insulating material layer 120 may be composed of a polyol synthetic and mixed composition and an isocyanate composition having a high functional group of 2.2 to 2.7.

단열재층(120)은 폴리올 100 중량부, 폴리올 100 중량부에 대해, 물리적 발포제 10 내지 20 중량부 및 폴리이소시아네이트 160 내지 250 중량부를 포함하고, 이소시아네이트 지수가 150 내지 450일 수 있다.The heat insulating material layer 120 may include 10 to 20 parts by weight of a physical foaming agent and 160 to 250 parts by weight of polyisocyanate, based on 100 parts by weight of polyol and 100 parts by weight of polyol, and may have an isocyanate index of 150 to 450.

또한, 폴리올 100 중량부는, 폴리에스테르 폴리올 혼합물 80 내지 100 중량부, 폴리에스테르 폴리올 혼합물 100 중량부에 대해, 분자 양 끝단에 수산화기를 가진 수산화 화합물 1 내지 20 중량부, 수산화 칼륨과 1관능 유기산과의 에스테르화 반응으로 얻어진 폴리이소시아누레이트 전환촉매 0.1 내지 10 중량부, 분자 구조상에 NH2를 포함하는 아민 성분을 포함하는 우레탄 촉매 0.1 내지 10 중량부, 분자 구조상에 Si-0- 실록산을 포함하고, PO(Propylene Oxide)와 EO (Ethylene Oxide)의 부가반응으로 합성된 실록산 정포제 0.1 내지 5.0 중량부 및 분자 구조상에 인을 포함하는 액상형 인계 난연제 1 내지 30 중량부를 포함할 수 있다.In addition, 100 parts by weight of the polyol, 80 to 100 parts by weight of the polyester polyol mixture, 100 parts by weight of the polyester polyol mixture, 1 to 20 parts by weight of a hydroxide compound having hydroxyl groups at both ends of the molecule, potassium hydroxide and monofunctional organic acid 0.1 to 10 parts by weight of a polyisocyanurate conversion catalyst obtained by the esterification reaction, 0.1 to 10 parts by weight of a urethane catalyst comprising an amine component including NH2 in a molecular structure, Si-0-siloxane in a molecular structure, and PO It may contain 0.1 to 5.0 parts by weight of a siloxane stabilizer synthesized by an addition reaction of (Propylene Oxide) and Ethylene Oxide (EO) and 1 to 30 parts by weight of a liquid phosphorus-based flame retardant containing phosphorus in its molecular structure.

물리적 발포제 10 내지 20 중량부는, 5개의 탄화수소의 단일 공유 결합으로 이루어진 5탄화수소의 이성질체인 씨클로팬탄 10 내지 90 중량부, 씨클로팬탄 100 중량부에 대해, 이소팬탄 10 내지 90 중량부 및 노르말팬탄 10 내지 90 중량부 중 선택된 적어도 하나 또는 이들의 혼합물이고, 끓는점이 20 내지 60도 사이의 범위로 설정될 수 있다.10 to 20 parts by weight of the physical blowing agent, 10 to 90 parts by weight of cyclopentane, which is an isomer of pentahydrocarbon consisting of a single covalent bond of five hydrocarbons, 10 to 90 parts by weight of isopentane, and 10 to 90 parts by weight of cyclopentane, based on 100 parts by weight of cyclopentane At least one selected from 90 parts by weight or a mixture thereof, and the boiling point may be set in a range of 20 to 60 degrees.

여기서, 물리적 발포제 10 내지 20 중량부에 포함된 이소팬탄과 노르말팬탄은 3,450 내지 3,550 KJ/mol의 연소 엔탈피를 가지며, 이는 3,200 KJ/mol의 연소엔탈피를 가지는 씨클로 팬탄과 달리 연소열이 높아 화재 시 심재 폴리우레탄의 연소 과정에서 혐기성 불완전 연소를 억제하고 호기성 완전 연소를 도와 연소가스의 독성을 저하시키는 역할을 수행할 수 있다.Here, isopentane and normal pentane contained in 10 to 20 parts by weight of the physical foaming agent have a combustion enthalpy of 3,450 to 3,550 KJ/mol, which is different from cyclopentane having a combustion enthalpy of 3,200 KJ/mol. It can play a role in reducing the toxicity of combustion gas by suppressing anaerobic incomplete combustion and helping complete aerobic combustion in the combustion process of polyurethane.

폴리에스테르 폴리올 혼합물 80 내지 100 중량부는, 관능기 수가 1 내지 3인 다관능 유기산 화합물과 관능기 수가 1 내지 6인 말단부에 OH를 가지는 다관능 수산화 화합물이 탈수축합에 의해 합성될 수 있다.80 to 100 parts by weight of the polyester polyol mixture may be synthesized by dehydration condensation of a polyfunctional organic acid compound having 1 to 3 functional groups and a polyfunctional hydroxyl compound having OH at the terminal having 1 to 6 functional groups.

한편, 관능기 수가 1 내지 3인 다관능 유기산 화학물은 탄화수소 3 내지 12를 가진 성형구조의 유기산을 포함할 수 있으며, 이는 탄화수소 발포제와 폴리에스테르 폴리올 사이의 혼화성을 향상시켜 탄화수소발포제가 폴리올에 용해되도록 기능할 수 있다.On the other hand, the polyfunctional organic acid chemical having 1 to 3 functional groups may include an organic acid having a molded structure having 3 to 12 hydrocarbons, which improves the compatibility between the hydrocarbon blowing agent and the polyester polyol, so that the hydrocarbon blowing agent is dissolved in the polyol can function as much as possible.

이를 통해, 우레탄 단열재 제조 발포과정에서 우레탄 폼과 면재 사이의 방울 기포층(Void, Bubble)의 형성을 억제하며, 화재 시 면재와 우레탄 폼의 계면이 분리되는 것을 방지하여 내화성능을 향상시키는 기능을 수행할 수 있다.Through this, it suppresses the formation of a bubble layer (void, bubble) between the urethane foam and the face material during the foaming process of manufacturing the urethane insulation material, and prevents the interface between the face material and the urethane foam from separating in case of fire to improve the fire resistance performance. can be done

여기서, 다관능 유기산 화합물은 탄소 사이의 2중 결합과 단일 결합이 교대로 이루어진 방향족 유기산을 포함할 수 있다.Here, the polyfunctional organic acid compound may include an aromatic organic acid in which a double bond and a single bond between carbons are alternately formed.

이는 탄화수소로 이루어진 유기화학물이 화재로 인한 열적으로 변형될 때 탄화수소들의 입체 장애로 의해 변형을 방지하는 기능을 수행할 수 있다.This can perform a function of preventing deformation due to steric hindrance of hydrocarbons when an organic chemical composed of hydrocarbons is thermally deformed due to fire.

이에 사용되는 다관능 유기산 화합물은 Benzoic acid(BA), Phenylacetic acid, polyethyleneterephthalate(PET), Polybutylene terephthalate(PBT), terephthalic acid(TPA), trimethylopropane(TMP), dimethyleneterephthanlate (DMT), phthalic anhydride(PAn), Trimellilic acid(TMA) 및 trishydroxyethyl isocyanurate 중 적어도 하나를 포함할 수 있다.The polyfunctional organic acid compounds used for this are benzoic acid (BA), phenylacetic acid, polyethyleneterephthalate (PET), polybutylene terephthalate (PBT), terephthalic acid (TPA), trimethylopropane (TMP), dimethyleneterephthanlate (DMT), phthalic anhydride (PAn), It may include at least one of trimellilic acid (TMA) and trishydroxyethyl isocyanurate.

또한, 상기 다관능 유기산 화합물은 탄화수소 3 내지 12개를 가지는 선형구조의 유기산을 포함하며, 이는 수산화물과 탈수축합 반응 후 1축 스트레칭 운동을 통해 우레탄 폼의 기재면과의 접착력을 향상시켜 화재 시 면재와 우레탄 폼의 계면이 분리되는 것을 방지하여 내화성능을 향상하는 기능을 수행할 수 있다.In addition, the polyfunctional organic acid compound includes an organic acid having a linear structure having 3 to 12 hydrocarbons, which improves adhesion with the substrate surface of the urethane foam through a uniaxial stretching motion after a dehydration condensation reaction with hydroxide to improve the surface material in case of fire It can perform the function of improving the fire resistance performance by preventing the interface between the urethane foam and the urethane foam from being separated.

이에 사용되는 다관능 유기산 화합물은 Palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, galoleic acid, erucic acid, nervonic acid 및 linoleic acid 중 적어도 하나를 포함할 수 있다.The polyfunctional organic acid compound used for this may include at least one of palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, galoleic acid, erucic acid, nervonic acid, and linoleic acid.

또한, 상기 다관능 수산화 화합물은, 분자 끝에 OH 분자를 가지는 개시제 수산화물에 Propylene Oxide(PO) 또는 Ethylene Oxide(EO) 첨가하여 형성된 고분자 물질일 수 있다.In addition, the polyfunctional hydroxide compound may be a polymer material formed by adding Propylene Oxide (PO) or Ethylene Oxide (EO) to an initiator hydroxide having an OH molecule at the end of the molecule.

한편, 관능기 수가 1 내지 6인 다관능 수산화물은 수산화 화합물의 분자구조에 따라 최종적으로 합성되는 폴리에스테르 폴리올의 점성을 조절할 수 있다. 구체적으로, 반복되는 Ethylene glycol 기를 가지는 고분자 수산화물은 분자량이 높을수록 최종적으로 합성되는 폴리에스테르 폴리올의 점도를 낮출 수 있으며, 분자량이 낮을수록 최종적으로 합성되는 폴리에스테르 폴리올의 난연성을 향상시킬 수 있다.On the other hand, the polyfunctional hydroxide having 1 to 6 functional groups can control the viscosity of the finally synthesized polyester polyol according to the molecular structure of the hydroxide compound. Specifically, as the molecular weight of the polymer hydroxide having repeated ethylene glycol groups increases, the viscosity of the finally synthesized polyester polyol can be lowered, and as the molecular weight decreases, the flame retardancy of the finally synthesized polyester polyol can be improved.

또한, 관능기 수가 1 내지 6인 다관능 수산화물은 OH 분자를 분자 끝에 가지는 개시제 수산화물에 PO(Propylene Oxide) 및/또는 EO(Ethylene Oxide)를 부가하여 형성되는 고분자 물질로서, 개시제 화합물의 관능에 따라 최종적으로 합성되는 폴리에스테르 폴리올의 관능기를 결정할 수 있다. 이를 통해, 고관능 폴리에스테르 폴리올 합성을 가능하게 하여, 화재 시 발생하는 우레탄 폼의 열적 변형을 방지하는 기능을 수행할 수 있다.In addition, the polyfunctional hydroxide having 1 to 6 functional groups is a polymer material formed by adding PO (Propylene Oxide) and/or EO (Ethylene Oxide) to an initiator hydroxide having an OH molecule at the end of the molecule. It is possible to determine the functional group of the polyester polyol to be synthesized. Through this, it is possible to synthesize a high-functional polyester polyol, thereby performing a function of preventing thermal deformation of the urethane foam occurring in case of fire.

한편, 폴리이소시아네이트 160 내지 250 중량부에서, 이소시아네이트는 분자의 끝단에 NCO 이소시아네이트 그룹과 방향족 벤젠 구조를 가진 방향족 화합물로서, 폴리에스테르 폴리올의 분자 끝단에 있는 OH 수산화기와 자발적 발열반응인 우레탄 반응을 일으켜 폴리올과 이소시아네이트의 고분자체를 형성할 수 있다.On the other hand, in 160 to 250 parts by weight of polyisocyanate, isocyanate is an aromatic compound having an NCO isocyanate group and an aromatic benzene structure at the end of the molecule. and isocyanate polymers can be formed.

또한, 폴리이소시아네이트 160 내지 250 중량부는 고분자 엠디아이(MDI)를 포함하고, 고분자 엠디아이는 관능기 수가 2.6 내지 3.2이고, 상온에서 점도가 500 내지 1100cps 일 수 있다. 이러한 고분자 엠디아이는 폴리올과 고분자 엠디아이 사이의 가교도를 향상시켜 최종적으로 형성된 우레탄 단열재 폼의 강도를 향상시키고, 또한 화재 시 우레탄 단열재의 열적 변형을 방지하여 내화성능을 향상시키는 역할 수행할 수 있다.In addition, 160 to 250 parts by weight of polyisocyanate may include a polymer MDI, and the polymer MDI may have a functional group number of 2.6 to 3.2, and a viscosity of 500 to 1100 cps at room temperature. This polymer MDI improves the degree of crosslinking between the polyol and the polymer MDI to improve the strength of the finally formed urethane insulation foam, and also prevents thermal deformation of the urethane insulation in case of fire, thereby improving fire resistance performance.

한편, 고분자 엠디아이는 상온에서 점도가 100 내지 500 cps 인 중점도 고분자 엠디아이와 아로마틱 고리를 가지고 있는 폴리에스테르 폴리올을 우레탄 중합시켜 생성된 선중간합성이소시아네이트(프리폴리머 엠디아이)도 포함할 수 있다.Meanwhile, the polymer MDI may also include an intermediate synthetic isocyanate (prepolymer MDI) produced by urethane polymerization of a medium-strength polymer MDI having a viscosity of 100 to 500 cps at room temperature and a polyester polyol having an aromatic ring.

한편, 고분자 엠디아이는 상온에서 점도가 500 내지 1100 cps인 고점도 고분자 엠디아이와 상온에서 점도가 100 내지 500 cps인 중점도 고분자 엠디아이와 폴리에스테르 폴리올을 우레탄 중합시켜 생성된 선중간합성이소시아네이트 (프리폴리머엠디아이)의 혼합체도 포함할 수 있다.On the other hand, the polymer MDI is a line intermediate synthetic isocyanate (prepolymer MDI) produced by urethane polymerization of a high-viscosity polymer MDI having a viscosity of 500 to 1100 cps at room temperature, and a medium-viscosity polymer MDI having a viscosity of 100 to 500 cps at room temperature, and a polyester polyol. ) may also contain mixtures of

한편, 고분자 엠디아이는 분자 내에서 NCO 함량이 27 내지 35중량%일 수 있다.Meanwhile, the polymer MDI may have an NCO content of 27 to 35% by weight in the molecule.

이하에서는 상술한 단열재(100)의 제조방법에 대해 설명한다.Hereinafter, a method of manufacturing the above-described heat insulating material 100 will be described.

단열재(100)의 제조방법은 상하부 표면층(110, 130) 각각을 준비하는 단계, 단열재층(120)의 조성물을 준비하는 단계, 및 상하부 표면층(110, 130) 사이에 단열재층(120)을 주입하는 단계를 포함할 수 있다.The method of manufacturing the heat insulating material 100 includes preparing each of the upper and lower surface layers 110 and 130, preparing a composition of the heat insulating material layer 120, and injecting the insulating material layer 120 between the upper and lower surface layers 110 and 130. may include the step of

상하부 표면층(110, 130)을 각각 준비하는 단계에서, 상부 표면층(110)은 상술한 금속 시트(111)와 면재(112)를 융착함으로써 제조될 수 있다. 구체적인 예로 금속 시트(111)와 면재(112)를 열융착할 수 있으며, 이 때 필요한 경우 접착제를 더욱 사용할 수도 있다. 여기서, 결합 및 경화 방법은 특별히 한정되지 않으며, 구체적인 경화방법으로는 50 내지 120도에서 5분 내지 2시간 동안 건조시켜 경화할 수 있다.In the step of preparing the upper and lower surface layers 110 and 130 , respectively, the upper surface layer 110 may be manufactured by fusing the above-described metal sheet 111 and the face material 112 . As a specific example, the metal sheet 111 and the face material 112 may be heat-sealed, and in this case, an adhesive may be further used if necessary. Here, the bonding and curing method is not particularly limited, and as a specific curing method, it may be cured by drying at 50 to 120 degrees for 5 minutes to 2 hours.

단열재층(120)의 조성물을 준비하는 단계에서는 폴리올 100 중량부, 폴리올 100 중량부에 대해, 물리적 발포제 10 내지 20 중량부 및 폴리이소시아네이트 160 내지 250 중량부를 포함하는 원료 조성물을 혼합하여 준비할 수 있다.In the step of preparing the composition of the insulation layer 120, 100 parts by weight of polyol, 100 parts by weight of polyol, 10 to 20 parts by weight of a physical foaming agent and 160 to 250 parts by weight of polyisocyanate It can be prepared by mixing a raw material composition .

여기서, 상세한 단열재층(120)의 세부 구성은 상술한 바와 같으며, 이에 대한 상세한 설명은 생략한다.Here, the detailed configuration of the detailed insulation layer 120 is the same as described above, and a detailed description thereof will be omitted.

원료 조성물의 함량이 상기 수치를 만족하게 되면, 추후 발포단열재의 형성이 원활하게 이루어지고, 형성된 발포 단열재 표면의 난연성을 향상시킬 수 있다.When the content of the raw material composition satisfies the above numerical values, the formation of the foamed insulation material can be smoothly performed in the future, and the flame retardancy of the surface of the formed foam insulation material can be improved.

한편, 폴리이소시아네이트 160 내지 250 중량부는 이소시아네이트 지수가 150 내지 450인 발포조성물을 발포시킨 폼일 수 있다. 이 경우 적절한 삼량화가 어우러져 난연성이 우수하며, 화재발생시 유해가스의 발생을 현저히 줄일 수 있으며, 단열성이 우수하며, 경량으로 단열재의 설치가 용이하며, 박형화에 유리하며, 내구성이 우수하며, 강도가 우수하며, 동시에 방수성이 우수한 고난연 단열재를 제조할 수 있다.On the other hand, 160 to 250 parts by weight of polyisocyanate may be a foam obtained by foaming a foamed composition having an isocyanate index of 150 to 450. In this case, it has excellent flame retardancy in combination with appropriate trimerization, can significantly reduce the generation of harmful gases in case of fire, has excellent thermal insulation, is lightweight and easy to install, is advantageous for thinning, has excellent durability, and has excellent strength And at the same time, it is possible to manufacture a high-flammable insulating material with excellent waterproof properties.

한편, 상하부 표면층(110, 130) 사이에 단열재층(120)을 주입하는 단계에서는 준비된 상하부 표면층(110, 130) 사이에 발포기 믹싱헤드 후단에 설치되는 분배기를 통해 우레탄 혼합체를 균질하게 분배하여, 단열재층(120)을 형성할 수 있다.On the other hand, in the step of injecting the insulating material layer 120 between the upper and lower surface layers 110 and 130, the urethane mixture is uniformly distributed through a distributor installed at the rear end of the foaming machine mixing head between the prepared upper and lower surface layers 110 and 130, The insulating material layer 120 may be formed.

이를 통해 액상의 우레탄 혼합체를 균질하게 분배시킬 수 있으며, 주입되는 우레탄 혼합체는 발포되는 과정에서 상하부 표면층(110, 130) 사이에서 동일한 부피 팽창율을 갖도록 팽창하여 균질한 주입이 가능할 수 있다.Through this, the liquid urethane mixture can be uniformly distributed, and the injected urethane mixture expands to have the same volume expansion rate between the upper and lower surface layers 110 and 130 during the foaming process, so that it can be injected homogeneously.

또한, 상하부 표면층(110, 130) 사이에서 균질하게 분배된 우레탄 혼합체는 단열재(100)에서 부위별 발포 팽창율을 동일하게 하여 단열재(100)에서 국부적인 주입밀도의 편차를 최소화시킬 수 있다. 또한, 이러한 과정을 통해 발포체 기포의 결정형을 최대한 등방성(ISOTROPY)으로 형성하여 발포체 기포의 결정방향의 이방성으로 기인하는 이방성 치수변형을 최소화시킬 수 있다.In addition, the urethane mixture homogeneously distributed between the upper and lower surface layers 110 and 130 can minimize the variation in local injection density in the heat insulating material 100 by making the expansion and expansion rate of each region the same in the insulating material 100 . In addition, it is possible to minimize the anisotropic dimensional deformation caused by the anisotropy of the crystal direction of the foam cells by forming the crystal form of the foam cells as isotropic as possible through this process.

한편, 도 2는 본 발명의 다른 실시예에 따른 폴리이소시아누레이트를 포함하는 단열재의 단면 모식도를 나타낸 것이다.On the other hand, Figure 2 shows a schematic cross-sectional view of a heat insulating material containing polyisocyanurate according to another embodiment of the present invention.

도 2를 참조하면, 본 발명의 다른 실시예에 따른 단열재(200)는 상하부의 표면층(110, 230)과 이 사이에 배치된 단열재층(120)을 포함하는 단열재(100)로서, 상부 표면층(110)은 금속 시트(111)와 면재(112)가 결합되어 형성될 수 있고, 하부 표면층(230)은 상부 표면층(110)과 같이 금속 시트(231)와 면재(232)가 결합되어 형성될 수 있다.Referring to FIG. 2 , the heat insulator 200 according to another embodiment of the present invention is a heat insulator 100 including upper and lower surface layers 110 and 230 and a heat insulator layer 120 disposed therebetween, and the upper surface layer ( 110) may be formed by combining the metal sheet 111 and the face material 112, and the lower surface layer 230 may be formed by combining the metal sheet 231 and the face material 232 like the upper surface layer 110. have.

한편, 다음의 [표 1]은 본 발명에 따른 단열재의 불연성 측정 결과를 나타낸다.On the other hand, the following [Table 1] shows the non-combustibility measurement results of the insulating material according to the present invention.

시험 항목Test Items 단위unit 시료구분Sample classification 결과치result 시험방법Test Methods 장소Place 준불연시험-총방출열량(THR600)Quasi-Non-Combustible Test-Total Heat Released (THR600) -- -- -- 국토교통부고시 제2018-771호(2018)Ministry of Land, Infrastructure and Transport Notice No. 2018-771 (2018) A3A3 -No.1-No.1 MJ/m2 MJ/m 2 -- 0.90.9 A3A3 -No.2-No.2 MJ/m2 MJ/m 2 -- 0.90.9 A3A3 -No.3-No.3 MJ/m2 MJ/m 2 -- 1.11.1 A3A3 준불연시험-200 kW/m2 초과 시간Quasi-Non-Combustible Test-200 kW/m 2 Time Exceeded -- -- -- 국토교통부고시 제2018-771호(2018)Ministry of Land, Infrastructure and Transport Notice No. 2018-771 (2018) A3A3 -No.1-No.1 ss -- 00 A3A3 -No.2-No.2 ss -- 00 A3A3 -No.3-No.3 ss -- 00 A3A3 준불연시험-시험 후 시험체 검사Semi-incombustible test-test specimen after test -- -- -- 국토교통부고시 제2018-771호(2018)Ministry of Land, Infrastructure and Transport Notice No. 2018-771 (2018) A3A3 -No.1-No.1 -- -- 이상없음nothing strange A3A3 -No.2-No.2 -- -- 이상없음nothing strange A3A3 -No.3-No.3 -- 이상없음nothing strange A3A3 준불연시험-가스유해성시험Semi-flammable test-gas toxicity test -- -- -- 국토교통부고시 제2018-771호(2018)Ministry of Land, Infrastructure and Transport Notice No. 2018-771 (2018) A3A3 -No.1-No.1 min: smin: s -- 14:1414:14 A3A3 -No.2-No.2 min: smin: s -- 14:4014:40 A3A3

상기의 시험결과에 의하면, 본 발명에 따른 단열재는 불연성이 뛰어난 것으로 확인되었다.According to the above test results, it was confirmed that the insulating material according to the present invention is excellent in non-combustibility.

이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The above detailed description is illustrative of the present invention. In addition, the above description shows and describes preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications are possible within the scope of the concept of the invention disclosed herein, the scope equivalent to the written disclosure, and/or within the scope of skill or knowledge in the art. The written embodiment describes the best state for implementing the technical idea of the present invention, and various changes required in the specific application field and use of the present invention are possible. Therefore, the detailed description of the present invention is not intended to limit the present invention to the disclosed embodiments. Also, the appended claims should be construed as including other embodiments.

100: 폴리이소시아누레이트를 포함하는 단열재
110: 상부 표면층
120: 단열재층
130: 하부 표면층
100: insulation comprising polyisocyanurate
110: upper surface layer
120: insulation layer
130: lower surface layer

Claims (13)

단열재층 및 표면층을 포함하고,
상기 단열재층은,
다공성 발포체이고,
폴리올 100 중량부, 상기 폴리올 100 중량부에 대해, 물리적 발포제 10 내지 20 중량부 및 폴리이소시아네이트 160 내지 250 중량부를 포함하고,
상기 폴리올 100 중량부는,
폴리에스테르 폴리올 혼합물 80 내지 100 중량부,
상기 폴리에스테르 폴리올 혼합물 100 중량부에 대해,
분자 양 끝단에 수산화기를 가진 수산화 화합물 1 내지 20 중량부,
수산화 칼륨과 1관능 유기산과의 에스테르화 반응으로 얻어진 폴리이소시아누레이트 전환촉매 0.1 내지 10 중량부,
분자 구조상에 NH2를 포함하는 아민 성분을 포함하는 우레탄 촉매 0.1 내지 10 중량부,
분자 구조상에 Si-0- 실록산을 포함하고, PO(Propylene Oxide)와 EO (Ethylene Oxide)의 부가반응으로 합성된 실록산 정포제 0.1 내지 5.0 중량부 및
분자 구조상에 인을 포함하는 액상형 인계 난연제 1 내지 30 중량부를 포함하는 폴리이소시아누레이트를 포함하는 단열재.
Including a thermal insulation layer and a surface layer,
The insulation layer is
It is a porous foam,
100 parts by weight of a polyol, 10 to 20 parts by weight of a physical blowing agent and 160 to 250 parts by weight of a polyisocyanate based on 100 parts by weight of the polyol,
100 parts by weight of the polyol,
80 to 100 parts by weight of a polyester polyol mixture,
Based on 100 parts by weight of the polyester polyol mixture,
1 to 20 parts by weight of a hydroxide compound having hydroxyl groups at both ends of the molecule;
0.1 to 10 parts by weight of a polyisocyanurate conversion catalyst obtained by esterification of potassium hydroxide with a monofunctional organic acid;
0.1 to 10 parts by weight of a urethane catalyst comprising an amine component including NH 2 on the molecular structure;
0.1 to 5.0 parts by weight of a siloxane stabilizer including Si-0-siloxane on the molecular structure, and synthesized by the addition reaction of PO (Propylene Oxide) and EO (Ethylene Oxide), and
A heat insulating material comprising polyisocyanurate comprising 1 to 30 parts by weight of a liquid phosphorus-based flame retardant containing phosphorus in its molecular structure.
제 1항에 있어서,
상기 폴리에스테르 폴리올 혼합물 80 내지 100 중량부는,
관능기 수가 1 내지 3인 다관능 유기산 화합물과
관능기 수가 1 내지 6인 말단부에 OH를 가지는 다관능 수산화 화합물이 탈수축합에 의해 합성되고,
상기 다관능 유기산 화합물은 탄소 사이의 2중 결합과 단일 결합이 교대로 이루어진 방향족 유기산을 포함하며,
Benzoic acid(BA), Phenylacetic acid, polyethyleneterephthalate(PET), Polybutylene terephthalate(PBT), terephthalic acid(TPA), trimethylopropane(TMP), dimethyleneterephthanlate (DMT), phthalic anhydride(PAn), Trimellilic acid(TMA) 및 trishydroxyethyl isocyanurate 중 적어도 하나를 포함하는 폴리이소시아누레이트를 포함하는 단열재.
The method of claim 1,
80 to 100 parts by weight of the polyester polyol mixture,
A polyfunctional organic acid compound having 1 to 3 functional groups and
A polyfunctional hydroxide compound having OH at the terminal having 1 to 6 functional groups is synthesized by dehydration condensation,
The polyfunctional organic acid compound includes an aromatic organic acid in which double bonds and single bonds between carbons are alternated,
Benzoic acid (BA), Phenylacetic acid, polyethyleneterephthalate (PET), Polybutylene terephthalate (PBT), terephthalic acid (TPA), trimethylopropane (TMP), dimethyleneterephthanlate (DMT), phthalic anhydride (PAn), Trimellilic acid (TMA), and trisocyanuratehydroxyethyl isocyanurate Insulation material comprising polyisocyanurate comprising at least one of.
제 1항에 있어서,
상기 폴리에스테르 폴리올 혼합물 80 내지 100 중량부는,
관능기 수가 1 내지 3인 다관능 유기산 화합물과
관능기 수가 1 내지 6인 말단부에 OH를 가지는 다관능 수산화 화합물이 탈수축합에 의해 합성되고,
상기 다관능 유기산 화합물은
탄화수소 3 내지 12개를 가지는 선형구조의 유기산을 포함하며,
Palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, galoleic acid, erucic acid, nervonic acid 및 linoleic acid 중 적어도 하나를 포함하는 폴리이소시아누레이트를 포함하는 단열재.
The method of claim 1,
80 to 100 parts by weight of the polyester polyol mixture,
A polyfunctional organic acid compound having 1 to 3 functional groups and
A polyfunctional hydroxide compound having OH at the terminal having 1 to 6 functional groups is synthesized by dehydration condensation,
The polyfunctional organic acid compound is
It contains an organic acid of a linear structure having 3 to 12 hydrocarbons,
Insulation material comprising polyisocyanurate comprising at least one of palmitoleic acid, oleic acid, vaccenic acid, petroselic acid, galoleic acid, erucic acid, nervonic acid and linoleic acid.
제 1항에 있어서,
상기 폴리에스테르 폴리올 혼합물 80 내지 100 중량부는,
관능기 수가 1 내지 3인 다관능 유기산 화합물과
관능기 수가 1 내지 6인 말단부에 OH를 가지는 다관능 수산화 화합물이 탈수축합에 의해 합성되고,
상기 다관능 수산화 화합물은,
분자 끝에 OH 분자를 가지는 개시제 수산화물에 Propylene Oxide(PO) 또는 Ethylene Oxide(EO) 첨가하여 형성된 고분자 물질인 폴리이소시아누레이트를 포함하는 단열재.
The method of claim 1,
80 to 100 parts by weight of the polyester polyol mixture,
A polyfunctional organic acid compound having 1 to 3 functional groups and
A polyfunctional hydroxide compound having OH at the terminal having 1 to 6 functional groups is synthesized by dehydration condensation,
The polyfunctional hydroxide compound is
An insulating material comprising polyisocyanurate, a polymer material formed by adding propylene oxide (PO) or ethylene oxide (EO) to an initiator hydroxide having an OH molecule at the end of a molecule.
단열재층 및 표면층을 포함하고,
상기 단열재층은,
다공성 발포체이고,
폴리올 100 중량부, 상기 폴리올 100 중량부에 대해, 물리적 발포제 10 내지 20 중량부 및 폴리이소시아네이트 160 내지 250 중량부를 포함하고,
상기 폴리이소시아네이트 160 내지 250 중량부는 이소시아네이트 지수가 150 내지 450이고,
상기 폴리이소시아네이트 160 내지 250 중량부는, 고분자 엠디아이를 포함하고,
상기 고분자 엠디아이는, 관능기 수가 2.6 내지 3.2이고, 상온에서 점도가 500 내지 1100cps이고,
상기 폴리이소시아네이트 160 내지 250 중량부는,
선중간합성이소시아네이트(프리폴리머 엠디아이)를 포함하고,
상기 선중간합성이소시아네이트는 상온에서 점도가 100 내지 500cps인 폴리이소시아누레이트를 포함하는 단열재.
Including a thermal insulation layer and a surface layer,
The insulation layer is
It is a porous foam,
100 parts by weight of a polyol, 10 to 20 parts by weight of a physical blowing agent and 160 to 250 parts by weight of a polyisocyanate based on 100 parts by weight of the polyol,
160 to 250 parts by weight of the polyisocyanate has an isocyanate index of 150 to 450,
160 to 250 parts by weight of the polyisocyanate includes a polymer MDI,
The polymer MDI, the number of functional groups is 2.6 to 3.2, and the viscosity at room temperature is 500 to 1100 cps,
160 to 250 parts by weight of the polyisocyanate,
Including line intermediate synthetic isocyanate (prepolymer MDI),
The intermediate synthetic isocyanate is an insulating material comprising polyisocyanurate having a viscosity of 100 to 500 cps at room temperature.
삭제delete 제 5항에 있어서,
상기 폴리이소시아네이트 160 내지 250 중량부는,
고분자 엠디아이와 선중간합성이소시아네이트(프리폴리머 엠디아이)의 혼합체를 포함하고,
상기 고분자 엠디아이는 상온에서 점도가 500 내지 1100cps이고,
상기 선중간합성이소시아네이트는 상온에서 점도가 100 내지 500cps인 폴리이소시아누레이트를 포함하는 단열재.
6. The method of claim 5,
160 to 250 parts by weight of the polyisocyanate,
It contains a mixture of polymer MDI and pre-intermediate synthetic isocyanate (prepolymer MDI),
The polymer MDI has a viscosity of 500 to 1100 cps at room temperature,
The intermediate synthetic isocyanate is an insulating material comprising polyisocyanurate having a viscosity of 100 to 500 cps at room temperature.
제 5항에 있어서,
상기 고분자 엠디아이는 분자 내에서 NCO 함량이 27 내지 35중량%인 폴리이소시아누레이트를 포함하는 단열재.
6. The method of claim 5,
The polymer MDI is an insulator comprising polyisocyanurate having an NCO content of 27 to 35% by weight in the molecule.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200070030A 2020-06-10 2020-06-10 Insulation material containing polyisocyanurate with reduced toxic combustion gasL KR102401216B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200070030A KR102401216B1 (en) 2020-06-10 2020-06-10 Insulation material containing polyisocyanurate with reduced toxic combustion gasL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200070030A KR102401216B1 (en) 2020-06-10 2020-06-10 Insulation material containing polyisocyanurate with reduced toxic combustion gasL

Publications (2)

Publication Number Publication Date
KR20210153777A KR20210153777A (en) 2021-12-20
KR102401216B1 true KR102401216B1 (en) 2022-05-24

Family

ID=79033876

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200070030A KR102401216B1 (en) 2020-06-10 2020-06-10 Insulation material containing polyisocyanurate with reduced toxic combustion gasL

Country Status (1)

Country Link
KR (1) KR102401216B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943228B1 (en) * 2009-11-04 2010-02-18 주식회사 부일세이프텍 Flame-proof and insulating panel
KR101983509B1 (en) * 2018-10-10 2019-05-30 대한폴리텍(주) A high flame retardant insulation material and manufacturing method for it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332433B1 (en) * 2010-08-24 2013-11-22 제일모직주식회사 Rigid polyurethane foam having good insulation property and method for preparing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943228B1 (en) * 2009-11-04 2010-02-18 주식회사 부일세이프텍 Flame-proof and insulating panel
KR101983509B1 (en) * 2018-10-10 2019-05-30 대한폴리텍(주) A high flame retardant insulation material and manufacturing method for it

Also Published As

Publication number Publication date
KR20210153777A (en) 2021-12-20

Similar Documents

Publication Publication Date Title
KR102065299B1 (en) A semi-nonflammable insulation material and manufacturing method for it
KR101310288B1 (en) Polyurethane or polyisocyanurate foam composition
KR101983509B1 (en) A high flame retardant insulation material and manufacturing method for it
US20230234323A1 (en) Encapsulated fragile insulation materials
US4094869A (en) Thermally stable, rigid, cellular isocyanurate polyurethane foams
KR102456052B1 (en) Foam article and method for preparing the same
KR102557526B1 (en) A semi-nonflammable foam used as insulation
KR102401216B1 (en) Insulation material containing polyisocyanurate with reduced toxic combustion gasL
KR102409495B1 (en) A semi-nonflammable insulation material and manufacturing method for it
KR102275910B1 (en) Fireproof panel and Manufacturing thereof
KR20030051848A (en) Method of Preparing Polyurethane-Modified Polyisocyanurate Foam
KR102065251B1 (en) A manufacturing method of semi-inflammable insulation material
KR102065294B1 (en) Aromatic polyester polyol with excellent flame retardancy and long-term storage stability at room temperature
KR101796824B1 (en) Thermosetting foaming body with superior adiabatic and flameproof effect and method for manufacturing the same
KR20180041916A (en) Complex insulation material and method for manufacturing the same
KR20140023581A (en) Thermosetting foaming body with superior adiabatic and flameproof effect and method for manufacturing the same
KR20210088449A (en) A semi-nonflammable insulation material and manufacturing method for it
KR102491062B1 (en) Semi-incombustible polyurethane board and its manufacturing method.
KR102409496B1 (en) A semi-nonflammable insulation material with improved surface layer and manufacturing method for it
KR102190353B1 (en) An excellent flame retardancy insulation material comprising intumescent heat insulating paints and manufacturing method for it
KR102558528B1 (en) A semi-nonflammable insulation material and manufacturing method for it
JP2020082672A (en) Colored heat insulation board
KR102511309B1 (en) A semi-nonflammable rigid polyurethane foam comprising enamel powder and a method for manufacturing the same
KR20050077551A (en) Polyiscianurate foam for construction insulation using expandable graphite and and its polyol composition
KR20210145871A (en) A semi-nonflammable insulation material and manufacturing method for it

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant