KR102392965B1 - The manufacturing method of polyethylene-type resin extrusion foam seat|seet, polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same - Google Patents

The manufacturing method of polyethylene-type resin extrusion foam seat|seet, polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same Download PDF

Info

Publication number
KR102392965B1
KR102392965B1 KR1020177027914A KR20177027914A KR102392965B1 KR 102392965 B1 KR102392965 B1 KR 102392965B1 KR 1020177027914 A KR1020177027914 A KR 1020177027914A KR 20177027914 A KR20177027914 A KR 20177027914A KR 102392965 B1 KR102392965 B1 KR 102392965B1
Authority
KR
South Korea
Prior art keywords
polyethylene
antistatic agent
seet
foam sheet
low
Prior art date
Application number
KR1020177027914A
Other languages
Korean (ko)
Other versions
KR20170130450A (en
Inventor
타케시 아오키
타카시 니시모토
Original Assignee
가부시키가이샤 제이에스피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015108856A external-priority patent/JP6506619B2/en
Application filed by 가부시키가이샤 제이에스피 filed Critical 가부시키가이샤 제이에스피
Publication of KR20170130450A publication Critical patent/KR20170130450A/en
Application granted granted Critical
Publication of KR102392965B1 publication Critical patent/KR102392965B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D57/00Internal frames or supports for flexible articles, e.g. stiffeners; Separators for articles packaged in stacks or groups, e.g. for preventing adhesion of sticky articles
    • B65D57/002Separators for articles packaged in stacks or groups, e.g. stacked or nested
    • B65D57/003Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles
    • B65D57/004Separators for articles packaged in stacks or groups, e.g. stacked or nested for horizontally placed articles, i.e. for stacked or nested articles the articles being substantially flat panels, e.g. wooden planks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/48Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0075Antistatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92142Length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • B29C44/505Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying extruding the compound through a flat die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0633LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0008Anti-static agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2423/00Use of polyalkenes or derivatives thereof as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2471/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0091Damping, energy absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0094Geometrical properties
    • B29K2995/0097Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7138Shock absorbing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0207Materials belonging to B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • B32B2323/046LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/204Plasma displays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/20Ternary blends of expanding agents
    • C08J2203/204Ternary blends of expanding agents of chemical foaming agent and physical blowing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Abstract

저밀도 폴리에틸렌, 물리 발포제 및 대전 방지제를 혼련하여 이루어지는 발포성 용융 수지 조성물을 압출하고 발포시켜서 폴리에틸렌계 수지 압출 발포 시트를 제조하는 방법으로서, 발포 시트의 두께가 0.05~0.5㎜의 범위 내이고, 대전 방지제로서 저밀도 폴리에틸렌과의 융점차가 -10~+10℃의 범위 내인 융점을 갖고, 또한 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제를 사용하는 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법이 제공된다. 이것에 의해, 두께가 매우 얇음에도 불구하고, 중장기의 연속 생산에 있어서도 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질이고 우수한 강도와 완충성을 겸비하고, 또한 대전 방지 성능도 충분하게 발현하는 유리판용 간지로서 적합한 신규한 폴리에틸렌계 수지 압출 발포 시트가 얻어지게 된다. A method for producing a polyethylene-based resin extruded foam sheet by extruding and foaming a foamable molten resin composition obtained by kneading low-density polyethylene, a physical foaming agent and an antistatic agent, wherein the foam sheet has a thickness in the range of 0.05 to 0.5 mm, and as an antistatic agent A method for producing a polyethylene-based resin extruded foam sheet, characterized in that a polymer-type antistatic agent having a melting point difference with a low-density polyethylene in the range of -10 to +10 ° C and a melt flow rate of 10 g/10 min or more is used. provided Thereby, in spite of the very thin thickness, the generation of small holes and through holes is prevented and suppressed even in mid- to long-term continuous production, high-quality, excellent strength and cushioning properties, and the antistatic performance is also sufficiently expressed. A novel polyethylene-based resin extruded foam sheet suitable as an interleaving sheet for glass plates is obtained.

Description

폴리에틸렌계 수지 압출 발포 시트의 제조 방법, 폴리에틸렌계 수지 압출 발포 시트 및 그것을 사용한 유리판용 간지The manufacturing method of polyethylene-type resin extrusion foam seat|seet, polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same

본 발명은 신규한 폴리에틸렌계 수지 압출 발포 시트의 제조 방법, 신규한 폴리에틸렌계 수지 압출 발포 시트 및 그것을 사용한 유리판용 간지에 관한 것이다. This invention relates to the manufacturing method of a novel polyethylene-type resin extrusion foam seat|seet, a novel polyethylene-type resin extrusion foam sheet|seat, and the slip sheet for glass plates using the same.

폴리에틸렌계 수지 압출 발포 시트(이하, 발포 시트라고도 한다)는 대전 방지 기능, 유연성 및 완충성이 풍부하여 피포장물의 손상, 파손을 방지할 수 있기 때문에 가전제품, 유리기구, 도기 등의 포장 재료로서 널리 사용되어 왔다. 또한, 최근 박형 TV 등의 개발, 수요 확대에 따라 액정 디스플레이, 플라즈마 디스플레이, 일렉트로루미네선스 디스플레이 등의 화상 표시 장치용의 유리 기판의 곤포나 반송시에 있어서의, 유리 기판의 표면의 손상을 방지하기 위해서 유리판 사이에 배치되는 간지로서 대전 방지 성능을 구비한 발포 시트가 사용되고 있다(특허문헌 1, 특허문헌 2) Polyethylene-based resin extruded foam sheet (hereinafter also referred to as foam sheet) is rich in antistatic function, flexibility and buffering properties, so it can prevent damage and breakage of the object to be packaged. has been widely used. Moreover, with the recent development and demand expansion of thin TVs, etc., damage to the surface of a glass substrate at the time of packing and conveyance of the glass substrate for image display apparatuses, such as a liquid crystal display, a plasma display, and an electroluminescent display, is prevented In order to do so, foam seat|seet provided with antistatic performance is used as an interleaving paper arrange|positioned between glass plates (patent document 1, patent document 2).

지금까지, 액정 패널 등의 화상 표시 기기용의 유리판으로서 여러가지 두께의 것이 개발되어 왔지만, 경량화, 에너지 절약이나 생산 비용 등의 면에서 최근에는 두께가 0.5㎜ 정도 이하라고 하는 매우 얇은 유리판도 생산되게 되었다. 이러한 얇은 유리판의 간지로서, 종래와 같은 두께가 1㎜~2㎜ 정도인 두꺼운 발포 시트를 사용하면, 적재 효율이 저하될 뿐만 아니라 유리판에 대하여 간지의 두께가 지나치게 두꺼워지기 때문에 하중이 걸리는 쪽에 따라서는 유리판이 파손될 우려도 있었다. Up to now, glass plates of various thicknesses have been developed as glass plates for image display devices such as liquid crystal panels, but in recent years, very thin glass plates with a thickness of about 0.5 mm or less have been produced in view of weight reduction, energy saving, production cost, etc. . If a thick foam sheet having a thickness of about 1 mm to 2 mm as in the prior art is used as the separator for such a thin glass plate, the loading efficiency not only decreases, but also because the thickness of the separator on the glass plate becomes too thick, depending on the side on which a load is applied. There was a risk that the glass plate could be damaged.

이 때문에, 두께가 얇은 유리판에 대응하는 간지로서, 두께가 얇은 발포 시트의 개발이 진행되고 있지만, 두께가 얇은 발포 시트를 제조하고자 하면 발포 시트에 작은 구멍이나 관통 구멍이 발생되기 쉬워진다고 하는 문제가 발생했다. For this reason, although development of thin foam seat|seet is advancing as an interleaving sheet corresponding to a thin glass plate, the problem that small holes and through-holes become easy to generate|occur|produce in foam seat|seet when it tries to manufacture thin foam seat|seet. happened.

이러한 문제에 대처하기 위해서, 본 발명자들은 먼저 특유한 기포 조정제 등을 사용함으로써 평균 두께가 0.5㎜ 이하인 폴리에틸렌계 수지 압출 발포 시트를 개발했다(특허문헌 3, 특허문헌 4). In order to cope with such a problem, the present inventors first developed the polyethylene-type resin extrusion foam seat|seet whose average thickness is 0.5 mm or less by using a specific bubble regulator etc. (patent document 3, patent document 4).

이들 폴리에틸렌계 수지 압출 발포 시트는 평균 두께가 0.5㎜ 이하라도, 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질의 것이며, 우수한 대전 방지 성능과 완충성을 갖는 것이다. These polyethylene-type resin extruded foam sheets are of high quality in which the generation of small holes and through-holes is prevented and suppressed, even if the average thickness is 0.5 mm or less, and has excellent antistatic performance and buffering properties.

일본 특허 공개 2007-262409호 공보Japanese Patent Laid-Open No. 2007-262409 일본 특허 공개 2012-20766호 공보Japanese Patent Laid-Open No. 2012-20766 일본 특허 공개 2014-43553호 공보Japanese Patent Laid-Open No. 2014-43553 국제 공개 제2014/030513호International Publication No. 2014/030513

상기 폴리에틸렌계 수지 압출 발포 시트는 두께가 얇은 유리판의 간지로서 적합한 것이라고 할 수 있지만, 또한 2일~7일 등에 걸친 중장기의 연속 생산에 있어서도 안정적으로 작은 구멍이나 관통 구멍 등의 발생이 방지·억제된 고품질이고 우수한 대전 방지 성능을 발현하는 폴리에틸렌계 수지 압출 발포 시트의 개발이 강하게 요구된다. Although it can be said that the polyethylene-based resin extruded foam sheet is suitable as an interlayer for a thin glass plate, the generation of small holes and through holes is stably prevented and suppressed even in mid- to long-term continuous production over 2 to 7 days, etc. There is a strong demand for the development of a polyethylene-based resin extruded foam sheet exhibiting high quality and excellent antistatic performance.

본 발명은 상기한 사정을 감안하여 이루어진 것이며, 두께가 매우 얇음에도 불구하고 중장기의 연속 생산에 있어서도 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질이며 우수한 강도와 완충성을 겸비하고, 또한 대전 방지 성능도 충분히 발현하는, 유리판용 간지로서 적합한 신규한 폴리에틸렌계 수지 압출 발포 시트의 제조 방법, 신규한 폴리에틸렌계 수지 발포 시트 및 그것을 사용한 유리판용 간지를 제공하는 것을 목적으로 한다. The present invention has been made in view of the above circumstances, and despite its very thin thickness, the occurrence of small holes and through-holes is prevented and suppressed even in mid- to long-term continuous production, high-quality, excellent strength and buffering properties, and charging It aims at providing the manufacturing method of the novel polyethylene-type resin extruded foam seat|seet suitable as an interleaving sheet for glass plates which also fully expresses prevention performance, a novel polyethylene-type resin foam seat|seet, and the slip sheet for glass plates using the same.

본 발명은 이하에 기재된 신규한 폴리에틸렌계 수지 압출 발포 시트의 제조 방법, 신규한 폴리에틸렌계 수지 압출 발포 시트 및 그것을 사용한 유리판용 간지를 제공한다. This invention provides the manufacturing method of the novel polyethylene-type resin extruded foam seat|seet described below, the novel polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same.

<1> 저밀도 폴리에틸렌, 물리 발포제 및 대전 방지제를 함유하는 발포성 용융 수지 조성물을 압출하고 발포시켜서 폴리에틸렌계 수지 압출 발포 시트를 제조하는 방법으로서, 발포 시트의 두께가 0.05~0.5㎜의 범위 내이며, 대전 방지제로서 저밀도 폴리에틸렌과의 융점차가 -10~+10℃의 범위 내의 융점을 갖고, 또한 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제를 사용하는 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법. <1> A method for producing a polyethylene-based resin extruded foam sheet by extruding and foaming a foamable molten resin composition containing low-density polyethylene, a physical foaming agent and an antistatic agent, wherein the foam sheet has a thickness in the range of 0.05 to 0.5 mm, Production of polyethylene-based resin extruded foam sheet, characterized in that a polymer type antistatic agent having a melting point difference of -10 to +10 ° C. and a melt flow rate of 10 g/10 min or more is used as the inhibitor as an inhibitor Way.

<2> <1>에 있어서,<2> The method according to <1>,

상기 고분자형 대전 방지제의 융점이 120℃ 이하인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법. The melting point of the polymer-type antistatic agent is a method for producing a polyethylene-based resin extruded foam sheet, characterized in that 120 ℃ or less.

<3> <1> 또는 <2>에 있어서,<3> The method according to <1> or <2>,

고분자형 대전 방지제의 멜트 플로우 레이트에 대한 저밀도 폴리에틸렌의 멜트 플로우 레이트의 비(저밀도 폴리에틸렌의 멜트 플로우 레이트/고분자형 대전 방지제의 멜트 플로우 레이트)가 2 이하인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법. The ratio of the melt flow rate of the low-density polyethylene to the melt flow rate of the polymer-type antistatic agent (melt flow rate of low-density polyethylene/melt flow rate of the polymer-type antistatic agent) is 2 or less Production of a polyethylene-based resin extruded foam sheet, characterized in that Way.

<4> <1> 또는 <2>에 있어서,<4> The method according to <1> or <2>,

상기 저밀도 폴리에틸렌 100질량부에 대하여, 고분자형 대전 방지제가 3~25질량부 배합되어 있는 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법. 3 to 25 parts by mass of a high molecular weight antistatic agent are blended with respect to 100 parts by mass of the low-density polyethylene.

<5> 대전 방지제를 함유하고, 기재 수지가 저밀도 폴리에틸렌인 저밀도 폴리에틸렌계 수지 압출 발포 시트로서, 두께가 0.05㎜~0.5㎜의 범위 내, 겉보기 밀도가 20~450kg/㎥의 범위 내이며, 대전 방지제가 저밀도 폴리에틸렌과의 융점차가 -10℃~+10℃의 범위 내의 융점을 갖고, 또한 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트. <5> A low-density polyethylene-based resin extruded foam sheet containing an antistatic agent, the base resin of which is low-density polyethylene, wherein the thickness is in the range of 0.05 mm to 0.5 mm, and the apparent density is in the range of 20 to 450 kg/m 3 , and the antistatic agent A polyethylene-based resin extruded foam sheet, characterized in that it is a polymer type antistatic agent having a melting point difference with a low-density polyethylene within a range of -10°C to +10°C, and a melt flow rate of 10 g/10 min or more.

<6> <5>에 기재된 폴리에틸렌계 수지 압출 발포 시트로 이루어지는 유리판용 간지. <6> The interleaving sheet for glass plates which consists of the polyethylene-type resin extrusion foam seat|seet as described in <5>.

(발명의 효과) (Effects of the Invention)

본 발명의 제조 방법에 의하면, 수 시간과 같은 단기간은 물론, 수 일간에 걸친 중장기간의 연속 생산에 있어서도, 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질이며 두께가 매우 얇고 우수한 대전 방지 성능을 발현하는 폴리에틸렌계 수지 발포 시트를 얻을 수 있다. According to the manufacturing method of the present invention, not only for a short period of time such as several hours, but also for medium and long-term continuous production over several days, the occurrence of small holes and through holes is prevented and suppressed, high-quality, very thin, and excellent antistatic performance. An expressed polyethylene-type resin foam seat|seet can be obtained.

또한, 본 발명에 의한 신규한 폴리에틸렌계 수지 발포 시트는 두께가 매우 얇음에도 불구하고, 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질인 것이며, 또한 충분한 대전 방지 성능을 발현한다. In addition, the novel polyethylene-based resin foam sheet according to the present invention is of high quality in which the occurrence of small holes and through holes is prevented and suppressed, and also exhibits sufficient antistatic performance despite its very thin thickness.

따라서, 본 발명의 신규한 폴리에틸렌계 수지 발포 시트는 대전 방지 기능 등이 강하게 요구되는 분야, 특히 액정 디스플레이, 플라즈마 디스플레이, 일렉트로루미네선스 디스플레이 등의 화상 표시 장치용의 박형 유리판의 반송이나 곤포시의 손상을 방지하기 위한 유리판용 간지로서 널리 그 수요가 예견된다. Therefore, the novel polyethylene-based resin foam sheet of the present invention can be used in fields where an antistatic function or the like is strongly required, particularly when transporting or packing thin glass plates for image display devices such as liquid crystal displays, plasma displays, and electroluminescence displays. Widely demanded as an interleaving paper for a glass plate for preventing damage is anticipated.

또한, 본 발명의 신규한 폴리에틸렌계 수지 발포 시트는 중장기에 걸쳐서 연속적으로 제조하는 것이 가능하여, 공업적으로 매우 생산 효율이 높은 발포 시트이다. Moreover, the novel polyethylene-type resin foam seat|seet of this invention can be manufactured continuously over a mid- to long-term, and is a foam seat|seet with very high production efficiency industrially.

본 발명의 폴리에틸렌계 수지 압출 발포 시트(이하, 단지 발포 시트라고도 함)의 제조 방법은 저밀도 폴리에틸렌, 물리 발포제 및 대전 방지제를 함유하는 발포성 용융 수지 조성물을 압출하여 발포시켜서 폴리에틸렌계 수지 압출 발포 시트를 제조하는 방법으로서, 발포 시트의 두께가 0.05~0.5㎜의 범위 내이며, 대전 방지제로서 저밀도 폴리에틸렌과의 융점차가 -10~+10℃의 범위 내의 융점을 갖고, 또한 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제를 사용하는 것을 특징으로 하고 있다. The method for producing a polyethylene-based resin extruded foam sheet (hereinafter, simply referred to as foam sheet) of the present invention is to produce a polyethylene-based resin extruded foam sheet by extruding and foaming a foamable molten resin composition containing low-density polyethylene, a physical foaming agent and an antistatic agent As a method of making the foam sheet, the thickness of the foam sheet is in the range of 0.05 to 0.5 mm, the difference in melting point with the low-density polyethylene as an antistatic agent is in the range of -10 to +10°C, and the melt flow rate is 10 g/10 min or more. It is characterized by using a polymer type antistatic agent.

(발포 시트의 제조 방법) (Manufacturing method of foam sheet)

본 발명의 발포 시트의 제조 방법은 발포 시트를 성형하기 위한 재료인 저밀도 폴리에틸렌, 대전 방지제, 기타 필요에 따라서 첨가되는 기포 조정제 등의 첨가제를 압출기에 공급하여 200℃ 정도로 가열 혼련하여 용융 수지 조성물로 한다. 계속해서, 이 용융 수지 조성물에 물리적 발포제를 압입하고 또한 혼련하여 압출기 내에서 발포성 용융 수지 조성물로 한다. 계속해서, 이 발포성 용융 수지 조성물을 발포 적정 온도로 냉각한다. In the manufacturing method of the foam seat|seet of this invention, additives, such as low-density polyethylene, antistatic agent, and other additives added as needed, are supplied to an extruder and heat-kneaded at about 200 degreeC, which is a material for molding a foam seat|seet, To obtain a molten resin composition . Then, a physical foaming agent is press-injected into this molten resin composition, and it kneads|mixed and it is set as a foamable molten resin composition in an extruder. Then, this foamable molten resin composition is cooled to foaming appropriate temperature.

여기서, 발포성 용융 수지 조성물의 발포 적정 온도란 발포층이 용이하게 얻어지는 온도인 것이며, 저밀도 폴리에틸렌의 [융점+0℃]~[융점+15℃]의 범위로 하는 것이 바람직하고, 보다 바람직하게는 [융점+2℃]~[융점+10℃]의 범위이다. Here, the appropriate foaming temperature of the foamable molten resin composition is a temperature at which a foamed layer can be easily obtained, preferably in the range of [melting point + 0 ° C] to [melting point + 15 ° C.] of low-density polyethylene, more preferably [ melting point +2°C] to [melting point +10°C].

그리고, 상기 발포성 용융 수지 조성물을 환상 다이 내에 도입하고, 그 다이 선단 립부로부터 대기 중으로 압출해서 발포성 용융 수지 조성물을 발포시킴으로써 통 형상 압출 발포체를 제조하고, 이 통 형상 압출 발포체를 맨드릴로 확장(블로우 업)하면서 인수하면서 압출 방향을 따라서 절개함으로써 발포 시트를 얻을 수 있다. Then, the above-mentioned foamable molten resin composition is introduced into an annular die, extruded from the die tip lip portion into the atmosphere to foam the expandable molten resin composition to produce a tubular extruded foam, and this tubular extruded foam is expanded with a mandrel (blow up) ) while taking over, it is possible to obtain a foam sheet by cutting along the extrusion direction.

(발포 시트의 형성 재료) (Material for forming foam sheet)

본 발명의 제조 방법에 있어서는 상기한 바와 같이 저밀도 폴리에틸렌, 대전 방지제, 물리 발포제, 필요에 따라서 기포 조정제 및 기타 첨가제를 배합한 발포성 용융 수지 조성물을 압출 발포시킴으로써 형성한다. 이하에, 발포 시트를 성형하기 위해서 사용하는 재료에 대해서 상세하게 설명한다. In the manufacturing method of this invention, as mentioned above, it forms by extruding and foaming the foamable molten resin composition which mix|blended the low-density polyethylene, the antistatic agent, the physical foaming agent, and the foam|bubble control agent and other additives as needed. Below, the material used in order to shape|mold foam seat|seet is demonstrated in detail.

(저밀도 폴리에틸렌) (Low Density Polyethylene)

저밀도 폴리에틸렌으로서는 장쇄 분기 구조를 갖는, 밀도가 900kg/㎥ 이상 930kg/㎥ 미만인 폴리에틸렌을 사용할 수 있다. 상기 수지는 양호한 발포성을 나타내고, 얻어지는 발포 시트는 완충 특성에 있어서 우수한 것으로 된다. 상기 관점에서 저밀도 폴리에틸렌의 밀도는 910kg/㎥ 이상 925kg/㎥ 이하인 것이 바람직하다. 상기 저밀도 폴리에틸렌의 융점은 100~120℃가 바람직하고, 105~115℃가 더욱 바람직하다. 상기 저밀도 폴리에틸렌의 융점은 JIS K7121-1987에 준거하는 방법에 의해 측정할 수 있다. 구체적으로는, 시차 주사 열량계를 사용하여 40℃에서 200℃까지 10℃/분으로 승온함으로써 가열 용융시키고, 그 온도로 10분간 유지한 후 40℃까지 10℃/분으로 냉각하는 열처리 후, 다시 가열 속도 40℃에서 200℃까지 10℃/분으로 승온함으로써 융해 피크를 얻는다. 그리고, 얻어진 융해 피크 중 가장 큰 융해 피크의 정점의 온도를 융점으로 한다. As the low-density polyethylene, polyethylene having a long-chain branched structure and having a density of 900 kg/m 3 or more and less than 930 kg/m 3 can be used. The said resin shows favorable foamability, and the foam seat|seet obtained becomes a thing excellent in a buffering characteristic. From the above point of view, the density of the low-density polyethylene is preferably 910 kg/m 3 or more and 925 kg/m 3 or less. The melting point of the low-density polyethylene is preferably 100 to 120 °C, more preferably 105 to 115 °C. Melting|fusing point of the said low density polyethylene can be measured by the method based on JISK7121-1987. Specifically, using a differential scanning calorimeter, heating is performed by heating and melting by raising the temperature from 40°C to 200°C at 10°C/min, holding at that temperature for 10 minutes, cooling to 40°C at 10°C/min, after heat treatment, and then heating again A melting peak is obtained by raising the temperature from 40°C to 200°C at a rate of 10°C/min. And let the temperature of the apex of the largest melting peak among the obtained melting peaks be melting|fusing point.

또한, 저밀도 폴리에틸렌의 멜트 플로우 레이트는 5g/10분 이상인 것이 바람직하고, 10g/10분 이상인 것이 보다 바람직하고, 15g/10분 이상인 것이 더욱 바람직하다. 상기 멜트 플로우 레이트는 JIS K7210-1:2014에 따라 온도 190℃, 하중 2.16kg에서 측정되는 값이다. Moreover, it is preferable that it is 5 g/10min or more, and, as for the melt flow rate of a low density polyethylene, it is more preferable that it is 10 g/10min or more, It is more preferable that it is 15 g/10min or more. The melt flow rate is a value measured at a temperature of 190° C. and a load of 2.16 kg according to JIS K7210-1:2014.

또한, 저밀도 폴리에틸렌이 2종 이상의 혼합물인 경우, 그 혼합물의 융점 및 멜트 플로우 레이트는 압출기에서 미리 용융 혼련한 것에 대해서 측정되는 융점 및 멜트 플로우 레이트로 특정된다. In addition, when the low-density polyethylene is a mixture of two or more types, the melting point and melt flow rate of the mixture are specified by the melting point and melt flow rate measured with respect to what was previously melt-kneaded in an extruder.

본 발명에서 바람직하게 사용되는 저밀도 폴리에틸렌의 시판품으로서는, 예를 들면 NUC사제의 「제품명 NUC8321」(멜트 플로우 레이트 1.9g/10분, 융점 112℃) 등이 예시된다. As a commercial item of the low-density polyethylene preferably used by this invention, "Product name NUC8321" by NUC Corporation (melt flow rate 1.9 g/10min, melting|fusing point 112 degreeC) etc. are illustrated, for example.

상기 저밀도 폴리에틸렌에는 본 발명의 목적 및 효과를 저해하지 않는 범위에 있어서, 다른 폴리에틸렌계 수지나 폴리프로필렌계 수지, 폴리스티렌계 수지 등의 열가소성 수지나 에틸렌프로필렌 고무, 스티렌-부타디엔-스티렌 블록 공중합체 등의 엘라스토머 등을 포함해도 좋다. In the low-density polyethylene, other polyethylene-based resins, polypropylene-based resins, and thermoplastic resins such as polystyrene-based resins, ethylene propylene rubber, styrene-butadiene-styrene block copolymers, etc. An elastomer etc. may be included.

상기 다른 폴리에틸렌계 수지로서는 에틸렌 성분 단위가 50몰% 이상인 수지이며, 구체적으로는 고밀도 폴리에틸렌, 직쇄상 저밀도 폴리에틸렌, 초저밀도 폴리에틸렌, 에틸렌-아세트산 비닐 공중합체, 에틸렌-메타크릴산 메틸 공중합체, 에틸렌-아크릴산 에틸 공중합체 등이나, 또한 그것들의 2종 이상의 혼합물이 예시된다. The other polyethylene-based resin is a resin having an ethylene component unit of 50 mol% or more, and specifically, high-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, ethylene- An ethyl acrylate copolymer etc., and a mixture of 2 or more types thereof are illustrated further.

저밀도 폴리에틸렌 이외의 수지나 엘라스토머의 배합량은 저밀도 폴리에틸렌 100질량부에 대하여 20질량부 이하가 바람직하고, 10질량부 이하가 보다 바람직하고, 5질량부 이하가 특히 바람직하다. 저밀도 폴리에틸렌과 함께 상기 저밀도 폴리에틸렌 이외의 수지나 엘라스토머를 혼련하여 발포성 용융 수지 조성물을 구성하는 기재 수지로 할 수 있다. 20 mass parts or less are preferable with respect to 100 mass parts of low density polyethylene, as for the compounding quantity of resins other than low density polyethylene, and an elastomer, 10 mass parts or less are more preferable, and 5 mass parts or less are especially preferable. It can be set as the base resin which comprises a foamable molten resin composition by kneading resin and elastomer other than the said low density polyethylene together with a low density polyethylene.

(대전 방지제) (Antistatic agent)

본 발명의 제조 방법에 있어서는 대전 방지제로서 고분자형 대전 방지제를 사용하는 것이 필요하다. 이 고분자형 대전 방지제는 상기 저밀도 폴리에틸렌과의 융점차가 -10℃~+10℃의 범위 내이며, 또한 멜트 플로우 레이트가 10g/10분 이상인 것이다. In the manufacturing method of this invention, it is necessary to use a polymer type antistatic agent as an antistatic agent. This polymeric antistatic agent has a melting point difference of -10°C to +10°C with the low-density polyethylene, and a melt flow rate of 10 g/10 min or more.

이러한 고분자형 대전 방지제를 사용하면 중장기에 걸친 연속 생산에 있어서도 작은 구멍이나 관통 구멍 등의 발생이 방지·억제된 고품질이며 우수한 대전 방지 기능을 발현하는 폴리에틸렌계 수지 압출 발포 시트를 얻을 수 있다. If such a polymeric antistatic agent is used, it is possible to obtain a high-quality polyethylene-based resin extruded foam sheet exhibiting an excellent antistatic function in which the occurrence of small holes and through holes is prevented and suppressed even in continuous production over a medium to long term.

이 정확한 이유는 현 시점에서는 확실하지 않지만, 후술하는 바와 같이 본 발명에서 사용하는 고분자형 대전 방지제는 융점이 낮고 멜트 플로우 레이트가 높기 때문에, 종래의 융점이 높은 고분자형 대전 방지제와 같이 환상 다이 내에서의 작은 구멍이나 관통 구멍의 발생 원인이 되는 결정의 석출이 방지·억제되는 것에 의한 것으로 생각하고 있다. The exact reason for this is not certain at this time, but as will be described later, the polymer-type antistatic agent used in the present invention has a low melting point and a high melt flow rate. It is thought that this is because the precipitation of crystals, which is the cause of the occurrence of small holes or through holes, is prevented or suppressed.

본 발명에서 사용하는 고분자형 대전 방지제의 융점과, 상기 저밀도 폴리에틸렌의 융점의 차([저밀도 폴리에틸렌의 융점]-[고분자형 대전 방지제의 융점])가 -10℃~+10℃의 범위 내이지만, 또한 연속 운전에 있어서도 고품질의 것을 얻는 관점에서 상기 융점차는 바람직하게는 -8℃~+8℃이며, 더욱 바람직하게는 -7℃~+7℃이다. 또한, 고분자형 대전 방지제의 융점은 125℃ 이하인 것이 바람직하고, 120℃ 이하인 것이 보다 바람직하다. 한편, 융점의 하한은 대략 100℃ 정도이다. The difference between the melting point of the polymer antistatic agent used in the present invention and the melting point of the low-density polyethylene ([melting point of low-density polyethylene]-[melting point of polymer-type antistatic agent]) is within the range of -10 ° C. to +10 ° C., Also in continuous operation, from the viewpoint of obtaining a high-quality product, the melting point difference is preferably -8°C to +8°C, more preferably -7°C to +7°C. Moreover, it is preferable that it is 125 degrees C or less, and, as for melting|fusing point of a polymer type antistatic agent, it is more preferable that it is 120 degrees C or less. On the other hand, the lower limit of melting|fusing point is about 100 degreeC.

또한, 고분자형 대전 방지제의 융점은 상기 저밀도 폴리에틸렌과 마찬가지의 방법에 의해서 구해진다. In addition, melting|fusing point of a polymer type antistatic agent is calculated|required by the method similar to the said low density polyethylene.

마찬가지의 이유에 의해, 본 발명에서 사용하는 고분자형 대전 방지제의 멜트 플로우 레이트가 10g/10분 이상이지만, 바람직하게는 20g/10분 이상이며, 더욱 바람직하게는 30g/10분 이상이다. 한편, 그 상한은 대략 100g/10분 정도인 상기 범위이면, 대전 방지제가 유동성이 우수해, 보다 효과적으로 대전 방지 성능을 발휘하기 때문에 바람직하다. 또한, 고분자형 대전 방지제의 멜트 플로우 레이트는 JIS K7210-1:2014에 따라서 온도 190℃, 하중 2.16kg에서 측정되는 값이다. For the same reason, the melt flow rate of the polymer type antistatic agent used in the present invention is 10 g/10 min or more, preferably 20 g/10 min or more, and more preferably 30 g/10 min or more. On the other hand, if the upper limit is about 100 g/10 minutes in the said range, since an antistatic agent is excellent in fluidity|liquidity and exhibits antistatic performance more effectively, it is preferable. The melt flow rate of the polymer-type antistatic agent is a value measured at a temperature of 190°C and a load of 2.16 kg according to JIS K7210-1:2014.

또한, 고분자형 대전 방지제의 멜트 플로우 레이트에 대한 저밀도 폴리에틸렌 B의 멜트 플로우 레이트의 비(저밀도 폴리에틸렌의 멜트 플로우 레이트/고분자형 대전 방지제의 멜트 플로우 레이트)는 2 이하인 것이 바람직하고, 1 이하인 것이 보다 바람직하고, 0.8 이하인 것이 더욱 바람직하다. 상기 비가 상기 범위이면, 고분자형 대전 방지제가 망 형상 또는 층 형상으로 분산되어 우수한 대전 방지 성능을 보다 효과적으로 발휘할 수 있다. 한편, 상기 비의 하한은 대략 0.01 이상인 것이 바람직하다. In addition, the ratio of the melt flow rate of the low-density polyethylene B to the melt flow rate of the polymer-type antistatic agent (melt flow rate of low-density polyethylene/melt flow rate of the polymer-type antistatic agent) is preferably 2 or less, and more preferably 1 or less. and 0.8 or less is more preferable. When the ratio is within the above range, the polymer-type antistatic agent is dispersed in a mesh or layer shape, and excellent antistatic performance can be more effectively exhibited. On the other hand, the lower limit of the ratio is preferably about 0.01 or more.

본 발명에서 바람직하게 사용되는 고분자형 대전 방지제로서는 폴리에테르와 폴리올레핀의 블록 공중합체로 이루어지는 것이며, 시판품으로서는 예를 들면 산요카세이고교가부시키가이샤제의 펠렉트론 LMP(융점 114℃, 멜트 플로우 레이트 30g/10분) 등을 예시할 수 있다. As a polymeric antistatic agent preferably used in the present invention, it consists of a block copolymer of polyether and polyolefin, and as a commercially available product, for example, Pelectron LMP manufactured by Sanyo Kasei Kogyo Co., Ltd. (melting point 114° C., melt flow rate 30 g) /10 min) and the like can be exemplified.

본 발명에 있어서 사용되는 고분자형 대전 방지제의 수 평균 분자량으로서는 2,000 이상이 바람직하고, 보다 바람직하게는 2,000~100,000, 더욱 바람직하게는 5,000~80,000이다. 또한, 상기 고분자형 대전 방지제의 수 평균 분자량의 상한은 대략 500,000이다. 고분자형 대전 방지제의 수 평균 분자량을 상기 범위로 함으로써, 대전 방지 성능이 습도 등의 환경에 좌우되지 않고 보다 안정적으로 발현된다. As a number average molecular weight of the polymer type antistatic agent used in this invention, 2,000 or more are preferable, More preferably, it is 2,000-100,000, More preferably, it is 5,000-80,000. In addition, the upper limit of the number average molecular weight of the said polymer type antistatic agent is about 500,000. By making the number average molecular weight of a high molecular weight antistatic agent into the said range, antistatic performance is expressed more stably, without being influenced by environments, such as humidity.

상기 수 평균 분자량은 고온 겔퍼미에이션 크로마토그래피를 사용해서 구해진다. 예를 들면, 고분자형 대전 방지제가 폴리에테르에스테르아미드나 폴리에테르를 주성분으로 하는 것인 경우에는 오르토디클로로벤젠을 용매로 해서 시료 농도 3mg/ml로 하고, 폴리스티렌을 기준 물질로 해서 컬럼 온도 135℃의 조건에서 측정되는 값이다. 또한, 상기 용매의 종류, 컬럼 온도는 고분자형 대전 방지제의 종류에 따라서 적절하게 변경한다. The said number average molecular weight is calculated|required using high temperature gel permeation chromatography. For example, if the polymer type antistatic agent has polyetheresteramide or polyether as its main component, use orthodichlorobenzene as a solvent to have a sample concentration of 3 mg/ml, and use polystyrene as a reference material at a column temperature of 135°C. It is a value measured under conditions. In addition, the type of the solvent and the column temperature are appropriately changed according to the type of the polymer type antistatic agent.

(대전 방지제의 배합량) (Antistatic agent compounding amount)

고분자형 대전 방지제의 발포체에 대한 배합량은 충분한 대전 방지 특성을 갖고 또한 고품질의 발포 시트를 얻는 점에서, 상기 발포체를 구성하는 저밀도 폴리에틸렌 100질량부에 대하여 2~30질량부인 것이 바람직하고, 보다 바람직하게는 3~25질량부, 더욱 바람직하게는 5~20질량부이다. The blending amount of the high molecular weight antistatic agent to the foam is preferably 2 to 30 parts by mass, more preferably 2 to 30 parts by mass, based on 100 parts by mass of the low-density polyethylene constituting the foam, from the viewpoint of having sufficient antistatic properties and obtaining a high-quality foam sheet. is 3 to 25 parts by mass, more preferably 5 to 20 parts by mass.

(발포 시트의 표면 저항률) (Surface resistivity of foam sheet)

본 발명 방법에 있어서는 상기 고분자형 대전 방지제를 첨가함으로써, 발포 시트의 표면의 표면 저항률을 1×107~1×1013Ω으로 할 수 있다. 상기 표면 저항률이 상기 범위 내이면 발포 시트는 충분한 대전 방지 특성을 나타내는 것으로 된다. 상기 관점에서는 상기 표면 저항률은 5×1012Ω 이하가 바람직하고, 1×1012Ω 이하가 더욱 바람직하다. In the method of this invention, the surface resistivity of the surface of foam seat|seet can be made into 1x10< 7 >-1x10< 13 >(ohm) by adding the said polymer type antistatic agent. If the said surface resistivity is in the said range, foam seat|seet will show sufficient antistatic property. From the above viewpoint, the surface resistivity is preferably 5×10 12 Ω or less, and more preferably 1×10 12 Ω or less.

본 발명에 있어서의 표면 저항률은 하기 시험편의 상태 조절을 행한 후, JIS K6271:2008에 준거해서 측정된다. 구체적으로는, 측정 대상물인 발포 시트로부터 잘라낸 시험편(세로 100㎜×가로 100㎜×두께: 측정 대상물 두께)을 온도 20℃, 상대습도 30%의 분위기 하에 36시간 방치함으로써 시험편의 상태 조절을 행한다. 이어서, 온도 20℃, 상대습도 30%의 분위기 하에 있어서 인가 전압 500V의 조건에서 시험편에 전압을 인가한다. 전압 인가를 개시하고, 1분 경과 후의 표면 저항률을 측정한다. The surface resistivity in this invention is measured based on JISK6271:2008, after performing the state adjustment of the following test piece. Specifically, a test piece cut out from the foam sheet as the measurement object (length 100 mm × width 100 mm × thickness: measurement object thickness) is left to stand in an atmosphere of a temperature of 20° C. and a relative humidity of 30% for 36 hours to control the state of the test piece. Next, a voltage is applied to the test piece under conditions of an applied voltage of 500 V in an atmosphere of a temperature of 20°C and a relative humidity of 30%. Voltage application is started, and the surface resistivity is measured after 1 minute has elapsed.

(물리 발포제) (physical blowing agent)

본 발명 방법에 있어서는 저밀도 폴리에틸렌을 압출기에 공급하고, 가열, 혼련하여 용융 수지로 하고, 이어서 물리 발포제를 압입하고 또한 혼련함으로써 발포성 용융 수지 조성물을 형성한다. 물리 발포제는 유기계 또는 무기계 물리 발포제여도 좋다. 유기계 물리 발포제로서는, 예를 들면 프로판, 노말 부탄, 이소부탄, 노말 펜탄, 이소펜탄, 노말 헥산, 이소헥산 등의 지방족 탄화수소, 시클로펜탄, 시클로헥산 등의 지환식 탄화수소, 염화메틸, 염화에틸 등의 염화탄화수소, 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄 등의 불화탄화수소, 디메틸에테르, 메틸에틸에테르 등의 에테르류, 메탄올, 에탄올 등의 알코올류가 예시된다. In the method of the present invention, low-density polyethylene is supplied to an extruder, heated and kneaded to form a molten resin, and then a physical foaming agent is press-injected and further kneaded to form a foamable molten resin composition. The physical foaming agent may be an organic or inorganic physical foaming agent. Examples of the organic physical foaming agent include aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane and isohexane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, and methyl chloride and ethyl chloride. fluorinated hydrocarbons such as chlorinated hydrocarbons, 1,1,1,2-tetrafluoroethane and 1,1-difluoroethane, ethers such as dimethyl ether and methyl ethyl ether, and alcohols such as methanol and ethanol .

무기계 물리 발포제로서는, 예를 들면 산소, 질소, 이산화탄소, 공기, 물이 예시된다. 이들 물리 발포제는 2종 이상을 혼합하여 사용하는 것이 가능하다. 이들 중, 발포성의 관점에서 유기계 물리 발포제가 바람직하고, 그 중에서도 노말 부탄, 이소부탄, 또는 이것들의 혼합물을 주성분으로 하는 것이 특히 적합하다. Examples of the inorganic physical foaming agent include oxygen, nitrogen, carbon dioxide, air, and water. It is possible to mix and use 2 or more types of these physical foaming agents. Of these, organic physical foaming agents are preferable from the viewpoint of foamability, and among them, those containing normal butane, isobutane, or mixtures thereof as a main component are particularly suitable.

상기 물리 발포제의 첨가량은 그 종류, 목적으로 하는 발포 시트의 겉보기 밀도에 따라서 조정한다. 예를 들면, 물리 발포제로서 이소부탄 30중량%와 노말 부탄 70질량%의 부탄 혼합물 등의 물리 발포제를 사용하여 겉보기 밀도 20~450kg/㎥의 발포 시트를 얻는 경우, 발포성 용융 수지 조성물을 구성하는 기재 수지 100질량부에 대하여 4~35질량부, 바람직하게는 5~30질량부, 보다 바람직하게는 6~25질량부이다. The addition amount of the said physical foaming agent is adjusted according to the type and the apparent density of the target foam seat|seet. For example, when a foam sheet having an apparent density of 20 to 450 kg/m 3 is obtained by using a physical foaming agent such as a butane mixture of 30% by weight of isobutane and 70% by weight of normal butane as the physical foaming agent, the base material constituting the foamable molten resin composition It is 4-35 mass parts with respect to 100 mass parts of resin, Preferably it is 5-30 mass parts, More preferably, it is 6-25 mass parts.

(기포 조정제) (Bubble control agent)

본 발명 방법에 있어서는 상기 저밀도 폴리에틸렌과 함께 기포 조정제를 압출기에 공급할 수 있다. 기포 조정제로서는 무기 분체나 화학 발포제를 사용할 수 있다. 상기 무기 분체로서는 탈크, 제올라이트, 실리카, 탄산칼슘 등이 예시된다. In the method of this invention, a bubble control agent can be supplied to an extruder together with the said low density polyethylene. An inorganic powder or a chemical foaming agent can be used as a foam|bubble control agent. Examples of the inorganic powder include talc, zeolite, silica, calcium carbonate and the like.

상기 화학 발포제로서는 아조디카본아미드, 히드라조디카본아미드, 아조비스이소부티로니트릴, 탄산수소나트륨(중조)이나, 탄산수소나트륨과 구연산 또는 구연산-나트륨 등의 구연산모노알칼리 금속염의 혼합물인 중조-구연산계 화학 발포제 등이 예시된다. 상기 화학 발포제 중에서도, 기포 지름이 작고, 완충성이 우수한 발포 시트를 얻기 위해서는 중조-구연산계 화학 발포제가 바람직하다. As the chemical foaming agent, azodicarbonamide, hydrazodicarbonamide, azobisisobutyronitrile, sodium bicarbonate (sodium bicarbonate), sodium bicarbonate and sodium bicarbonate-citric acid, which is a mixture of citric acid or a monoalkali metal salt of citric acid such as sodium citrate A system chemical foaming agent etc. are illustrated. Among the above-mentioned chemical foaming agents, in order to obtain a foam sheet having a small cell diameter and excellent cushioning properties, a sodium bicarbonate-citric acid-based chemical foaming agent is preferable.

특히, 평균 입자 지름 3~8㎛의 중조-구연산계 화학 발포제를 사용하면 발포 시트를 관통하는 관통 구멍의 발생을 보다 효과적으로 방지할 수 있기 때문에 바람직하다. 이러한 관점에서, 상기 평균 입자 지름은 4~7㎛인 것이 보다 바람직하다. 또한, 화학 발포제의 최대 입자 지름은 100㎛ 이하인 것이 바람직하고, 80㎛ 이하인 것이 보다 바람직하다. 상기 평균 입자 지름이란 레이저 회절 산란식 입도 분포 측정에 의해 측정되는 메디안 지름(d50)을 의미한다. 또한, 상기 화학 발포제의 최대 입자 지름은 화학 발포제로부터 무작위로 샘플링한 약 1~3mg 정도의 입자군을 광학 현미경 등으로 확대 관찰하고, 입자군 중에서 가장 장축 지름이 긴 입자의 장축 지름을 화학 발포제의 최대 입자 지름으로 한다. In particular, the use of a sodium bicarbonate-citric acid-based chemical foaming agent having an average particle diameter of 3 to 8 µm is preferable because the generation of through holes penetrating the foam sheet can be more effectively prevented. From this viewpoint, it is more preferable that the said average particle diameter is 4-7 micrometers. Moreover, it is preferable that it is 100 micrometers or less, and, as for the maximum particle diameter of a chemical foaming agent, it is more preferable that it is 80 micrometers or less. The average particle diameter means a median diameter (d50) measured by laser diffraction scattering type particle size distribution measurement. In addition, the maximum particle diameter of the chemical foaming agent is enlarged and observed with an optical microscope, etc. of a particle group of about 1-3 mg randomly sampled from the chemical foaming agent, and the major axis diameter of the particle with the longest major axis diameter among the particle group is determined by the chemical foaming agent. to the maximum particle diameter.

상기 기포 조정제의 첨가량은 발포성 용융 수지 조성물을 구성하는 기재 수지 100질량부에 대하여 0.1~3질량부인 것이 바람직하고, 보다 바람직하게는 0.2~2질량부이다. 상기 첨가량이 상기 범위이면, 기포 지름을 소망의 범위로 조정하기 쉽기 때문에 바람직하다. It is preferable that the addition amount of the said bubble regulator is 0.1-3 mass parts with respect to 100 mass parts of base resin which comprises a foamable molten resin composition, More preferably, it is 0.2-2 mass parts. It is preferable that the said addition amount is the said range, since it is easy to adjust a cell diameter to a desired range.

(기타 첨가제) (Other additives)

본 발명 방법에 있어서는 상기 성분 외에 본 발명의 효과를 손상시키지 않는 범위에서 각종 첨가제를 첨가할 수 있다. 첨가제로서는, 예를 들면 산화 방지제, 열안정제, 내후제, 자외선 흡수제, 난연제, 무기 충전제, 항균제, 착색제 등이 예시된다. In the method of the present invention, in addition to the above components, various additives may be added within a range that does not impair the effects of the present invention. As an additive, antioxidant, a heat stabilizer, a weathering agent, a ultraviolet absorber, a flame retardant, an inorganic filler, an antibacterial agent, a coloring agent etc. are illustrated, for example.

본 발명의 제조 방법에 있어서, 중장기 연속 생산에 있어서도 작은 구멍이나 관통 구멍의 발생이 방지·억제되고, 또한 대전 방지 성능도 충분히 발현하는 발포 시트가 얻어지는 이유는 현 시점에서는 확실하지 않지만 다음과 같이 추측하고 있다. In the manufacturing method of the present invention, the reason why a foam sheet is obtained that prevents and suppresses the occurrence of small holes and through-holes, and also sufficiently exhibits antistatic performance, even in mid- to long-term continuous production, is not certain at the present time, but it is speculated as follows. are doing

종래, 이 종류의 대전 방지제를 함유하는 폴리에틸렌계 수지 압출 발포 시트에 있어서는, 대전 방지제로서는 후기 비교예에서 보여지는 바와 같이 기재 수지인 저밀도 폴리에틸렌과의 융점차가 +20℃ 이상인 융점 135℃ 정도의 고분자형 대전 방지제가 사용되고 있다. 이러한 종래의 고분자형 대전 방지제를 사용한 경우, 상기한 바와 같이 압출기 내의 온도는 200℃ 이상 정도의 고온으로 유지되고 있으므로, 상기 고분자형 대전 방지제는 발포성 용융 수지 조성물 중에 완전히 용융되어 미용융의 고분자형 대전 방지제의 결정은 석출되지 않는다. Conventionally, in the polyethylene-based resin extruded foam sheet containing this type of antistatic agent, the antistatic agent is a polymer type having a melting point of about 135°C or higher, with a melting point difference of +20°C or higher with a low-density polyethylene as a base resin, as shown in later comparative examples. Antistatic agents are used. When such a conventional polymeric antistatic agent is used, since the temperature in the extruder is maintained at a high temperature of about 200° C. or higher as described above, the polymeric antistatic agent is completely melted in the foamable molten resin composition and is an unmelted polymeric antistatic agent. crystals do not precipitate.

그러나, 이 발포성 용융 수지 조성물은 상기한 바와 같이 환상 다이에 도입될 때 발포 적정 온도로 되도록 냉각되고, 구체적으로는 120℃ 정도(저밀도 폴리에틸렌계 수지의 융점+10℃ 이하 정도)로 냉각된다. 종래의 고분자형 대전 방지제는 135℃ 정도이기 때문에, 이러한 냉각 온도 하에 있어서는 압출기 내에서 용융하고 있던 고분자형 대전 방지제의 일부가 결정화해서 석출되어 버리는 것으로 생각된다. However, this foamable molten resin composition is cooled to an appropriate foaming temperature when introduced into the annular die as described above, and specifically cooled to about 120°C (melting point of low-density polyethylene-based resin +10°C or less). Since the conventional polymeric antistatic agent is about 135°C, it is considered that a part of the polymeric antistatic agent melted in the extruder crystallizes and precipitates under such a cooling temperature.

그리고, 이 석출 결정을 포함하는 발포성 용융 수지 조성물을 환상 다이 내에서 압출하면, 석출 결정이 환상 다이 내의 벽면에 체류 부착하기 시작한다. 초기의 단계(수 시간)에서는 이 잔류 결정의 체류 부착량은 적으므로, 발포체의 표면에 대한 영향은 작지만, 예를 들면 2일간의 연속 생산, 또한 7일간이라고 한 장기에 걸친 연속 생산의 경우에는 상기 잔류 결정의 체류량이나 부착량이 비약적으로 증대하고, 마침내는 발포체의 표면에 접촉, 낙하하여 발포 시트에 작은 구멍이나 관통 구멍이 발생되어 고품질의 발포 시트를 얻을 수 없다. And when the expandable molten resin composition containing this precipitated crystal|crystallization is extruded in an annular die, the precipitated crystal|crystallization will start to stay and adhere to the wall surface in an annular die. In the initial stage (several hours), the amount of residual crystals retained and adhered is small, so the effect on the surface of the foam is small, for example, in the case of continuous production for 2 days or continuous production over a long period of time of 7 days, the above The amount of retained crystals and the amount of adhesion of the remaining crystals increase dramatically, and eventually they come into contact with and fall on the surface of the foam, causing small holes or through holes in the foam sheet, making it impossible to obtain a high-quality foam seat.

이것에 대하여, 본 발명에 있어서는 대전 방지제로서 저밀도 폴리에틸렌계 수지와의 융점차가 -10℃~+10℃의 범위 내인 융점을 갖고, 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제를 사용했기 때문에, 압출기에 있어서는 종래의 고분자형 대전 방지제와 마찬가지로 발포성 용융 수지 조성물 중에 완전히 용융되어 미용융의 고분자형 대전 방지제의 결정은 석출되지 않는다. On the other hand, in the present invention, as an antistatic agent, a polymeric antistatic agent having a melting point difference of -10 ° C. to +10 ° C. within the range of -10 ° C. to +10 ° C. and a melt flow rate of 10 g/10 min or more was used as an antistatic agent. , in the extruder, like the conventional polymeric antistatic agent, it is completely melted in the foamable molten resin composition, and the unmelted polymeric antistatic agent does not precipitate.

또한, 이 발포성 용융 수지 조성물은 상기한 바와 같이 발포 적정 온도로 되도록 냉각되고, 구체적으로는 저밀도 폴리에틸렌계 수지의 융점+10℃ 정도, 예를 들면 120℃로 냉각된다. 여기서, 본 발명에서 사용하는 고분자형 대전 방지제는 저밀도 폴리에틸렌과의 융점차가 -10℃~+10℃의 범위 내인 융점을 갖는 것이기 때문에, 이러한 냉각 온도 하에 있어서는 압출기 내와 마찬가지로 환상 다이 내에 있어서도 완전히 용융되어 미용융의 고분자형 대전 방지제의 결정화가 방지·억제되는 것으로 생각된다. In addition, this foamable molten resin composition is cooled so that it may become foaming appropriate temperature as mentioned above, and specifically, it is cooled to about melting|fusing point +10 degreeC of low density polyethylene-type resin, for example, 120 degreeC. Here, since the polymer-type antistatic agent used in the present invention has a melting point that is within the range of -10°C to +10°C with a melting point difference from low-density polyethylene, it is completely melted in the annular die as well as in the extruder under this cooling temperature. It is thought that crystallization of unmelted polymeric antistatic agent is prevented and suppressed.

따라서, 본 발명에 있어서는 종래의 고분자형 대전 방지제를 사용한 경우와는 달리 두께가 얇음에도 불구하고, 수 시간의 단기간은 물론이고, 수 일간의 중장기간에 걸친 연속 생산에 있어서도, 고분자형 대전 방지제에 기인한다고 생각되는 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질이며 우수한 강도와 완충 성을 겸비하고, 또한 대전 방지 성능도 충분히 발현하는 발포 시트를 얻을 수 있다. Therefore, in the present invention, despite the thin thickness, unlike the case of using the conventional polymer-type antistatic agent, even in a short period of several hours, as well as in continuous production over a medium-long period of several days, due to the polymer-type antistatic agent It is possible to obtain a high-quality foam sheet that has excellent strength and cushioning properties, while preventing and suppressing the occurrence of small holes and through-holes, which are thought to occur, and sufficiently exhibiting antistatic performance.

상기한 바와 같이, 본 발명의 발포 시트의 제조 방법은 수 시간이라고 한 단기간은 물론이고, 수 일간의 중장기간에 있어서도 작은 구멍이나 관통 구멍의 발생이 방지·억제된 것이기 때문에 연속 생산성이 우수한 것이 된다. 따라서, 본 발명의 발포 시트의 제조에 있어서는 두께, 폭 방향 길이에 따라서도 다르지만, 제조시에 100m 이상, 바람직하게는 300m 이상의 길이의 롤 형상으로서 발포 시트를 권취할 수 있다. As described above, the production method of the foam sheet of the present invention is excellent in continuous productivity because the generation of small holes and through holes is prevented and suppressed not only for a short period of several hours, but also for a medium to long period of several days. Therefore, in manufacture of foam seat|seet of this invention, although it changes also with thickness and width direction length, it is 100 m or more at the time of manufacture, Preferably foam seat|seet can be wound up as roll shape of length 300 m or more.

이것에 대하여, 종래의 제조 방법에 있어서는 수 일간이라고 하는 중장기간에 걸친 연속 제조를 행했을 때에 발포 시트에 작은 구멍이나 관통 구멍의 결함이 발생할 우려가 있고, 이 경우 한번 발포 시트를 롤로부터 분리하여 결함 부분을 제거한 후에, 다시 발포 시트를 롤 형상으로 권취하는 작업이 필요해지기 때문에 생산 효율이 현저하게 저하되어 버린다. On the other hand, in the conventional manufacturing method, there is a possibility that defects of small holes or through holes may occur in the foam sheet when continuous production over a medium to long period of several days is performed. After removing a part, since the operation|work which winds up foam seat|seet again in roll shape is needed, production efficiency will fall remarkably.

상기 관점에서, 본 발명에 있어서는 폴리에틸렌계 수지 압출 발포 시트에 존재하는 지름 1㎜ 이상의 관통 구멍의 수가 적을수록 바람직하다. 구체적으로는, 제조 개시로부터 2일, 7일 경과 후, 1시간에 발생하는 1㎜ 이상의 관통 구멍의 수가 3개 미만인 것이 바람직하다. From the said viewpoint, in this invention, it is so preferable that there are few number of through-holes 1 mm or more in diameter which exist in the polyethylene-type resin extrusion foam seat|seet. Specifically, it is preferable that the number of 1 mm or more through-holes generated in one hour after the lapse of 2 or 7 days from the start of production is less than three.

(발포 시트의 두께) (thickness of foam sheet)

본 발명의 제조 방법에서 얻어지는 발포 시트의 두께(평균 두께)는 0.05㎜ 이상 0.5㎜ 이하이다. 간지로서의 완충성과 사용 가능성의 관점에서, 평균 두께의 하한은 바람직하게는 0.07㎜, 보다 바람직하게는 0.1㎜, 더욱 바람직하게는 0.15㎜이다. 한편, 평균 두께의 상한은 바람직하게는 0.4㎜, 보다 바람직하게는 0.35㎜, 더욱 바람직하게는 0.3㎜ 이다. The thickness (average thickness) of foam seat|seet obtained by the manufacturing method of this invention is 0.05 mm or more and 0.5 mm or less. From the viewpoint of cushioning properties and usability as interleaving paper, the lower limit of the average thickness is preferably 0.07 mm, more preferably 0.1 mm, still more preferably 0.15 mm. On the other hand, the upper limit of the average thickness is preferably 0.4 mm, more preferably 0.35 mm, still more preferably 0.3 mm.

발포 시트의 평균 두께는 가부시키가이샤 야마분덴키제 오프라인 두께 측정기 TOF-4R 등을 사용하여 측정할 수 있다. 우선, 발포 시트의 전체 폭에 대해서, 1㎝ 간격으로 두께의 측정을 행한다. 이 1㎝ 간격으로 측정되는 발포 시트의 두께를 바탕으로 전체 폭의 산술 평균 두께를 구한다. 또한, 상기 측정에 사용되는 발포 시트는 온도 23±5℃, 상대습도 50%의 조건 하에서 24시간 이상 상태 조정한 것을 사용한다. The average thickness of foam seat|seet can be measured using the Yamabun Electric Co., Ltd. product offline thickness measuring machine TOF-4R etc. First, about the full width of foam seat|seet, thickness is measured at 1 cm intervals. The arithmetic mean thickness of the entire width is calculated based on the thickness of the foam sheet measured at intervals of 1 cm. In addition, the foam seat|seet used for the said measurement uses the thing adjusted for 24 hours or more under the conditions of temperature 23±5 degreeC, and 50% of relative humidity.

(발포 시트의 겉보기 밀도) (apparent density of foam sheet)

본 발명의 제조 방법에서 얻어지는 발포 시트의 겉보기 밀도는 바람직하게는 20~450kg/㎥의 범위 내이다. 상기 겉보기 밀도가 상기 범위이면, 간지 등의 포장재로서 완충성이 우수한 것으로 되기 때문에 바람직하다. 이러한 관점에서, 상기 겉보기 밀도는 30~300kg/㎥가 보다 바람직하고, 더욱 바람직하게는 50~200kg/㎥이다. The apparent density of the foam seat|seet obtained by the manufacturing method of this invention becomes like this. Preferably it exists in the range of 20-450 kg/m<3>. If the apparent density is within the above range, it is preferable because it is excellent in cushioning properties as a packaging material such as an interleaf paper. From this point of view, the apparent density is more preferably 30 to 300 kg/m 3 , and still more preferably 50 to 200 kg/m 3 .

또한, 발포 시트의 겉보기 밀도는 발포 시트의 단위 면적당의 중량(g/㎡)을 발포 시트의 평균 두께로 나눗셈하고, 또한 [kg/㎥]로 단위 환산함으로써 구할 수 있다. In addition, the apparent density of foam seat|seet can be calculated|required by dividing the weight (g/m<2>) per unit area of foam seat|seet by the average thickness of foam seat|seet, and also unit conversion into [kg/m<3>].

또한, 환상 다이의 토출구 지름과 맨드릴의 직경의 비(블로우업비: 맨드릴의 직경/환상 다이의 립부 직경)는 2.2~3.8로 하는 것이 바람직하다. 상기 범위이면, 발포에 따른 원주 방향으로의 물결 현상이 없어 두께 정밀도가 우수하고, 또한 기포가 폭 방향으로의 과도한 편평화가 없이 양호한 발포 시트가 얻어지기 때문에 바람직하다. In addition, it is preferable that the ratio of the diameter of the discharge port of the annular die to the diameter of the mandrel (blow-up ratio: the diameter of the mandrel/diameter of the lip of the annular die) is 2.2 to 3.8. If it is the said range, since there is no wave phenomenon in the circumferential direction accompanying foaming, and it is excellent in thickness precision, and since a favorable foam seat|seet is obtained without excessive flattening in the width direction of cells, it is preferable.

(발포 시트) (foam sheet)

본 발명에 의한 신규한 폴리에틸렌계 수지 압출 발포 시트는 상기한 바와 같이 두께가 매우 얇음에도 불구하고, 작은 구멍이나 관통 구멍의 발생이 방지·억제된 고품질의 것이며 또한 충분한 대전 방지 성능을 발현한다. The novel polyethylene-based resin extruded foam sheet according to the present invention is of high quality in which the occurrence of small holes and through-holes is prevented and suppressed, and exhibits sufficient antistatic performance, despite the extremely thin thickness as described above.

따라서, 본 발명의 신규한 폴리에틸렌계 수지 압출 발포 시트는 대전 방지 기능 등이 강하게 요구되는 분야, 특히 액정 디스플레이, 플라즈마 디스플레이, 일렉트로루미네선스 디스플레이 등의 화상 표시 기기용의 박형 유리판의 반송이나 곤포시의 손상을 방지하기 위한 유리판용 간지로서 널리 매우 유용한 것이다. 또한, 중장기에 걸쳐서 연속적으로 제조하는 것이 가능하고, 공업적으로 매우 생산 효율이 높은 발포 시트이다. Therefore, the novel polyethylene-based resin extruded foam sheet of the present invention is a field in which an antistatic function or the like is strongly required, particularly when conveying or packing a thin glass plate for an image display device such as a liquid crystal display, a plasma display, or an electroluminescence display. It is widely and very useful as a slip sheet for glass plates to prevent damage to. Moreover, it is possible to manufacture continuously over a mid- to long-term, and it is a foam seat|seet with very high production efficiency industrially.

실시예 Example

이하, 실시예 및 비교예에서 본 발명을 더욱 상세하게 설명한다. 단, 본 발명은 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail in Examples and Comparative Examples. However, the present invention is not limited to the Examples.

[저밀도 폴리에틸렌] [Low Density Polyethylene]

실시예 및 비교예에서 사용한 저밀도 폴리에틸렌을 표 1 에 나타낸다.Table 1 shows the low-density polyethylene used in Examples and Comparative Examples.

Figure 112017095668927-pct00001
Figure 112017095668927-pct00001

실시예 및 비교예에서 사용한 대전 방지제를 표 2에 나타낸다. Table 2 shows the antistatic agents used in Examples and Comparative Examples.

Figure 112017095668927-pct00002
Figure 112017095668927-pct00002

[기포 조정제] [Bubble Adjuster]

실시예 및 비교예에서 사용한 기포 조정제는 탄산수소나트륨과 구연산-나트륨의 중량비 1:1이 혼합물이며, 평균 입자 지름(d50) 6㎛, 최대 입자 지름 30㎛의 화학 발포제를 사용했다.The foam control agent used in Examples and Comparative Examples was a mixture of sodium hydrogencarbonate and citrate-sodium in a weight ratio of 1:1, and a chemical foaming agent having an average particle diameter (d50) of 6 µm and a maximum particle diameter of 30 µm was used.

[장치] [Device]

발포 시트 제조 장치로서, 발포층 형성용의 배럴 내경 115㎜의 압출기와 그 하류측에 배럴 내경 150㎜의 압출기가 연결된 제 1 압출기(탠덤 압출기)를 사용했다. 또한, 다이의 립부 금형의 온도 조절은 립부 금형을 8분할하여 분할된 부분마다 행했다.As a foam seat|seet manufacturing apparatus, the 1st extruder (tandem extruder) in which the extruder with a barrel inner diameter of 115 mm for foaming layer formation, and the extruder with a barrel inner diameter of 150 mm were connected was used downstream. In addition, the temperature control of the lip part mold of a die|dye was performed for each divided part by dividing the lip part mold into 8 parts.

실시예 1~실시예 3, 비교예 1~비교예 5 Examples 1 to 3, Comparative Examples 1 to 5

표 3에 나타내는 저밀도 폴리에틸렌계 수지, 대전 방지제 및 기포 조정제를 표 3에 나타내는 배합으로 압출기의 원료 투입구에 공급하고, 가열 혼련하여 200℃로 조정된 수지 용융물로 했다. 상기 수지 용융물에 물리 발포제로서 노말 부탄 70질량%와 이소부탄 30질량%의 혼합 부탄을, 폴리에틸렌계 수지 100질량부에 대하여 표 3에 나타내는 배합량으로 되도록 압입하고 가열 혼련하고, 이어서 냉각하여 표 3에 나타내는 수지 온도의 발포성 용융 수지 조성물로 하고, 상기 발포성 용융 수지 조성물을 압출용 환상 다이에 도입했다. The low-density polyethylene-type resin shown in Table 3, the antistatic agent, and the bubble control agent were supplied to the raw material inlet of the extruder by the formulation shown in Table 3, and it was heat-kneaded and it was set as the resin melt adjusted to 200 degreeC. As a physical foaming agent, mixed butane of 70 mass % of normal butane and 30 mass % of isobutane as a physical foaming agent in the resin melt is press-fitted so as to have a compounding amount shown in Table 3 with respect to 100 parts by mass of a polyethylene-based resin, heat-kneaded, and then cooled and shown in Table 3 It was set as the foamable molten resin composition of the indicated resin temperature, and the said foamable molten resin composition was introduce|transduced into the annular die for extrusion.

이어서, 다이의 립을 통해서 대기 중에 압출하여 대전 방지제를 함유하는 단층 구성의 통 형상 발포체를 형성했다. 상기 통 형상 발포체를 맨드릴로 표 3에 나타내는 블로우업비로 확경하면서 표 3에 나타내는 속도로 인수하고, 또한 압출 방향을 따라서 절개하여 소정 길이의 롤체에 권취하여 대전 방지제를 함유하는 단층의 발포 시트를 얻었다. Then, it extruded in the air through the lip|rip of the die|dye, and the cylindrical foam of a single-layer structure containing an antistatic agent was formed. The cylindrical foam was taken with a mandrel at the speed shown in Table 3 while expanding the diameter at the blow-up ratio shown in Table 3, and cut along the extrusion direction and wound on a roll of a predetermined length to obtain a single-layer foam sheet containing an antistatic agent. .

또한, 표 3에 있어서의 대전 방지제, 기포 조정제 및 물리 발포제의 배합량은 발포층을 구성하는 수지 100질량부에 대한 대전 방지제, 기포 조정제 및 물리 발포제의 질량부를 나타낸다. In addition, the compounding quantity of the antistatic agent, a bubble control agent, and a physical foaming agent in Table 3 shows mass parts of an antistatic agent, a bubble control agent, and a physical foaming agent with respect to 100 mass parts of resin which comprises a foaming layer.

실시예, 비교예에서 얻어진 발포 시트의 물성을 표 4에 나타낸다. The physical properties of the foam seat|seet obtained by the Example and the comparative example are shown in Table 4.

Figure 112017095668927-pct00003
Figure 112017095668927-pct00003

Figure 112017095668927-pct00004
Figure 112017095668927-pct00004

(표 4의 검토 결과) (Result of review in Table 4)

표 4로부터, 실시예 1~실시예 3에서 얻어지는 발포 시트는 저밀도 폴리에틸렌과의 융점차가 +7℃인 특유의 고분자형 대전 방지제(대방 1: 융점 114℃)를 사용했기 때문에 48시간(2일간)이라고 하는 중기 연속 생산에 있어서는 물론 168시간(7 일간)이라고 하는 장기의 연속 생산에 있어서도, 그 표면에 관통 구멍의 발생이 방지·억제된 것이며, 또한 대전 방지 성능이 충분히 발현하는 것이다. 따라서, 본 발명의 발포 시트는 대전 방지 성능을 갖고, 또한 안정적이고 또한 대량으로 생산할 수 있는 산업적으로 매우 가치가 있는 발포 시트인 것을 알 수 있다. From Table 4, it can be seen that the foam sheet obtained in Examples 1 to 3 used a unique high-molecular-type antistatic agent having a melting point difference of +7°C with low-density polyethylene (Daebang 1: Melting point 114°C), so 48 hours (2 days) In the medium-term continuous production of , as well as in the long-term continuous production of 168 hours (7 days), the generation of through-holes on the surface is prevented and suppressed, and the antistatic performance is sufficiently exhibited. Therefore, it turns out that the foam seat|seet of this invention has antistatic performance, and it is stable and it is an industrially very valuable foam seat|seet which can be mass-produced.

이것에 대하여, 비교예 1~비교예 2에서 얻어지는 발포 시트는 저밀도 폴리에틸렌과의 융점차가 28℃인 고융점(135℃)의 고분자형 대전 방지제(대방 2, 대방 3) 를 사용한 것이지만, 48시간(2일간)이라고 하는 중기 연속 생산에 있어서 이미 관통 구멍의 발생이 보이며, 168시간(7일간)이라고 하는 장기의 연속 생산에 있어서는 더욱 관통 구멍의 발생이 현저한 것이며, 생산 효율이 낮은 것인 것을 알 수 있다. On the other hand, in the foam sheets obtained in Comparative Examples 1 to 2, polymeric antistatic agents (Daebang 2, Daebang 3) having a high melting point (135° C.) with a melting point difference of 28° C. with low-density polyethylene were used, but 48 hours ( In the medium-term continuous production of 2 days), the occurrence of through-holes was already seen, and in the long-term continuous production of 168 hours (7 days), the occurrence of through-holes was more remarkable, indicating that the production efficiency was low. there is.

비교예 3에서 얻어지는 발포 시트는 저밀도 폴리에틸렌과의 융점차가 -15℃ 인 고분자 대전 방지제(대방 4: 융점 92℃)를 사용한 것이지만, 배합량이 소량인 경우에는 작은 구멍이나 관통 구멍이 없는 고품질의 발포 시트가 얻어지지만, 충분한 대전 방지 성능이 발현되지 않는다. 그래서, 비교예 4와 같이, 대전 방지능을 충분히 발현시키고자 해서 그 배합량을 많게 하면, 이번에는 멜트 플로우 레이트가 낮은 대방 4가 다량이기 때문에 발포 시트를 안정적으로 제조하는 것이 곤란했다. The foam sheet obtained in Comparative Example 3 uses a high-molecular antistatic agent (Daebang 4: melting point 92° C.) having a melting point difference of -15°C from that of low-density polyethylene. is obtained, but sufficient antistatic performance is not expressed. Then, as in Comparative Example 4, when the compounding amount was increased in order to sufficiently express the antistatic ability, it was difficult to stably manufacture the foam sheet because there was a large amount of Daebang 4 having a low melt flow rate this time.

비교예 5에서 얻어지는 발포 시트는 실시예 2와 대비되는 것이며, 저밀도 폴리에틸렌계 수지와의 융점차가 큰 대전 방지제에서는 장기 연속 생산에 적합하지 않은 것을 알 수 있다. The foam seat|seet obtained in Comparative Example 5 contrasts with Example 2, and it turns out that the antistatic agent with a large melting|fusing point difference with a low-density polyethylene-type resin is not suitable for long-term continuous production.

또한, 표 4에 있어서 각종 물성은 이하와 같이 측정했다. In addition, in Table 4, various physical properties were measured as follows.

(발포 시트의 두께) (thickness of foam sheet)

발포 시트의 평균 두께는 가부시키가이샤 야마분덴키제 오프라인 두께 측정기 TOF-4R을 사용하여 측정했다. 우선, 발포 시트 전체 폭에 대해서, 1㎝ 간격으로 두께의 측정을 행했다. 이 1㎝ 간격으로 측정되는 발포 시트 두께를 바탕으로, 전체 폭의 산술 평균 두께를 구했다. 또한, 상기 측정에 사용하는 발포 시트는 온도 23±5℃, 상대습도 50%의 조건 하에서 48시간 상태 조정한 것을 사용했다.The average thickness of foam seat|seet was measured using the Yamabun Electric Co., Ltd. product offline thickness meter TOF-4R. First, about the foam seat|seet full width, thickness was measured at 1 cm intervals. The arithmetic mean thickness of the total width was calculated|required based on the foam seat|seet thickness measured at this 1-cm space|interval. In addition, the foam seat|seet used for the said measurement used what adjusted the state for 48 hours under the conditions of temperature 23±5 degreeC, and 50% of relative humidity.

(발포 시트의 평량) (Basic weight of foam sheet)

발포 시트의 평량은 발포 시트 전체 폭에 걸쳐서 폭 250㎜의 직사각 형상의 시험편을 잘라내고, 상기 시험편의 중량(g)을 상기 시험편의 면적(시트 폭(㎜)×250㎜) 으로 나눗셈하여, 1㎡당의 발포 시트의 중량(g)으로 환산하고, 이것을 발포 시트 의 평량(g/㎡)으로 했다.The basis weight of the foam sheet is obtained by cutting a rectangular test piece having a width of 250 mm over the entire width of the foam sheet, dividing the weight (g) of the test piece by the area of the test piece (sheet width (mm) × 250 mm), 1 It was converted into the weight (g) of foam seat|seet per m<2>, and this was made into the basis weight of foam seat|seet (g/m<2>).

(발포 시트의 겉보기 밀도) (apparent density of foam sheet)

발포 시트의 겉보기 밀도는 상기 방법에 의해 구한 발포 시트의 평량(g/㎡)을 상기에 의해 구한 발포 시트의 평균 두께로 나눗셈하여 구했다.The apparent density of foam seat|seet was calculated|required by dividing by the average thickness of foam seat|seet calculated|required by the above by the basis weight (g/m<2>) of foam seat|seet calculated|required by the said method.

(관통 구멍 등의 발생) (Occurrence of through holes, etc.)

(단기) (short-term)

발포 시트 제조시에 결점 검출기를 사용하여 발포 시트의 표면을 제조 개시 48시간 경과 후, 1시간 관찰하여 다음의 기준에 의해 평가했다. At the time of foam seat|seet manufacture, using the fault detector, the surface of foam seat|seet was observed for 1 hour after 48 hours from a manufacture start, and the following reference|standard evaluated.

good: 48시간 경과 후, 1시간에 발생된 1㎜ 이상의 관통 구멍의 수가 3개 미만 good: After 48 hours, the number of through holes of 1 mm or more generated in 1 hour is less than 3

poor: 48시간 경과 후, 1시간에 발생된 1㎜ 이상의 관통 구멍의 수가 3개 이상 5개 미만 poor: After 48 hours, the number of through holes of 1 mm or more generated in 1 hour is 3 or more but less than 5

bad: 48시간 경과 후, 1시간에 발생된 1㎜ 이상의 관통 구멍의 수가 5개 이상 bad: After 48 hours, the number of 1 mm or more through-holes generated in 1 hour is 5 or more

(장기) (long time)

발포 시트 제조시에 결점 검출기를 사용하여 발포 시트의 표면을 제조 개시 168시간 경과 후 1시간 관찰하고, 다음의 기준에 의해 평가했다. At the time of foam seat|seet manufacture, using the fault detector, the surface of foam seat|seet was observed 1 hour after 168 hours from a manufacture start, and the following reference|standard evaluated.

good: 168시간 경과 후, 1시간에 발생된 1㎜ 이상의 관통 구멍의 수가 3개 미만 good: After 168 hours, the number of through holes of 1 mm or more generated in 1 hour is less than 3

poor: 168시간 경과 후, 1시간에 발생된 1㎜ 이상의 관통 구멍의 수가 3개 이상 5개 미만 poor: After 168 hours, the number of through holes of 1 mm or more generated in 1 hour is 3 or more but less than 5

bad: 168시간 경과 후, 1시간에 발생된 1㎜ 이상의 관통 구멍의 수가 5개 이상 bad: After 168 hours, the number of 1 mm or more through-holes generated in 1 hour is 5 or more

-: 평가 불가능(발포 시트를 형성할 수 없음) -: Unable to evaluate (cannot form foam sheet)

(표면 저항률) (Surface resistivity)

표면 저항률은 하기 시험편의 상태 조절을 행한 후, JIS K6271: 2008에 준거해서 측정했다. 구체적으로는, 측정 대상물인 발포 시트로부터 무작위로 잘라낸 5편의 시험편(세로 100㎜×가로 100㎜×두께: 측정 대상물 두께)을 온도 23℃, 상대습도 50%의 분위기 하에 36시간 방치함으로써 시험편의 상태 조절을 행했다. 이어서, 각각의 시험편의 양면에 대하여 온도 23℃, 상대습도 50%의 분위기 하에서 인가 전압 500V의 조건에서 시험편에 전압을 인가했다. 전압 인가를 개시하고 1분 경과 후의 표면 저항률을 측정하고, 그것들의 산술 평균값(시험편 5편×양면[n=10])을 적층 발포 시트의 표면 저항률로 했다.The surface resistivity was measured based on JIS K6271:2008, after performing state adjustment of the following test piece. Specifically, five test pieces (length 100 mm × width 100 mm × thickness: thickness of the measurement object) randomly cut from the foam sheet as the measurement object were left for 36 hours in an atmosphere of a temperature of 23° C. and a relative humidity of 50%. The state of the test piece adjustment was made. Next, a voltage was applied to the test piece under the condition of an applied voltage of 500 V in an atmosphere of a temperature of 23°C and a relative humidity of 50% on both surfaces of each test piece. The surface resistivity of 1 minute after the voltage application was started was measured, and those arithmetic mean values (5 specimens x both surfaces [n=10]) were made into the surface resistivity of laminated foam seat|seet.

Claims (7)

저밀도 폴리에틸렌, 물리 발포제 및 대전 방지제를 함유하는 발포성 용융 수지 조성물을 압출하고 발포시켜서 폴리에틸렌계 수지 압출 발포 시트를 제조하는 방법으로서,
발포 시트의 두께가 0.05~0.5㎜의 범위 내이며, 저밀도 폴리에틸렌의 멜트 플로우 레이트가 15g/10분 이상이고, 대전 방지제로서 저밀도 폴리에틸렌과의 융점차가 -10~+10℃의 범위 내의 융점을 갖고, 또한 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제를 사용하는 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법.
A method for producing a polyethylene-based resin extruded foam sheet by extruding and foaming a foamable molten resin composition containing low-density polyethylene, a physical foaming agent and an antistatic agent, the method comprising:
The thickness of the foam sheet is in the range of 0.05 to 0.5 mm, the melt flow rate of the low-density polyethylene is 15 g/10 min or more, and the melting point difference with the low-density polyethylene as an antistatic agent has a melting point in the range of -10 to +10 ° C., Further, a method for producing a polyethylene-based resin extruded foam sheet using a polymer-type antistatic agent having a melt flow rate of 10 g/10 min or more.
제 1 항에 있어서,
상기 고분자형 대전 방지제의 융점이 120℃ 이하인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법.
The method of claim 1,
The melting point of the polymer-type antistatic agent is a method for producing a polyethylene-based resin extruded foam sheet, characterized in that 120 ℃ or less.
제 1 항 또는 제 2 항에 있어서,
고분자형 대전 방지제의 멜트 플로우 레이트에 대한 저밀도 폴리에틸렌의 멜트 플로우 레이트의 비(저밀도 폴리에틸렌의 멜트 플로우 레이트/고분자형 대전 방지제의 멜트 플로우 레이트)가 2 이하인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법.
3. The method of claim 1 or 2,
The ratio of the melt flow rate of the low-density polyethylene to the melt flow rate of the polymer-type antistatic agent (melt flow rate of low-density polyethylene/melt flow rate of the polymer-type antistatic agent) is 2 or less Production of a polyethylene-based resin extruded foam sheet, characterized in that Way.
제 1 항 또는 제 2 항에 있어서,
상기 저밀도 폴리에틸렌 100질량부에 대하여, 고분자형 대전 방지제가 3~25질량부의 범위 내에서 배합되어 있는 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조 방법.
3. The method of claim 1 or 2,
With respect to 100 parts by mass of the low-density polyethylene, a method for producing a polyethylene-based resin extruded foam sheet, wherein the polymer-type antistatic agent is blended within the range of 3 to 25 parts by mass.
대전 방지제를 함유하고, 기재 수지가 저밀도 폴리에틸렌인 폴리에틸렌계 수지 압출 발포 시트로서,
두께가 0.05㎜~0.5㎜의 범위 내, 겉보기 밀도가 20~450kg/㎥의 범위 내이며, 저밀도 폴리에틸렌의 멜트 플로우 레이트가 15g/10분 이상이고, 대전 방지제가 저밀도 폴리에틸렌과의 융점차가 -10℃~+10℃의 범위 내인 융점을 갖고, 또한 멜트 플로우 레이트가 10g/10분 이상인 고분자형 대전 방지제인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트.
A polyethylene-based resin extruded foam sheet containing an antistatic agent, wherein the base resin is low-density polyethylene,
The thickness is in the range of 0.05 mm to 0.5 mm, the apparent density is in the range of 20 to 450 kg/m3, the melt flow rate of the low density polyethylene is 15 g/10 min or more, and the melting point difference of the antistatic agent with the low density polyethylene is -10 ° C. Polyethylene-based resin extruded foam sheet, characterized in that it is a polymer-type antistatic agent having a melting point in the range of ~+10°C and a melt flow rate of 10 g/10 min or more.
제 5 항에 기재된 폴리에틸렌계 수지 압출 발포 시트로 이루어지는 유리판용 간지.The slip sheet for glass plates which consists of the polyethylene-type resin extrusion foam seat|seet of Claim 5. 제 1 항 또는 제 2 항에 있어서,
상기 발포 시트가, 권취해서 이루어지는 롤체인 것을 특징으로 하는 폴리에틸렌계 수지 압출 발포 시트의 제조방법.
3. The method of claim 1 or 2,
The said foam seat|seet is a roll body formed by winding up, The manufacturing method of the polyethylene-type resin extrusion foam seat|seet characterized by the above-mentioned.
KR1020177027914A 2015-03-26 2016-03-22 The manufacturing method of polyethylene-type resin extrusion foam seat|seet, polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same KR102392965B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015064121 2015-03-26
JPJP-P-2015-064121 2015-03-26
JPJP-P-2015-108856 2015-05-28
JP2015108856A JP6506619B2 (en) 2015-03-26 2015-05-28 Method for producing extruded extruded polyethylene resin sheet, extruded extruded polyethylene resin sheet, and interlayer for glass plate
PCT/JP2016/059055 WO2016152878A1 (en) 2015-03-26 2016-03-22 Production method for polyethylene-based resin extruded foam sheets, polyethylene-based resin extruded foam sheet, and interleaving paper for glass plates using same

Publications (2)

Publication Number Publication Date
KR20170130450A KR20170130450A (en) 2017-11-28
KR102392965B1 true KR102392965B1 (en) 2022-05-02

Family

ID=56978504

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177027914A KR102392965B1 (en) 2015-03-26 2016-03-22 The manufacturing method of polyethylene-type resin extrusion foam seat|seet, polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same

Country Status (2)

Country Link
KR (1) KR102392965B1 (en)
WO (1) WO2016152878A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161328B2 (en) 2019-02-04 2021-11-02 Jsp Corporation Process for producing laminated foam sheet and extruded laminated foam sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238867A1 (en) 2003-10-31 2005-10-27 Toshio Nakano Antistatic film, antistatic foam sheet and antistatic bubble sheet
US20100196641A1 (en) 2007-05-31 2010-08-05 Saudi Basic Industries Corporation Polyethylene foam
US20150218332A1 (en) 2012-08-23 2015-08-06 Jsp Corporation Extruded polyethylene-based resin foam sheet and interleaf sheet for glass plates

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226729A (en) * 1997-02-14 1998-08-25 Sekisui Plastics Co Ltd Polyethylene resin mixture foam and production thereof
US6462101B1 (en) * 2001-09-10 2002-10-08 Sealed Air Corporation (Us) Foam comprising a blend of low density polyethylene and high melt tension polypropylene
JP2005194433A (en) * 2004-01-08 2005-07-21 Jsp Corp Manufacturing method of polyolefin resin foamed body and polyolefin resin foamed body
JP5294369B2 (en) * 2006-06-30 2013-09-18 株式会社ジェイエスピー Method for producing polyolefin resin foam
JP4195719B2 (en) 2007-04-02 2008-12-10 株式会社ジェイエスピー Interleaving paper for glass substrate
JP2009155423A (en) * 2007-12-26 2009-07-16 Jsp Corp Extrusion-foamed polyolefin resin sheet and method for producing the same
JP5877633B2 (en) 2010-07-14 2016-03-08 株式会社ジェイエスピー Glass board slip
JP5688360B2 (en) * 2011-06-30 2015-03-25 積水化成品工業株式会社 Polyolefin resin foam sheet
JP6146768B2 (en) 2012-08-03 2017-06-14 株式会社ジェイエスピー Method for producing polyethylene resin foam sheet
JP6139844B2 (en) * 2012-10-05 2017-05-31 株式会社ジェイエスピー Polyolefin resin multilayer foam sheet
JP5388256B2 (en) * 2013-06-19 2014-01-15 株式会社ジェイエスピー Polyolefin resin extruded foam sheet
JP6302731B2 (en) * 2014-03-31 2018-03-28 株式会社ジェイエスピー Polyethylene resin foam sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238867A1 (en) 2003-10-31 2005-10-27 Toshio Nakano Antistatic film, antistatic foam sheet and antistatic bubble sheet
US20100196641A1 (en) 2007-05-31 2010-08-05 Saudi Basic Industries Corporation Polyethylene foam
US20150218332A1 (en) 2012-08-23 2015-08-06 Jsp Corporation Extruded polyethylene-based resin foam sheet and interleaf sheet for glass plates

Also Published As

Publication number Publication date
WO2016152878A1 (en) 2016-09-29
KR20170130450A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
KR102401694B1 (en) The manufacturing method of a polyethylene-type resin laminated foam sheet, a polyethylene-type resin laminated foam sheet, and the slip sheet for glass plates using the same
KR102127016B1 (en) Process for producing polyethylene resin foam sheet
JP5605929B2 (en) Polyethylene resin extruded foam sheet and glass sheet
EP3115202A1 (en) Multilayer foam sheet and interleaf for glass plates
JP2011104890A (en) Resin foam sheet
JP6627010B2 (en) Extruded polyethylene resin foam sheet
EP2285872B1 (en) Physically blown polyethylene foam
KR102392965B1 (en) The manufacturing method of polyethylene-type resin extrusion foam seat|seet, polyethylene-type resin extrusion foam seat|seet, and the slip sheet for glass plates using the same
WO2011013718A1 (en) Process for producing foamed polyolefin resin sheet and foamed polyolefin resin sheet
JP7288762B2 (en) Method for manufacturing laminated foam sheet
JP2022184543A (en) Production method of non-crosslinked foam sheet and non-crosslinked foam sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant