KR102384644B1 - 리니어 압축기 - Google Patents

리니어 압축기 Download PDF

Info

Publication number
KR102384644B1
KR102384644B1 KR1020170116044A KR20170116044A KR102384644B1 KR 102384644 B1 KR102384644 B1 KR 102384644B1 KR 1020170116044 A KR1020170116044 A KR 1020170116044A KR 20170116044 A KR20170116044 A KR 20170116044A KR 102384644 B1 KR102384644 B1 KR 102384644B1
Authority
KR
South Korea
Prior art keywords
stator
mover
cylinder
magnet
gap
Prior art date
Application number
KR1020170116044A
Other languages
English (en)
Other versions
KR20190029024A (ko
Inventor
정상섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020170116044A priority Critical patent/KR102384644B1/ko
Priority to US16/127,826 priority patent/US11566612B2/en
Publication of KR20190029024A publication Critical patent/KR20190029024A/ko
Application granted granted Critical
Publication of KR102384644B1 publication Critical patent/KR102384644B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/005Pulsation and noise damping means with direct action on the fluid flow using absorptive materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

본 발명에 따른 리니어 압축기는, 케이싱 내부에 압축실을 형성하는 실린더; 왕복 운동에 의해 상기 압축실의 유체를 압축하는 피스톤; 가동 자석을 구비하고, 기설정된 기준 위치를 중심으로 왕복 운동되어 상기 피스톤을 구동하는 무버; 및 상기 가동 자석과의 상호 작용에 의해, 상기 무버의 운동 방향으로 상기 무버를 미는 추력과, 상기 무버를 상기 기준 위치 방향으로 미는 복원력을 발생시키는 스테이터를 포함하며, 상기 스테이터는, 무버 공극; 및 상기 무버 공극과 이격되는 위치에 형성되는 자기저항 공극을 포함한다. 이에 의하면, 복원력이 증가된 자기적 공진 스프링이 구현될 수 있다.

Description

리니어 압축기{LINEAR COMPRESSOR}
본 발명은 진동체의 선형 왕복 운동에 의해 유체를 압축하도록 이루어지는 리니어 압축기에 관한 것이다.
일반적으로 압축기는 모터나 터빈 등의 동력 발생 장치로부터 동력을 전달 받아 공기나 냉매 등의 작동 유체를 압축하도록 이루어지는 장치를 말한다. 압축기는 산업 전반이나 가전 제품, 특히, 증기압축실 냉동사이클(이하 '냉동 사이클'로 칭함) 등에 널리 적용되고 있다.
이러한 압축기의 종류에는, 피스톤과 실린더 사이에 압축실이 형성되고 피스톤이 직선 왕복 운동하여 유체를 압축하는 왕복동식 압축기, 실린더 내부에서 편심 회전되는 롤러에 의해 유체를 압축하는 로터리 압축기, 나선형으로 이루어지는 한 쌍의 스크롤이 맞물려 회전되어 유체를 압축하는 스크롤 압축기 등이 있다.
최근에는 왕복동식 압축기 중에서도, 크랭크 축을 사용하지 않고 직선 왕복 운동되는 리니어 모터를 채용한 리니어 압축기가 개발되고 있다. 리니어 압축기는 회전 운동을 직선 왕복 운동으로 전환하는데 따르는 기계적인 손실이 없어 효율이 향상되고, 구조가 간편한 장점이 있다.
이러한 리니어 압축기는, 밀폐 공간을 형성하는 케이싱 내부에 실린더가 위치되어 압축실을 형성하고, 압축실을 덮는 피스톤이 실린더 내부를 왕복 운동하도록 구성된다. 즉, 피스톤이 하사점(BDC, Bottom Dead Center)에 위치되도록 이동되면서 밀폐 공간 내의 유체가 압축실로 흡입되고(흡입 행정), 상사점(TDC, Top Dead Center)에 위치되도록 이동되면서 압축실의 유체가 압축되어 토출되는(압축 행정) 과정이 반복된다.
이와 같은 피스톤의 왕복 운동을 효율적으로 구현하기 위하여, 리니어 압축기에는 공진 스프링이 장착된다. 공진 스프링은 주로 코일 스프링이 사용되며, 기설정된 스프링 상수를 갖고 피스톤의 왕복 운동에 공진되어, 피스톤의 왕복 운동을 증폭시키도록 작용한다.
다만, 코일 스프링 등과 같은 기계적인 공진 스프링은 회전 운동으로 구동되는 다른 종류의 압축기와 다르게 리니어 압축기에만 추가되는 구성요소이므로, 이를 제거 또는 대체하고자 하는 연구가 수행되어 오고 있다.
예를 들면, 특허문헌 1은 2개 또는 3개의 자석을 구비하는 가동자(무버)를 도입하여, 구동부가 진동체를 구동시킬 방향으로 미는 추력(推力) 이외에, 진동체를 진동의 중심 방향으로 미는 복원력을 발생시키는 자기적 공진 스프링 구성을 제시한 바 있다.
다만, 특허문헌 1에서는, 복원력 프로파일의 선형성이나 변곡점, 그리고 추력과 인가되는 전류의 비인 추력 상수의 변화 폭 등을 조절할 수 있는 구조는 제시하지 못하고 있다. 이에, 복원력 및 추력 상수 등을 중심으로 하는 자기적 공진 스프링의 특성을 손쉽게 변화시킬 수 있는 구조를 도출하는 것이 필요한 실정이다. 나아가, 자기적 공진 스프링의 특성을 최적화함으로써, 기계적인 공진 스프링이 완전히 대체되는 것이 가능한 자기적 공진 스프링 구조가 도출될 수 있다.
공개특허공보 KR10-2016-0132665 A (2016.11.21. 공개)
본 발명의 첫 번째 목적은, 스테이터를 따라 형성되는 자기 회로의 자기 저항을 손쉽게 설정할 수 있는 구조를 갖는 리니어 압축기를 제공하기 위한 것이다.
본 발명의 두 번째 목적은, 자기적 공진 스프링으로 작용하는 자석의 크기 대비 피스톤의 스트로크가 극대화될 수 있는 구조를 갖는 리니어 압축기를 제공하기 위한 것이다.
본 발명의 세 번째 목적은, 자기적 공진 스프링의 강성 및 오프셋(offset) 등의 특성을 설정하고 개선할 수 있는 구조를 갖는 리니어 압축기를 제공하기 위한 것이다.
이와 같은 본 발명의 첫 번째 과제를 달성하기 위하여 본 발명에 따른 리니어 압축기는, 케이싱 내부에 압축실을 형성하는 실린더; 왕복 운동에 의해 상기 압축실의 유체를 압축하는 피스톤; 가동 자석을 구비하고, 기설정된 기준 위치를 중심으로 왕복 운동되어 상기 피스톤을 구동하는 무버; 및 상기 가동 자석과의 상호 작용에 의해, 상기 무버를 상기 왕복 운동 방향으로 미는 추력과, 상기 무버를 상기 기준 위치를 향하는 방향으로 미는 복원력을 발생시키는 스테이터를 포함하며, 상기 스테이터는, 상기 무버를 수용하는 무버 공극; 및 상기 스테이터를 따라 형성되는 자기 회로의 자기 저항을 변화시키도록, 상기 무버 공극과 이격되는 위치에 형성되는 자기저항 공극을 포함한다.
본 발명의 두 번째 과제를 달성하기 위하여 본 발명에 따른 리니어 압축기는, 케이싱 내부에 압축실을 형성하는 실린더; 왕복 운동에 의해 상기 압축실의 유체를 압축하는 피스톤; 가동 자석을 구비하고, 기설정된 기준 위치를 중심으로 왕복 운동되어 상기 피스톤을 구동하는 무버; 및 상기 가동 자석과의 상호 작용에 의해, 상기 무버를 상기 왕복 운동 방향으로 미는 추력과, 상기 무버를 상기 기준 위치를 향하는 방향으로 미는 복원력을 발생시키는 스테이터를 포함하며, 상기 가동 자석은, N극 및 S극을 구비하는 제1 자석; 및 실린더의 반경 방향으로 상기 제1 자석의 N극과 S극의 위치와 서로 반대로 위치되는 N극 및 S극을 구비하고, 상기 제1 자석과 이격되도록 배치되는 제2 자석을 구비한다.
본 발명의 세 번째 과제를 달성하기 위하여 본 발명에 따른 리니어 압축기의 상기 스테이터는, 원통형의 상기 실린더를 감싸도록 형성되는 내측 고정자; 및 상기 내측 고정자를 둘러싸도록 배치되고, 상기 실린더의 원주 방향으로 연장되는 권선코일을 수용하도록 형성되는 외측 고정자를 포함하고, 상기 내측 고정자는, 상기 권선코일을 바라보는 면에서 리세스되도록 형성되는 리세스부를 구비한다.
이상에서 설명한 해결 수단에 의해 구성되는 본 발명에 의하면, 다음과 같은 효과가 있다.
첫 번째, 본 발명의 리니어 압축기는 스테이터에 자기저항 공극이 형성됨에 따라 스테이터를 따라 형성되는 자기 회로의 자기 저항이 변화될 수 있다. 자기 저항의 변화에 따라, 리니어 모터의 추력 상수가 변화되고 자기적 공진 스프링의 강성이 조절될 수 있어, 기계적인 공진 스프링이 자기적 공진 스프링으로 대체되는 설계가 가능하게 된다. 이에 따라, 리니어 압축기의 경량화 및 제작 비용 절감이 달성될 수 있다. 또한, 자기저항 공극의 설계에 따라 고속 운전에 적합하도록 스프링의 강성을 증가시킬 수 있어, 기계적인 공진 스프링이 강성 증가 시 진동되는 질량이 함께 증가되는 것에 비해 효율적이다.
두 번째, 본 발명의 리니어 압축기는 가동 자석의 제1 및 제2 자석이 피스톤의 왕복 운동 방향으로 서로 이격되도록 배치됨으로써, 동일한 자석 크기 대비 스트로크가 증대될 수 있는 이점이 있다. 또한, 복원력의 변곡이 명확하게 형성되어, 자기적 공진 스프링의 설계 및 제어가 용이하게 될 수 있다.
세 번째, 본 발명의 리니어 압축기는 내측 고정자가 리세스부를 구비하는 설계에 의해, 자기적 공진 스프링의 강성과 오프셋 값이 변화될 수 있고, 또한, 복원력 특성이 개선되는 설계가 도출될 수 있다. 따라서, 자기적 공진 스프링의 강성이 정교하게 조절될 수 있는 설계 인자가 될 수 있다.
도 1은 본 발명의 일 실시예에 따른 리니어 압축기를 보인 단면도.
도 2는 도 1에 도시된 구동 유닛에 추력과 복원력을 발생시키도록 형성되는 자속들을 도시한 개념도.
도 3a 내지 3d는 도 1에 도시된 스테이터에 형성되는 자기저항 공극의 다양한 예를 보인 개념도.
도 4는 도 2에 도시된 자기저항 공극에 따른 자기적 강성과 추력 상수의 변화를 도시한 그래프.
도 5는 본 발명의 다른 실시예에 따른 리니어 압축기의 구동 유닛을 보인 개념도.
도 6a는 도 5의 제1 및 제2 자석 사이의 간격에 따른 복원력의 변화를 도시한 그래프.
도 6b는 도 6a에 도시된 영역 C를 보인 확대도.
도 7은 본 발명의 또 다른 실시예에 따른 리니어 압축기의 구동 유닛을 보인 개념도.
도 8a는 도 7에 도시된 코어 깊이에 따른 자기적 강성과 추력 상수의 변화를 도시한 그래프.
도 8b는 도 7에 도시된 리세스부의 형상에 따른 복원력의 변화를 도시한 그래프.
도 8c는 도 7에 도시된 리세스부의 형상에 따른 오프셋의 변화를 도시한 그래프.
도 9a는 도 7에 도시된 구동 유닛을 적용한 리니어 압축기의 복원력 변화를 도시한 그래프.
도 9b는 도 7에 도시된 구동 유닛을 적용한 리니어 압축기의 추력 상수의 변화를 도시한 그래프.
도 10은 도 1에 도시된 구동 유닛을 실린더의 축방향에서 바라본 단면도.
이하, 본 발명에 관련된 리니어 압축기에 대하여 도면을 참조하여 보다 상세하게 설명한다.
서로 다른 실시예라고 하더라도, 앞선 실시예와 동일하거나 유사한 구성요소에는 동일·유사한 도면 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에 개시된 실시예들을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
첨부된 도면은 본 명세서에 개시된 실시예들을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에 따른 리니어 압축기는 유체를 흡입하여 압축하고, 압축된 유체를 토출하는 동작을 수행한다. 본 발명에 따른 리니어 압축기는 냉동 사이클의 구성요소가 될 수 있으며, 이하에서 유체는 냉동 사이클을 순환하는 냉매를 예로 들어 설명한다.
도 1은 본 발명의 일 실시예에 따른 리니어 압축기(100)의 종단면도이다. 도 1을 참조하면, 본 발명의 리니어 압축기(100)는, 케이싱(110), 구동 유닛(130) 및 압축 유닛(140)을 포함한다.
케이싱(110)은 밀폐된 공간을 형성할 수 있다. 밀폐된 공간은 압축을 위하여 흡입되는 냉매가 채워지는 흡입공간(101)이 될 수 있다. 흡입공간(101)으로 냉매가 흡입되기 위하여, 케이싱(110)에는 흡입구(114)가 형성되고 흡입 배관(SP)이 장착될 수 있다. 또한, 케이싱(110)에는 후술하는 토출공간(102)으로부터 냉매가 외부로 토출되기 위한 토출구(115)가 형성되고 토출 배관(DP)이 연결될 수 있다.
아울러, 케이싱(110) 내부에는 구동 유닛(130) 및 압축 유닛(140)을 지지하기 위한 프레임(120)이 형성될 수 있다. 프레임(120)은, 케이싱(110)에 일 단부가 고정되도록 위치되는 지지 스프링(150)의 타 단부에 연결 및 지지될 수 있다. 프레임(120)은 후술하는 스테이터(131)의 양 단에 각각 결합되는 전방 프레임 및 후방 프레임을 포함할 수 있다. 지지 스프링(150)은 도시된 것과 같이 판 스프링으로 이루어질 수 있고, 또는 코일 스프링으로 이루어질 수도 있다.
구동 유닛(130)은 본 발명에 따른 리니어 압축기(100)의 왕복 운동을 발생시키는 역할을 수행할 수 있다. 이를 위하여, 구동 유닛(130)은 스테이터(131) 및 무버(132)를 포함할 수 있다. 스테이터(131)는 프레임(120)에 결합될 수 있다. 스테이터(131)는 외측 고정자(131a)와 내측 고정자(131b)를 포함할 수 있다. 외측 고정자(131a)와 내측 고정자(131b) 사이에는 무버(132)가 위치될 수 있다.
외측 고정자(131a)에는 권선코일(133)이 장착될 수 있고, 무버(132)는 자석을 구비할 수 있다. 따라서, 구동 유닛(130)의 권선코일(133)에 전류가 인가되면 스테이터(131)에는 자속(magnetic flux)이 형성될 수 있다. 그리고, 전류 인가에 의해 형성되는 자속과 무버(132)의 자석에 의해 형성되는 자속의 상호 작용에 의해 무버(132)가 움직일 수 있는 힘이 발생될 수 있다. 특히, 본 발명에 따른 리니어 압축기(100)의 구동 유닛(130)은 기계적인 공진 스프링을 대체하는 자기적 공진 스프링의 기능을 수행할 수 있으며, 이에 대하여는 후술하기로 한다.
한편, 압축 유닛(140)은 흡입공간(101) 내의 냉매를 흡입하여, 압축 및 토출하도록 이루어진다. 압축 유닛(140)은 내측 고정자(131b)의 내측으로 케이싱(110)의 중심부에 위치될 수 있고, 실린더(141) 및 피스톤(142)을 포함한다. 실린더(141)는 프레임(120)에 의해 지지되고, 내부에 압축실(P)을 형성할 수 있다.
실린더(141)는 내부에 냉매 및 피스톤(142)을 수용하도록 원통형으로 이루어질 수 있고, 양 단부가 개방되도록 형성될 수 있다. 실린더(141)의 일 단부는 토출밸브(141a)에 의해 폐쇄될 수 있고, 토출밸브(141a)의 외측에는 토출 커버(143)가 장착될 수 있다.
토출밸브(141a)와 토출 커버(143) 사이에는 토출공간(102)이 형성될 수 있다. 즉, 토출밸브(141a)에 의해 압축실(P)과 토출 커버(143)가 서로 분리된 공간을 형성할 수 있다. 아울러 케이싱(110) 내부에는, 토출구(115)와 토출공간(102)을 서로 연통시키도록 연장되는 토출 튜브(144)가 설치될 수 있다.
피스톤(142)은 실린더(141)의 개방된 타 단부로 삽입되어, 압축실(P)을 밀폐하도록 이루어질 수 있다. 피스톤(142)은 앞서 설명한 무버(132)와 연결되도록 이루어져, 무버(132)와 함께 왕복 운동될 수 있다. 무버(132)와 피스톤(142) 사이에는 내측 고정자(131b) 및 실린더(141)가 위치될 수 있다. 따라서 무버(132)와 피스톤(142)은, 실린더(141) 및 내측 고정자(131b)를 우회하도록 형성되는 별도의 연결 프레임(145)에 의해 서로 결합될 수 있다.
한편, 피스톤(142)의 내부 공간과 압축실(P)은 흡입포트(142b)에 의해 연통될 수 있다. 즉, 흡입공간(101)으로부터 피스톤(142) 내부 공간으로 유입되는 냉매가 흡입포트(142b)를 통하여 흐르고, 흡입포트(142b)를 덮는 흡입밸브(142a)가 냉매의 압력에 의해 개방될 때 냉매가 압축실(P)로 흡입될 수 있다. 피스톤(142)의 내부 공간에는 압축기의 구동에 따른 진동 및 소음을 저감하도록 형성되는 머플러(160)가 장착될 수 있다.
이상에서 설명한 리니어 압축기(100)는 다음과 같이 동작된다.
먼저, 구동 유닛(130)에 전류가 인가되면 스테이터(131)에 자속이 형성될 수 있다. 스테이터(131)에 형성되는 자속에 의해 발생되는 전자기력에 의해, 자석을 구비하는 무버(132)가 직선 왕복 운동될 수 있다.
무버(132)의 왕복 운동 시, 무버(132)에 연결되는 피스톤(142)이 함께 왕복 운동될 수 있다. 실린더(141) 내부에서 왕복 운동되는 피스톤(142)은, 압축실(P)의 체적을 증가 및 감소시키는 운동을 반복하게 된다.
피스톤(142)이 압축실(P)의 체적을 증가시키면서 이동될 때, 압축실(P) 내부의 압력은 감소한다. 이에, 실린더(141)에 형성된 흡입밸브(141b)가 개방되고, 흡입공간(101)에 머무르던 냉매가 압축실(P)로 흡입될 수 있다. 이러한 흡입 행정은, 피스톤(142)이 압축실(P)의 체적을 최대로 증가시켜 하사점(BDC, Bottom Dead Center)에 위치될 때까지 진행된다. 이때, 흡입공간(101)에 머무르던 냉매는 압축기의 진동 및 소음을 저감하도록 형성되는 머플러(160)를 통과하여 압축실(P)로 흡입될 수 있다.
하사점에 도달한 피스톤(142)은 압축실(P)의 체적을 감소시키면서 압축 행정을 수행한다. 압축 행정은, 피스톤(142)이 압축실(P)의 체적이 최소가 되도록 감소시키는 상사점(TDC, Top Dead Center)까지 이동되는 동안 수행된다. 압축 행정 시에는, 압축실(P) 내부의 압력이 증가되어 흡입된 냉매가 압축될 수 있다. 압축실(P)의 압력이 기설정된 압력에 도달하면, 실린더(141)에 장착되는 토출밸브(141a)가 개방되어 냉매가 토출공간(102)으로 토출된다.
피스톤(142)의 흡입 및 압축 행정이 반복되면서, 흡입 배관(SP)으로 유입된 흡입공간(101)의 냉매가 압축실(P)로 흡입되어 압축되고, 토출공간(102), 토출 튜브(144) 및 토출 배관(DP)을 거쳐 압축기의 외부로 토출되는 냉매 흐름이 형성될 수 있다.
한편, 본 발명의 일 실시예에 따른 리니어 압축기(100)는, 실린더(141)와 스테이터(131)를 포함하는 고정체와, 무버(132)와 피스톤(142)을 포함하는 진동체 사이에 형성되는 마찰면의 윤활 및 냉각에 오일이 별도로 사용되지 않는 오일리스(oil-less) 타입일 수 있다. 이러한 오일리스 타입의 리니어 압축기(100)는, 실린더(141)와 피스톤(142) 사이의 마찰면의 윤활 및 냉각을 위하여 가스 베어링이 형성될 수 있다. 예를 들면, 실린더(141)에 형성되는 베어링 통로(미도시)에 의해, 토출공간(102)으로부터 냉매의 일부가 피스톤(142)의 외주면까지 공급되어 가스 베어링 막을 형성할 수 있다.
이상에서는 본 발명에 따른 리니어 압축기(100)의 개략적인 구조 및 동작 과정에 대하여 설명하였다. 이하에서는 본 발명의 일 실시예에 따라 자기적 공진 스프링의 역할을 수행하는 구동 유닛(130)에 대하여 자세히 설명한다.
도 2는 도 1에 도시된 구동 유닛(130)에 추력과 복원력을 발생시키도록 형성되는 자속들을 도시한 개념도이다. 도 1 및 2를 참조하면, 스테이터(131)를 구성하는 내측 고정자(131b)는 실린더(141)의 외주면에 장착되어 실린더(141)를 원주 방향으로 감싸도록 배치될 수 있고, 외측 고정자(131a)는 내측 고정자(131b)를 원주 방향으로 감싸도록 배치될 수 있다.
또한, 외측 고정자(131a)와 내측 고정자(131b)는, 무버(132)가 왕복 운동되는 공간인 무버 공극(air gap)을 형성하도록 서로 이격 배치될 수 있다. 본 실시예의 스테이터(131)는, 하나의 무버 공극(134)을 형성할 수 있다.
무버(132)는 무버 공극(134) 내에 왕복 운동 가능하도록 위치될 수 있다. 무버(132)는 앞서 설명한 것과 같이 연결 프레임(145)에 의해 피스톤(142)과 고정될 수 있다. 무버(132)는, 실린더(141)의 축방향으로의 왕복 운동을 구현하기 위해, 가동 자석(132a)을 구비할 수 있다. 본 실시예에서, 무버(132)는 하나의 무버 공극(134) 내에서 왕복 운동되며, 가동 자석(132a)은 제1 및 제2 자석(132a1, 132a2)을 구비하도록 이루어질 수 있다.
구체적으로, 영구 자석으로 이루어지는 제1 및 제2 자석(132a1, 132a2)은, 피스톤(142)이 왕복 운동되는 실린더(141)의 축방향으로 나란하게 배치될 수 있다. 제1 및 제2 자석(132a1, 132a2)은 각각 N극과 S극을 구비할 수 있다. 다만, 제1 자석(132a1)과 제2 자석(132a2)은 서로 반대되는 방향으로 N극과 S극의 배치가 이루어질 수 있다. 도시된 것과 같이, 제1 및 제2 자석(132a1, 132a2)은 실린더(141)의 반경 방향으로 각각 N극과 S극의 배치가 이루어지며, 제1 자석(132a1)이 내측 고정자(131b)를 향하는 측과 제2 자석(132a2)이 외측 고정자(131a)를 향하는 측이 서로 같은 극을 띄도록 이루어질 수 있다.
나아가, 무버(132)는 기설정된 기준 위치(0)를 중심으로 왕복 운동될 수 있다. 기설정된 기준 위치(0)는, 예를 들면 상사점과 하사점 사이의 중간 지점일 수 있다. 다만, 압축실(P) 내에서 증가된 냉매의 압력에 의해 무버(132)가 밀리는 것을 고려하여, 상사점 측으로 기설정된 밀림량(offset)을 갖도록 설정된 위치가 되는 것이 바람직하다.
본 발명에 따른 스테이터(131)와 무버(132)는, 피스톤(142)의 왕복 운동을 위한 추력 및 복원력을 제공하도록 형성된다. 여기서, 추력(推力)은 무버(132)를 운동 방향으로 미는 힘을 의미하며, 구체적으로, 압축 행정 시에는 상사점을 향하고 흡입 행정 시에는 하사점을 향하는 방향으로 작용된다. 반면, 복원력은 무버(132)를 기준 위치(0) 방향으로 미는 힘을 의미한다. 즉, 복원력은 기준 위치(0)에서 그 값이 0이 될 수 있고, 기준 위치(0)에서 멀어져 상사점 또는 하사점으로 갈수록 각각 증가 또는 감소될 수 있다.
도 2에 도시된 것과 같이, 본 발명의 스테이터(131) 및 무버(132)에는 두 종류의 자속이 형성될 수 있다. 하나는 권선코일(133)을 쇄교하는 자로를 형성하는 자속(A)으로서, 앞서 설명한 추력을 발생시키는 역할을 수행할 수 있다. 즉, 권선코일(133)에 인가되는 전류에 의해 내측 및 외측 고정자(131a)를 따라 하나의 루프가 형성될 수 있고, 이는 무버(132)의 압축 및 흡입 행정을 위한 추력을 생성할 수 있다.
다른 하나의 자속은 본 발명의 가동 자석(132a), 즉 제1 및 제2 자석(132a1, 132a2)을 맴돌도록 형성되는 것(B)으로, 본 발명에서 복원력을 발생시키도록 작용될 수 있다. 가동 자석(132a)을 맴도는 자속은, 무버(132)가 기준 위치(0)에서 벗어날수록 무버 공극(134)을 형성하는 스테이터(131)의 폴부의 측면(131')에 노출되는 양이 증가될 수 있다. 따라서, 가동 자석(132a)을 맴도는 자속이 형성하는 복원력은, 기준 위치(0)에서 멀리 벗어날수록 그 절대값이 증가되는 경향을 갖게 된다.
한편, 도 2와 함께, 3a 내지 3c는 도 1에 도시된 스테이터(131)에 형성되는 자기저항 공극(135)의 다양한 예를 보이고 있다. 본 발명의 일 실시예에 따른 리니어 압축기(100)에서, 스테이터(131)는 무버 공극(134) 외에도 자기저항 공극(135)을 더 구비하도록 이루어질 수 있다.
자기저항 공극(135)은 권선코일(133)을 쇄교하는 자로의 자기 저항을 변화시키기 위한 것이다. 자기저항 공극(135)은 앞서 설명한 무버 공극(134)과는 별개의 것으로, 무버 공극(134)과 이격된 위치에 형성될 수 있다.
먼저, 도 2를 참조하면, 자기저항 공극(135)은 내측 고정자(131b)와 외측 고정자(131a)가 서로 마주보도록 이격됨으로써 형성될 수 있다. 즉, 외측 고정자(131a)에 수용되는 권선코일(133)을 기준으로, 일 측에는 자기저항 공극(135)이 형성되고 타 측에는 무버 공극(134)이 형성될 수 있다. 이때, 자기저항 공극(135)의 폭은, 무버 공극(134)의 폭과 반드시 동일하게 설정될 필요는 없고, 형성되는 자기 저항의 크기를 고려하여 별도의 폭(g_s)을 갖도록 설계될 수 있다.
또는, 도 3a 및 3b에 도시된 것과 같이, 자기저항 공극(135)은 외측 고정자(131a) 또는 내측 고정자(131b)에 형성될 수 있다. 즉, 외측 및 내측 고정자(131a, 131b) 중 적어도 하나는, 서로 이격되도록 배치되는 복수 개의 고정자 코어(131a1, 131a2, 131b1, 131b2)를 구비할 수 있다. 서로 이격되는 복수 개의 고정자 코어(131a1, 131a2, 131b1, 131b2) 사이의 간극이 자기저항 공극(135)이 될 수 있다. 자기저항 공극(135)이 형성되는 방향은 도 3a 및 3b에 도시된 것과 같이, 실린더의 반경 방향이 될 수 있다.
다만, 복수 개의 코정자 코어(131a1, 131a2, 131b1, 131b2)가 실린더의 반경 방향으로 이격되게 형성되어, 무버 공극(134)과 평행한 방향으로 개방되는 자기저항 공극(135)이 형성될 수도 있다. 나아가, 도 3c에 보인 것과 같이, 앞선 예들이 조합된 형태로 복수 개의 자기저항 공극(135)들이 형성될 수도 있다.
한편, 도 3d에 보인 것과 같이, 자기저항 공극(135)은 외측 고정자(131a)와 내측 고정자(131b)의 일부분이 서로 이격된 형태로도 형성될 수 있다. 즉, 내측 및 외측 고정자(131a, 131b)는, 어느 하나가 다른 하나를 향하여 단차지게 돌출되는 면을 구비하여, 일부 단부면이 서로 결합되도록 이루어질 수 있다. 이러한 자기저항 공극(135)은, 자속이 통과하는 경로 상의 스테이터(131) 단면적이 감소됨에 따라 자기 저항으로 작용될 수 있다.
도 2, 3a 내지 3d에 도시된 예들과 같은 자기저항 공극(135)의 배치에 의해, 코일을 쇄교하는 자로의 자기 저항이 원하는 값으로 설정될 수 있다. 아울러, 자기저항 공극(135)의 간격(g_s)을 다르게 설정함에 따라 자기 저항의 크기가 다르게 형성될 수 있다.
자기저항 공극(135)에 의해 자기 저항을 변화시킴에 따라, 결과적으로는 본 발명의 리니어 압축기(100)의 자기적 공진 스프링의 특성이 변화될 수 있다. 도 4는 도 2에 도시된 자기저항 공극(135)에 따른 자기적 강성과 추력 상수의 변화를 도시한 그래프이다.
도 4의 자기저항 공극(135)의 값은 도 2에서 내측 고정자(131b)와 외측 고정자(131a)가 실린더(141)의 축방향으로 서로 이격되는 거리(g_s)에 해당된다. 추력 상수('유기전압상수' 또는 'α(알파)'라고도 칭함)는 권선코일(133)에 인가되는 전류에 대한 생성되는 추력의 비를 의미하는 것으로, [N/Amp.] 또는 [N-s/m]의 단위를 가질 수 있다. 아울러, 자기적 강성은 복원력에 의해 형성되는 자기적 공진 스프링의 강성[N/m]을 의미한다.
도 4의 결과를 참조하면, 자기저항 공극(135)이 증가됨에 따라, 추력 상수가 감소되는 것을 확인할 수 있다. 즉, 자기저항 공극(135)이 코일을 쇄교하는 자속(A)에 저항으로 작용하고, 그 저항이 증가됨에 따라 피스톤(142)의 왕복 운동의 구동력인 추력이 감소되는 경향이 나타난다. 다만, 복원력을 형성하는 자속(B, 제1 및 제2 자석(132a1, 132a2)을 맴도는 자속)에 의해 발생되는 자기적 강성은 증가되는 경향을 확인할 수 있다.
본 발명의 리니어 압축기(100)는, 스테이터(131)에 자기저항 공극(135)이 구비됨에 따라 스테이터(131)를 따라 형성되는 자기 회로의 자기 저항이 변화될 수 있다. 그리고 자기 저항의 변화에 따라, 리니어 모터의 추력 상수가 변화되고 자기적 공진 스프링의 강성이 조절될 수 있다.
구체적으로, 자기저항 공극(135)의 설정에 따라, 본 발명의 리니어 압축기(100)의 운전 조건에 적합한 자기적 공진 스프링이 설계될 수 있다. 예를 들면, 자기적 강성이 작고 추력 상수가 큰 조건은 압축기의 저속 운전에 유리하며, 압축기가 고속으로 운전될수록 자기적 강성이 크고 추력 상수가 작은 조건이 유리하다. 특히, 자기저항 공극(135)을 구비하여 자기적 강성을 증가시킴에 따라, 종래의 기계적인 공진 스프링을 대체하는 설계가 도출될 수 있다.
본 발명에 따라 종래 기계적인 공진 스프링이 제거되면, 리니어 압축기(100)의 경량화 및 제작 비용 절감이 손쉽게 이루어질 수 있다. 또한, 자기저항 공극(135)의 설계에 따라 고속 운전에 적합한 자기적 강성이 확보될 수 있어, 고속에서도 효율적인 운전 조건이 손쉽게 설계될 수 있다. 기계적인 공진 스프링은 강성을 증가시키도록 설계하는 경우 스프링 자체의 질량이 함께 증가되어 효율이 저하되는 것과 비교할 때, 본 발명은 자기저항 공극(135)에 의해 손쉽게 강성 증가가 가능한 이점이 있다.
이상에서는 본 발명의 일 실시예에 따라 스테이터(131)에 자기저항 공극(135)이 형성되어 공진 스프링으로서의 특징인 자기적 강성이 증가될 수 있는 구조에 대해 설명하였다. 이하에서는 본 발명의 다른 실시예에 따라, 자기적 공진 스프링의 역할을 수행하는 가동 자석(132a)의 스트로크를 더욱 효율적으로 증대시킬 수 있는 구조에 대하여 설명한다.
도 5는 본 발명의 다른 실시예에 따른 리니어 압축기(100)의 구동 유닛(230)을 보인 개념도이다. 본 발명의 다른 실시예의 스테이터(231)는, 앞서 설명한 일 실시예에 형성되는 자기저항 공극(235)을 구비할 수 있다. 다만, 추가적으로 본 실시예의 가동 자석(232a)은 제1 자석(232a1)과 제2 자석(232a2)이 서로 이격되도록 이루어질 수 있다.
본 발명의 일 실시예처럼, 본 발명의 가동 자석(232a)은 제1 및 제2 자석(232a1, 232a2)을 구비하고, 제1 및 제2 자석(232a1, 232a2)은 실린더(141)의 반경 방향으로 N극과 S극이 서로 반대되게 배치될 수 있다. 아울러, 본 실시예의 제1 및 제2 자석(232a1, 232a2)은 실린더(141)의 축방향으로 서로 이격되도록 배치될 수 있다.
본 실시예의 제1 및 제2 자석(232a1, 232a2)은, 일체로 형성되는 무버(232)에 서로 이격되도록 착자됨으로써 제작될 수 있다. 또는, 제1 및 제2 자석(232a1, 232a2)이 별도로 제작 및 착자되어 무버(232)에 서로 기설정된 간격(g_m)을 갖도록 이격되게 장착될 수 있다.
본 발명의 다른 실시예에 따른 무버(232)는, 제1 및 제2 자석(232a1, 232a2)이 서로 이격되게 배치됨에 따라, 동일한 가동 자석(232a)의 크기 대비 피스톤(142)의 왕복 방향으로 그 길이가 증가될 수 있다. 실린더(141)의 축방향으로 그 길이가 더 길게 배치되는 가동 자석(232a)이 스테이터(231)와 상호작용을 하게 되면, 무버(232) 및 피스톤(142)은 실린더(141)의 축방향으로 왕복 운동되는 스트로크가 증대되는 것이 가능하다.
도 6a는 도 5의 제1 및 제2 자석(232a1, 232a2) 사이의 간격에 따른 복원력의 변화를 도시한 그래프이며, 도 6b는 도 6a에 도시된 영역 C를 보인 확대도이다. 도 6a 및 6b를 참조하면, 제1 및 제2 자석(232a1, 232a2) 사이의 가동자 간극(g_m)이 증가됨에 따라 복원력이 직선에 가깝게 분포되는 구간이 더 넓어지는 결과를 보임을 확인할 수 있다. 다시 말하면, 가동자 간극(g_m)이 증가됨에 따라 복원력의 변곡이 보다 명확하게 형성되고, 운전 가능한 스트로크 영역이 확대될 수 있다.
도시된 것과 같이, 가동자 간극(g_m)은 그 크기가 2 mm까지 증가되는 구간에서 복원력의 변곡이 명확하게 형성되는 효과가 나타난다. 구체적으로 도 6b를 참조하면, 복원력의 변곡이 명확해지면서 복원력의 최대값이 증가되고, 최대값을 갖는 지점이 기준 위치(0)로부터 더 멀어지는 것을 확인할 수 있다. 본 발명에서 복원력이 최대값(또는 최소값)을 갖는 지점을 하사점(상사점)으로 설계할 수 있게 되므로, 운전 가능한 스트로크 영역이 확대될 수 있는 효과가 있다.
다만, 가동자 간극(g_m)이 3 mm가 되는 경우 복원력의 크기와 운전 가능한 스트로크 영역이 급격히 작아지는 결과를 확인할 수 있다. 따라서, 제1 자석(232a1)과 제2 자석(232a2)이 서로 이격되는 간격은, 바람직하게는 0 보다 크고 2 mm 이하로 설계될 수 있다. 또는, 도 6a 및 6b에 그 결과가 도시된 제1 및 제2 자석(232a1, 232a2)은 실린더(141)의 반경 방향으로의 두께가 2 mm인 것을 고려할 때, 가동자 간극(g_m)은 실린더(141)의 반경 방향으로 가동 자석(232a)의 두께 이하의 값을 갖도록 이루어지는 것이 바람직할 수 있다.
나아가, 제1 자석(232a1)과 제2 자석(232a2)이 서로 이격되는 본 발명의 다른 실시예는, 제1 자석(232a1)과 제2 자석(232a2)이 서로 연결된 상태에서 그 길이가 증대되는 경우와 비교할 때, 자석의 양이 절약될 수 있어 제작 비용이 절감될 수 있는 효과가 있다.
이상에서는 복원력을 형성하는 가동 자석(232a)을 구성하는 제1 및 제2 자석(232a1, 232a2)이 서로 이격되는 구조에 대하여 설명하였다. 이하에서는 본 발명의 또 다른 실시예에 따라 자기적 공진 스프링의 특성을 미세하고 손쉽게 조절할 수 있는 추가적인 구조적 특징에 대하여 설명한다.
도 7은 본 발명의 또 다른 실시예에 따른 리니어 압축기(100)의 구동 유닛(330)을 보인 개념도이다. 본 발명의 또 다른 실시예는, 앞서 설명한 본 발명의 다른 실시예와 유사하게, 스테이터(331)에 형성되는 자기저항 공극(335)을 구비하고 제1 자석(332a1)과 제2 자석(332a2)이 서로 이격되도록 형성될 수 있다.
다만 본 발명의 또 다른 실시예에서는, 내측 고정자(331b)가 리세스부(331c)를 구비할 수 있다. 도 7에 도시된 것과 같이, 리세스부(331c)는 내측 고정자(331b)가 권선코일(333)을 바라보는 외측면에서 리세스되도록 형성될 수 있다.
리세스부(331c)는, 리세스되는 깊이(d_c, '코어 깊이'라고도 칭함)와, 기준 위치(0)의 무버(332)로부터 리세스부(331c)와까지의 거리(l_o, '오버 길이'라고도 칭함)를 설계 변수로 갖도록 형성될 수 있다. 도시된 것과 같이, 코어 깊이(d_c)는, 실린더(141)의 반경 방향으로 가동 자석(332a)의 두께 이하의 값을 갖도록 형성될 수 있고, 또는 2 mm 이하일 수 있다. 아울러, 실린더(141)의 축방향으로의 오버 길이(l_o)는, 실린더(141)의 반경 방향으로 가동 자석(332a)의 두께 이하의 값을 갖도록 형성될 수 있고, 또는 2 mm 이하로 설정될 수 있다.
도 8a는 도 7에 도시된 코어 깊이(d_c)에 따른 자기적 강성과 추력 상수의 변화를 도시한 그래프이다. 또한, 도 8b는 도 7에 도시된 리세스부(331c)의 형상에 따른 복원력의 변화를 도시한 그래프이고, 도 8c는 도 7에 도시된 리세스부(331c)의 형상에 따른 오프셋의 변화를 도시한 그래프이다.
먼저, 도 8a에 도시된 것과 같이, 코어 깊이(d_c)의 변화에 의해 자기적 강성이 조절될 수 있다. 코어 깊이(d_c)가 증가될수록 자기적 강성은 증가되는 경향을 나타내므로, 고속 운전에 유리하도록 자기적 공진 스프링이 설계될 수 있다. 특히, 도시된 것과 같이, 코어 깊이(d_c)의 변화에도 추력 상수는 거의 변화되지 않으므로, 코어 깊이(d_c)는 자기적 강성만을 변화시킬 수 있는 독립적인 설계 변수로 활용될 수 있다.
다음으로 도 8b를 참조하면, 오버 길이(l_o)의 변화에 의해 상사점 방향으로의 복원력 특성이 변화될 수 있음을 확인할 수 있다. 도시된 것과 같이, 코어 깊이(d_c)와 오버 길이(l_o)가 각각 2 mm(또는 가동 자석(332a)의 두께와 동일한 크기)로 형성되는 리세스부(331c)가 구비되는 경우 복원력 특성이 개선될 수 있다.
한편, 도 8c를 참조하면, 오버 길이(l_o)는 오프셋 값을 변화시킬 수 있음을 확인할 수 있다. 오프셋은 복원력이 0이 되는 지점이 상사점 쪽으로 밀린 양을 의미하며, 압축실(P)에서 압축된 냉매의 압력을 극복할 수 있는 수준으로 설계되는 것이 적절하다. 도 8c에 도시된 것과 같이, 오버 길이(l_o)가 짧아질수록 오프셋은 작아지는 경향을 보이므로, 오버 길이에(l_o) 의해 오프셋 값이 미세하게 조절될 수 있다. 반면에, 오버 길이(l_o)가 2 mm(또는 가동 자석(332a)의 두께와 동일한 크기) 이상이 되더라도 오프셋이 더 증가되지 않는 경향을 보임을 도 8c에서 확인할 수 있다. 따라서, 다른 설계 제약 조건들을 고려하여 오프셋 값에 영향을 미치지 않고 오버 길이(l_o)를 조절하는 것도 가능하다.
이상에서 설명한 것과 같이, 본 발명의 또 다른 실시예에 구비되는 리세스부(331c)에 의해, 자기적 강성, 복원력 및 오프셋 값이 변화될 수 있다. 특히, 자기저항 공극(335)의 형성에 따라 자기적 강성과 추력 상수가 종속적으로 변화되는 것과 달리, 코어 깊이(d_c)에 따라 추력 상수와 독립적으로 자기적 강성을 설정할 수 있다. 나아가, 코어 깊이(d_c)와 오버 길이(l_o)를 가동 자석(332a)의 두께와 동일한 값으로 설정함으로써, 상사점 방향으로 복원력의 크기가 증대될 수 있는 효과가 있다.
한편, 도 9a는 도 7에 도시된 구동 유닛(330)을 적용한 리니어 압축기(100)의 복원력 변화를 도시한 그래프이며, 도 9b는 도 7에 도시된 구동 유닛(330)을 적용한 리니어 압축기(100)의 추력 상수의 변화를 도시한 그래프이다.
도 9a 및 9b는 자기저항 간극(g_s), 가동자 간극(g_m) 및 리세스부(331c)를 모두 적용한 리니어 압축기(100)의 자기적 공진 스프링 특성을 도시하고 있다. 도 9a 및 9b에서 주목할 수 있는 것은, 가동되는 스트로크 범위에서 추력 상수의 변동이 작다는 것과, 오프셋 값이 압축실의 냉매 압력을 극복하기에 충분하도록 확보될 수 있다는 점이다.
먼저, 추력 상수의 변동이 작게 형성되는 것은, 스테이터(331)를 따라 흐르며 코일을 쇄교하는 자속이 가동 자석(332a)의 위치에 따라 변동 폭이 작다는 것을 의미할 수 있다. 이러한 특징은 스트로크의 연산이나 변곡점을 감지하는 등의 작업이 용이하게 수행될 수 있음을 의미하게 되며, 따라서, 센서 없이 구동 유닛을 제어하는 동작이 신뢰성 있게 수행될 수 있다.
또한, 오프셋 값이 충분히 확보됨으로써, 본 발명의 리니어 압축기(100)는 압축실(P)의 냉매 압력에 의한 자연 밀림량이 손쉽게 극복될 수 있다. 이는 동일한 가동 자석(332a)을 보다 넓은 스트로크를 갖도록 운전할 수 있음을 의미하며, 따라서, 압축기의 냉력이 증대될 수 있는 효과가 있다.
한편, 앞서 설명한 자기적 공진 스프링으로 동작되는 본 발명에 따른 리니어 압축기(100)는, 열 효율이 향상될 수 있도록 방열에 유리한 구조를 더 구비할 수 있다. 도 10은 도 1에 도시된 구동 유닛(130)을 실린더(141)의 축방향에서 바라본 단면도이다. 도 10을 참조하면, 본 발명에 따른 리니어 압축기(100)의 구동 유닛(130)은 방열부재(136)를 더 포함할 수 있다.
도 1 및 10에 도시된 것과 같이, 스테이터(131)의 외측 고정자(131a)는 내측 고정자(131b)를 둘러싸도록 배치되며, 실린더(141)의 원주 방향으로 연장되는 권선코일(133)을 수용하도록 형성될 수 있다. 이때, 방열부재(136)는 외측 고정자(131a)와 권선코일(133) 사이에 개재되고, 외측 고정자(131a)와 권선코일(133) 각각에 접촉되도록 형성될 수 있다.
방열부재(136)는 권선코일(133)로부터 외측 고정자(131a) 측으로, 즉, 실린더(141)의 반경 방향으로의 전도 열전달을 촉진하는 역할을 수행할 수 있다. 도 10에 도시된 것과 같이, 외측 고정자(131a)는 권선코일(133)을 사이에 두고 내측 고정자(131b)와 대향되도록 배치되고, 실린더(141)의 원주 방향으로 서로 이격되는 복수 개의 블럭 코어(131a')로 이루어질 수 있다. 그리고, 블럭 코어(131a') 각각은 다수 개의 시트가 적층되어 형성될 수 있다.
다수 개의 시트를 적층하여 블럭 코어(131a')를 형성하는 과정에서, 내측 고정자(131b)와의 접합의 편의성을 위하여, 블럭 코어(131a')의 내주면은 내측 고정자(131b)의 외주면과 거의 동일한 곡률 반경(r)을 형성하도록 이루어질 수 있다. 그리고, 블럭 코어(131a')의 내측에 수용되는 권선코일(133)의 외주면은 블럭 코어(131a')의 곡률 반경보다 큰 곡률 반경(r')을 형성할 수 있다.
이에 따라, 외측 고정자(131a, 구체적으로 블럭 코어(131a'))가 권선코일(133)을 바라보는 곡면과 권선코일(133)의 외주면 사이에는 곡률 반경의 차이로 인한 코어 공극(137)이 형성될 수 있다. 그리고 코어 공극(137)은 케이싱(110) 내에서 상대적으로 매우 낮은 열전도계수를 갖는 기체로 채워질 수 있으므로, 권선코일(133)로부터 외측 고정자(131a) 측으로의 방열에 불리하게 작용될 수 있다.
본 발명에 따른 리니어 압축기(100)의 스테이터(131)는, 외측 고정자(131a)와 권선코일(133)이 서로 연결되어 코어 공극(137)을 채우는 방열부재(136)를 포함할 수 있고, 방열부재(136)를 통하여 전도 열전달이 촉진될 수 있다. 방열부재(136)는 열전도도가 높은 물질로 형성되는 것이 유리하다. 다만, 방열부재(136)의 삽입 및 고정의 용이성이 확보되도록, 방열부재(136)는 함유된 수분이 증발하여 건조되기 전까지는 외력에 의해 형상이 변형될 수 있는 클레이 재질로 형성될 수 있다.
방열부재(136)가 코어 공극(137)에 삽입됨으로써, 본 발명의 리니어 압축기(100)는 실린더(141)의 반경 방향으로 방열이 원활하게 이루어질 수 있다. 이에 따라, 압축실(P)의 온도가 종래의 경우보다 낮게 유지되어 압축에 소요되는 동력이 감소될 수 있으므로, 압축기의 효율이 향상될 수 있다.
이상에서 설명한 것은 본 발명에 따른 리니어 압축기를 실시하기 위한 실시예들에 불과한 것으로서, 본 발명은 이상의 실시예들에 한정되지 않고, 이하의 청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어나지 않는 범위 내에서 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상이 있다고 할 것이다.
100: 리니어 압축기 101: 흡입공간
102: 토출공간 110: 케이싱
120: 프레임 121: 전방 프레임
122: 후방 프레임 130: 구동 유닛
131: 스테이터 131a: 외측 고정자
131b: 내측 고정자 131c: 리세스부
132: 무버 132a: 가동 자석
132a1: 제1 자석 132a2: 제2 자석
133: 권선코일 134: 무버 공극
135: 자기저항 공극 136: 방열부재
137: 코어 공극 140: 압축 유닛
141: 실린더 141a: 토출밸브
142: 피스톤 143: 토출 커버
144: 토출 튜브 145: 연결 프레임
150: 지지 스프링 160: 머플러

Claims (13)

  1. 케이싱;
    상기 케이싱 내부에 압축실을 형성하는 실린더;
    왕복 운동에 의해 상기 압축실의 유체를 압축하도록 이루어지는 피스톤;
    가동 자석을 구비하고, 기설정된 기준 위치를 중심으로 왕복 운동되어 상기 피스톤을 구동하도록 이루어지는 무버; 및
    상기 가동 자석과의 상호 작용에 의해, 상기 무버를 상기 왕복 운동 방향으로 미는 추력과, 상기 무버를 상기 기준 위치를 향하는 방향으로 미는 복원력을 발생시키도록 이루어지는 스테이터를 포함하며,
    상기 스테이터는,
    상기 무버를 수용하도록 형성되는 무버 공극; 및
    상기 스테이터를 따라 형성되는 자기 회로의 자기 저항을 변화시키도록, 상기 무버 공극과 이격되는 위치에 형성되는 자기저항 공극을 포함하는 리니어 압축기.
  2. 제1항에 있어서,
    상기 스테이터는,
    원통형의 상기 실린더를 감싸도록 형성되는 내측 고정자; 및
    상기 내측 고정자와 이격되어 상기 무버 공극 및 자기저항 공극을 각각 형성하고, 상기 내측 고정자를 둘러싸도록 이루어지는 외측 고정자를 포함하는 리니어 압축기.
  3. 제1항에 있어서,
    상기 스테이터는,
    원통형의 상기 실린더를 감싸도록 형성되는 내측 고정자; 및
    일 단은 상기 내측 고정자와 결합되고 타 단은 상기 내측 고정자와 이격되어 상기 무버 공극을 형성하고, 상기 내측 고정자를 둘러싸도록 이루어지는 외측 고정자를 포함하고,
    상기 외측 및 내측 고정자 중 적어도 하나는,
    상기 자기저항 공극을 형성하도록 서로 이격되게 배치되는 복수 개의 고정자 코어를 구비하는 리니어 압축기.
  4. 케이싱;
    상기 케이싱 내부에 압축실을 형성하는 실린더;
    왕복 운동에 의해 상기 압축실의 유체를 압축하도록 이루어지는 피스톤;
    가동 자석을 구비하고, 기설정된 기준 위치를 중심으로 왕복 운동되어 상기 피스톤을 구동하도록 이루어지는 무버; 및
    상기 가동 자석과의 상호 작용에 의해, 상기 무버를 상기 왕복 운동 방향으로 미는 추력과, 상기 무버를 상기 기준 위치 방향으로 미는 복원력을 발생시키도록 이루어지는 스테이터를 포함하며,
    상기 가동 자석은,
    N극 및 S극을 구비하는 제1 자석; 및
    실린더의 반경 방향으로 상기 제1 자석의 N극과 S극의 위치와 서로 반대로 위치되는 N극 및 S극을 구비하고, 상기 제1 자석과 이격되도록 배치되는 제2 자석을 구비하고,
    상기 제1 자석과 제2 자석이 서로 이격되는 간격은, 상기 실린더의 반경 방향으로 상기 가동 자석의 두께 이하의 값을 갖고, 0 보다 크고,
    상기 스테이터는,
    원통형의 상기 실린더를 감싸도록 형성되는 내측 고정자; 및
    상기 내측 고정자를 둘러싸도록 배치되고, 상기 실린더의 원주 방향으로 연장되는 권선코일을 수용하도록 형성되는 외측 고정자를 포함하고,
    상기 내측 고정자는, 상기 권선코일을 바라보는 면에서 리세스되도록 형성되는 리세스부를 구비하는 것을 특징으로 하는 리니어 압축기.
  5. 삭제
  6. 제4항에 있어서,
    상기 제1 자석과 제2 자석이 서로 이격되는 간격은, 0 보다 크고 2 mm 이내인 것을 특징으로 하는 리니어 압축기.
  7. 제4항에 있어서,
    상기 스테이터는,
    상기 무버를 수용하도록 형성되는 무버 공극; 및
    상기 스테이터를 따라 형성되는 자기 회로의 자기 저항을 변화시키도록, 상기 무버 공극과 이격되는 위치에 형성되는 자기저항 공극을 포함하는 리니어 압축기.
  8. 제1항에 있어서,
    상기 스테이터는,
    원통형의 상기 실린더를 감싸도록 형성되는 내측 고정자; 및
    상기 내측 고정자를 둘러싸도록 배치되고, 상기 실린더의 원주 방향으로 연장되는 권선코일을 수용하도록 형성되는 외측 고정자를 포함하고,
    상기 내측 고정자는, 상기 권선코일을 바라보는 면에서 리세스되도록 형성되는 리세스부를 구비하는 리니어 압축기.
  9. 제4항 또는 제8항에 있어서,
    상기 리세스부가 리세스되는 깊이는, 상기 실린더의 반경 방향으로 상기 가동 자석의 두께 이하의 값을 갖고, 0 보다 큰 것을 특징으로 하는 리니어 압축기.
  10. 제4항 또는 제8항에 있어서,
    상기 리세스부가 리세스되는 깊이는 0 보다 크고 2 mm 이하인 것을 특징으로 하는 리니어 압축기.
  11. 제4항 또는 제8항에 있어서,
    상기 실린더의 축방향으로 상기 리세스부와 상기 기준 위치에 위치되는 상기 무버와의 거리는, 상기 실린더의 반경 방향으로 상기 가동 자석의 두께 이하의 값을 갖고, 0 보다 큰 것을 특징으로 하는 리니어 압축기.
  12. 제1항에 있어서,
    상기 스테이터는,
    원통형의 상기 실린더를 감싸도록 형성되는 내측 고정자;
    상기 내측 고정자를 둘러싸도록 배치되고, 상기 실린더의 원주 방향으로 감기는 권선코일을 수용하도록 형성되는 외측 고정자를 구비하고,
    상기 외측 고정자와 상기 권선코일 사이에는, 상기 권선코일로부터 상기 외측 고정자로 전도 열전달을 촉진하도록 상기 외측 고정자 및 상기 권선코일에 각각 접촉되는 방열부재가 삽입되는 것을 특징으로 하는 리니어 압축기.
  13. 제4항에 있어서,
    상기 외측 고정자와 상기 권선코일 사이에는, 상기 권선코일로부터 상기 외측 고정자로 전도 열전달을 촉진하도록 상기 외측 고정자 및 상기 권선코일에 각각 접촉되는 방열부재가 삽입되는 것을 특징으로 하는 리니어 압축기.
KR1020170116044A 2017-09-11 2017-09-11 리니어 압축기 KR102384644B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170116044A KR102384644B1 (ko) 2017-09-11 2017-09-11 리니어 압축기
US16/127,826 US11566612B2 (en) 2017-09-11 2018-09-11 Linear compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170116044A KR102384644B1 (ko) 2017-09-11 2017-09-11 리니어 압축기

Publications (2)

Publication Number Publication Date
KR20190029024A KR20190029024A (ko) 2019-03-20
KR102384644B1 true KR102384644B1 (ko) 2022-04-08

Family

ID=65630754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116044A KR102384644B1 (ko) 2017-09-11 2017-09-11 리니어 압축기

Country Status (2)

Country Link
US (1) US11566612B2 (ko)
KR (1) KR102384644B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932422B (zh) * 2019-12-11 2022-04-01 安徽美芝精密制造有限公司 电机、压缩机及制冷设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244921A (ja) * 2002-02-14 2003-08-29 Matsushita Refrig Co Ltd リニアモータおよびリニアコンプレッサ
KR100690656B1 (ko) * 2004-12-22 2007-03-09 엘지전자 주식회사 왕복동식 압축기
CN102985692B (zh) * 2010-08-05 2016-05-04 Lg电子株式会社 线性压缩机
KR101718039B1 (ko) 2015-05-11 2017-03-20 엘지전자 주식회사 왕복동식 압축기
KR102608386B1 (ko) * 2016-06-23 2023-11-30 엘지전자 주식회사 왕복동 모터 및 이를 구비한 왕복동식 압축기
KR20180083075A (ko) * 2017-01-12 2018-07-20 엘지전자 주식회사 리니어 압축기
KR101982850B1 (ko) * 2017-01-12 2019-05-29 엘지전자 주식회사 가동코어형 왕복동 모터 및 이를 구비한 왕복동식 압축기

Also Published As

Publication number Publication date
KR20190029024A (ko) 2019-03-20
US11566612B2 (en) 2023-01-31
US20190078563A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6448928B2 (ja) リニア圧縮機
US20180258921A1 (en) Reciprocating compressor
KR101343584B1 (ko) 왕복동식 압축기
EP2966301B1 (en) Linear compressor and linear motor
US10903732B2 (en) Moveable core-type reciprocating motor and reciprocating compressor having a moveable core-type reciprocating motor
US10989183B2 (en) Reciprocating motor and reciprocating compressor having a reciprocating motor
KR102384644B1 (ko) 리니어 압축기
KR20090044890A (ko) 왕복동식 압축기
US11225958B2 (en) Linear compressor
KR101981104B1 (ko) 리니어 압축기
KR101981098B1 (ko) 리니어 압축기
KR20190131361A (ko) 리니어 압축기
KR20190031827A (ko) 리니어 압축기
KR102043153B1 (ko) 리니어 압축기
KR101981103B1 (ko) 리니어 압축기
KR20070075901A (ko) 리니어 압축기의 흡입머플러
KR20190031828A (ko) 리니어 압축기
KR102493863B1 (ko) 리니어 압축기
US20220069689A1 (en) Transverse flux reciprocating motor and linear compressor including the same
KR102479794B1 (ko) 리니어 압축기
KR100673735B1 (ko) 리니어 압축기의 냉매 압축 방법
KR20190038087A (ko) 리니어 압축기
KR20190101695A (ko) 리니어 압축기
KR20050080886A (ko) 왕복동식 압축기의 오일공급장치
KR20090043375A (ko) 왕복동식 압축기

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant