KR20190031828A - 리니어 압축기 - Google Patents

리니어 압축기 Download PDF

Info

Publication number
KR20190031828A
KR20190031828A KR1020170119759A KR20170119759A KR20190031828A KR 20190031828 A KR20190031828 A KR 20190031828A KR 1020170119759 A KR1020170119759 A KR 1020170119759A KR 20170119759 A KR20170119759 A KR 20170119759A KR 20190031828 A KR20190031828 A KR 20190031828A
Authority
KR
South Korea
Prior art keywords
compression
resonance
piston
discharge
casing
Prior art date
Application number
KR1020170119759A
Other languages
English (en)
Inventor
박정식
유효상
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020170119759A priority Critical patent/KR20190031828A/ko
Publication of KR20190031828A publication Critical patent/KR20190031828A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0066Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using sidebranch resonators, e.g. Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

본 발명에 따른 리니어 압축기는, 토출공간을 구비하는 케이싱; 상기 케이싱 내에서 왕복 운동되는 무버를 구비하는 구동 유닛; 상기 무버에 의해 축 실린더 내에서 왕복 운동되면서 상기 압축 실린더 내의 유체를 압축하고 상기 토출공간으로 토출시키는 압축 피스톤을 구비하는 압축 유닛; 및 상기 압축 피스톤의 변위에 따라 가변되는 힘을 발생시키는 공진 유닛을 포함하며, 상기 공진 유닛은, 상기 무버에 의해 상기 공진 챔버 내에서 왕복 운동되고, 상기 토출공간과 연통되어 형성되는 유압에 의해 상기 가변되는 힘을 발생시키도록 이루어지는 공진 피스톤을 구비한다. 이에 의하면, 리니어 압축기가 높은 범위에서 가변되는 강성을 갖고 진동되어, 고부하 조건에서의 압축이 효율적으로 수행될 수 있다.

Description

리니어 압축기{LINEAR COMPRESSOR}
본 발명은 진동체의 선형 왕복 운동에 의해 유체를 압축하도록 이루어지는 리니어 압축기에 관한 것이다.
일반적으로 압축기는 모터나 터빈 등의 동력 발생 장치로부터 동력을 전달 받아 공기나 냉매 등의 작동 유체를 압축하도록 이루어지는 장치를 말한다. 압축기는 산업 전반이나 가전 제품, 특히, 증기압축실 냉동사이클(이하 '냉동 사이클'로 칭함) 등에 널리 적용되고 있다.
이러한 압축기의 종류에는, 피스톤과 실린더 사이에 압축실이 형성되고 피스톤이 직선 왕복 운동하여 유체를 압축하는 왕복동식 압축기, 실린더 내부에서 편심 회전되는 롤러에 의해 유체를 압축하는 로터리 압축기, 나선형으로 이루어지는 한 쌍의 스크롤이 맞물려 회전되어 유체를 압축하는 스크롤 압축기 등이 있다.
최근에는 왕복동식 압축기 중에서도, 크랭크 축을 사용하지 않고 직선 왕복 운동되는 리니어 모터를 채용한 리니어 압축기가 개발되고 있다. 리니어 압축기는 회전 운동을 직선 왕복 운동으로 전환하는데 따르는 기계적인 손실이 없어 효율이 향상되고, 구조가 간편한 장점이 있다.
이러한 리니어 압축기는, 밀폐 공간을 형성하는 케이싱 내부에 실린더가 위치되어 압축실을 형성하고, 압축실을 덮는 피스톤이 실린더 내부를 왕복 운동하도록 구성된다. 즉, 피스톤이 하사점(BDC, Bottom Dead Center)에 위치되도록 이동되면서 밀폐 공간 내의 유체가 압축실로 흡입되고(흡입 행정), 상사점(TDC, Top Dead Center)에 위치되도록 이동되면서 압축실의 유체가 압축되어 토출되는(압축 행정) 과정이 반복된다.
이와 같은 피스톤의 왕복 운동을 효율적으로 구현하기 위하여, 리니어 압축기에는 공진 스프링이 장착된다. 공진 스프링은 주로 코일 스프링이 사용되며, 기설정된 스프링 상수를 갖고 피스톤의 왕복 운동에 공진되어, 피스톤의 왕복 운동을 증폭시키도록 작용한다.
한편, 코일 스프링 등과 같은 기계적인 스프링 외에도, 압축기 내부에서는 유체의 압축에 의하여 피스톤의 왕복 운동을 돕는 가스 스프링이 작용될 수 있다. 예를 들면, 특허문헌 1은 압축실 내부에서 압축되는 유체가 피스톤의 압축 동작 시 반발력을 제공하여 쿠션(cushion)으로 기능하는 구성을 개시한 바 있다.
다만, 특허문헌 1과 같은 종래의 가스 스프링 구조물은 피스톤이 상사점으로 이동되는 동안 반발력(복원력)을 제공하도록 이루어져 있을 뿐, 피스톤이 냉매를 압축하도록 이동되는 방향으로는 힘을 제공하지 못하는 구조를 갖는다. 결과적으로 특허문헌 1은, 기존의 기계적인 공진 스프링이 제거되지 못하는 구조를 제시하였다. 또한, 특허문헌 1에서 가스 구션으로 작용하는 유체는 압축실의 압력 변화에 대응하여 흡입압과 토출압 사이에서 가변되도록 이루어진다. 이는 가스 스프링이 제공하는 강성의 범위를 제한하게 된다.
이와 같은 상황에서, 가스 스프링이 기계적인 공진 스프링을 대신하면서, 가변되는 유압의 범위가 높게 형성될 수 있고 그에 따라 높은 공진 주파수 제공되도록 이루어지는 구조를 갖는 리니어 압축기 설계를 고려해 볼 수 있다.
본 발명의 첫 번째 목적은, 기계적인 공진 스프링을 대체하면서, 토출압 이상으로 형성되는 유압을 이용하여 동작되는 공진 유닛을 구비하는 리니어 압축기를 제공하기 위한 것이다.
본 발명의 두 번째 목적은, 외부 환경에 따라 변화의 폭이 크고 높은 수준의 유압을 갖는 응축기 측의 냉매를 이용하여 동작되는 공진 유닛을 구비하는 리니어 압축기를 제공하기 위한 것이다.
본 발명의 세 번째 목적은, 냉매의 압축을 돕는 가스 스프링과 피스톤의 마찰을 감소시키는 가스 베어링을 구현하기 위한 유로 구조가 간결하게 구현되는 리니어 압축기를 제공하기 위한 것이다.
이와 같은 본 발명의 첫 번째 과제를 달성하기 위하여 본 발명에 따른 리니어 압축기는, 토출공간을 구비하는 케이싱; 상기 케이싱 내에서 왕복 운동되는 무버를 구동하는 구동 유닛; 상기 무버에 의해 압축 실린더 내에서 왕복 운동되면서 상기 압축 실린더 내의 유체를 압축하고 상기 토출공간으로 토출시키는 압축 피스톤을 구비하는 압축 유닛; 및 상기 압축 피스톤의 변위에 따라 가변되는 힘을 발생시켜 상기 압축 피스톤에 전달하는 공진 유닛을 포함하며, 상기 공진 유닛은, 공진 챔버; 및 상기 무버에 의해 상기 공진 챔버 내에서 왕복 운동되고, 상기 토출공간과 연통되어 형성되는 유압에 의해 상기 가변되는 힘을 발생시키는 공진 피스톤을 구비한다.
상기 토출 챔버 내부의 유압을 토출압 이상으로 유지하기 위하여, 본 발명에 따른 리니어 압축기는, 상기 토출공간과 상기 공진 챔버를 서로 연통시키도록 형성되는 토출압 유로와, 상기 토출압 유로를 선택적으로 개폐하는 체크 밸브를 구비할 수 있다.
본 발명의 두 번째 과제를 달성하기 위하여 본 발명에 따른 리니어 압축기는, 흡입공간 및 토출공간을 구비하는 케이싱; 상기 케이싱 내에서 왕복 운동되는 무버를 구동하는 구동 유닛; 상기 무버에 의해 압축 실린더 내에서 왕복 운동되면서 상기 압축 실린더 내의 유체를 압축하고 상기 토출공간으로 토출시키는 압축 피스톤을 구비하는 압축 유닛; 및 상기 압축 피스톤의 변위에 따라 가변되는 힘을 발생시켜 상기 압축 피스톤에 전달하는 공진 유닛을 포함하며, 상기 공진 유닛은, 공진 챔버; 및 상기 무버에 의해 상기 공진 챔버 내에서 왕복 운동되고, 상기 토출공간과 연통되어 형성되는 유압에 의해 상기 가변되는 힘을 발생시키는 공진 피스톤을 구비하고, 상기 흡입공간은 냉동 사이클의 증발기와 연결되고, 상기 토출공간은 상기 냉동 사이클의 응축기와 연결된다.
본 발명의 세 번째 과제를 달성하기 위하여, 상기 압축 실린더에는 상기 토출공간과 상기 공진 챔버를 서로 연통시키는 토출압 유로와, 상기 토출압 유로와 연통되고 상기 압축 피스톤의 외주면을 향하여 개방되도록 형성되는 베어링 홀이 형성된다. 상기 베어링 홀을 통하여 냉매가 유출됨으로써, 상기 압축 피스톤과 상기 압축 실린더 사이에 가스 베어링 막이 형성될 수 있다.
이상에서 설명한 해결 수단에 의해 구성되는 본 발명에 의하면, 다음과 같은 효과가 있다.
첫 번째, 본 발명에 따른 리니어 압축기는 토출공간에 채워지는 토출압의 냉매가 토출 챔버로 유입되도록 이루어져, 압축 유닛의 왕복 운동을 증폭시킬 수 있다. 가스 스프링으로 작용하는 공진 유닛의 유압이 토출압으로 형성되면, 흡입압 수준의 유압을 갖는 경우보다 강한 힘을 압축 유닛에 전달할 수 있어, 고부하 운전이 효율적으로 구현될 수 있다. 또한, 공진 유닛의 강성이 높은 범위에서 형성되면, 압축 유닛의 왕복 운동을 극대화하기 위해 요구되는 공진 유닛의 크기를 작게 유지하는 것이 가능하다. 따라서, 본 발명의 리니어 압축기는 압축기의 소형화 측면에서 유리하다.
본 발명의 공진 챔버에 체크 밸브가 장착됨으로써, 별도의 제어 수단 없이도 공진 챔버의 유압이 토출압 이상의 범위에서 가변되도록 이루어질 수 있다. 따라서, 공진 유닛의 제작 비용이 절감될 수 있고, 공진 유닛이 신뢰성 있게 동작될 수 있다.
두 번째, 본 발명의 리니어 압축기는, 흡입공간과 증발기가 서로 연결되고 토출공간과 응축기가 서로 연결될 수 있다. 냉동 사이클에서는 증발기의 냉매보다 응축기의 냉매가 고압을 유지함은 물론, 운전 부하에 따라 가변되는 압력 범위가 증발기에서보다 응축기에서 더 크다. 따라서, 본 발명의 리니어 압축기가 고부하 상황에서 운전되어야 할 때, 공진 유닛이 대응할 수 있는 유체 스프링 상수 또는 강성의 범위가 크게 형성될 수 있는 이점이 있다.
세 번째, 본 발명의 리니어 압축기에서, 공진 챔버와 토출공간을 서로 연통시키는 흡입압 유로는 압축 피스톤의 가스 베어링 형성을 위한 냉매 공급에 공유될 수 있다. 따라서, 공진 유닛과 압축 유닛의 구동을 위한 구조가 단순하게 구현될 수 있다.
도 1은 본 발명의 일 실시예에 따른 리니어 압축기를 보인 종단면도.
도 2는 도 1에 도시된 영역 A의 확대도.
도 3은 도 1에 도시된 리니어 압축기의 흡입 행정이 완료된 상태를 보인 개념도.
도 4는 도 1에 도시된 리니어 압축기의 압축 행정이 완료된 상태를 보인 개념도.
도 5는 도 1의 압축 유닛 및 공진 유닛에 수용되는 냉매의 압력 변화를 각각 도시한 그래프.
도 6은 본 발명의 다른 실시예에 따른 리니어 압축기를 보인 종단면도.
도 7은 도 6에 도시된 영역 B의 확대도.
이하, 본 발명에 관련된 리니어 압축기에 대하여 도면을 참조하여 보다 상세하게 설명한다.
서로 다른 실시예라고 하더라도, 앞선 실시예와 동일하거나 유사한 구성요소에는 동일·유사한 도면 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 명세서에 개시된 실시예들을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
첨부된 도면은 본 명세서에 개시된 실시예들을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 발명에 따른 리니어 압축기는 유체를 흡입하여 압축하고, 압축된 유체를 토출하는 동작을 수행한다. 본 발명에 따른 리니어 압축기는 냉동 사이클의 구성요소가 될 수 있으며, 이하에서 유체는 냉동 사이클을 순환하는 냉매를 예로 들어 설명한다.
도 1은 본 발명의 일 실시예에 따른 리니어 압축기(100)를 보인 종단면도이고, 도 2는 도 1에 도시된 영역 A의 확대도이다. 또한, 도 3은 도 1에 도시된 리니어 압축기(100)의 흡입 행정이 완료된 상태를 보인 개념도이며, 도 4는 도 1에 도시된 리니어 압축기(100)의 압축 행정이 완료된 상태를 보인 개념도이다. 도 1 내지 4를 참조하면, 본 발명의 리니어 압축기(100)는, 케이싱(110), 구동 유닛(130) 및 압축 유닛(140)을 포함한다.
케이싱(110)은 밀폐된 공간을 형성할 수 있다. 밀폐된 공간은 압축을 위하여 흡입되는 냉매가 채워지는 흡입공간(101)이 될 수 있다. 흡입공간(101)으로 냉매가 흡입되기 위하여, 케이싱(110)에는 흡입구가 형성되고 흡입 배관(SP)이 장착될 수 있다. 또한, 케이싱(110)에는 후술하는 토출공간(102)으로부터 냉매가 외부로 토출되기 위한 토출구가 형성되고 토출 배관(DP)이 연결될 수 있다.
아울러, 케이싱(110) 내부에는 구동 유닛(130) 및 압축 유닛(140)을 지지하기 위한 프레임이 형성될 수 있다. 프레임은, 케이싱(110)에 일 단부가 고정되도록 위치되는 지지 스프링(미도시)의 타 단부에 연결되어 지지될 수 있다. 프레임은 후술하는 스테이터(131)의 양 단에 각각 결합되는 전방 프레임(121) 및 후방 프레임(122)을 포함할 수 있다. 지지 스프링(미도시)은 예를 들면 판 스프링으로 이루어질 수 있다.
구동 유닛(130)은 본 발명에 따른 리니어 압축기(100)의 왕복 운동을 발생시키는 역할을 수행할 수 있다. 이를 위하여, 구동 유닛(130)은 스테이터(131) 및 무버(132)를 포함할 수 있다. 스테이터(131)는 전방 및 후방 프레임(121, 122)에 결합될 수 있다. 스테이터(131)는 후술하는 압축 유닛(140)을 둘러싸도록 배치되는 아우터 스테이터(131a)와, 아우터 스테이터(131a)의 내측으로 이격되어 압축 유닛(140)을 둘러싸는 이너 스테이터(131b)를 포함할 수 있다. 아우터 스테이터(131a)와 이너 스테이터(131b) 사이에는 무버(132)가 위치될 수 있다.
한편, 아우터 스테이터(131a)에는 권선코일(133)이 장착될 수 있고, 무버(132)는 영구자석을 구비할 수 있다. 이에 따라 구동 유닛(130)에 전류가 인가되면 권선코일(133)에 의해 스테이터(131)에 자속(flux)이 형성될 수 있다. 전류 인가에 의해 형성되는 자속과 영구자석에 의해 형성되는 자속의 상호 작용에 의해 무버(132)가 움직일 수 있는 힘이 발생될 수 있다.
압축 유닛(140)은 흡입공간(101) 내의 냉매를 흡입하여, 압축 및 토출하도록 이루어진다. 압축 유닛(140)은 이너 스테이터(131b)의 내측으로 케이싱(110)의 중심부에 위치될 수 있고, 압축 실린더(141) 및 압축 피스톤(142)을 포함한다. 압축 실린더(141)는 전방 프레임(121)에 의해 지지되어 내부에 압축실(P)을 형성할 수 있다. 압축 실린더(141)는 양 단부가 개방된 원통형으로 이루어질 수 있다. 압축 실린더(141)의 일 단부는 토출밸브(143) 및 토출 커버(144)에 의해 폐쇄될 수 있고, 타 단부는 압축 피스톤(142)을 수용하도록 형성될 수 있다.
토출밸브(143)와 토출 커버(144) 사이에는 토출공간(102)이 형성될 수 있다. 즉, 토출밸브(143)에 의해 압축실(P)과 토출 커버(144)가 서로 분리된 공간을 형성할 수 있다. 토출밸브(143)는 토출 커버(144)에 탄성 부재(미도시)에 의해 지지되어 압축 실린더(141)의 개방된 일 단부를 개폐하도록 이동될 수 있다. 한편, 케이싱(110) 내부에는, 토출구와 토출공간(102)을 서로 연통시키도록 연장되는 토출 튜브(111)가 설치될 수 있다.
압축 피스톤(142)은 압축 실린더(141)의 개방된 타 단부로 삽입되어, 압축실(P)을 밀폐하도록 이루어질 수 있다. 압축 피스톤(142)은 앞서 설명한 무버(132)와 연결되도록 이루어져, 무버(132)와 함께 왕복 운동될 수 있다. 무버(132)와 압축 피스톤(142) 사이에는 이너 스테이터(131b) 및 압축 실린더(141)가 위치될 수 있다. 이에 무버(132)와 압축 피스톤(142)은, 압축 실린더(141) 및 이너 스테이터(131b)를 우회하도록 형성되는 별도의 무빙 프레임(145)에 의해 서로 결합될 수 있다.
피스톤(142)에는 압축실(P)을 밀폐하는 단부를 관통하도록 흡입포트(142a)가 형성된다. 본 실시예에서 피스톤(142)은 그 내부 공간을 통하여 흡입공간(101)의 냉매가 흘러, 흡입포트(142a)를 통과하여 피스톤(142)과 실린더(141) 사이의 압축실(P)로 흡입될 수 있다. 또한, 압축실(P)과 인접한 피스톤(142)의 단부면에는 흡입포트(142a)를 개폐하는 흡입밸브(142b)가 장착될 수 있다. 흡입밸브(142b)는 탄성 변형에 의해 동작될 수 있다. 즉, 흡입밸브(142b)는 흡입포트(142a)를 통과하여 압축실(P) 쪽으로 흐르는 냉매의 압력에 의하여 흡입포트(142a)를 개방하도록 탄성 변형될 수 있다.
이상에서 설명한 리니어 압축기(100)는 다음과 같이 동작된다.
먼저, 구동 유닛(130)에 전류가 인가되면 권선코일(133)에 흐르는 전류에 의해 스테이터(131)에 자속이 형성될 수 있다. 스테이터(131)에 형성되는 자속에 의해 발생되는 전자기력에 의해, 영구자석을 구비하는 무버(132)가 직선 왕복 운동될 수 있다.
무버(132)의 왕복 운동 시, 무버(132)에 연결되는 압축 피스톤(142)이 왕복 운동될 수 있다. 압축 실린더(141) 내부에서 왕복 운동되는 압축 피스톤(142)은, 압축실(P)의 체적을 증가 및 감소시키는 운동을 반복하게 된다.
압축 피스톤(142)이 압축실(P)의 체적을 증가시키면서 이동될 때, 압축실(P) 내부의 압력은 감소한다. 이에, 압축 피스톤(142)에 장착되는 흡입밸브(142b)가 개방되고, 흡입공간(101)에 머무르던 냉매가 압축실(P)로 흡입될 수 있다. 이러한 흡입 행정은, 압축 피스톤(142)이 압축실(P)의 체적을 최대로 증가시켜 하사점(BDC, Bottom Dead Center)에 위치될 때까지 진행된다.
하사점에 도달한 압축 피스톤(142)은 운동 방향이 전환되어 압축실(P)의 체적을 감소시키면서 압축 행정을 수행한다. 압축 행정은, 압축 피스톤(142)이 압축실(P)의 체적이 최소가 되도록 감소시키는 상사점(TDC, Top Dead Center)까지 이동되는 동안 수행된다. 압축 행정 시에는, 압축실(P) 내부의 압력이 증가되어 흡입된 냉매가 압축될 수 있다. 압축실(P)의 압력이 기설정된 압력에 도달하면, 압축실(P)의 압력에 의해 토출밸브(143)가 밀려 압축 실린더(141)와 이격되면서 개방되어 냉매가 토출공간(102)으로 토출된다.
압축 피스톤(142)의 흡입 및 압축 행정이 반복되면서, 흡입구로 유입된 흡입공간(101)의 냉매가 압축실(P)로 흡입되어 압축되고, 토출공간(102), 토출 튜브(111) 및 토출구를 거쳐 압축기의 외부로 토출되는 냉매 흐름이 형성될 수 있다.
이상에서는 본 발명에 따른 리니어 압축기(100)의 개략적인 구조 및 동작 과정에 대하여 설명하였다. 이하에서는 본 발명의 일 실시예에 따라, 종래의 기계적인 공진 스프링을 대체하면서, 고압의 냉매가 가스 스프링으로 작용될 수 있는 구조에 대하여 설명한다.
본 발명의 일 실시예에 따른 리니어 압축기(100)는 공진 유닛(150)을 더 포함한다. 공진 유닛(150)은 압축 유닛(140)의 왕복 운동을 증폭시키기 위하여, 가변되는 힘을 발생시켜 압축 유닛(140)에 전달하는 기능을 수행한다. 공진 유닛(150)에서 발생되는 힘은, 압축 피스톤(142)의 변위에 따라 가변될 수 있다.
공진 유닛(150)은 공진 챔버(151) 및 공진 피스톤(152)을 구비할 수 있다. 공진 챔버(151)는 케이싱(110) 내부에서 일정 공간을 차지하도록 형성될 수 있다. 공진 챔버(151) 내부에는 냉매와 공진 피스톤(152)이 수용될 수 있다.
공진 피스톤(152)은 무버(132), 무빙 프레임(145) 및 압축 피스톤(142) 중 적어도 어느 하나와 연결되어 일체를 이루어 왕복 운동될 수 있다. 공진 피스톤(152)은 공진 챔버(151) 내에서 이동되면서, 공진 챔버(151)에 수용되어 상태량이 변화되는 냉매의 압력을 전달받을 수 있다.
공진 챔버(151) 내에서 왕복 운동되는 공진 피스톤(152)에 의해, 공진 챔버(151) 내부에 수용되는 냉매는 압력이 변화될 수 있다. 그리고, 가변되는 냉매의 압력에 의한 힘은 공진 피스톤(152)과 압축 피스톤(142)에 전달될 수 있다. 이에 따라, 본 발명의 공진 유닛(150)은 냉매의 압축을 위한 압축 피스톤(142)의 왕복 운동을 증폭시키는 가스 스프링으로 작용할 수 있다.
특히, 본 발명의 공진 챔버(151)를 채우는 냉매는 토출공간(102)과 연통됨에 따라 형성되는 유압을 갖도록 이루어질 수 있다. 본 발명의 리니어 압축기(100)에서, 압축 유닛(140)에 의해 압축되어 토출공간(102)을 채우는 냉매는 높은 압력을 갖게 되므로, 토출공간(102)의 냉매를 유입시킴으로써 공진 챔버(151)에 높은 유압을 형성할 수 있다. 공진 챔버(151)의 유압이 높게 형성되면, 보다 강한 힘을 압축 유닛(140)에 전달할 수 있어, 고부하 운전이 효율적으로 구현될 수 있다. 즉, 공진 챔버(151) 내부의 높은 유압은 공진 유닛(150)의 강성이 높다는 것을 의미하므로, 본 발명의 공진 유닛(150)은 높은 주파수로 운전되는 것에 대응하여 왕복 운동과 공진되어 변위를 증폭시키는 것이 가능하다.
또한, 공진 유닛(150)이 제공할 수 있는 힘이 보다 높은 범위에서 형성되면, 압축 유닛(140)의 왕복 운동을 극대화하기 위해 요구되는 공진 유닛(150)의 크기(체적)를 작게 유지하는 것이 가능하다. 특히, 본 발명의 공진 유닛(150)이 기계적인 공진 스프링을 대체하면서 그 크기가 작게 구성될 수 있으므로, 동일 압축 용량 대비 리니어 압축기(100)의 크기가 작게 구성될 수 있다.
한편, 본 발명의 일 실시예에 따른 공진 유닛(150)은 압축 유닛(140)을 둘러싸도록 배치될 수 있다. 구체적으로, 공진 챔버(151)는 압축 피스톤(142)의 외주면과 마주보는 압축 실린더(141)의 내주면에서 리세스되어 형성될 수 있고, 공진 피스톤(152)은 압축 피스톤(142)의 외주면에서 공진 챔버(151) 내부로 돌출되도록 형성될 수 있다. 공진 챔버(151) 및 공진 피스톤(152)은 압축 피스톤(142)의 둘레를 따라 각각 환형으로 연장될 수 있다.
본 실시예와 같이 배치되는 공진 챔버(151)는, 공진 피스톤(152)에 의해 두 공간으로 나뉘도록 이루어질 수 있다. 즉 공진 챔버(151)는, 공진 피스톤(152)을 사이에 두고 공진 피스톤(152)의 왕복 운동 방향으로 각각 양 측에 형성되는 제1 및 제2 유압부(151x, 151y)를 구비할 수 있다. 이때, 제1 유압부(151x)는 상대적으로 압축실(P)에 가까운 측에 위치될 수 있고, 제2 유압부(151y)는 압축실(P)로부터 먼 측에 위치될 수 있다.
공진 피스톤(152)은 압축 피스톤(142)과 일체로 이루어지고 공진 챔버(151) 내를 왕복 운동할 수 있다. 제1 및 제2 유압부(151x, 151y)는 공진 피스톤(152)의 왕복 운동에 의해 부피가 증가 및 감소되는 과정을 반복할 수 있다. 예를 들면, 압축 행정 시에는 제1 유압부(151x)의 체적은 감소되고 제2 유압부(151y)의 체적은 증가될 수 있고, 흡입 행정 시에는 제1 유압부(151x)의 체적이 증가되고 제2 유압부(151y)의 체적은 감소될 수 있다.
제1 및 제2 유압부(151x, 151y)는 각각 체적이 감소될 때 유압이 증가되어 공진 피스톤(152)을 밀어내는 힘이 증가될 수 있다. 결과적으로, 압축 행정 시에는 제1 유압부(151x)에서 공진 피스톤(152)을 미는 힘이 생성되고, 흡입 행정 시에는 제2 유압부(151y)에서 공진 피스톤(152)을 미는 힘이 생성될 수 있다. 방향이 전환되면서 공진 피스톤(152)에 가해지는 힘은 압축 피스톤(142)에 전달되어 압축 피스톤(142)의 왕복 운동을 증폭시킬 수 있다.
본 실시예에 따라 공진 유닛(150)이 위치되면, 압축 피스톤(142)의 왕복 방향으로 본 발명에 따른 리니어 압축기(100)의 전체 길이가 단축될 수 있는 효과가 있다.
또한, 본 실시예에 따른 리니어 압축기(100)는, 공진 피스톤(152)이 제1 및 제2 유압부(151x, 151y)에 의해 양 측에서 힘을 전달받을 수 있다. 따라서, 흡입 및 압축 행정 과정에서 고르게 힘이 형성되고, 공진 유닛(150)의 안정적인 작동이 구현될 수 있다.
나아가, 본 실시예의 공진 챔버(151)는 압축 피스톤(142)의 둘레를 따라 형성되므로, 공진 챔버(151)의 유압에 의해 생성되는 힘이 압축 피스톤(142)이 연장되는 중심축에 정렬될 수 있다. 또한, 생성되는 힘이 압축 피스톤(142)의 무게 중심에 가까운 지점에 작용될 수 있다. 따라서, 압축 피스톤(142)의 왕복 운동이 보다 안정적으로 구현될 수 있게 된다.
다른 한편으로, 공진 챔버(151)에 토출압의 냉매를 공급하기 위하여, 압축 실린더(141)에는 토출압 유로(141a)가 형성될 수 있다. 본 실시예의 리니어 압축기(100)에서, 토출 커버(144)는 압축 실린더(141)의 개방된 일 단부를 덮도록 장착되므로, 토출공간(102)은 압축 실린더(141)의 개방된 일 단부에 형성될 수 있다. 토출압 유로(141a)는 토출공간(102)과 공진 챔버(151)를 서로 연통시키도록 압축 실린더(141)를 관통하여 형성될 수 있다.
토출압 유로(141a)는 메인 홀(141a1)을 구비할 수 있다. 메인 홀(141a1)은 압축 피스톤(142)의 왕복 운동 방향과 나란하게 압축 실린더(141)를 관통하도록 형성될 수 있다. 메인 홀(141a1)의 일 단부는 토출 커버(144)가 덮여 형성되는 토출공간(102)과 연통될 수 있다. 아울러, 메인 홀(141a1)의 타 단부는, 가공 편의성을 위하여, 도시된 것과 같이 마개(141b)가 삽입되어 밀폐될 수 있다. 또한, 토출압 유로(141a)는 메인 홀(141a1)에서 각각 제1 및 제2 유압부(151x, 151y)로 각각 연통되는 연결홀(141a2)을 구비할 수 있다.
토출압 유로(141a)를 선택적으로 개폐하기 위하여, 공진 챔버(151)는 체크 밸브(151a)를 구비할 수 있다. 체크 밸브(151a)는 토출공간(102)으로부터 공진 챔버(151)로 냉매가 유입되는 것을 허용하고 공진 챔버(151)로부터 토출공간(102)으로 냉매가 유출되는 것을 제한하도록 이루어질 수 있다.
본 실시예에서, 체크 밸브(151a)는 연결홀(141a2)을 각각 덮어 폐쇄할 수 있도록, 제1 및 제2 유압부(151x, 151y)를 형성하는 공진 챔버(151)의 내벽에 각각 장착될 수 있다. 체크 밸브(151a)는 일 방향으로의 탄성 변형이 가능하도록 이루어질 수 있다. 즉, 체크 밸브(151a)는 토출공간(102)에 채워진 냉매의 토출압에 의하여 개방될 수 있도록 변형될 수 있다. 다만, 체크 밸브(151a)는 제1 및 제2 유압부(151x, 151y)의 냉매가 토출압보다 높은 유압을 형성하는 경우에는 연결홀(141a2)을 폐쇄한 상태로 유지될 수 있다.
체크 밸브(151a)에 의해 토출압 유로(141a)가 선택적으로 개폐됨으로써, 제1 및 제2 유압부(151x, 151y)의 유압은 토출압 이상의 범위에서 가변될 수 있다. 제1 유압부(151x)는 흡입 행정 동안 체적이 증가되면서 토출압의 냉매가 유입되고, 압축 행정 동안 토출압 이상의 유압이 형성되도록 체적이 감소될 수 있다. 반대로, 제2 유압부(151y)는 압축 행정 동안 토출압의 냉매가 유입되고, 흡입 행정 동안 토출압 이상으로 유압이 증가되도록 체적이 감소될 수 있다. 제1 및 제2 유압부(151x, 151y)는 상호 간 또는 다른 공간과 완전히 밀폐되지 않아 냉매가 유출될 수 있는 구조를 갖게 되므로, 각각 체적이 증가되는 행정 시 토출압의 냉매가 보충될 수 있다.
압축 실린더(141)에 토출압 유로(141a)가 형성되고 토출압 유로(141a)를 개폐하는 체크 밸브(151a)가 장착되는 구조에 의하여, 본 발명에 따른 리니어 압축기(100)의 공진 유닛(150)은 토출압의 냉매를 사용할 수 있게 된다. 따라서, 공진 유닛(150)은 별도의 가압 수단이나 압력 제어 수단이 추가되지 않더라도 토출압 이상에서 가변되는 유압을 손쉽게 형성할 수 있다.
도 5는 도 1의 압축 유닛(140) 및 공진 유닛(150)에 수용되는 냉매의 압력 변화를 각각 도시한 그래프이다. 도시된 것과 같이, 본 발명에 따른 리니어 압축기(100)의 공진 유닛(150, 구체적으로 공진 챔버(151)의 내부에서는, 압축실(P)에서 가변되는 냉매의 압력보다 높은 범위에서 냉매의 유압이 가변될 수 있다.
이상에서는 본 발명에 따른 리니어 압축기(100)의 공진 유닛(150)이 토출압 이상의 유압을 형성하여 동작되는 특징에 대하여 설명하였다. 이러한 특징에 의해, 본 발명의 리니어 압축기(100)는 냉동 사이클을 형성하는 경우, 해당 냉동 사이클이 운용되는 환경에 대응되는 운전에 최적화될 수 있다.
구체적으로, 케이싱(110)에 형성되는 흡입구에는 냉동 사이클을 구성하는 증발기에 연결되는 흡입 배관(SP)이 장착될 수 있다. 그리고, 토출구에는 냉동 사이클을 구성하는 응축기에 연결되는 토출 배관(DP)이 장착될 수 있다.
케이싱(110)의 내부에서 흡입구는 흡입공간(101)과 연통될 수 있다. 그리고, 토출구와 토출공간(102)은 토출 튜브(111)에 의해 연통될 수 있다. 즉, 토출 튜브(111)는 케이싱(110)의 내부에 위치되고, 양 단부가 각각 토출구 및 토출공간(102)에 연결되도록 형성될 수 있다.
일반적으로, 냉동 사이클에서는 압축기의 출구에서 응축기의 입구로 연결되는 지점에서 냉매의 압력과 온도가 가장 높게 형성된다. 또한, 응축기는 외부 환경과 열교환을 수행하므로, 외부 환경에 따라 온도가 변화될 수 있다. 이러한 응축기의 온도 변화 폭은, 냉동 사이클이 목표로 하는 온도 값 주변에서 변화되는 증발기의 온도 변화 폭보다 크게 형성될 수 있다. 그리고, 응축기의 온도가 높은 상황은, 외부 환경의 온도가 높고 냉동 사이클을 가동할 필요성이 큰 상황이 될 수 있다. 반대로, 응축기의 온도가 낮은 상황은, 외부 환경의 온도가 낮고 냉동 사이클이 가동될 필요성이 상대적으로 적은 상황이 될 수 있다.
따라서, 응축기와 연결되는 토출공간(102)의 냉매를 공진 유닛(150)의 유압 형성에 사용하게 되면, 냉동 사이클의 부하에 대응하여 공진 유닛(150)의 가스 스프링 상수 또는 강성이 자연스럽게 가변되는 압축기 구동이 구현될 수 있다. 또한, 본 발명은 케이싱(110) 내부의 흡입공간(101)의 냉매를 사용하는 경우보다 높은 유압이 활용될 수 있다. 따라서, 토출압을 이용하는 공진 유닛(150)은, 흡입압을 이용하는 경우보다 더 큰 강성을 가질 수 있고 강성의 변화 폭도 크게 형성될 수 있다. 결과적으로 본 발명의 리니어 압축기(100)에 구비되는 공진 유닛(150)은, 높은 운전 주파수에 대응하여 공진될 수 있고 넓은 범위의 운전 주파수에 대응하여 공진될 수 있는 효과가 있다.
한편, 본 실시예와 같이 압축 실린더(141)의 내주면에 공진 챔버(151)가 형성되기 위하여, 압축 실린더(141)는 제1 및 제2 실린더 몸체(141x, 141y)를 포함할 수 있다.
제1 실린더 몸체(141x)는 압축 피스톤(142)의 왕복 운동 방향으로 연장되는 상기 공진 챔버(151)의 일 단부와 측벽을 형성하도록 이루어질 수 있다. 예를 들면, 제1 실린더 몸체(141x)는 압축 피스톤(142) 및 공진 피스톤(152)과 함께 제1 유압부(151x)를 형성하고, 제2 유압부(151y)의 측벽부를 형성하도록 이루어질 수 있다.
구체적으로 제1 실린더 몸체(141x)는, 압축실(P)의 측벽을 형성하고 압축 피스톤(142)의 외주면에 접촉되는 제1 내주면(141x1)과, 공진 챔버(151)를 형성하도록 압축 피스톤(142)의 외주면과 이격되는 제2 내주면(141x2)을 구비할 수 있다. 또한, 제1 실린더 몸체(141x)는, 제1 내주면(141x1)과 제2 내주면(141x2)을 서로 연결하고 제1 유압부(151x)의 일 단부를 형성하는 단차면(141x3)을 구비할 수 있다.
아울러, 제2 실린더 몸체(141y)는 환형으로 이루어질 수 있다. 제2 실린더 몸체(141y)는, 그 내주면은 압축 피스톤(142)의 외주면에 접촉되고, 그 외주면은 제1 실린더 몸체(141x)의 제2 내주면(141x2) 일부와 결합되도록 이루어질 수 있다. 제2 실린더 몸체(141y)는, 공진 피스톤(152)과 왕복 운동 방향으로 이격되는 위치에서 제1 실린더 몸체(141x)와 결합됨으로써 제2 유압부(151y)를 형성할 수 있다. 제2 실린더 몸체(141y)는 압축 피스톤(142)의 외경보다 큰 내경과, 공진 피스톤(152)의 외경보다 큰 외경을 갖도록 이루어질 수 있다.
이때, 제1 실린더 몸체(141x)에는 앞서 설명한 메인 홀(141a1)과, 제1 연결홀(141a2)이 형성될 수 있다. 연결홀(141a2)은 공진 피스톤(152)과 마주보도록 이격된 단차면(141x3)에 위치되어 제1 유압부(151x)와 연통되고, 체크 밸브(151a)가 연결홀(141a2)을 덮을 수 있도록 단차면(141x3)에 설치될 수 있다.
또한, 제2 실린더 몸체(141y)에는 연결홀(141a2)의 적어도 일부가 형성될 수 있다. 마찬가지로, 연결홀(141a2)은 공진 피스톤(152)과 마주보도록 이격된 단부면에 위치되어 제2 유압부(151y)와 연통되고, 체크 밸브(151a)가 연결홀(141a2)을 덮도록 설치될 수 있다.
압축 실린더(141)가 제1 및 제2 실린더 몸체(141x, 141y)로 이루어짐으로써, 본 실시예의 압축 유닛(140)과 공진 유닛(150)은, 압축 피스톤(142)에 형성되는 공진 피스톤(152)이 압축 실린더(141)에 간섭되지 않도록 조립될 수 있다.
앞서 설명한 것과 같이, 본 발명에 따른 리니어 압축기(100)는 공진 유닛(150)에 토출공간(102)의 냉매를 공급하기 위한 토출압 유로(141a)를 구비할 수 있다. 다만, 본 실시예에서 토출압 유로(141a)는 압축 피스톤(142)의 표면에 가스 베어링을 형성하기 위한 냉매를 공급하는 기능을 함께 수행할 수 있다.
이를 위하여, 본 실시예의 압축 실린더(141)에는, 토출압 유로(141a)와 연통되고 압축 피스톤(142)의 외주면을 향하도록 관통되는 베어링 홀(141a3)이 형성될 수 있다. 이때, 토출압 유로(141a)는 압축 피스톤(142)의 왕복 운동 방향으로 연장되도록 형성될 수 있으며, 토출압 유로(141a)에 연통되는 베어링 홀(141a3)은 복수 개가 형성될 수 있다. 예를 들면, 다수 개의 베어링 홀(141a3)이 토출압 유로(141a)가 연장되는 방향과 압축 피스톤(142)의 원주 방향을 따라 각각 이격되도록 배열될 수 있다.
이에 따라, 압축기 동작 시 토출공간(102)에 채워지는 냉매는 토출압 유로(141a)로 흘러 일부는 공진 챔버(151)에 공급되어 가스 스프링의 유압을 제공하고, 다른 일부는 베어링 홀(141a3)로 유출되면서 압축 피스톤(142)의 외주면에 가스 베어링 막을 형성할 수 있다. 즉, 압축 피스톤(142)의 마찰을 저감하여 효율을 개선하고, 압축 피스톤(142)의 운동을 증폭시키는 작용이 토출압 유로(141a)를 공유하여 구현될 수 있다.
이상에서 설명한 본 발명의 일 실시예와 유사하게, 본 발명의 또 다른 실시예는 압축 피스톤(242)의 둘레를 따라 형성되는 공진 유닛(250)을 포함한다. 도 6은 본 발명의 다른 실시예에 따른 리니어 압축기(200)를 보인 종단면도이며, 도 7은 도 6에 도시된 영역 B의 확대도이다. 이하에서 도 6 및 7을 참조하여 본 발명의 다른 실시예에 대하여 설명한다.
본 발명의 다른 실시예의 공진 유닛(250)은, 압축 피스톤(242)에 형성되어 왕복 운동되는 공진 챔버(251)와, 압축 실린더(241)와 연결되어 공진 챔버(251) 내에 수용되는 공진 피스톤(252)을 포함한다. 본 실시예의 리니어 압축기(200)의 동작 시, 공진 피스톤(252)은 압축 실린더(241)와 일체로 이루어져 고정된 상태를 유지할 수 있다. 그리고, 공진 챔버(251)는 내부에 공진 피스톤(252)을 두고 압축 피스톤(242)과 일체로 왕복 운동됨으로써, 공진 챔버(251) 내부의 유압을 가변시키고 그 가변되는 유압을 전달받도록 이루어질 수 있다.
구체적으로, 공진 챔버(251)는 압축 실린더(241)의 내주면과 마주보는 압축 피스톤(242)의 외주면에서 리세스되어 형성될 수 있다. 그리고, 공진 피스톤(252)은 압축 실린더(241)의 내주면에서 공진 챔버(251) 내부로 돌출되게 형성될 수 있다.
앞선 실시예와 마찬가지로, 공진 챔버(251)는 공진 챔버(251)에 의해 구획되는 제1 및 제2 유압부(251x, 251y)를 구비할 수 있다. 즉, 공진 피스톤(252)을 사이에 두고 압축 피스톤(242)의 왕복 운동 방향으로 양 측에 제1 및 제2 유압부(251x, 251y)가 각각 형성될 수 있다.
제1 유압부(251x)는, 압축 행정 시 체적이 증가되면서 압축 피스톤(242)의 이동을 돕는 방향으로 힘을 제공할 수 있고, 흡입 행정 시 체적이 감소되며 압축 피스톤(242)의 이동에 저항력을 제공할 수 있다. 제2 유압부(251y)는, 압축 행정 시 압축 피스톤(242)의 이동에 저항력을 제공하고, 흡입 행정 시 압축력을 증대시키는 힘을 제공할 수 있다.
본 발명의 또 다른 실시예에서도, 제1 및 제2 유압부(251x, 251y)에 토출압 이상의 냉매 유압을 형성하기 위하여, 토출압 유로(241a)와 체크 밸브(251a)가 구비될 수 있다. 토출압 유로(241a)는 압축 실린더(241) 내부를 압축 실린더(241)의 연장 방향으로 관통하는 메인 홀(241a1)을 구비하도록 형성될 수 있다. 메인 홀(241a1)의 일 단부는 토출공간(102)과 연통되도록 개방될 수 있고, 타 단부는 마개(241b)에 의해 밀폐될 수 있다.
아울러, 본 실시예에서 토출압 유로(241a)는, 메인 홀(241a1)과 분지 유로(241a2)를 구비할 수 있다. 분지 유로(241a2)는 제1 및 제2 유압부(251x, 251y) 사이에 배치되는 공진 피스톤(252)을 관통하도록 형성되고, 메인 홀(241a1)로부터 연장되어 각각 제1 및 제2 유압부(251x, 251y)와 연통되도록 분지되는 형상으로 이루어질 수 있다.
또한, 공진 피스톤(252)의 양 단에는 분지 유로(241a2)의 단부를 선택적으로 개폐하도록 이루어지는 체크 밸브(251a)가 각각 장착될 수 있다. 체크 밸브(251a)에 의해, 토출공간(102)으로부터 제1 및 제2 유압부(251x, 251y)로는 냉매가 유입될 수 있고, 제1 및 제2 유압부(251x, 251y)로 유입된 냉매는 토출압 유로(241a)를 통하여는 토출공간(102)으로 유출되는 것이 제한될 수 있다.
한편, 본 실시예와 같이 공진 유닛(250)이 형성되는 압축 피스톤(242) 및 압축 실린더(241)를 서로 용이하게 조립하기 위하여, 압축 피스톤(242)은 제1 및 제2 피스톤 몸체(242x, 242y)로 이루어질 수 있다.
도시된 것과 같이, 제1 피스톤 몸체(242x)는 원통형으로 이루어질 수 있다. 제1 피스톤 몸체(242x)는 원형의 양 단부가 각각 압축실(P)과 공진 챔버(251)의 일부를 각각 형성할 수 있다. 구체적으로, 제1 피스톤 몸체(242x)는 공진 챔버(251, 특히 제1 유압부(251x))의 일 단부를 형성할 수 있다.
제2 피스톤 몸체(242y)는 공진 챔버(251)의 타 단부와 측벽부를 형성할 수 있다. 제2 피스톤 몸체(242y)는 제1 피스톤 몸체(242x)와 이격되어 공진 챔버(251)의 타 단부를 형성하는 몸체부(242y1)와, 상기 몸체부(242y1)에서 연장되어 상기 제1 피스톤 몸체(242x)와 결합되는 연결부(242y2)를 구비할 수 있다. 연결부(242y2)의 외주면은, 제1 피스톤 몸체(242x)와 몸체부(242y1) 사이에서 공진 챔버(251)의 측벽부를 형성할 수 있다.
본 실시예의 압축 피스톤(242) 조립 시, 제1 피스톤 몸체(242x)는 압축실(P)이 형성되는 측으로 압축 실린더(241)에 삽입되어 위치되고, 제2 피스톤 몸체(242y)는 압축실(P)이 형성되는 측의 반대 측으로 압축 실린더(241)에 삽입되어 위치될 수 있다. 제1 및 제2 피스톤 몸체(242x, 242y)가 압축 실린더(241) 내에서 서로 결합될 수 있다.
본 발명의 다른 실시예에 따른 리니어 압축기(200)는, 앞선 다른 실시예에 비하여 압축기의 소형화에 더욱 유리한 장점을 갖는다. 압축실(P)을 형성하는 압축 피스톤(242)의 단부면이 동일한 면적을 갖는다고 할 때, 공진 챔버(251)가 압축 피스톤(242)에서 리세스되도록 형성되므로, 압축 피스톤(242)의 반경 방향으로 압축 유닛(240)의 크기가 증가되지 않을 수 있다. 아울러, 앞선 실시예에서는 공진 챔버(251)를 형성하기 위하여 압축 실린더(241)의 부피와 무게가 증가될 수 있지만, 본 실시예에서는 압축 실린더(241)의 크기가 유지되면서 공진 유닛(250)이 형성될 수 있다.
또한, 본 발명의 또 다른 실시예에서는, 하나의 분지 유로(241a2)에 의해 제1 및 제2 유압부(251x, 251y)에 흡입압의 냉매가 공급될 수 있다. 따라서, 압축 실린더(241)를 가공하는 제작 과정이 간소화될 수 있는 효과가 있다.
이상에서 설명한 것은 본 발명에 따른 리니어 압축기를 실시하기 위한 실시예들에 불과한 것으로서, 본 발명은 이상의 실시예들에 한정되지 않고, 이하의 청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어나지 않는 범위 내에서 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상이 있다고 할 것이다.
100: 리니어 압축기 110: 케이싱
111: 토출 튜브 121: 전방 프레임
122: 후방 프레임 130: 구동 유닛
131: 스테이터 131a: 아우터 스테이터
131b: 이너 스테이터 132: 무버
133: 권선코일 140: 압축 유닛
141: 압축 실린더 141a: 토출압 유로
141a1: 메인 홀 141a2: 연결홀
141a3: 베어링 홀 142: 압축 피스톤
142a: 흡입포트 142b: 흡입밸브
143: 토출밸브 144: 토출 커버
145: 무빙 프레임 150: 공진 유닛
151: 공진 챔버 151a: 체크 밸브
152: 공진 피스톤

Claims (9)

  1. 토출공간을 구비하는 케이싱;
    상기 케이싱 내에서 왕복 운동되는 무버와, 상기 무버를 구동하는 마그넷을 구비하는 구동 유닛;
    상기 케이싱에 수용되는 압축 실린더와, 상기 무버에 의해 상기 실린더 내에서 왕복 운동되면서 상기 압축 실린더 내의 유체를 압축하고 상기 토출공간으로 토출시키도록 이루어지는 압축 피스톤을 구비하는 압축 유닛; 및
    상기 압축 피스톤의 변위에 따라 가변되는 힘을 발생시켜 상기 압축 피스톤에 전달하도록 이루어지는 공진 유닛을 포함하며,
    상기 공진 유닛은,
    상기 케이싱 내부에 형성되는 공진 챔버; 및
    상기 무버에 의해 상기 공진 챔버 내에서 왕복 운동되고, 상기 토출공간과 연통되어 형성되는 유압에 의해 상기 가변되는 힘을 발생시키도록 이루어지는 공진 피스톤을 구비하는 리니어 압축기.
  2. 제1항에 있어서,
    상기 공진 챔버는 상기 압축 피스톤의 외주면과 마주보는 상기 압축 실린더의 내주면에서 리세스되어 형성되고,
    상기 공진 피스톤은 상기 압축 피스톤의 외주면에서 상기 공진 챔버 내부로 돌출되게 형성되는 것을 특징으로 하는 리니어 압축기.
  3. 제2항에 있어서,
    상기 토출공간은 압축 실린더의 일 단부를 덮도록 장착되는 토출 커버에 의해 형성되고,
    상기 압축 실린더에는 상기 토출공간과 상기 공진 챔버를 서로 연통시키도록 연장 형성되는 토출압 유로가 관통 형성되는 것을 특징으로 하는 리니어 압축기.
  4. 제1항에 있어서,
    상기 공진 챔버는, 상기 토출공간으로부터 상기 공진 챔버로 유체의 유입을 허용하고 상기 공진 챔버로부터 상기 토출공간으로 유체의 유출을 제한하도록 이루어지는 체크 밸브를 구비하는 리니어 압축기.
  5. 제1항에 있어서,
    상기 공진 챔버는, 상기 공진 피스톤을 사이에 두고 상기 압축 피스톤의 왕복 운동 방향으로 양 측에 각각 형성되는 제1 및 제2 유압부를 구비하는 리니어 압축기.
  6. 제1항에 있어서,
    상기 케이싱은,
    상기 압축 실린더로 흡입될 냉매를 수용하는 흡입공간;
    냉동 사이클을 구성하는 증발기에 연결되는 흡입 배관이 장착되는 흡입구;
    상기 냉동 사이클을 구성하는 응축기에 연결되는 토출 배관이 장착되는 토출구; 및
    상기 케이싱 내부에 위치되고 상기 토출공간과 상기 토출구를 서로 연통시키도록 형성되는 토출 튜브를 구비하는 리니어 압축기.
  7. 제3항에 있어서,
    상기 토출압 유로는 상기 압축 피스톤의 왕복 운동 방향으로 연장되도록 형성되고,
    상기 압축 실린더에는 상기 토출압 유로와 연통되고 상기 압축 피스톤의 외주면을 향하도록 관통되는 베어링 홀이 형성되는 것을 특징으로 하는 리니어 압축기.
  8. 토출공간을 구비하는 케이싱;
    상기 케이싱 내에서 왕복 운동되는 무버와, 상기 무버를 구동하는 마그넷을 구비하는 구동 유닛;
    상기 케이싱에 수용되는 압축 실린더와, 상기 무버에 의해 상기 실린더 내에서 왕복 운동되어 상기 압축 실린더 내의 유체를 압축하도록 이루어지는 압축 피스톤을 구비하는 압축 유닛; 및
    상기 압축 피스톤의 변위에 따라 가변되는 힘을 발생시켜 상기 압축 피스톤에 전달하도록 이루어지는 공진 유닛을 포함하며,
    상기 공진 유닛은,
    상기 케이싱 내부에 위치되는 공진 피스톤; 및
    상기 무버의 운동 시 상기 공진 피스톤을 내부에 두고 왕복 운동되고, 상기 토출공간과 연통되어 형성되는 유압에 의해 상기 가변되는 힘을 발생시키도록 이루어지는 공진 챔버를 구비하는 리니어 압축기.
  9. 제8항에 있어서,
    상기 공진 챔버는 상기 압축 피스톤의 외주면과 마주보는 상기 압축 실린더의 내주면에서 리세스되어 형성되고,
    상기 공진 피스톤은 상기 압축 피스톤의 외주면에서 상기 공진 챔버 내부로 돌출되게 형성되는 것을 특징으로 하는 리니어 압축기.
KR1020170119759A 2017-09-18 2017-09-18 리니어 압축기 KR20190031828A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170119759A KR20190031828A (ko) 2017-09-18 2017-09-18 리니어 압축기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170119759A KR20190031828A (ko) 2017-09-18 2017-09-18 리니어 압축기

Publications (1)

Publication Number Publication Date
KR20190031828A true KR20190031828A (ko) 2019-03-27

Family

ID=65907544

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170119759A KR20190031828A (ko) 2017-09-18 2017-09-18 리니어 압축기

Country Status (1)

Country Link
KR (1) KR20190031828A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095503A (zh) * 2022-06-17 2022-09-23 武汉高芯科技有限公司 一种采用独立气泵的气浮式直线压缩机及其控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154441A1 (en) 2006-02-28 2010-06-24 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor With a Gas Spring

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100154441A1 (en) 2006-02-28 2010-06-24 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor With a Gas Spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095503A (zh) * 2022-06-17 2022-09-23 武汉高芯科技有限公司 一种采用独立气泵的气浮式直线压缩机及其控制方法

Similar Documents

Publication Publication Date Title
KR20170004136A (ko) 리니어 압축기
KR101990401B1 (ko) 리니어 압축기
CN104454440A (zh) 双气缸变容量线性压缩机
JP2007534882A (ja) リニアコンプレッサ
KR20190031827A (ko) 리니어 압축기
KR20190031828A (ko) 리니어 압축기
KR101981098B1 (ko) 리니어 압축기
KR102495256B1 (ko) 리니어 압축기
KR101981104B1 (ko) 리니어 압축기
US7150605B2 (en) Reciprocating compressor
KR101766245B1 (ko) 왕복동식 압축기
US11434887B2 (en) Linear compressor with suction guide and suction muffler
KR100690164B1 (ko) 리니어 압축기의 제어방법
US11566612B2 (en) Linear compressor
KR101981103B1 (ko) 리니어 압축기
KR20190038087A (ko) 리니어 압축기
KR101978964B1 (ko) 리니어 압축기
KR20030088533A (ko) 왕복동식 압축기의 이중 실린더장치
KR102002120B1 (ko) 리니어 압축기
JP2008511789A (ja) リニア圧縮機
KR20020064838A (ko) 리니어 압축기
KR102494949B1 (ko) 리니어 압축기
KR102399507B1 (ko) 모터 및 이를 포함하는 압축기
KR101990061B1 (ko) 리니어 압축기
KR102493863B1 (ko) 리니어 압축기