KR102385978B1 - A composition for promoting myogenic differentiation comprising flavonoid derivatives - Google Patents

A composition for promoting myogenic differentiation comprising flavonoid derivatives Download PDF

Info

Publication number
KR102385978B1
KR102385978B1 KR1020170170929A KR20170170929A KR102385978B1 KR 102385978 B1 KR102385978 B1 KR 102385978B1 KR 1020170170929 A KR1020170170929 A KR 1020170170929A KR 20170170929 A KR20170170929 A KR 20170170929A KR 102385978 B1 KR102385978 B1 KR 102385978B1
Authority
KR
South Korea
Prior art keywords
muscle
differentiation
cells
mesenchymal stem
stem cells
Prior art date
Application number
KR1020170170929A
Other languages
Korean (ko)
Other versions
KR20190070437A (en
Inventor
조쌍구
아브달아메드
이수빈
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020170170929A priority Critical patent/KR102385978B1/en
Publication of KR20190070437A publication Critical patent/KR20190070437A/en
Application granted granted Critical
Publication of KR102385978B1 publication Critical patent/KR102385978B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 플라보노이드 유도체인 이소람네틴이 중간엽 줄기세포를 근육 분화 촉진하는 것에 관한 것으로, 플라보노이드 유도체 화합물인 이소람네틴이 말 골수 유래 중간엽 줄기 세포 (Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC)의 근육 분화를 현저히 촉진하는 효과가 있으므로, 근육 분화 촉진을 통한 근육 손상의 치료 및 재생에 유용하게 이용될 수 있으며, 재생의학에 임상적으로 적용될 수 있다.The present invention relates to isoramnetin, a flavonoid derivative, promoting muscle differentiation of mesenchymal stem cells. Since it has an effect of remarkably promoting the muscle differentiation of bone marrow-derived mesenchymal stem cells (eBM-MSC), it can be usefully used for the treatment and regeneration of muscle damage through the promotion of muscle differentiation, It can be clinically applied to regenerative medicine.

Description

플라보노이드 유도체를 유효성분으로 포함하는 근육 분화 촉진용 조성물{A COMPOSITION FOR PROMOTING MYOGENIC DIFFERENTIATION COMPRISING FLAVONOID DERIVATIVES}A composition for promoting muscle differentiation comprising a flavonoid derivative as an active ingredient {A COMPOSITION FOR PROMOTING MYOGENIC DIFFERENTIATION COMPRISING FLAVONOID DERIVATIVES}

본 발명은 플라보노이드 유도체를 유효성분으로 포함하는 근육 분화 촉진용 조성물에 관한 것으로, 구체적으로, 플라보노이드 유도체인 이소람네틴이 중간엽 줄기세포를 근육 분화 촉진하는 것에 관한 것이다.The present invention relates to a composition for promoting muscle differentiation comprising a flavonoid derivative as an active ingredient, and more particularly, to isoramnetin, a flavonoid derivative, promoting muscle differentiation of mesenchymal stem cells.

줄기세포(stem cell)는 생물 조직을 구성하는 다양한 세포들로 분화할 수 있는 세포로서 배아, 태아 및 성체의 각 조직에서 얻을 수 있는 분화되기 전 단계의 미분화 세포들을 총칭한다. 줄기세포는 분화 자극(환경)에 의하여 특정 세포로 분화가 진행되고, 세포분열에 의해 자신과 동일한 세포를 생산(self-renewal)할 수 있는 특성이 있으며, 분화 자극에 따라 상이한 세포로도 분화될 수 있는 유연성(plasticity)을 가지고 있는 것이 특징이다. 줄기세포는 그 분화능에 따라 만능(pluripotency), 다분화능(multipotency) 및 단분화능(unipotency) 줄기세포로 나눌 수 있다. 만능줄기세포(pluripotent stem cells)는 모든 세포로 분화될 수 있는 잠재력을 지닌 전분화능(pluripotency)의 세포이며, 일부 줄기세포는 다분화능 또는 단분화능의 잠재력을 지닌다. 상기 줄기세포들이 가지는 분화능을 기초로 세포 치료제로 이용 가능성이 있어 이와 관련된 연구 개발이 활발히 진행중이다. 하지만, 배아 줄기세포를 이용한 세포 치료제의 경우 윤리적 문제나 조직 적합성 불일치 문제가 제기되고 있으며, 역분화 줄기세포를 세포 치료제로 사용할 경우 종양 발생 가능성의 문제가 있다. 이에 따라, 분화능이 낮은 것으로 알려져 있지만 상대적으로 안전한 중간엽 줄기세포를 이용한 연구가 많이 진행되고 있다. 중간엽 줄기세포(mesenchymal stem cell, MSCs)는 성체 골수 등에 있는 multi-potential nonhematopoietic progenitor cell로서 지방, 연골, 뼈, 근육, 피부 등 다양한 종류의 세포로 분화할 수 있는 세포를 말한다. 이러한 중간엽 줄기세포를 이용하여 다양한 조직 재생을 위한 임상 연구가 진행되고 있으며, 장기이식 분야에도 적용가능성을 보이고 있다.Stem cells are cells capable of differentiating into various cells constituting biological tissues, and collectively refer to undifferentiated cells in the pre-differentiation stage obtained from each tissue of the embryo, fetus, and adult. Stem cells are differentiated into specific cells by differentiation stimuli (environment), have the ability to produce cells identical to themselves (self-renewal) by cell division, and can differentiate into different cells according to differentiation stimuli. It is characterized by having plasticity that can be used. Stem cells can be divided into pluripotency, multipotency, and unipotency stem cells according to their differentiation capacity. Pluripotent stem cells are pluripotent cells with the potential to be differentiated into all cells, and some stem cells have the potential to be pluripotent or unipotent. Based on the differentiation ability of the stem cells, there is a possibility that they can be used as a cell therapy, and research and development related thereto is actively in progress. However, in the case of cell therapy using embryonic stem cells, ethical issues and tissue compatibility inconsistency issues are raised, and when dedifferentiated stem cells are used as cell therapies, there is a problem of the possibility of tumor occurrence. Accordingly, many studies using mesenchymal stem cells, which are known to have low differentiation capacity, but are relatively safe, are being conducted. Mesenchymal stem cells (MSCs) are multi-potential nonhematopoietic progenitor cells in the adult bone marrow, etc., and refer to cells that can differentiate into various types of cells such as fat, cartilage, bone, muscle, and skin. Clinical studies for the regeneration of various tissues using these mesenchymal stem cells are being conducted, and their applicability is also shown in the field of organ transplantation.

한편, 중간엽 줄기 세포 즉, 다능성 세포는 제한된 자가 재생 잠재능을 가지며, 이 세포는 골수, 지방 조직, 제대혈에서 분리할 수 있다. MSCs는 여러 문헌에서 골형성 부전증, 심근 경색, 폐손상 및 뇌 경색 등 손상된 조직의 재생에 유용하다고 보고된 바 있으며, 현재 여러 연구들에서 MSCs의 분화능 및 재생능을 이용하여 치료제로 사용하려는 시도가 이루어지고 있다 (Horwitz EM, et al. Blood 97:1227-31, 2001; Shake JG, et al . Ann Thorac Surg 73:1919-26, 2002; Rojas M, et al. Am J Respir Cell Mol Biol 33:145-52, 2005; Li Y, et al Neurology 59:514-23, 2002). 중간엽 줄기세포(Mesenchymal stem cells, MSCs)는 생체 내(in vivo) 및 생체 외(in vitro)에서 중간엽 계통의 여러 가지 세포, 즉 골, 연골, 지방조직 또는 근육으로 분화할 수 있다 (Prockop DJ. Science 276:71-4, 1997; Pittenger MF, et al. Science 284:143-7, 1999). 특히, 근육 세포 분화는 MyoD, Myf5, Myogenin 및 MRF4를 비롯한 다양한 근육 조절 인자에 의해 조절된다. MyoD는 근육의 특정 유전자의 발현을 시작하며 중간엽 줄기 세포를 근육 계열로 분화를 유도하고, myogenin 발현의 유도는 MyoD 활성에 의해 조절되며, 이것은 종결 분화와 myosin heavy chain (MHC) 및 muscle creatine kinase (MCK)와 같은 근육 특정 유전자의 유도에 중요한 역할을 한다. 전사 인자의 Myocyte ehancer factor 2(MEF2) 군은 MyoD 및 Myogenin과 같은 bHLH 군의 근육 전자인자와의 협력 관계를 통해 근육 분화를 조절 할 수 있다. 이와 관련하여, 선천적, 유전적 근육의 결손 내지 손실 또는 외상, 종양 제거 등에 의한 조직의 결실에 따른 근육 관련 질환에서 줄기세포로부터 분화된 세포 치료제를 이용하여 관련 질환을 치료하려는 연구 개발이 진행되고 있다. 특히, 근육에서 추출한 muscle satellite cell를 근원세포로 분화시켜 이식하려는 연구가 다수 진행되고 있지만, 세포의 배양기간이 짧아 세포의 양적 확보가 어려운 단점이 있다. 또한, 근육 세포 분화용 배지를 이용하여 성체 줄기세포로부터 근육 세포로 분화를 유도하는 연구들이 일부 있지만, 분화 효율 면에서 그 이용이 매우 제한적이다. 특히, 일부 중간엽 줄기세포는 근원 세포 (Myosatellite cell)의 특성을 지니지 못하여 완전한 근육 세포로 분화가 어려워, 특정 유래를 선택하여 중간엽 줄기세포로부터 근육 세포로 분화능을 조절하기 위한 연구가 필요하다. Meanwhile, mesenchymal stem cells, ie, pluripotent cells, have limited self-renewal potential, and these cells can be isolated from bone marrow, adipose tissue, and umbilical cord blood. MSCs have been reported to be useful in the regeneration of damaged tissues such as osteodystrophy, myocardial infarction, lung injury and cerebral infarction in several literatures. (Horwitz EM, et al. Blood 97:1227-31, 2001; Shake JG, et al. Ann Thorac Surg 73:1919-26, 2002; Rojas M, et al. Am J Respir Cell Mol Biol 33: 145-52, 2005; Li Y, et al Neurology 59:514-23, 2002). Mesenchymal stem cells (MSCs) can differentiate into various cells of the mesenchymal lineage, ie, bone, cartilage, adipose tissue, or muscle in vivo and in vitro (Prockop). DJ. Science 276:71-4, 1997; Pittenger MF, et al. Science 284:143-7, 1999). In particular, myocyte differentiation is regulated by various muscle regulatory factors, including MyoD, Myf5, Myogenin and MRF4. MyoD initiates the expression of specific genes in muscle and induces the differentiation of mesenchymal stem cells into the muscle lineage, and the induction of myogenin expression is regulated by MyoD activity, which leads to terminal differentiation and myosin heavy chain (MHC) and muscle creatine kinase. (MCK) plays an important role in the induction of muscle-specific genes. Myocyte enhancer factor 2 (MEF2) family of transcription factors can regulate muscle differentiation through a cooperative relationship with muscle electron factors of the bHLH family, such as MyoD and Myogenin. In this regard, research and development are in progress to treat related diseases using cell therapeutics differentiated from stem cells in muscle-related diseases caused by congenital or genetic defect or loss of muscle or tissue deletion due to trauma, tumor removal, etc. . In particular, many studies have been conducted to differentiate and transplant muscle satellite cells extracted from muscle into myoblasts, but there is a disadvantage in that it is difficult to quantitatively secure the cells because the cell culture period is short. In addition, there are some studies of inducing differentiation from adult stem cells into muscle cells using a medium for muscle cell differentiation, but their use is very limited in terms of differentiation efficiency. In particular, some mesenchymal stem cells do not have the characteristics of myosatellite cells, making it difficult to differentiate them into complete muscle cells, so research is needed to select a specific origin and control the differentiation ability from mesenchymal stem cells to muscle cells.

한편, 천연 생산물의 일종인 플라보노이드는 과일과 채소에 광범위하게 존재하고 있다. 이는 항산화, 항박테리아, 항바이러스, 항진균제 및 항염증제와 같은 다양한 기능을 가지며, 특히, 플라보놀은 3-hydroxyflavone backbone (IUPAC name: 3-hydroxy-2-phenylchromen-4-one)으로 특징되는 주요 플라보노이드의 아강이다. 최근 몇 년 동안, 플라보놀의 항산화제와 항암제와 같은 중요한 생물학적 활성에 대한 연구가 활발히 진행되고 있다.On the other hand, flavonoids, a kind of natural product, exist extensively in fruits and vegetables. It has various functions such as antioxidant, antibacterial, antiviral, antifungal and anti-inflammatory. it's awsome In recent years, studies on important biological activities of flavonols, such as antioxidants and anticancer agents, have been actively conducted.

본 발명에서는 플라보노이드 유도체인 이소람네틴이 중간엽 줄기세포의 근육 세포로의 분화에 미치는 영향을 확인하고, 이를 근육 분화, 근육 재생 및 근육 관련 질환 치료 용도로 이용하는 것을 목적으로 한다.In the present invention, it is an object of the present invention to confirm the effect of isoramnetin, a flavonoid derivative, on the differentiation of mesenchymal stem cells into muscle cells, and to use it for muscle differentiation, muscle regeneration, and treatment of muscle-related diseases.

상기 목적의 달성을 위해, 본 발명은 화학식 1로 표시되는 플라보노이드 유도체인 이소람네틴, 또는 약학적으로 허용 가능한 그의 염을 유효성분으로 함유하는, 근육 분화 촉진용 조성물을 제공한다.In order to achieve the above object, the present invention provides a composition for promoting muscle differentiation, comprising isoramnetine, a flavonoid derivative represented by Formula 1, or a pharmaceutically acceptable salt thereof, as an active ingredient.

또한, 본 발명은 이소람네틴, 또는 약학적으로 허용 가능한 그의 염을 유효성분으로 함유하는, 근육 재생 촉진용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for promoting muscle regeneration, comprising isoramnetine or a pharmaceutically acceptable salt thereof as an active ingredient.

또한, 본 발명은 말 골수 유래 중간엽 줄기세포(Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC) 및 이소람네틴을 유효성분으로 함유하는, 말과동물의 근육 조직 형성 또는 근육 재생 촉진용 조성물을 제공한다.In addition, the present invention provides a composition for promoting muscle tissue formation or muscle regeneration in equine animals, comprising Equine Bone Marrow-derived Mesenchymal stem cells (eBM-MSC) and isoramnetin as active ingredients provides

또한, 본 발명은 이소람네틴을 유효성분으로 함유하는, 근육 손상 및 근육 관련 질환 치료용 약학적 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for the treatment of muscle damage and muscle-related diseases, containing isoramnetine as an active ingredient.

아울러, 본 발명은 중간엽 줄기세포를 근육 세포로 분화시키는 방법을 제공한다.In addition, the present invention provides a method for differentiating mesenchymal stem cells into muscle cells.

본 발명에 따르면, 플라보노이드 유도체 화합물인 이소람네틴(isorhamnetin)을 근육 분화 배지와 함께 처리하면, 말 골수 유래 중간엽 줄기 세포 (Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC)에서 근육 분화 마커의 발현을 증가시키고 근육 특이적 유전자를 상향 조절함으로써 근육 분화를 현저히 촉진하는 효과가 있으므로, 이소람네틴은 근육 분화 촉진을 통한 근육 손상의 치료 및 재생에 유용하게 이용될 수 있으며, 재생의학에 임상적으로 적용될 수 있다.According to the present invention, when isorhamnetin, a flavonoid derivative compound, is treated with a muscle differentiation medium, horse Since it has the effect of significantly promoting muscle differentiation by increasing the expression of muscle differentiation markers in bone marrow-derived mesenchymal stem cells (eBM-MSC) and upregulating muscle-specific genes, isoramnetine can be usefully used for the treatment and regeneration of muscle damage by promoting muscle differentiation, and can be clinically applied to regenerative medicine.

도 1은 eBM-MSC의 세포 형태를 관찰한 도이다.
도 2는 세포 표면 마커 및 줄기세포 마커의 발현을 확인한 도이다.
도 3은 eBM-MSC의 시간에 따른 증식 정도를 확인한 도이다.
도 4는 eBM-MSC의 집락형성, 자가 증식 및 증식 능력을 확인한 도이다.
도 5는 eBM-MSC의 골 분화, 지방 분화 및 연골 분화능을 확인한 도이다.
도 6은 근육 형성 마커인 미오게닌(myogenin)의 발현을 확인함으로써 근육 분화를 확인한 도이다:
Undifferentiated: 미분화 세포;
Myogenic Medium: 근육 분화 배지; 및
Myogenic Medium+Isorhamnetin: 이소람네틴 함유 근육 분화 배지.
도 7은 근육 마커인 MyoD 및 MyHC2의 발현을 확인한 도이다:
Undifferentiated: 미분화 세포;
Myogenic Medium: 근육 분화 배지; 및
Myogenic Medium+Isorhamnetin: 이소람네틴 함유 근육 분화 배지.
1 is a diagram illustrating the cell morphology of eBM-MSCs.
2 is a view confirming the expression of cell surface markers and stem cell markers.
3 is a diagram confirming the degree of proliferation of eBM-MSCs with time.
4 is a view confirming the colony formation, self-proliferation and proliferation ability of eBM-MSCs.
5 is a diagram confirming the osteogenic differentiation, adipogenic differentiation and cartilage differentiation ability of eBM-MSCs.
Figure 6 is a diagram confirming muscle differentiation by confirming the expression of myogenin (myogenin), a marker for muscle formation:
Undifferentiated: undifferentiated cells;
Myogenic Medium: myogenic medium; and
Myogenic Medium+Isorhamnetin: Muscle differentiation medium containing isorhamnetin.
7 is a diagram confirming the expression of muscle markers MyoD and MyHC2:
Undifferentiated: undifferentiated cells;
Myogenic Medium: myogenic medium; and
Myogenic Medium+Isorhamnetin: Muscle differentiation medium containing isorhamnetin.

이하, 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다. Hereinafter, the present invention will be described in detail by way of embodiments of the present invention. However, the following embodiments are presented as examples for the present invention, and the present invention is not limited thereto, and the present invention is capable of various modifications and applications within the scope of equivalents interpreted and interpreted from the following claims. .

일 측면에서, 본 발명은 하기 화학식 1로 표시되는 플라보노이드 유도체, 또는 약학적으로 허용 가능한 그의 염을 유효성분으로 함유하는, 근육 분화 촉진용 조성물에 관한 것이다:In one aspect, the present invention relates to a composition for promoting muscle differentiation, comprising as an active ingredient a flavonoid derivative represented by the following formula (1), or a pharmaceutically acceptable salt thereof:

Figure 112017124007118-pat00001
Figure 112017124007118-pat00001

일 구현예에서, 상기 화학식 1의 플라보노이드 유도체는 이소람네틴(isorhamnetin)이며, 중간엽 줄기세포의 근육 세포로의 분화를 촉진시킬 수 있다.In one embodiment, the flavonoid derivative of Formula 1 is isorhamnetin, and can promote the differentiation of mesenchymal stem cells into muscle cells.

본 발명의 이소람네틴은 메틸화된 플라보노이드이며, 다양한 분포의 하이드록실 및 메틸기를 갖는 폐쇄 피란 고리 (C 고리)를 형성하는 3 탄소 사슬에 의해 연결된 2 개의 벤젠 고리 (고리 A 및 B)를 보유하고 있다 (표 1).The isoramnetine of the present invention is a methylated flavonoid, having two benzene rings (rings A and B) linked by a 3 carbon chain forming a closed pyran ring (ring C) with a variable distribution of hydroxyl and methyl groups, There is (Table 1).

Figure 112017124007118-pat00002
Figure 112017124007118-pat00002

일 구현예에서, 중간엽 줄기세포는 말 골수 유래 중간엽 줄기세포(Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC)일 수 있다.In one embodiment, the mesenchymal stem cells may be Equine Bone Marrow-derived Mesenchymal stem cells (eBM-MSCs).

일 구현예에서, 상기 말 골수 유래 중간엽 줄기세포는 세포 표면 항원 CD19, CD34 및 CD45(PTPRC)에 대하여 음성의 면역학적 특성; 세포 표면 항원 CD73(NT5E), CD90(THY1) 및 CD105(ENG)에 대하여 양성의 면역학적 특성; 및 미분화 줄기세포 표지 단백질인 Nanog, Sox2 및 Oct4에 대해 양성의 면역학적 특성을 가질 수 있다.In one embodiment, the horse bone marrow-derived mesenchymal stem cells are immunologically negative for the cell surface antigens CD19, CD34 and CD45 (PTPRC); positive immunological characteristics for the cell surface antigens CD73 (NT5E), CD90 (THY1) and CD105 (ENG); and positive immunological properties for Nanog, Sox2 and Oct4, which are undifferentiated stem cell marker proteins.

일 측면에서, 본 발명은 하기 화학식 1로 표시되는 플라보노이드 유도체를 유효성분으로 함유하는, 근육 재생 촉진용 약학적 조성물에 관한 것이다:In one aspect, the present invention relates to a pharmaceutical composition for promoting muscle regeneration, comprising a flavonoid derivative represented by the following formula (1) as an active ingredient:

[화학식 1][Formula 1]

Figure 112017124007118-pat00003
.
Figure 112017124007118-pat00003
.

일 구현예에서, 상기 약학적 조성물은 말과 동물의 근육 부상 재생 촉진용일 수 있다.In one embodiment, the pharmaceutical composition may be for promoting muscle injury regeneration in horses and animals.

일 측면에서, 본 발명은 말 골수 유래 중간엽 줄기세포(Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC) 및 하기 화학식 1로 표시되는 플라보노이드 유도체를 유효성분으로 함유하는, 말과동물의 근육 조직 형성 또는 근육 재생 촉진용 조성물에 관한 것이다:In one aspect, the present invention is horse bone marrow-derived mesenchymal stem cells (Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC) and a flavonoid derivative represented by the following formula (1) containing as an active ingredient, equine muscle tissue It relates to a composition for promoting formation or muscle regeneration:

[화학식 1][Formula 1]

Figure 112017124007118-pat00004
.
Figure 112017124007118-pat00004
.

일 구현예에서, 본 발명은 대상의 치료 영역에 본 발명의 상기 언급된 조성물을 치료적으로 효과적인 양을 투여하는 것을 포함하고, 이때 치료 영역은 손상된 영역에 인접하여 대상의 또는 대상의 손상된 영역에 인접한 근육 또는 힘줄 재생이 촉진된다.In one embodiment, the present invention comprises administering to a treatment area of a subject a therapeutically effective amount of the aforementioned composition of the present invention, wherein the treatment area is adjacent to the damaged area and to the damaged area of the subject or subject. Regeneration of adjacent muscles or tendons is promoted.

일 구현예에서, 대상은 근육 부상, 근육 폐기, 근육 이영양증, 근위축성 측색 경화증, 힘줄 부상, 조직허혈, 뇌 허혈, 하지 동맥 질환 또는 심근 경색으로 고생할 수 있고, 이것들은 손상된 영역의 근육 또는 힘줄 손상을 유발한다.In one embodiment, the subject may suffer from a muscle injury, muscle waste, muscular dystrophy, amyotrophic lateral sclerosis, tendon injury, tissue ischemia, cerebral ischemia, lower extremity arterial disease or myocardial infarction, which includes the muscle or tendon of the injured area. cause damage

일 측면에서, 본 발명은 하기 화학식 1로 표시되는 플라보노이드 유도체를 유효성분으로 함유하는, 근육 손상 및 근육 관련 질환 치료용 약학적 조성물에 관한 것이다:In one aspect, the present invention relates to a pharmaceutical composition for treating muscle damage and muscle-related diseases, containing a flavonoid derivative represented by the following formula (1) as an active ingredient:

[화학식 1][Formula 1]

Figure 112017124007118-pat00005
.
Figure 112017124007118-pat00005
.

일 구현예에서, 근육 관련 질환은 퇴행성 근질환, 근이영양증, 근위축, X-연관 척수구근 근위축(SBMA: Xlinked spinal-bulbar muscular atrophy), 악액질 및 근육 감소증으로 이루어진 군으로부터 선택될 수 있으며, 상기 근위축 질환은 근위축증, 근무력증, 근이영양증, 근경직증, 근긴장저하, 근력약화, 근디스트로피, 근육퇴행위축, 근위축성 측삭경화증 또는 중증 근무력증일 수 있다.In one embodiment, the muscle-related disease may be selected from the group consisting of degenerative muscle disease, muscular dystrophy, muscular atrophy, X-linked spinal-bulbar muscular atrophy (SBMA), cachexia and sarcopenia, wherein The amyotrophic disease may be muscular atrophy, myasthenia gravis, muscular dystrophy, myos stiffness, hypotonia, muscle weakness, muscular dystrophy, muscular dystrophy, amyotrophic lateral sclerosis or myasthenia gravis.

본 발명에서 사용된 용어 "치료"란 본 발명의 조성물의 투여로 근육 손상 또는 근육 관련 질환, 또는 이로 인한 증상을 호전시키거나 이롭게 변경하는 모든 행위를 의미한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 대한의학협회 등에서 제시된 자료를 참조하여 본원의 조성물이 효과가 있는 질환의 정확한 기준을 알고, 개선, 향상 및 치료된 정도를 판단할 수 있을 것이다.As used herein, the term “treatment” refers to any action that improves or beneficially changes muscle damage or muscle-related disease, or symptoms resulting therefrom, by administration of the composition of the present invention. Those of ordinary skill in the art to which the present invention pertains, with reference to the data presented by the Korean Medical Association, etc., know the exact standard of the disease for which the composition of the present application is effective, and can determine the degree of improvement, improvement and treatment will be.

일 구현예에서, 상기 약학적 조성물은 경구형 제형, 외용제, 좌제, 멸균 주사용액 및 분무제를 포함하는 군으로부터 선택되는 하나 이상의 제형일 수 있다. In one embodiment, the pharmaceutical composition may be one or more formulations selected from the group comprising oral formulations, external preparations, suppositories, sterile injection solutions and sprays.

본 발명의 조성물의 치료적으로 유효한 양은 여러 요소, 예를 들면 투여방법, 목적부위, 환자의 상태 등에 따라 달라질 수 있다. 따라서, 인체에 사용 시 투여량은 안전성 및 효율성을 함께 고려하여 적정량으로 결정되어야 한다. 동물실험을 통해 결정한 유효량으로부터 인간에 사용되는 양을 추정하는 것도 가능하다. 유효한 양의 결정시 고려할 이러한 사항은, 예를 들면 Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.(2001), Pergamon Press; 및 E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed.(1990), Mack Publishing Co.에 기술되어있다.The therapeutically effective amount of the composition of the present invention may vary depending on several factors, for example, the administration method, the target site, the condition of the patient, and the like. Therefore, when used in the human body, the dosage should be determined as an appropriate amount in consideration of both safety and efficiency. It is also possible to estimate the amount used in humans from the effective amount determined through animal experiments. These considerations in determining effective amounts are found, for example, in Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; and E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.

본 발명의 조성물은 또한 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 약제학적으로 허용 가능한 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.The compositions of the present invention may also include carriers, diluents, excipients or combinations of two or more commonly used in biological agents. A pharmaceutically acceptable carrier is not particularly limited as long as it is suitable for in vivo delivery of the composition, for example, Merck Index, 13th ed., Merck & Co. Inc. The compound described in , saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or more of these components can be mixed and used, and if necessary, other antioxidants, buffers, bacteriostats, etc. Conventional additives may be added. In addition, diluents, dispersants, surfactants, binders and lubricants may be additionally added to form an injectable dosage form such as an aqueous solution, suspension, emulsion, etc., pills, capsules, granules or tablets. Furthermore, it can be preferably formulated according to each disease or component using an appropriate method in the art or a method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990).

본 발명의 조성물에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다. 본 발명의 조성물은, 조성물 총 중량에 대하여 상기 단백질을 0.0001 내지 10 중량 %로, 바람직하게는 0.001 내지 1 중량 %를 포함한다. In addition, the composition of the present invention may contain one or more active ingredients exhibiting the same or similar function. The composition of the present invention comprises 0.0001 to 10% by weight of the protein, preferably 0.001 to 1% by weight, based on the total weight of the composition.

본 발명의 약학 조성물은 약제학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약제학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약제학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 중량부 내지 90 중량부 포함되는 것이 바람직하나, 이에 한정되는 것은 아니다.The pharmaceutical composition of the present invention may further include a pharmaceutically acceptable additive, wherein the pharmaceutically acceptable additive includes starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, calcium hydrogen phosphate, Lactose, mannitol, syrup, gum arabic, pregelatinized starch, corn starch, powdered cellulose, hydroxypropyl cellulose, Opadry, sodium starch glycolate, lead carnauba, synthetic aluminum silicate, stearic acid, magnesium stearate, aluminum stearate, stearic acid Calcium, sucrose, dextrose, sorbitol and talc and the like can be used. The pharmaceutically acceptable additive according to the present invention is preferably included in an amount of 0.1 to 90 parts by weight based on the composition, but is not limited thereto.

본 발명의 조성물은 목적하는 방법에 따라 비 경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용)하거나 경구 투여할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다. 본 발명에 따른 조성물의 일일 투여량은 0.0001 ~ 10㎎/㎖이며, 바람직하게는 0.0001 ~ 5 ㎎/㎖이며, 하루 일 회 내지 수회에 나누어 투여하는 것이 더욱 바람직하다. The composition of the present invention may be administered parenterally (for example, intravenously, subcutaneously, intraperitoneally or topically) or orally according to a desired method, and the dosage may vary depending on the patient's weight, age, sex, health status, The range varies depending on the diet, administration time, administration method, excretion rate, and the severity of the disease. The daily dose of the composition according to the present invention is 0.0001 to 10 mg/ml, preferably 0.0001 to 5 mg/ml, and it is more preferable to divide and administer once to several times a day.

본 발명의 조성물의 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 통상적으로 사용되는 단순 희석제인 물, 액체 파라핀 이외에 다양한 부형제, 예컨대 습윤제, 감미제, 방향제, 보존제 등이 함께 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제, 좌제 등이 포함된다.Liquid formulations for oral administration of the composition of the present invention include suspensions, internal solutions, emulsions, syrups, etc. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, fragrances, and preservatives and the like may be included. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories, and the like.

일 측면에서, 본 발명은 하기 화학식 1의 플라보노이드 유도체를 포함하는 근육 분화 배지에서 중간엽 줄기세포를 배양하는 단계를 포함하는, 중간엽 줄기세포를 근육 세포로 분화시키는 방법에 관한 것이다:In one aspect, the present invention relates to a method for differentiating mesenchymal stem cells into muscle cells, comprising culturing the mesenchymal stem cells in a muscle differentiation medium containing a flavonoid derivative of Formula 1 below:

[화학식 1][Formula 1]

Figure 112017124007118-pat00006
.
Figure 112017124007118-pat00006
.

일 구현예에서, 중간엽 줄기세포는 말 골수 유래 중간엽 줄기세포(Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC)일 수 있다.In one embodiment, the mesenchymal stem cells may be Equine Bone Marrow-derived Mesenchymal stem cells (eBM-MSCs).

일 구현예에서, 상기 말 골수 유래 중간엽 줄기세포는 세포 표면 항원 CD19, CD34 및 CD45(PTPRC)에 대하여 음성의 면역학적 특성; 세포 표면 항원 CD73(NT5E), CD90(THY1) 및 CD105(ENG)에 대하여 양성의 면역학적 특성; 및 미분화 줄기세포 표지 단백질인 Nanog, Sox2 및 Oct4에 대해 양성의 면역학적 특성을 가질 수 있다.In one embodiment, the horse bone marrow-derived mesenchymal stem cells are immunologically negative for the cell surface antigens CD19, CD34 and CD45 (PTPRC); positive immunological characteristics for the cell surface antigens CD73 (NT5E), CD90 (THY1) and CD105 (ENG); and positive immunological properties for Nanog, Sox2 and Oct4, which are undifferentiated stem cell marker proteins.

일 구현예에서, 근육 세포로의 분화는 근원성 조절인자인 미오게닌(myogenin)의 상향조절(upregulation)을 유도함으로써 이루어질 수 있다.In one embodiment, differentiation into muscle cells may be achieved by inducing upregulation of myogenin, a myogenic regulator.

하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are only intended to embody the contents of the present invention, and the present invention is not limited thereto.

실시예 1. 말 골수 유래 중간엽 줄기세포(eBM-MSC)의 특성 확인Example 1. Characterization of horse bone marrow-derived mesenchymal stem cells (eBM-MSC)

1-1. 세포 형태 확인1-1. Check cell morphology

말 골수 유래 중간엽 줄기세포인 eBM-MSC(Equine Bone Marrow-derived Mesenchymal stem cell)를 10% 우태 혈청(fetal bovine serum), 50U/mL 페니실린 및 50μg/mL 스트렙토마이신 (Invitrogen, CA, USA) 용액이 첨가된 DMEM-HG(Dulbecco’modified Eagles medium high glucose) 배양액에 부유한 후, 5% CO2, 37℃의 조건에서 배양하였다. 그 후, 현미경(EVOS XL Core Cell Imaging System, Electron microscopy sciences, USA)으로 이의 형태를 확인한 결과, eBM-MSC는 섬유 아세포 세포와 비슷한 긴 방추체 모양의 형태를 가지고 있었다 (도 1).Equine Bone Marrow-derived Mesenchymal stem cell (eBM-MSC), a horse bone marrow-derived mesenchymal stem cell, was prepared in 10% fetal bovine serum, 50U/mL penicillin and 50μg/mL streptomycin (Invitrogen, CA, USA) solution. After being suspended in the added DMEM-HG (Dulbecco'modified Eagles medium high glucose) culture solution, 5% CO 2 , and cultured at 37°C. Then, as a result of confirming its morphology with a microscope (EVOS XL Core Cell Imaging System, Electron microscopy sciences, USA), eBM-MSC had a long spindle-shaped morphology similar to fibroblast cells (FIG. 1).

1-2. eBM-MSC에서의 세포 표면 마커 및 줄기세포 마커의 발현 확인1-2. Confirmation of expression of cell surface markers and stem cell markers in eBM-MSCs

상기 실시예 1-1에서와 같이 배양한 말 골수 유래 중간엽 줄기세포인 eBM-MSC에서 전체 RNA를 Labo Pass Kit, TRIzol (Cosmogenetech, Seoul, Korea)를 사용하여 추출하였다. 전체 RNA의 농도를 Nanodrop (ND1000) 분광 광도계(Nanodrop Technologies Inc., Wilmington DE, USA)로 측정한 뒤, 전체 RNA 2μg 및 M-MLV 역전사효소 (Promega)를 사용하여 제조업체의 방법에 따라 cDNA을 합성하였다. 표적 유전자의 발현 수준의 변화를 정량화하기 위해서, cDNA와 프라이머를 SYBR Green 마스터 믹스(Elpis Biotech, South Korea)와 제조업체 방법에 따라 섞은 후, Applied Biosystem 7500 실시간 PCR 시스템으로 유전자 발현을 측정하였다. 표적 유전자의 발현 정도는 GAPDH를 기준으로하여 계산하였다. 표적 유전자로 세포 표면 마커인 CD19, CD34, CD45(PTPRC), CD73(NT5E), CD90(THY1) 및 CD105(ENG)를 이용하였고, 줄기세포 마커인 Nanog, Sox2 및 Oct4를 이용하였다. 상기 유전자에 대한 각각의 프라이머는 하기 표 2에 기재하였다. Total RNA was extracted from eBM-MSC, a mesenchymal stem cell derived from horse bone marrow cultured as in Example 1-1, using Labo Pass Kit, TRIzol (Cosmogenetech, Seoul, Korea). The concentration of total RNA was measured with a Nanodrop (ND1000) spectrophotometer (Nanodrop Technologies Inc., Wilmington DE, USA), and cDNA was synthesized according to the manufacturer's method using 2 μg of total RNA and M-MLV reverse transcriptase (Promega). did To quantify the change in the expression level of the target gene, cDNA and primers were mixed with SYBR Green master mix (Elpis Biotech, South Korea) according to the manufacturer's method, and then gene expression was measured with an Applied Biosystem 7500 real-time PCR system. The expression level of the target gene was calculated based on GAPDH. Cell surface markers CD19, CD34, CD45 (PTPRC), CD73 (NT5E), CD90 (THY1) and CD105 (ENG) were used as target genes, and stem cell markers Nanog, Sox2 and Oct4 were used. Each primer for the gene is listed in Table 2 below.

유전자 이름gene name 프라이머primer 서열order 서열번호SEQ ID NO: CD19CD19 ForwardForward CAT CCC GAG AAG ACT GCC TCCAT CCC GAG AAG ACT GCC TC 1One ReverseReverse AGT CTC CAT CAG CCA ATG CCAGT CTC CAT CAG CCA ATG CC 22 CD34CD34 ForwardForward CAG AAA TTC CCA GCA AGC TCCAG AAA TTC CCA GCA AGC TC 33 ReverseReverse ATA GCA AAT GAG GCC CAA GA ATA GCA AAT GAG GCC CAA GA 44 CD45 (PTPRC)CD45 (PTPRC) ForwardForward TGA TGA TTT CTG GAG GAT GAT CTGTGA TGA TTT CTG GAG GAT GAT CTG 55 ReverseReverse CAC TTG TTC CTA TTT CCT TCT TCA CACAC TTG TTC CTA TTT CCT TCT TCA CA 66 CD73 (NT5E)CD73 (NT5E) ForwardForward GGG ATT GTT GGA TAC ACT TCA AAA G GGG ATT GTT GGA TAC ACT TCA AAA G 77 ReverseReverse GCT GCA ACG CAG TGA TTT CAGCT GCA ACG CAG TGA TTT CA 88 CD90 (THY1)CD90 (THY1) ForwardForward AGA ATA CCA CCG CCA CAAGA ATA CCA CCG CCA CA 99 ReverseReverse GGA TAA GTA GAG GAC CTT GAT GGGA TAA GTA GAG GAC CTT GAT G 1010 CD105 (ENG)CD105 (ENG) ForwardForward TGA CGA CCA CCT CAT TAC TGTGA CGA CCA CCT CAT TAC TG 1111 ReverseReverse AAG AGC TCA TCT CGA GTC TGAAG AGC TCA TCT CGA GTC TG 1212 NanogNanog ForwardForward TAC CTC AGC CTC CAG CAG AT TAC CTC AGC CTC CAG CAG AT 1313 ReverseReverse CGT TCC CAG CAG TGT TCACGT TCC CAG CAG TGT TCA 1414 Sox2Sox2 ForwardForward CAC CCA CAG CAA ATG ACA GC CAC CCA CAG CAA ATG ACA GC 1515 ReverseReverse TTT CTG CAA AGC TCC TAC CGTTT CTG CAA AGC TCC TAC CG 1616 Oct4Oct4 ForwardForward ACT TCA CCT TCC CTC CAA CCACT TCA CCT TCC CTC CAA CC 1717 ReverseReverse GTC CTC ACT TCA CTA CGC TGT GTC CTC ACT TCA CTA CGC TGT 1818 GAPDHGAPDH ForwardForward GGC AAG TTC CAT GGC ACA GTGGC AAG TTC CAT GGC ACA GT 1919 ReverseReverse CAC AAC ATA TTC AGC ACC AGC ATCAC AAC ATA TTC AGC ACC AGC AT 2020

그 결과, 말 골수 유래 중간엽 줄기세포인 eBM-MSC에서 CD19, CD34 및 CD45는 음성 발현되어 있었으며, CD105, CD90 및 CD73가 양성 발현되어 있었다. 또한, Nanog, Oct4 및 Sox2가 양성 발현되어 있었다 (도 2).As a result, CD19, CD34 and CD45 were negatively expressed, and CD105, CD90 and CD73 were positively expressed in eBM-MSC, which is a horse bone marrow-derived mesenchymal stem cell. In addition, Nanog, Oct4 and Sox2 were positively expressed ( FIG. 2 ).

1-3. eBM-MSC의 증식능 확인1-3. Confirmation of proliferative capacity of eBM-MSC

eBM-MSC의 증식능을 시간 의존적으로 (0일, 2일, 4일, 6일, 8일, 10일) 측정하기 위해, 각 시간대에 세포를 떼어내어 트립판 블루로 염색하였다. 염색한 세포 수를 현미경으로 관찰하여 혈구 계산판을 사용하여 계산하였다. 그 결과, 시간의존적으로 eBM-MSC이 증식하였으며, 최대 10 일까지 현저한 증식 능력을 가지는 것을 알 수 있었다 (도 3). To measure the proliferative capacity of eBM-MSCs in a time-dependent manner (days 0, 2, 4, 6, 8, and 10), cells were removed at each time point and stained with trypan blue. The number of stained cells was observed under a microscope and counted using a hemocytometer. As a result, it was found that eBM-MSCs proliferated in a time-dependent manner, and had remarkable proliferative ability up to 10 days ( FIG. 3 ).

또한, 군집 형성 분석을 통해 eBM-MSC의 집락형성, 자가 증식 및 증식 능력을 평가하기 위해, eBM-MSC를 저 밀도의 세포 수로 (1 X 103)으로 35mm2 배양 용기(Corning)에 접종한 뒤, 기본 배지에서 14일간 배양하였다. 배양 14일 째, D-PBS로 2회 세척 후 메탄올에 준비된 0.3% 크리스탈 바이올렛(crystal violet) (Sigma-Aldrich)를 사용하여 실온에서 30분간 염색하였다. 염색 후 크리스탈 바이올렛을 제거하고 D-PBS와 증류수로 용기를 세척한 후 완전히 건조시켰다. 그 후, 콜로니를 촬영하고 세포 수가 50개 이하인 군집만 계수하였다. 그 결과, eBM-MSC가 자가증식하여 군집을 많이 형성하였고, 이들 군집이 자주색으로 염색된 것을 많이 볼 수 있었다 (도 4). In addition, in order to evaluate the colonization, self-proliferation and proliferation ability of eBM-MSCs through colonization analysis, eBM-MSCs were inoculated into a 35 mm 2 culture vessel (Corning) with a low cell number (1 X 10 3 ). Then, it was cultured in basal medium for 14 days. On the 14th day of culture, after washing twice with D-PBS, 0.3% crystal violet (Sigma-Aldrich) prepared in methanol was used for staining at room temperature for 30 minutes. After dyeing, the crystal violet was removed, the vessel was washed with D-PBS and distilled water, and then completely dried. After that, colonies were photographed, and only clusters having 50 or less cells were counted. As a result, eBM-MSCs self-proliferated to form many colonies, and it was seen that these colonies were stained purple ( FIG. 4 ).

1-4. eBM-MSC의 다계열 분화 확인1-4. Confirmation of multilineage differentiation of eBM-MSCs

eBM-MSC를 24웰에 2x104 /well의 밀도로 부착시키고, 80%의 밀도에 도달하였을 때, 각각의 분화 배지로 바꿔주어 지방 분화, 골 분화 및 연골 분화를 유도하였다. 골 형성 분화를 위한 분화 배지로 Dulbecco’modified Eagle’medium (DMEM)-low glucose (Invitrogen, CA, USA)에 10% FBS, 1% 페니실린/스트렙토마이신, 100nM 덱사메타손(dexamethasone) (Sigma-Aldrich, MO, USA), 50μg/ml ascorbate-2-phosphate (Sigma-Aldrich, MO, USA) 및 10mM β-glycerophosphate (Sigma-Aldrich, MO, USA)를 첨가하였다. 지방 분화를 위한 분화 배지로 DMEM-low glucose에 10% FBS, 1% 페니실린/스트렙토마이신, 500μM IBMX(isobutylmethylxanthine), 1μM 덱사메타손, 200μg/ml ascorpate-2-phosphate, 100μM 인도메타신(indomethacin) 및 10μg/ml 인슐린(insulin)을 첨가하였다. 연골 분화를 위한 배지로 DMEM-low glucose에 2% FBS, 1% 페니실린/스트렙토마이신, 50μg/mL ascorbate-2-posphate, 100μg/mL sodium pyruvate, 1% ITS-X(Insulin-Transferrin-Selenium-Ethanolamine) (Gibco), 100nM 덱사메타손, 40μg/mL L-프롤린(proline) 및 10ng/mL의 TGF-β3 (Prospec, East Brunswick, NJ, USA)를 첨가하였다. 각각의 분화 배지는 2주 동안 2일 마다 교체해주었다. 분화를 유도한 각각의 세포들을 염색하여 분화를 확인하였다. 구체적으로 골형성 분화는 분화가 끝난 시점에 세포를 4% 파라포름알데하이드로 15분간 고정한 후 멸균수로 세척하고, Alizarin Red S 염색법을 사용하여 염색을 수행하였다. 지방 분화는 분화가 끝난 시점에 세포는 4% 파라포름알데하이드로 15분간 고정한 후 멸균수로 1차 세척한 뒤, 60% 이소프로판올로 2차 세척한 다음, 이소프로판올 (wt/vol)로 희석된 5% Oil Red O를 사용하여 염색하였다. 연골 분화는 분화가 끝난 시점에 4% 파라포름알데하이드로 15분간 고정한 후 멸균수로 세척하고, 글리코사미노글리칸 같은 산성 무코 다당류를 염색하는 Alcian blue로 염색하였다.The eBM-MSCs were attached to 24 wells at a density of 2x10 4 /well, and when the density reached 80%, they were replaced with the respective differentiation media to induce adipogenic differentiation, osteogenic differentiation and chondrogenic differentiation. 10% FBS, 1% penicillin/streptomycin, 100 nM dexamethasone (Sigma-Aldrich, MO) in Dulbecco'modified Eagle'medium (DMEM)-low glucose (Invitrogen, CA, USA) as a differentiation medium for osteogenic differentiation , USA), 50 μg/ml ascorbate-2-phosphate (Sigma-Aldrich, MO, USA) and 10 mM β-glycerophosphate (Sigma-Aldrich, MO, USA) were added. As a differentiation medium for adipogenesis, 10% FBS, 1% penicillin/streptomycin, 500 μM IBMX (isobutylmethylxanthine), 1 μM dexamethasone, 200 μg/ml ascorpate-2-phosphate, 100 μM indomethacin and 10 μg in DMEM-low glucose as a differentiation medium for adipogenesis. /ml insulin (insulin) was added. As a medium for cartilage differentiation, DMEM-low glucose, 2% FBS, 1% penicillin/streptomycin, 50 μg/mL ascorbate-2-posphate, 100 μg/mL sodium pyruvate, 1% ITS-X (Insulin-Transferrin-Selenium-Ethanolamine) ) (Gibco), 100 nM dexamethasone, 40 μg/mL L-proline and 10 ng/mL TGF-β3 (Prospec, East Brunswick, NJ, USA) were added. Each differentiation medium was replaced every 2 days for 2 weeks. Differentiation was confirmed by staining each cell inducing differentiation. Specifically, for osteogenic differentiation, cells were fixed with 4% paraformaldehyde for 15 minutes at the end of differentiation, washed with sterile water, and stained using Alizarin Red S staining method. For adipogenic differentiation, at the time of differentiation, cells were fixed with 4% paraformaldehyde for 15 minutes, washed first with sterile water, washed second with 60% isopropanol, and then washed with 5% isopropanol (wt/vol) diluted with isopropanol (wt/vol). It was stained using Oil Red O. Cartilage differentiation was fixed with 4% paraformaldehyde for 15 minutes at the end of differentiation, washed with sterile water, and stained with Alcian blue, which stains acidic mucopolysaccharides such as glycosaminoglycan.

그 결과, eBM-MSC가 골 분화, 지방 분화 및 연골 분화가 모두 가능한 다중 분화능을 가지는 것을 알 수 있었다 (도 5). As a result, it was found that eBM-MSCs have multi-differentiation ability capable of bone differentiation, adipogenesis, and cartilage differentiation (FIG. 5).

이를 통해, eBM-MSC 세포의 3 계통으로의 분화 잠재력과 임상 시험으로의 응용 가능성을 검증할 수 있었다.Through this, it was possible to verify the differentiation potential of eBM-MSC cells into three lineages and their application to clinical trials.

실시예 2. 이소람네틴(isorhamnetin) 첨가에 따른Example 2. According to the addition of isorhamnetin eBM-MSC의 근육 분화능 확인Confirmation of muscle differentiation potential of eBM-MSCs

우선, 말 골수 유래 중간엽 줄기세포인 eBM-MSC(Equine Bone Marrow-derived Mesenchymal stem cell)를 10% 우태 혈청(fetal bovine serum), 50U/mL 페니실린 및 50μg/mL 스트렙토마이신 (Invitrogen, CA, USA) 용액이 첨가된 DMEM-LG(Dulbecco’modified Eagles medium low glucose) 배양액에 부유한 후, 5% CO2, 37℃의 조건에서 배양하였다. 그 후, 면역세포화학 염색을 위해, 70% 에탄올로 사용하여 15 분 동안 유리 슬라이드 (18/18 mm, Superior-Marienfeld, 독일)를 세척하고 증류수로 세척한 뒤 건조시켰다. 12-웰에 상기에서 준비한 유리 슬라이드를 웰 바닥에 위치시킨 후, eBM-MSC를 유리 슬라이드 위에 4 x 104 세포/웰의 밀도로 부착시켜 배양하였다. 부착 하루 후, 근육 분화 배지 (myogenic medium) (5% 말 혈청(horse serum), 10% 우태 혈청(fetal bovine serum), 50U/mL 페니실린, 50μg/mL 스트렙토마이신 (Invitrogen, CA, USA) 및 3uM의 5-Aza-2′-deoxycytidine (Sigma Chemical Co., St Louis, MO, USA) 용액이 첨가된 DMEM-HG(Dulbeccomodified Eagles medium high glucose)) 또는 20μM의 이소람네틴을 첨가한 근육 분화 배지로 교체하여 2주 동안 배양하였다 (2일마다 새 배지로 교체). 배양 후, 세포를 4 % 파라포름알데하이드로 20 분간 고정시킨 후 PBS로 세척하였다. 0.3 % Triton X-100을 사용하여 10 분간 세포의 침투를 실시하고 PBS로 세척한 뒤, 비특이적 항체 결합을 차단하기 위해 10% 정상 염소 혈청과 함께 1 시간 동안 실온에서 방치하였다. 세포를 1차 항체로 항-myogenin (Santa Cruz, USA) 항체와 4 ℃에서 12시간 동안 반응시킨 뒤, 세포를 PBS로 세척하고 실온에서 1 시간 동안 2차 항체로 Dylight 549-접합 염소 항 마우스 항체 (Jackson Immuno Research Labs, PA, USA)와 함께 실온에서 인큐베이션하였다. 세포핵은 마운팅 용액에 함유된 DAPI로 염색하였다. 모든 이미지는 초고해상도 공초점레이저 주사 현미경(LSM 800, Carl Zeiss, Germany)으로 촬영하여 관찰하였다.First, Equine Bone Marrow-derived Mesenchymal Stem Cell (eBM-MSC), a horse bone marrow-derived mesenchymal stem cell, was treated with 10% fetal bovine serum, 50U/mL penicillin and 50μg/mL streptomycin (Invitrogen, CA, USA). ) solution was suspended in DMEM-LG (Dulbecco'modified Eagles medium low glucose) culture medium, and then incubated at 5% CO 2 , 37°C. Thereafter, for immunocytochemical staining, glass slides (18/18 mm, Superior-Marienfeld, Germany) were washed with 70% ethanol for 15 minutes, washed with distilled water, and dried. After placing the glass slide prepared above in the 12-well at the bottom of the well, eBM-MSCs were adhered to the glass slide at a density of 4 x 10 4 cells/well and cultured. One day after attachment, myogenic medium (5% horse serum, 10% fetal bovine serum, 50U/mL penicillin, 50μg/mL streptomycin (Invitrogen, CA, USA) and 3uM DMEM-HG (Dulbeccomodified Eagles medium high glucose) with 5-Aza-2′-deoxycytidine (Sigma Chemical Co., St Louis, MO, USA) solution of Alternatively, it was replaced with a muscle differentiation medium supplemented with 20 μM isoramnetine and cultured for 2 weeks (replaced with fresh medium every 2 days). After incubation, the cells were fixed with 4% paraformaldehyde for 20 minutes and washed with PBS. Cells were infiltrated for 10 minutes using 0.3% Triton X-100, washed with PBS, and left at room temperature for 1 hour with 10% normal goat serum to block non-specific antibody binding. Cells were reacted with an anti-myogenin (Santa Cruz, USA) antibody as a primary antibody for 12 hours at 4°C, then the cells were washed with PBS and Dylight 549-conjugated goat anti-mouse antibody was used as a secondary antibody for 1 hour at room temperature. (Jackson Immuno Research Labs, PA, USA) was incubated at room temperature. Cell nuclei were stained with DAPI contained in the mounting solution. All images were taken and observed with an ultra-high-resolution confocal laser scanning microscope (LSM 800, Carl Zeiss, Germany).

관찰 결과, 근육 분화 배지를 첨가시 근육 형성 마커인 미오게닌(myogenin)의 발현이 증가하여 근육 분화를 유의하게 증가된 것을 알 수 있었으며, 이소람네틴을 첨가한 경우 미분화 세포 및 근육 배지로 처리된 세포에 비해 미오게닌의 발현이 현저히 증가한 것을 알 수 있었다 (도 6).As a result of observation, it was found that when the muscle differentiation medium was added, the expression of myogenin, a marker for muscle formation, increased, and thus muscle differentiation was significantly increased. It was found that the expression of myogenin was remarkably increased compared to that of the old cells (FIG. 6).

실시예 3. 이소람네틴에 첨가에 의한 eBM-MSC의 근육 관련 마커의 특이적 발현 확인Example 3. Confirmation of specific expression of muscle-related markers of eBM-MSC by addition to isoramnetine

상기 실시예 2에서와 같이 말 골수 유래 중간엽 줄기세포인 eBM-MSC를 배양하고 이소람네틴 포함 또는 불포함 근육 분화 배지로 배양한 eBM-MSC에서 전체 RNA를 Labo Pass Kit, TRIzol (Cosmogenetech, Seoul, Korea)를 사용하여 추출하였다. 전체 RNA의 농도를 Nanodrop (ND1000) 분광 광도계(Nanodrop Technologies Inc., Wilmington DE, USA)로 측정한 뒤, 전체 RNA 2μg 및 M-MLV 역전사효소 (Promega)를 사용하여 제조업체의 방법에 따라 cDNA을 합성하였다. 표적 유전자의 발현 수준의 변화를 정량화하기 위해서, cDNA와 하기 표 3의 서열번호 21 내지 24의 프라이머를 각각 SYBR Green 마스터 믹스(Elpis Biotech, South Korea)와 제조업체 방법에 따라 섞은 후, Applied Biosystem 7500 실시간 PCR 시스템으로 근육 관련 마커 유전자인 MyoD 및 MyHC의 발현을 측정하였다. 이들의 발현 정도는 GAPDH를 기준으로하여 계산하였다. As in Example 2, eBM-MSC, which is a horse bone marrow-derived mesenchymal stem cell, was cultured and total RNA from eBM-MSC cultured in a muscle differentiation medium containing or without isoramnetine was collected using Labo Pass Kit, TRIzol (Cosmogenetech, Seoul, Korea) was used for extraction. The concentration of total RNA was measured with a Nanodrop (ND1000) spectrophotometer (Nanodrop Technologies Inc., Wilmington DE, USA), and cDNA was synthesized according to the manufacturer's method using 2 μg of total RNA and M-MLV reverse transcriptase (Promega). did In order to quantify the change in the expression level of the target gene, cDNA and the primers of SEQ ID NOs: 21 to 24 of Table 3 below were mixed with SYBR Green master mix (Elpis Biotech, South Korea) according to the manufacturer's method, respectively, followed by Applied Biosystem 7500 real time The expression of muscle-related marker genes, MyoD and MyHC, was measured using a PCR system. Their expression level was calculated based on GAPDH.

유전자 이름gene name 프라이머primer 서열order 서열번호SEQ ID NO: MyoDMyoD ForwardForward GTC GAG GAC AGT CGG GTG TAGTC GAG GAC AGT CGG GTG TA 2121 ReverseReverse AAG TCG TCC GCT GTA GCA AAAAG TCG TCC GCT GTA GCA AA 2222 MyHC2MyHC2 ForwardForward TGA GTC CCA GGT CAA CAA GCTGA GTC CCA GGT CAA CAA GC 2323 ReverseReverse TCC TTT GCA GTA GGG TGG AATCC TTT GCA GTA GGG TGG AA 2424 GAPDHGAPDH ForwardForward GGC AAG TTC CAT GGC ACA GTGGC AAG TTC CAT GGC ACA GT 1919 ReverseReverse CAC AAC ATA TTC AGC ACC AGC ATCAC AAC ATA TTC AGC ACC AGC AT 2020

그 결과, 말 골수 유래 중간엽 줄기세포인 eBM-MSC에 근육 세포 분화 배지를 첨가한 경우 근육 마커인 MyoD 및 MyHC의 발현이 증가하였으며, 이는 이소람네틴의 첨가에 의해 현저히 발현이 증가하였다 (도 7).As a result, when a muscle cell differentiation medium was added to eBM-MSC, which is a horse bone marrow-derived mesenchymal stem cell, the expression of muscle markers MyoD and MyHC was increased, which was significantly increased by the addition of isoramnetin (Fig. 7).

<110> Konkuk University Industrial Cooperation Corp <120> A COMPOSITION FOR PROMOTING MYOGENIC DIFFERENTIATION COMPRISING FLAVONOID DERIVATIVES <130> PN1712-448 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD19 forward primer <400> 1 catcccgaga agactgcctc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD19 reverse primer <400> 2 agtctccatc agccaatgcc 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD34 forward primer <400> 3 cagaaattcc cagcaagctc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD34 Reverse primer <400> 4 atagcaaatg aggcccaaga 20 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CD45 forward primer <400> 5 tgatgatttc tggaggatga tctg 24 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CD45 Reverse primer <400> 6 cacttgttcc tatttccttc ttcaca 26 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CD73 forward primer <400> 7 gggattgttg gatacacttc aaaag 25 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD73 reverse primer <400> 8 gctgcaacgc agtgatttca 20 <210> 9 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> CD90 forward primer <400> 9 agaataccac cgccaca 17 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD90 reverse primer <400> 10 ggataagtag aggaccttga tg 22 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD105 forward primer <400> 11 tgacgaccac ctcattactg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD105 reverse primer <400> 12 aagagctcat ctcgagtctg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nanog forward primer <400> 13 tacctcagcc tccagcagat 20 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Nanog reverse primer <400> 14 cgttcccagc agtgttca 18 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox2 forward primer <400> 15 cacccacagc aaatgacagc 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox2 reverse primer <400> 16 tttctgcaaa gctcctaccg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oct4 forward primer <400> 17 acttcacctt ccctccaacc 20 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oct4 reverse primer <400> 18 gtcctcactt cactacgctg t 21 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 19 ggcaagttcc atggcacagt 20 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 20 cacaacatat tcagcaccag cat 23 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyoD forward primer <400> 21 gtcgaggaca gtcgggtgta 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyoD reverse primer <400> 22 aagtcgtccg ctgtagcaaa 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyHC2 forward primer <400> 23 tgagtcccag gtcaacaagc 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyHC2 reverse primer <400> 24 tcctttgcag tagggtggaa 20 <110> Konkuk University Industrial Cooperation Corp <120> A COMPOSITION FOR PROMOTING MYOGENIC DIFFERENTIATION COMPRISING FLAVONOID DERIVATIVES <130> PN1712-448 <160> 24 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD19 forward primer <400> 1 catcccgaga agactgcctc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD19 reverse primer <400> 2 agtctccatc agccaatgcc 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD34 forward primer <400> 3 cagaaattcc cagcaagctc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD34 Reverse primer <400> 4 atagcaaatg aggcccaaga 20 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CD45 forward primer <400> 5 tgatgatttc tggaggatga tctg 24 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CD45 Reverse primer <400> 6 cacttgttcc tatttccttc ttcaca 26 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CD73 forward primer <400> 7 gggattgttg gatacacttc aaaag 25 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD73 reverse primer <400> 8 gctgcaacgc agtgatttca 20 <210> 9 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> CD90 forward primer <400> 9 agaataccac cgccaca 17 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD90 reverse primer <400> 10 ggataagtag aggaccttga tg 22 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD105 forward primer <400> 11 tgacgaccac ctcattactg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD105 reverse primer <400> 12 aagagctcat ctcgagtctg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Nanog forward primer <400> 13 tacctcagcc tccagcagat 20 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Nanog reverse primer <400> 14 cgttcccagc agtgttca 18 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox2 forward primer <400> 15 cacccacagc aaatgacagc 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Sox2 reverse primer <400> 16 tttctgcaaa gctcctaccg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Oct4 forward primer <400> 17 acttcacctt ccctccaacc 20 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Oct4 reverse primer <400> 18 gtcctcactt cactacgctg t 21 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 19 ggcaagttcc atggcacagt 20 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 20 cacaacatat tcagcaccag cat 23 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyoD forward primer <400> 21 gtcgaggaca gtcgggtgta 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyoD reverse primer <400> 22 aagtcgtccg ctgtagcaaa 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyHC2 forward primer <400> 23 tgagtcccag gtcaacaagc 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MyHC2 reverse primer <400> 24 tcctttgcag tagggtggaa 20

Claims (10)

하기 화학식 1로 표시되는 이소람네틴(isorhamnetin)을 유효성분으로 함유하고, 상기 이소람네틴은 미오게닌(myogenin)의 상향조절(upregulation)을 유도하는 것을 특징으로 하는, 말 골수 유래 중간엽 줄기세포(Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC)의 근육 세포로의 분화 촉진용 배지 조성물:
[화학식 1]
Figure 112022029506213-pat00007
.
Horse bone marrow-derived mesenchymal stem containing isorhamnetin represented by the following Chemical Formula 1 as an active ingredient, wherein the isorhamnetin induces upregulation of myogenin A medium composition for promoting differentiation of cells (Equine Bone Marrow-derived Mesenchymal stem cells, eBM-MSCs) into muscle cells:
[Formula 1]
Figure 112022029506213-pat00007
.
삭제delete 삭제delete 제 1항에 있어서, 상기 말 골수 유래 중간엽 줄기세포는 세포 표면 항원 CD19, CD34 및 CD45(PTPRC)에 대하여 음성의 면역학적 특성; 세포 표면 항원 CD73(NT5E), CD90(THY1) 및 CD105(ENG)에 대하여 양성의 면역학적 특성; 및 미분화 줄기세포 표지 단백질인 Nanog, Sox2 및 Oct4에 대해 양성의 면역학적 특성을 가지는 중간엽 줄기세포인, 배지 조성물.The method of claim 1, wherein the horse bone marrow-derived mesenchymal stem cells are immunologically negative for the cell surface antigens CD19, CD34 and CD45 (PTPRC); positive immunological characteristics for the cell surface antigens CD73 (NT5E), CD90 (THY1) and CD105 (ENG); and mesenchymal stem cells having positive immunological properties for the undifferentiated stem cell marker proteins Nanog, Sox2 and Oct4, the medium composition. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제1항의 배지 조성물을 포함하는 근육 분화 배지에서 말 골수 유래 중간엽 줄기세포를 배양하는 단계를 포함하는, 말 골수 유래 중간엽 줄기세포(Equine Bone Marrow-derived Mesenchymal stem cell, eBM-MSC)를 근육 세포로 분화시키는 방법.A method comprising culturing horse bone marrow-derived mesenchymal stem cells in a muscle differentiation medium comprising the medium composition of claim 1, Equine Bone Marrow-derived Mesenchymal stem cells (eBM-MSC) muscle How to differentiate into cells.
KR1020170170929A 2017-12-13 2017-12-13 A composition for promoting myogenic differentiation comprising flavonoid derivatives KR102385978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170170929A KR102385978B1 (en) 2017-12-13 2017-12-13 A composition for promoting myogenic differentiation comprising flavonoid derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170170929A KR102385978B1 (en) 2017-12-13 2017-12-13 A composition for promoting myogenic differentiation comprising flavonoid derivatives

Publications (2)

Publication Number Publication Date
KR20190070437A KR20190070437A (en) 2019-06-21
KR102385978B1 true KR102385978B1 (en) 2022-04-12

Family

ID=67056510

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170170929A KR102385978B1 (en) 2017-12-13 2017-12-13 A composition for promoting myogenic differentiation comprising flavonoid derivatives

Country Status (1)

Country Link
KR (1) KR102385978B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245307A1 (en) * 2020-11-13 2023-09-20 Samsung Life Public Welfare Foundation Composition for preventing or treating muscle diseases, containing stem cells in which gro-? is expressed or gro-?

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Clinical Nutrition 34, 515-522 (2015) 1부.*
Journal of Korean Veterinary Medicinal Association 48(3) (2012.3.) 1부.*
한방비만학회지 제15권 제2호 2015 (2015) 1부.*

Also Published As

Publication number Publication date
KR20190070437A (en) 2019-06-21

Similar Documents

Publication Publication Date Title
Li et al. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function
Manuelpillai et al. Amniotic membrane and amniotic cells: potential therapeutic tools to combat tissue inflammation and fibrosis?
JP6588005B2 (en) Pharmaceutical composition used to stimulate cartilage formation
Dissanayaka et al. Characterization of dental pulp stem cells isolated from canine premolars
KR102277147B1 (en) Use of peptides derived from fibroblast growth factor to promote osteogenic or chondrogenic differentiation
EP4095233A1 (en) Multifunctional immature dental pulp stem cells and therapeutic applications
Nadri et al. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells
JPWO2018062269A1 (en) Method of producing somatic cells, somatic cells and compositions
US20130023048A1 (en) Method of Inducing High Activity of Human Adipose Stem Cell and Medium Therefor
Kashani et al. Schwann-like cell differentiation from rat bone marrow stem cells
Kircelli et al. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation
Tao et al. Evidence for transdifferentiation of human bone marrow-derived stem cells: recent progress and controversies
JP2017104091A (en) Method for producing mesenchymal cell
KR102385978B1 (en) A composition for promoting myogenic differentiation comprising flavonoid derivatives
JP2022551702A (en) COMPOSITION FOR INCREASING STEM CELL POTENTIAL AND USE THEREOF
EP2558570A1 (en) Myometrial-derived mesenchymal stem cells and uses thereof
KR20200110186A (en) Mesenchymal stem cell-loaded patch techniques for improving therapeutic efficiency and performance of induced pluripotent stem cell-derived cell therapeutic composition
JP6410343B2 (en) Induction from adipose tissue-derived stem cells into epidermal keratinocytes
JP2021514680A (en) How to isolate stem cells from the human umbilical cord
KR102331564B1 (en) Process for differentiation and cultivation of human nasal inferior turbinate derived mesenchymal stem cell with serum free media
JP5714267B2 (en) Stem cell undifferentiation maintenance agent and proliferation promoter
Bana et al. A comparative study to evaluate myogenic differentiation potential of human chorion versus umbilical cord blood-derived mesenchymal stem cells
KR101895648B1 (en) Pharmaceutical composition for treatment of neurological diseases comprsing dental pulp stem cell and method for preparing the same
Lin et al. Isolation, characterization and cardiac differentiation of human thymus tissue derived mesenchymal stromal cells
US9193954B2 (en) Methods and compositions for mesenchymal stem cell proliferation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant