KR102378132B1 - 무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치 Download PDF

Info

Publication number
KR102378132B1
KR102378132B1 KR1020167027071A KR20167027071A KR102378132B1 KR 102378132 B1 KR102378132 B1 KR 102378132B1 KR 1020167027071 A KR1020167027071 A KR 1020167027071A KR 20167027071 A KR20167027071 A KR 20167027071A KR 102378132 B1 KR102378132 B1 KR 102378132B1
Authority
KR
South Korea
Prior art keywords
discovery signal
resource
transmission
signal
terminal
Prior art date
Application number
KR1020167027071A
Other languages
English (en)
Other versions
KR20160133474A (ko
Inventor
채혁진
서한별
이승민
김기준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20160133474A publication Critical patent/KR20160133474A/ko
Application granted granted Critical
Publication of KR102378132B1 publication Critical patent/KR102378132B1/ko

Links

Images

Classifications

    • H04W72/085
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 D2D(Device-to-Device, D2D) 단말이 디스커버리 신호를 전송하는 방법에 있어서, 하나 이상의 리소스 풀에서 리소스 풀을 선택하는 단계; 및 상기 선택된 리소스 풀의 자원을 사용하여 디스커버리 신호를 전송하는 단계를 포함하며, 상기 리소스 풀은 RSRP 측정 결과에 따라 선택되는, 디스커버리 신호 전송 방법이다.

Description

무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치{METHOD AND APPARATUS FOR DEVICE-TO-DEVICE USER EQUIPMENT TO TRANSMIT DISCOVERY SIGNAL IN WIRELESS COMMUNICATION SYSTEM}
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 장치 대 장치 통신에서 디스커버리 신호 전송 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
장치 대 장치(Device-to-Device; D2D) 통신이란 단말(User Equipment; UE)들 간에 직접적인 링크를 설정하여, 기지국(evolved NodeB; eNB)을 거치지 않고 단말 간에 음성, 데이터 등을 직접 주고 받는 통신 방식을 말한다. D2D 통신은 단말-대-단말(UE-to-UE) 통신, 피어-대-피어(Peer-to-Peer) 통신 등의 방식을 포함할 수 있다. 또한, D2D 통신 방식은 M2M(Machine-to-Machine) 통신, MTC(Machine Type Communication) 등에 응용될 수 있다.
D2D 통신은 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. 예를 들어, D2D 통신에 의하면 기존의 무선 통신 시스템과 달리 기지국을 거치지 않고 장치 간에 데이터를 주고 받기 때문에 네트워크의 과부하를 줄일 수 있게 된다. 또한, D2D 통신을 도입함으로써, 기지국의 절차 감소, D2D에 참여하는 장치들의 소비 전력 감소, 데이터 전송 속도 증가, 네트워크의 수용 능력 증가, 부하 분산, 셀 커버리지 확대 등의 효과를 기대할 수 있다.
본 발명은 WAN과 D2D 신호 전송간에 간섭의 영향을 고려한 신호 전송 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 D2D(Device-to-Device, D2D) 단말이 디스커버리 신호를 전송하는 방법에 있어서, 하나 이상의 리소스 풀에서 리소스 풀을 선택하는 단계; 및 상기 선택된 리소스 풀의 자원을 사용하여 디스커버리 신호를 전송하는 단계를 포함하며, 상기 리소스 풀은 RSRP 측정 결과에 따라 선택되는, 디스커버리 신호 전송 방법이다.
본 발명의 다른 일 실시예는, 무선통신시스템에서 디스커버리 신호를 전송하는 D2D(Device-to-Device) 단말 장치에 있어서, 수신 모듈; 및 프로세서를 포함하고, 상기 프로세서는, 하나 이상의 리소스 풀에서 리소스 풀을 선택하고, 상기 선택된 리소스 풀의 자원을 사용하여 디스커버리 신호를 전송하며, 상기 리소스 풀은 RSRP 측정 결과에 따라 선택되는, 단말 장치이다.
상기 본 발명의 실시예들은 다음 사항들의 전 일부를 포함할 수 있다.
상기 하나 이상의 리소스 풀 각각에는 RSRP 레인지가 설정되어 있을 수 있다.
상기 디스커버리 신호의 전송에는 오픈 루프 파워 콘트롤이 적용될 수 있다.
상기 디스커버리 신호의 전송 전력 결정에 사용되는 P 0α 는 상위계층시그널링에 의해 전달되며, 상기 P 0 는 최소 전송 전력 값, α 는 경로 감쇄 계수일 수 있다.
상기 α 로 가능한 값에는 0이 포함될 수 있다.
상기 디스커버리 신호의 전송 전력은 다음 수학식에 의해 결정되며,
Figure 112016094612058-pct00001
상기 수학식에서, 상기 P 0_D2D_Discovery 는 최소 전송 전력 값, PL 는 경로 감쇄, ΔD2D_Discovery 는 전력 부스팅 파라미터, α 는 경로 감쇄 계수일 수 있다.
상기 디스커버리 신호가 전송되는 자원 유닛의 크기는 상기 RSRP 측정 결과에 따라 변동될 수 있다.
상기 D2D 단말이 커버리지 밖(out of coverage) 단말인 경우, 상기 디스커버리 신호가 전송되는 자원 유닛의 크기는 네트워크 오퍼레이터에 의해 미리 설정된 것일 수 있다.
상기 하나 이상의 리소스 풀 각각에는 디스커버리 신호의 반복 횟수가 할당되어 있을 수 있다.
상기 반복 횟수는 리소스 풀의 주파수 영역에서의 크기에 따라 결정된 것일 수 있다.
상기 디스커버리 신호가 전송되는 서브프레임에서 물리상향링크제어채널 전송에 사용되는 전송 전력은, 디스커버리 신호가 전송되지 않는 서브프레임에서 물리상향링크제어채널 전송에 사용되는 전송 전력보다 클 수 있다.
상기 디스커버리 신호가 전송되는 서브프레임에서 물리상향링크제어채널 전송에 사용되는 전송 전력에 관련된 파라미터는 상위계층시그널링을 통해 전달될 수 있다.
본 발명의 실시예에 의하면 PUCCH 전송에 미치는 간섭의 영향을 최소화하면서 디스커버리 신호를 전송할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조를 나타내는 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5 내지 도 7은 본 발명의 실시예에 의한 디스커버리 신호 전송을 위한 자원 선택을 설명하기 위한 도면이다.
도 8은 송수신 장치의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다. 또한, 이하의 설명에서 '기지국' 이라 함은 스케줄링 수행 노드, 클러스터 헤더(cluster header) 등을 장치를 지칭하는 의미로써도 사용될 수 있다. 만약 기지국이나 릴레이도 단말이 전송하는 신호를 전송한다면, 일종의 단말로 간주할 수 있다.
이하에서 기술되는 셀의 명칭은 기지국(base station, eNB), 섹트(sector), 리모트라디오헤드(remote radio head, RRH), 릴레이(relay)등의 송수신 포인트에 적용되며, 또한 특정 송수신 포인트에서 구성 반송파(component carrier)를 구분하기 위한 포괄적인 용어로 사용되는 것일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
LTE/LTE-A 자원 구조/채널
도 1을 참조하여 무선 프레임의 구조에 대하여 설명한다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE/LTE-A 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 블록에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 일반 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
일반 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel) 에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 해프 프레임 (half frame)으로 구성되며, 각 해프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다. 하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 일반 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 개수(NDL)는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다. 하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Channel; PDSCH)이 할당되는 데이터 영역에 해당한다. 3GPP LTE/LTE-A 시스템에서 사용되는 하향링크 제어채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케듈링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH를 위해 필요한 CCE의 개수는 DCI의 크기와 코딩 레이트 등에 따라 달라질 수 있다. 예를 들어, PDCCH 전송에는 CCE 개수 1, 2, 4, 8(각각 PDCCH 포맷 0, 1, 2, 3에 대응)개 중 어느 하나가 사용될 수 있으며, DCI의 크기가 큰 경우 및/또는 채널 상태가 좋지 않아 낮은 코딩 레이트가 필요한 경우 상대적으로 많은 개수의 CCE가 하나의 PDCCH 전송을 위해 사용될 수 있다. 기지국은 단말에게 전송되는 DCI의 크기, 셀 대역폭, 하향링크 안테나 포트의 개수, PHICH 자원 양 등을 고려하여 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다. 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical Uplink Shared Channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
상향링크 전력제어
LTE/LTE-A 시스템에서는 상향링크 제어정보, 데이터 등의 원활한 복조를 위해 상향링크 전력제어가 적용되며, 이는 PUCCH 전력 제어, PUSCH 전력제어, 상향링크 SRS(sounding reference signal) 전력제어로 구분될 수 있다.
PUCCH 전력 제어는 PUCCH 상으로 전송되는 제어 정보의 복조가 충분히 낮은 에러율로 이루어지도록 하기 위해 경로 감쇄(Pathloss), 단말의 최대 전송 전력 등을 고려하여 결정된다.
구체적으로 셀 c의 서브프레임 i 에서 PUCCH 전력제어는 다음 수학식 1로 이루어질 수 있다.
Figure 112016094612058-pct00002
여기서, P CMAX,c(i) 는 단말에서의 최대 전송 전력을 의미하며, PUCCH 전력 제어 명령의 상한선이 된다.
P 0_PUCCH 는 기지국이 수신하기를 원하는 PUCCH 전송 전력값이다. 이 값은 단말 특정의 파라미터로써 상위 계층 시그널링에 의해 전달되며, 명목상(nominal) 전력값 P O_NOMINAL_PUCCHP O_UE_PUCCH 의 합으로 결정된다.
PL c 은 셀 c 에서의 경로감쇄(pahthloss)값으로써 단말이 추정한 값이다. 이 값은 하향링크 셀 특정 참조신호(Cell-specific Reference Signal, CRS)의 수신전력을 측정함으로써 단말이 추정 가능하다.
h(n CQI,n HARQ,n SR) 는 PUCCH 포맷에 종속적인 값으로써, n CQI 는 채널 품질 정보를 나타내는 비트의 수를, n HARQ 은 HARQ 비트의 수를, n SR 은 서브프레임 i 가 스케줄링 요청을 위해 설정된 것인 경우 1, 그렇지 않은 경우 0의 값을 갖는다. h(n CQI,n HARQ,n SR) 는 PUCCH 포맷에 종속적이다. 구체적으로 i) PUCCH 포맷 1, 1a, 1b의 경우 0, ii) PUCCH 포맷 1b에서 하나 이상의 서빙 셀을 사용하는 경우
Figure 112016094612058-pct00003
, iii) PUCCH 포맷 2, 2a, 2b에서 일반 순환전치가 사용되는 경우
Figure 112016094612058-pct00004
일 수 있다.
ΔF_PUCCH(F) 는 MCS를 고려하여 상위 계층으로부터 시그널링 되는 값이다. 이는 PUCCH 포맷에 따라 서브프레임 당 비트수 및 상이한 에러율이 요구에 따라 서로 다른 신호대잡음간섭비(Signal to Noise Interference Ratio, SINR)가 필요함을 반영하기 위한 값이다.
ΔTxD(F') 는 두 개의 안테나 포트를 이용하여 PUCCH를 전송하는 경우 상위 계층으로부터 시그널링 되는 전력 오프셋으로써, PUCCH 포맷에 종속적인 값이다.
g(i) 는 현재의 PUCCH 전력 제어 조절 상태 누적(accumulation)값으로써, PDCCH 상으로 전송되는 DCI 포맷에 포함된 전송전력제어(transmit power control) 명령 필드값에 대응되는 전력값 δ PUCCH 및 직전 서브프레임의 PUCCH 전력 제어 조절 상태 값인 g(i-1)에 의해 결정된다.
계속해서, PUCCH 전송이 수반되지 않는 경우의 PUSCH 전력 제어는 다음 수학식 2와 같이 결정될 수 있다.
Figure 112016094612058-pct00005
P CMAX,c(i) 는 단말에서의 최대 전송 전력을, M PUSCH, c(i) 은 RB의 수로 표현되는 PUSCH 전송 대역폭을 나타낸다.
P O_PUSCH, c(j) 는 기지국이 수신하기를 원하는 PUSCH 전송 전력 값을 의미한다. 이 값은 명목상(nominal) 전력값 P O_NOMINAL_PUCCHP O_UE_PUCCH 의 합으로 결정된다. 반 지속적 스케줄링의 경우 j=0, 동적 스케줄링의 경우 j=1, 랜덤 액세스 응답의 경우 j=2로 결정된다.
α c(jPL c 는 하향링크 경로감쇄이다. 여기서 PL c 는 단말이 추정한 값이며, α c(j) 는 상위 계층 시그널링에 의해 전달되는 경로감쇄 보상값이다. j가 0 또는 1인 경우 α c ∈ {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 이며, j가 1인 경우 α c(j)=1이다.
ΔTF,c(i) 는 상위 계층 시그널링으로 전달되는 값과 RE 당 비트수(Bit Per Resource Element, BPRE), CQI, PMI 등의 비트수 등을 이용하여 계산되는 값이다.
f c(i) 는 누적(accumulation)값으로써, PDCCH 상으로 전송되는 DCI 포맷에 포함된 전송전력제어(transmit power control, TPC) 명령 필드값에 대응되는 전력값 δ PUSCH , FDD, TDD 등 설정에 따른 값인 K PUSCH 및 직전 서브프레임까지의 누적값인 f c(i-1)에 의해 결정된다.
만약 PUSCH 전송에 PUCCH 전송이 수반되는 경우, PUSCH 전력 제어는 다음 수학식 3과 같다.
Figure 112016094612058-pct00006
Figure 112016094612058-pct00007
P CMAX,c(i) 에 선형적인 값(linear value)이며,
Figure 112016094612058-pct00008
는 앞서 수학식 3에 의해 결정된 PUCCH 전력 제어에 선형적인 값(linear value)이다. 나머지 파라미터들은 앞서 설명된 바와 같다.
D2D 단말의 동기 획득
이하에서는 상술한 설명 및 기존 LTE/LTE-A 시스템에 기초하여, D2D 통신에서 단말간 동기 획득에 대해 설명한다. OFDM 시스템에서는 시간/주파수 동기가 맞지 않을 경우 셀 간 간섭(Inter-Cell Interference)로 인해 OFDM 신호에서 서로 다른 단말 간에 멀티플렉싱이 불가능질 수 있다. 동기를 맞추기 위해 D2D 단말들이 직접 동기 신호를 송수신하여 모든 단말이 개별적으로 동기를 맞추는 것은 비효율적이다. 따라서, D2D와 같은 분산 노드 시스템에서는 특정 노드가 대표 동기 신호를 전송해주고 나머지 UE들이 이에 동기를 맞출 수 있다. 다시 말해, D2D 신호 송수신을 위해 일부 노드들이 (이때 노드는 eNB, UE, SRN(synchronization reference node 또는 synchronization source로 불릴 수도 있다) 일 수도 있다.) D2D 동기 신호(D2DSS, D2D Synchronization Signal)를 전송하고, 나머지 단말들이 이에 동기를 맞추어 신호를 송수신하는 방식이 사용될 수 있다.
D2D 동기신호에는 PD2DSS(Primary D2DSS), SD2DSS(Secondary D2DSS)가 있을 수 있다. PD2DSS는 소정 길이의 자도프 추 시퀀스(Zadoff-chu sequence) 또는 PSS와 유사/변형/반복된 구조 등일 수 있다. SD2DSS는 M-시퀀스 또는 SSS와 유사/변형/반복된 구조 등일 수 있다. 만약 단말들이 eNB로부터 동기를 맞출 경우, SRN은 eNB가 되며, D2DSS는 PSS/SSS가 된다. PD2DSCH(Physical D2D synchronization channel)는 D2D 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보(예를 들어, D2DSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL 구성, 리소스 풀 관련 정보, D2DSS에 관련된 애플리케이션의 종류 등)가 전송되는 (방송) 채널일 수 있다. PD2DSCH는 D2DSS와 동일한 서브프레임 상에서 또는 후행하는 서브프레임 상에서 전송될 수 있다.
SRN은 D2DSS, PD2DSCH(Physical D2D synchronization channel)를 전송하는 노드일 수 있다. D2DSS는 특정 시퀀스 형태일 수 있고, PD2DSCH는 특정 정보를 나타내는 시퀀스거나 사전에 정해진 채널 코딩을 거친 후의 코드 워드 형태일 수 있다. 여기서, SRN은 eNB 또는 특정 D2D 단말이 될 수 있다. 부분 네트워크 커버리지(partial network coverage) 또는 커버리지 바깥(out of network coverage)의 경우에는 단말이 SRN이 될 수 있으며, 인터 셀 디스커버리(intercell discovery)의 경우에도 인접셀 단말들이 타이밍을 알게 하기 위해서 단말들이 SRN으로부터 수신한 타이밍에 일정 오프셋을 더한 시점에서 단말이 D2DSS를 릴레이해 줄 수 있다. 즉, D2DSS는 다중 홉을 통해 릴레이될 수 있다. 만약, D2DSS를 릴레이한 단말들이 복수이거나, 주변에 복수의 클러스터가 있는 경우, D2DSS를 수신하는 단말은 여러 개의 D2DSS를 관찰할 수 있으며, 서로 다른 홉을 갖는 D2DSS를 수신할 수 있다.
디스커버리 신호의 전송과 PUCCH 전송
D2D 통신에서 단말간 발견을 위한 디스커버리 신호 전송은 다음 두가지 타입으로 분류될 수 있다. 타입 1은 디스커버리 신호 송신 자원 할당이 단말-특정(UE-specific)하지 않은 경우의 디스커버리 신호 전송이며, 타입 2는 디스커버리 신호 송신 자원 할당이 단말-특정인 경우의 신호 전송이다. 타입 1의 경우, 디스커버리 신호가 전송되는 자원 영역만 네트워크가 구성(configure)하고 단말이 그 자원 영역에서 자원을 결정(임의, 랜덤 또는 에너지 센싱 기반 등)하여 디스커버리 신호를 전송할 수 있다. 여기서, 디스커버리 신호가 전송되는 자원 영역은 PUCCH 자원 영역과 중첩되지 않을 수 있다. 보다 상세히, PUCCH 자원은 기존 레거시 단말들이 ACK/NACK 또는 CSI를 전송하는 자원이므로 디스커버리 신호 전송 자원 영역에서 제외될 수 있다. 그리고 PUCCH 전송에는 전력 제어가 적용될 수 있다. 따라서, 디스커버리 신호 전송시 인밴드 방사(inband emission) 등에 의해, PUCCH 전송이 심각한 간섭을 받을 수 있다. 따라서, 이하에서는 디스커버리 신호 전송과 PUCCH 전송 양자를 모두 보호할 수 있는 방법들에 대해 살펴본다. 이하의 설명은 디스커버리 신호와 PUCCH 전송과의 관계를 위주로 설명하지만 본 발명의 적용 범위가 반드시 이에 한정되는 것은 아니며, 디스커버리 신호 외의 다른 종류의 D2D 신호와 WAN 신호의 송신과의 관계에도 적용될 수 있다.
오픈 루프 전력 제어(open loop power control)
디스커버리 신호 전송 시 전송 전력 제어를 통해 PUCCH 전송을 보호해 줄 수 있다. 여기서 전송 전력 제어는 디스커버리 신호 전송의 특성 상 오픈 루프 전력 제어가 적절할 것(D2D 신호 타입에 따라 closed loop power control이 적용될 수도 있음)이다. 즉, 단말이 디스커버리 신호를 전송할 때 전송 전력은 다음 수학식 4에 의할 수 있다.
Figure 112016094612058-pct00009
상기 수학식에서, P 0_D2D_Discovery 는 최소 전송 전력 값, PL 는 경로 감쇄, ΔD2D_Discovery 는 전력 부스팅 파라미터(전력 오프셋, 전력 백오프 파라미터), α 는 경로 감쇄 계수(0=<α =<1, PUCCH 의 경우 1)이다. 여기서, P 0_D2D_Discovery , α 와 ΔD2D_Discovery 는 사전에 단말에게 시그널링 된 것 또는 미리 설정된 값일 수 있다. 즉, P 0_D2D_Discovery , α 는 상위계층시그널링(예를 들어, RRC signaling), 브로드캐스트 또는 물리계층 시그널링(시스템정보블록, PDCCH 또는 EPDCCH 등)을 통해 단말에게 시그널링된 것일 수 있다. 상기 전력 제어와 관련된 파라미터들 역시 위 예와 같은 방법으로 시그널링될 수 있다. 백오프 파라미터 ΔD2D_DiscoveryP 0_D2D_Discovery 가 만약 다른 셀룰러 채널의 값을 재사용할 경우 D2D 신호가 더 낮은(또는 더 높은) 전력으로 전송하도록 도입되는 오프셋이다. D2D 최대 전송 전력, P CMAX는 기존 P CMAX 외의 별도의 값이 설정될 수 있다.
위 파라미터 중 시그널링되지 않는 일부는, 특정 값으로 사전에 설정되어 있거나, 셀룰러 사용을 위해 시그널링된 것이 그대로 재사용되거나 또는 셀룰러 사용을 위해 시그널링된 것을 재사용하다가 D2D를 위한 별도의 시그널링이 있는 경우 그 시그널링된 값을 사용할 수 있다. 예를 들어 P 0_D2D_Discovery , α 는 기존 PUSCH 또는 PUCCH의 값이 사용되어 별도로 시그널링 되지 않고, ΔD2D_Discovery 가 D2D를 위해 시그널링 될 수 있다.
한편, 디스커버리 신호 전송 전력의 조절은 계단식 전송 전력 조절에 의할 수도 있다. 예를 들어, 기지국으로부터의 신호세기 (RSRP, RSRQ)가 사전에 설정된 임계값 이하인 경우에는 사전에 설정된 전송 전력 XdBm으로 송신하고, 임계 이상인 경우에는 YdBm으로 송신할 수 있다. 이때 Y는 X보다 작게 설정될 수 있다. 이러한 계단식 전송 전력설정방식은 두 단계로만 한정되는 것은 아니며, M개의 전송 전력 값을 설정하는 것으로 일반화될 수 있다. 이때 기지국으로부터의 신호세기에 대한 임계값과, 해당 임계 범위내에서 전송 전력은 사전에 설정된 값이거나, 기지국으로부터 단말에게 물리계층 혹은 상위계층 신호로 시그널링될 수 있다.
기지국으로부터 신호 세기에 따른 송신 자원의 결정
기지국의 신호 세기(RSRP 또는 RSRQ일 수 있다. 이외에도 기지국으로부터 수신 신호 강도에 관련된 값일 수도 있다)에 따라 디스커버리 신호의 전송하는 영역이 별도로 설정될 수 있다. 구체적으로, 디스커버리 전송을 위한 리소스 풀이 하나 이상 설정되어(configured) 있고, 하나 이상의 리소스 풀 각각에는 RSRP(또는 RSRQ 등 수신 신호 강도에 관련된 값) 레인지(range)가 설정되어 있을 수 있다. 이와 같이 구성함으로써, 특정 D2D 단말은 RSRP가 포함되는 레인지의 리소스 풀을 선택하고, 리소스 풀에서 디스커버리 신호 전송을 위한 자원(리소스 풀에서 랜덤하게 선택된 것일 수 있음)을 사용하여 디스커버리 신호를 전송할 수 있다. 즉, 타입 1 디스커버리가 설정된 단말은, 하나 이상의 리소스 풀에서 리소스 풀을 선택하고, 그 선택된 리소스 풀의 자원을 사용하여 디스커버리 신호를 전송할 수 있다. 이 때, 리소스 풀은 RSRP 측정 결과에 따라 선택되는 것이다. 도 5 및 도 6에는 이러한 예가 도시되어 있다. 도 5를 참조하면, 두 개의 리소스 풀이 디스커버리 신호를 위해 구성되어 있다. 그리고 이 두 개의 리소스 풀 각각에는 RSRP 레인지가 설정되어 있다. 예를 들어, 리소스 풀 1은 RSRP 레인지 -110 ~ -80을 위한 것이고, 리소스 풀 2는 RSRP 레인지 -80 ~ -60을 위한 것일 수 있다. 기지국으로부터 거리가 유사하여 RSRP가 유사한 단말들(예를 들어, UE group #1에 속한 단말들)은 동일한 리소스 풀의 자원을 사용하여 디스커버리 신호를 전송할 수 있다. 도 5에서는 리소스 풀이 TDM 방식으로 구성되어 있는 것으로 예시되었는데, 도 6과 같이 FDM 또는 도시되지는 않았지만 TDM+FDM 으로 다수 개의 리소스 풀이 구성되어 있을 수 있다.
이와 같은 구성은, 같은 반복 팩터(또는 동일한 유닛 크기)를 갖는 단말을 유사한 자원영역에 전송하게 하여 호핑 패턴(hopping pattern)의 설계를 단순화할 수 있게 해 준다. 또한, 상기 구성은 인밴드 방사를 고려하여, 근처에 있는 단말 또는 전송 전력이 유사한 단말이 같은 자원에서 (동시에) 전송하게 하여 인밴드 방사에 의한 성능 감쇄를 완화하게 해 준다. 일 예로써, 두 단말이 멀리 떨어져 있는데 수신 단말이 특정 단말 근처에 있으면 멀리 떨어진 단말의 신호는 근처 단말의 인밴드 방사에 의해 수신이 불가능할 수도 있다. 이 때, 가까이에 있는 단말들이 같은 자원에서 동시에 전송하도록 설정해 줌으로써 이러한 현상을 완화할 수 있을 것이다.
RSRP에 따라 리소스 풀을 구분하는 것을 확장하여, RSRP와 관계없이 전송 전력의 크기에 따라 전송 자원 영역을 구분할 수도 있다. 예를 들어 특정 그룹의 단말들이 높은 전송전력으로 디스커버리 신호를 송신할 수 있다면, 그 특정 그룹의 단말들은 시간 자원영역을 낮은 송신 전력 단말과 달리하는 것이다. 이러한 기지국의 신호 세기(또는 전송 전력)에 따른 디스커버리 신호 전송 자원영역(리소스 풀)은 사전에 설정되어 있거나, 네트워크에 의해(SIB, PDCCH/EPDCCH 등) 물리 계층 시그널링 또는 상위 계층 시그널링(RRC signaling)에 의해 전달될 수 있다. 예를 들어, 네트워크는 다수 개의 리소스 풀 구성과 각 리소스 풀의 전송 전력을 물리계층 시그널링 또는 상위계층 시그널링으로 단말에게 전달해 줄 수 있다. 단말은 타겟 디스커버리 레인지(커뮤니케이션 신호의 경우 타겟 커뮤니케이션 레인지)에 따라 리소스 풀을 선택하고, 선택된 리소스 풀에 설정되어 있는 전송 전력으로 디스커버리 신호를 전송할 수 있다.
상술한 바와 같은, RSRP 또는 전송전력에 따른 리소스 풀의 선택은 후술하는 각 실시예들과 함께 사용될 수 있다. 예를 들어, 리소스 풀 A에서는 전송 전력 P_A dBm으로 송신하고 반복 횟수를 N_A번으로 전송하고, 리소스 풀 B에서는 전송 전력 P_B dBm으로 송신하고, 반복횟수를 N_B번으로 전송할 수 있다. 이때 각 리소스 풀 별 반복횟수는 물리계층 또는 상위계층 신호로 네트웍에 의해 시그널링 될 수 있다. 각 자원 영역에 따른 반복횟수/유닛 크기는 사전에 설정 되어 있거나, 물리계층 또는 상위계층 신호로 네트웍이 단말에게 시그널링 할 수 있다. 이러한 구성을 통해, 서로 다른 반복횟수/유닛 크기를 가지는 단말들의 원활한 멀티플렉싱 동작과 수신 단말의 불필요한 블라인드 복호 동작을 방지할 수 있다. 만약 단말이 out-of-coverage에 있다고 판단될 경우 이러한 단말은 사전에 정해진 자원영역에서 사전에 정해진 반복횟수 및 사전에 정해진 전송 전력으로 D2D신호를 송신할 수 있다.
리소스 풀 별로 전송 전력 및/또는 반복횟수를 달리하는 것은 타겟 레인지의 단계마다 설정될 수 있다. 예를 들어 3단계 (short/medium/long)의 디스커버리 레인지가 설정되어 있을 경우 자원 영역을 3종류로 나누어 각 영역에서의 전송 전력 및/또는 반복횟수를 달리 설정하여 레인지를 구분할 수 있다. 각 단말은 애플리케이션 혹은 서비스의 타겟 레인지에 따라 자원을 선택하고, 해당 자원에서 설정된 전송 전력/반복횟수로 D2D신호를 전송하게 된다. D2D 커뮤니케이션의 경우에는 타겟 레인지에 따라 각 리소스 풀내에서 반복횟수가 사전에 정해지거나 상위계층 신호에 의해 구성(configure)될 수 있으며, 타겟 레인지에 따라 D2D신호 송신 단말은 반복횟수와 전송 전력을 설정하여 D2D 커뮤니케이션 패킷을 송신할 수 있다. 서로 다른 반복횟수를 가진 단말들간에 멀티플렉싱을 단순화 하기 위하여 반복횟수에 따라 전송 리소스 풀이 구분될 수 있다. 디스커버리에서와 마찬가지로 각 D2D 리소스 풀별 전송 전력과 반복횟수가 사전에 정해지거나 상위계층 신호에 의해 시그널링 될 수 있다. 이때 반복횟수는 해당 리소스 풀에서 최대 혹은 최소 혹은 평균 반복횟수 일 수 있다. D2D 커뮤니케이션과 마찬가지로 SA 풀 또한 타겟 레인지에 따라 전송 전력 그리고/또는 반복횟수가 사전에 정해져 있거나, 물리계층 혹은 상위계층 신호로 단말에게 시그널링 될 수 있다.
기지국으로부터 신호 세기에 따른 반복 횟수의 결정
기지국으로부터의 신호 세기(RSRP 등)에 따라 디스커버리 신호의 반복 횟수를 결정할 수 있다. 여기서 반복 횟수란 디스커버리 자원의 한 주기 내 반복횟수 또는, 어떤 미리 설정된 시간 이내의 최대 전송 가능한 횟수를 의미하는 것일 수도 있다. 예를 들어, RSRP가 일정 임계값 이상일 경우 디스커버리 신호의 반복 횟수를 M회로 설정하고 RSRP가 임계값 이하일 경우 디스커버리 신호의 반복횟수를 N회로 설정할 수 있다. 여기서, RSRP가 클수록(즉, 기지국으로부터 가까울수록) 디스커버리 신호의 송신 전력을 낮게 설정할 것이므로, M을 N보다 크게 설정하여 송신 전력에 의한 커버리지 손실 분을 반복 전송으로 보상해 줄 수 있다. 보다 일반화하여 기술하면, 다음 표 1과 같이 RSRP에 따라 디스커버리 신호의 반복 횟수가 미리 설정되어 있을 수 있다.
Figure 112016094612058-pct00010
이러한 기지국의 신호 세기(또는 전송 전력)에 따른 반복 횟수는 사전에 설정되어 있거나, 네트워크에 의해(SIB, PDCCH/EPDCCH 등) 물리 계층 시그널링 또는 상위 계층 시그널링(RRC signaling)에 의해 전달될 수 있다. 커버리지 밖 단말의 경우 네트워크 오퍼레이터가 사전에 설정한 값으로 동작할 수 있다. 표 1과 같은 설정이 단말에게 시그널링 될 경우 각 경계의 임계값과 각 영역의 반복횟수가 물리계층 또는 상위계층 시그널에 포함될 수 있다.
상술한 구성에 의해, PUCCH 전송을 보호하기 위해 오픈 루프 전력 제어 수행시 발생할 수 있는 문제(셀 가장자리 단말과 셀 중심부 단말의 디스커버리 성능이 차이날 수 있는 문제)를 해결할 수 있다.
기지국으로부터 신호 세기에 따른 디스커버리 유닛의 설정
상기 언급한 기지국의 신호의 세기에 따른 반복횟수의 설정 동작은 하나의 디스커버리 신호 유닛을 더 크게(또는 작게) 설정하는 것으로 구현될 수도 있다. 즉, 기지국으로부터 신호 세기에 따라 디스커버리 유닛의 크기를 설정하는 것이다. 예를 들어 기지국의 신호 세기가 P이상인 경우에는 (2RB x 2SF)을 하나의 디스커버리 신호 유닛으로 설정하고, P미만인 경우에는 (2RB x 1SF)을 하나의 디스커버리 신호 유닛으로 설정할 수 있다. 하나의 디스커버리 신호 유닛의 크기는 시간영역에서 SF수 및 주파수 영역에서 RB의 개수로 정의될 수 있다. RSRP에 따른 디스커버리 신호 유닛 크기는 사전에 설정되어 있거나, 네트워크에 의해(SIB, PDCCH/EPDCCH 등) 물리 계층 시그널링 또는 상위 계층 시그널링(RRC signaling)에 의해 전달될 수 있다. 커버리지 밖 단말의 경우 네트워크 오퍼레이터가 사전에 설정한 값으로 동작할 수 있다.
리소스 풀에서 반복횟수(또는 유닛 크기)는 해당 리소스 풀의 주파수(및/또는 시간) 자원 크기 또는 시스템 대역폭에 의해 결정될 수도 있다. 예를 들어 시스템 대역폭이 일정 RB 이상인 경우에는 반복횟수(또는 유닛 크기)를 A로 설정하고, 일정 RB 이하인 경우에는 반복횟수(또는 유닛 크기)를 B로 설정할 수 있다. 이 방식은 주파수 자원 크기가 작은 경우에는 주파수(및/또는 시간) 다이버시티를 충분히 얻을 수 없기 때문에 애초에 반복횟수를 줄여서 더 많은 단말의 D2D신호가 멀티플렉싱되게 하거나, 반복에 의한 간섭을 줄이기 위함이다. 반면, 리소스 풀 크기 또는 시스템 대역폭이 일정 이상인 경우에는 자원이 충분하여 충돌(collision)이 덜 발생할 것으로 예상이 되므로, 더 넓은 D2D 레인지를 확보 하기 위하여 더 많은 반복을 허용할 수 있다. 일반화하면, 리소스 풀 크기 (또는 시스템 대역폭)에 따른 반복횟수(유닛 크기)는 임의의 단계로 사전에 정해질 수 있다. 일례로 D2D 리소스 풀의 주파수 크기(또는 시스템 대역폭 크기)가 N단계로 나뉘어지고, 각 단계별 반복횟수(또는 유닛 크기)가 사전에 정해질 수 있다. 다른 방식으로 D2D 신호의 유닛 크기(PRB 크기) 또는 정보 비트 크기에 따라서 반복횟수가 결정될 수 있다. 일례로 유닛 크기가 A PRB 페어인 경우에는 반복횟수가 a이고, 유닛 크기가 B PRB 페어인 경우에는 반복횟수가 b로 설정될 수 있다. 다른 일례로 정보 비트 크기가 일정 이상인 경우에는 반복횟수가 c로 결정되고 이하인 경우에는 d로 설정될 수 있다. 이 방식은 D2D 신호의 유닛 크기가 작게 설정되었을 때 일정 코딩 레이트를 확보해주거나, 에너지 이득을 얻기 위하여 반복횟수를 늘려서 이를 보상해 주기 위함이다. 만약, 유닛 크기가 일정 이상으로 설정 되었을때는 충분히 코딩 이득을 얻을 수 있기 때문에 반복을 없게 설정하거나 줄여서 불필요한 자원의 낭비를 막을 수 있다. D2D 신호의 유닛 크기가 고정된 경우에 정보 비트 크기가 너무 크게 되면 코딩 레이트를 충분히 확보할 수 없어서 충분한 D2D 커버리지를 확보할 수 없게 된다. 이 경우 에너지 이득을 얻거나, 유효 코딩 레이트를 낮추어 주기 위해 반복횟수를 늘릴 수 있다. 이러한 자원 크기(또는 시스템 대역폭), 또는 D2D 신호 유닛 크기나 정보 비트 크기에 따른 반복횟수(또는 유닛 크기)의 설정은 SA(Scheduling Assignment), 타입 1 디스커버리, 타입 2 디스커버리 각각 별도로 설정될 수 있으며, 일부는 네트워크에 의해 시그널링 받을 값을 사용할 수 도 있다. 예를 들어 타입 1 디스커버리와 타입 2 디스커버리가 항상 네트워크 내에서만 동작한다고 가정하면, 이 두 D2D 신호에 대한 리소스 풀별 반복횟수(또는 유닛 크기)는 사전에 정해져 있지 않고 항상 네트워크에 의해 구성된 값을 사용할 수 있다. 하지만 SA의 경우에는 커버리지 밖(out of coverage)에서 D2D 커뮤니케이션 패킷을 전송하는 경우 미리 설정된된 반복횟수(또는 유닛 크기)가 필요할 수 있으며, 이때 시스템 대역폭에 의해 사전에 설정된 반복횟수(또는 유닛 크기)를 사용할 수 있다. 한편 미리 설정된 반복횟수(또는 유닛 크기)는 리소스 풀의 크기(또는 시스템 대역폭)에 따라 사전에 정해져 있고, 네트워크가 반복 횟수(또는 유닛 크기)를 상위계층 신호로 지시하는 경우에는 지시된 반복횟수(또는 유닛 크기)로 설정하여 동작할 수 있다. 또는 부분(partial) 네트워크 커버리지에서 PD2DSCH 또는 상위계층(또는 PD2DSCH이외의 다른 물리계층) D2D신호 등으로 다른 단말에 의해 반복횟수를 지시 받는 경우 해당 반복횟수(또는 유닛 크기)를 사용하도록 규칙이 정해질 수 있다.
상술한 구성에 의해, PUCCH 전송을 보호하기 위해 오픈 루프 전력 제어 수행시 발생할 수 있는 문제(셀 가장자리 단말과 셀 중심부 단말의 디스커버리 성능이 차이날 수 있는 문제)를 해결할 수 있다.
주파수 자원 영역의 제한
디스커버리 신호 전송에 있어서, PUCCH 전송에 간섭을 줄이기 위한 또 다른 방법으로써, 주파수 자원 영역을 제한할 수 있다. 기지국에 가까이 있는 단말이 PUCCH 자원 근처의 자원을 사용하여 디스커버리 신호를 전송하는 경우, 그 신호의 인밴드 방사(특히 EVM requirement에 따라 결정되는 EVM-shoulder)으로 인하여 PUCCH 영역에 심각한 간섭을 일으킬 수 있다. 도 7을 참조하면, 원으로 표시한 영역이 PUCCH 영역에 중첩될 경우 (useful 신호 옆의 영역이 PUCCH 자원에 중첩) PUCCH로 심각한 간섭을 일으킬 수 있다. 따라서, D2D 디스커버리 신호 전송에 PUCCH 자원 근처의 자원이 사용될 수 없도록, 디스커버리 신호를 위한 자원 영역을 주파수 축 상에서 제한할 수 있다. 이러한 주파수 자원 영역의 전송 제한 (또는 사용 가능한 주파수 영역)은 기지국의 신호 세기(RSRP 또는 RSRQ)에 따라 선택적으로 적용될 수 있으며, 이에 필요한 기지국 신호 세기의 임계값 및 제한되는 전송영역(또는 사용 가능한 주파수 영역)은 사전에 상위 레이어 신호(예를 들어, RRC) 또는 물리계층 신호 (예를 들어, ((E)PDCCH 또는 SIB)로 단말에게 지시될 수 있다.
구체적인 예로써, 도 6을 참조하면, RSRP가 미리 설정된 값 이상인 단말(UE group #1)들은 리소스 풀 2를 사용하지 못하는 것으로 제한될 수 있다. 이는, 앞서 RSRP 별로 리소스 풀이 각각 설정되는 실시예에서, 특히, 리소스 풀과 RSRP와의 매핑 관계에 대해 정의하는 것으로 이해될 수 있다. 즉, 리소스 풀을 RSRP 별로 설정하되, RSRP가 클수록 PUCCH 영역에서 멀어지도록 설정할 수 있다. 즉 도 6에서, 단말 그룹 #1과 단말 그룹 #2의 자원 사용영역이 주파수 상에서 분리되도록 설정되는 것이다. 사전에 기지국으로부터의 수신 신호 세기(RSRP 또는 RSRQ)에 따른 사용 가능한 주파수 영역은 사전에 설정되어 있거나, 상위 레이어 신호 (예를 들어, RRC) 또는 물리계층 신호 (예를 들어, ((E)PDCCH 또는 SIB)로 단말에게 지시될 수 있다.
상기 언급한 기지국의 신호 세기에 따른 주파수 자원영역의 구분 방법은 단말의 전송 전력에 따른 주파수 자원의 구분으로 구현될 수도 있다. 일례로 전송 전력이 a dBm이상(혹은 최대 송신 전력이 XdBm)인 단말은 도 6의 단말 그룹 1의 자원 영역에서 D2D신호를 송신하고, a dBm이하(혹은 최대 송신 전력이 YdBm)인 단말은 단말 그룹 2의 자원 영역을 사용할 수 있다. 이러한 동작을 위해서 각 자원 영역별 송신 전력 또는 송신 전력의 범위 또는 송신 전력의 범위를 나타내기 위한 송신 전력의 대표값이 사전에 정해져 있거나 물리계층 또는 상위계층 신호로 단말에게 시그널링 될 수 있다.
한편 이러한 주파수 영역의 분리는 명시적으로 자원영역이 변경되는 것이 아니라 전송 확률의 변화에 의해서도 구현 가능하다. 예를 들어 기지국으로부터의 수신 신호 세기가 일정 임계 이상인 단말은 PUCCH영역 근처에서는 디스커버리 신호의 전송 확률을 평균 또는 사전에 설정된 값보다 일정 오프셋 (>0)을 감소하여 설정할 수 있다. 이렇게 PUCCH 자원의 보호를 위해서 주파수 영역별 전송확률을 다르게 설정하여 기지국 근처에 있는 단말은 PUCCH 자원 근처의 RB에서는 거의 신호 전송을 하지 않도록 할 수 있다. 주파수 영역에서 RB 별 전송 확률은 기지국의 수신 신호 세기의 함수일 수 있으며, 기지국의 신호 수신 세기가 클수록 PUCCH 자원 근처 RB의 전송 확률을 낮아지고, 기지국의 신호 수신 세기가 작을수록 PUCCH 자원 근처 RB의 전송 확률을 커질 수 있을 것이다. 이러한 주파수 영역에서 RB별 전송 확률 조절은 평균 전송 확률 대비 오프셋을 적용함으로써 구현될 수도 있다. 이때 오프셋 값은 기지국의 신호세기가 클수록 PUCCH 자원 근처의 RB에서는 커지고, 기지국의 신호세기가 작을수록 PUCCH 자원 근처의 RB에서는 오프셋 값이 작아지도록 설정될 수 있을 것이다. 다른 예로써, 전송 확률에 대한 특정 오프셋을 사전에 단말에게 설정 (미리 설정하거나, RRC와 같은 상위계층 신호로 시그널링)하고 이 오프셋 적용 여부를 기지국으로부터의 수신 신호 세기에 따라 설정할 수 있을 것이다.
주파수 위치에 따라 전송 전력을 다르게 설정
상술한 주파수 자원 영역의 제한을 완화한 예시로써, RSRP가 임계값 이상이더라도 PUCCH 자원 근처의 자원을 사용하도록 허용하되, 디스커버리 전송 전력을 제한할 수도 있다. 즉, 도 6에서 단말 그룹 #1의 단말들도 리소스 풀 2를 선택할 수 있도록 하되, 리소스 풀 2에서 디스커버리 신호를 전송하는 경우 전송 전력을 제한하는 것이다. 이 때, 전송 전력을 제한하는 것은 최대 전송 전력을 제한할 수도 있지만, 최소 전송전력( P 0_D2D_Discovery )을 주파수 자원별로 다르게 설정할 수도 있다. 예를 들어 도 6의 단말 그룹 #2의 단말들은 PUCCH 자원 영역 근처에서는 일정 임계 이하의 전력으로만 전송하도록 설정되거나 PUCCH영역 근처에서는 P 0_D2D_Discovery 가 다른 영역보다 더 작게 설정될 수 있다. 주파수 영역별 최대 전송전력은 기지국으로부터의 수신 신호 세기에 따른 함수로 정의 될 수 있다. 예를 들어, 기지국으로부터의 수신 신호 세기가 클수록 PUCCH영역 근처에서의 최대 전송 전력은 작게 설정되고, 기지국으로부터의 수신 신호세기가 작을수록 PUCCH영역 근처에서의 최대 전송 전력은 크게 설정될 수 있다.
PUCCH 전력 제어
상술한 설명들은, 디스커버리 신호 전송과 PUCCH 전송의 관계에서, 특히 디스커버리 신호에 대한 제약(예를 들어, 리소스 풀의 선택, 주파수 영역의 결정, 전송 전력 제어 등)에 대한 방법들이다. 이와 달리, PUCCH 전력 제어의 측면에서 간섭 완화라는 목적을 달성할 수도 있다. 즉, 디스커버리 신호가 전송될 것으로 예상되는 영역에서는 PUCCH 전력 제어를 디스커버리 신호 전송과 관계 없는 서브프레임에서의 전력 제어와 달리 설정하는 것이다. 다시 말해, 디스커버리 신호가 전송되는 서브프레임에서 PUCCH 전송에 사용되는 전송 전력은, 디스커버리 신호가 전송되지 않는 서브프레임에서 PUCCH 전송에 사용되는 전송 전력보다 크게 설정할 수 있다.
구체적으로, 본 발명의 실시예에 의한 PUCCH 전력 제어는 다음 수학식 5에 의해 수행될 수 있다.
Figure 112016094612058-pct00011
P O_PUCCH값은 상위 레이어로 지시 되는 값이다. 본 발명에서는 디스커버리 신호가 전송되는 SF에서는 다른 전송 전력을 사용하도록 별도의 P O_PUCCH를 상위 레이어 신호(예를 들어, RRC 시그널링)로 지시될 수 있다. 여기서 P O_PUCCHP UE_PUCCH P O_NOMINAL_PUCCH 로 분리 될 수 있는데 디스커버리 신호가 전송되는 서브프레임에서 PUCCH를 전송하는 단말들에게만 전력을 부스팅하도록 P UE_PUCCH만 별도의 상위 레이어 신호(예를 들어, RRC 시그널링)로 지시될 수 있다. 또는 다른 구현방식으로 기존 P UE_PUCCH에 소정의 오프셋을 적용되고 이 오프셋이 상위 레이어 신호로 지시될 수 있다. 상기 수학식에서, 기타 각 변수들에 대한 설명은 앞서 기술된 상향링크 전력 제어 부분에 기술되어 있는 것으로 대체한다.
이와 같이 PUCCH 전송 전력을 부스팅함으로써, 디스커버리 신호가 전송되는 경우의 특수성을 반영할 수 있다. 보다 상세히, 디스커버리 신호가 RRC 유휴 모드 단말이 전송할 수 있다면, 디스커버리 신호를 전송하는 단말은 TA(timing advance)를 알 수 없어서 기존 상향링크신호의 전송 타이밍과 다른 타이밍에 신호를 송신하게 된다. 이는 기지국에서 기존 상향링크신호와의 직교성을 잃게 만드는 요인일 수 있으며 이에 따라 디스커버리 신호가 전송되는 서브프레임에서는 ICI로 인해 높은 간섭이 관찰될 가능성이 있다. 따라서 이러한 경우 PUCCH 전송 전력을 부스팅시킴으로써, 안정적 PUCCH 전송을 구현할 수 있다.
SRS 전력 제어
같은 맥락에서 SRS의 전력 또한 디스커버리 신호가 전송되는 서브프레임에서는 기존 동작보다 부스팅될 수 있다. 디스커버리가 전송되는 서브프레임에서 SRS가 전송될 경우 다른 서브프레임보다 높은 간섭을 겪을수 있으므로, 해당 서브프레임에서는 높은 전력으로 SRS를 송신하도록 네트워크가 지시할 수 있다. 기존 SRS 전력 제어는 다음 수학식 6과 같다.
Figure 112016094612058-pct00012
P O_PUSCH,c , α c 는 상위 레이어에 의해 지시되는 값이다. 디스커버리 신호가 전송되는 서브프레임에서 SRS를 전송할 경우 디스커버리 신호가 전송되지 않은 서브프레임에서와 다른 값이 네트워크에 의해 지시될 수 있다. 이 값은 상위 레이어 신호(예를 들어, RRC 시그널링)에 의해 단말에게 지시될 수 있다. 여기서 P O_PUSCH,c P UE_PUCCH,c , P O_NOMINAL_PUCCH,C 으로 분리되어 지시되는데, 디스커버리 신호가 전송되는 서브프레임에서 SRS를 전송하는 단말에게만 SRS 전력 부스팅을 적용하기 위하여, P UE_PUCCH, c 만 별도의 상위 레이어 신호로 단말에게 시그널링 될 수 있다. 또한 디스커버리 신호가 전송되는 서브프레임에서 SRS를 전송할 경우 P SRS_OFFSET, c 도 별도의 상위 레이어 신호(예를 들어, RRC 시그널링)로 지시될 수 있다.
상술한 PUCCH, SRS 전력 제어 기법은 디스커버리 신호가 전송되는 것을 가정하고 전송 전력을 추가로 인가하는 것인데, 만약 디스커버리 신호가 거의 전송되지 않는 경우에는 불필요한 동작이거나, 오히려 PUCCH, SRS의 전력 부스팅에 의하여 디스커버리 신호 수신 품질이 심각하게 저하될 수 있다. 이러한 문제점을 보완하기 위하여 PUCCH 및/또는 SRS 전력 부스팅 동작은 디스커버리 신호가 일정 임계값 이상으로 관찰되는 경우에만 선택적으로 적용할 수 있다. 예를 들어 PUCCH나 SRS를 전송하는 단말은 전송 전에 일정 윈도우 동안 디스커버리 신호를 관찰(예를 들면 디스커버리 신호가 전송되는 영역에서 (또는 PUSCH영역에서) 에너지 센싱을 수행)하고, 일정 임계 이상의 신호 또는 수신전력이 관찰되는 경우에만 선택적으로 수행되도록 사전에 정해질 수 있다.
이상에서 설명된, D2D 신호(예를 들어, 디스커버리 신호)와 PUCCH 신호 상호간에 간섭을 줄이기 위한 방법들은 하나 이상이 조합되어 사용될 수 있다. 예를 들어, 기지국 신호 세기에 따라 디스커버리 리소스 풀을 선택하되, 디스커버리 신호가 전송되는 서브프레임에서 PUCCH 전송시 전송 전력은 디스커버리 신호가 전송되지 않는 서브프레임에서의 전송 전력보다 크게 설정될 수 있다. 다른 예로써, 기지국의 신호 세기에 따른 전력 제어와 자원 구분 방식(RSRP 별 리소스 풀 설정, 주파수 자원 영역의 제한 등)이 함께 사용될 수 있다.
한편 상기 언급한 방식은 CP 길이의 설정 유무에 따라 선택적으로 사용될 수 있다. 만약 셀룰러 신호와 디스커버리 신호가 같은 CP를 설정한 경우에는 인밴드 방사에 의한 영향을 고려하지만, 서로 다른 CP를 설정한 경우에는 인밴드 방사뿐만 아니라 직교성이 유지 되지 않음에 따른 ICI도 고려해야 한다. 따라서 WAN(wide_area network, 예를 들어, 셀룰러) 신호와 디스커버리 신호의 CP 길이가 같은 경우에는 상술한 주파수 사용 영역의 제한만 사용되지만 다른 경우에는 상술한 주파수 사용 영역의 제한과 PUCCH 전력 제어, SRS 전력 제어가 함께 사용될 수 있다.
상기 제안된 방식은 디스커버리 신호의 전송에만 한정되는 것은 아니며 D2D 커뮤니케이션 신호나 커뮤니케이션을 위한 스케줄링 할당, 혹은 D2D 동기 신호가 전송될 때에 제안된 방법 중 일부가 선택적으로 적용될 수 있다. 여기서 스케줄링 할당이란 D2D 커뮤니케이션 패킷송신전에 D2D 커뮤니케이션 패킷의 전송 자원 위치, ID등을 포함한 제어신호를 지칭한다. 또한 전력 제어부분은 D2D전송 신호가 달라질 경우 같은 전력 제어 파라미터가 사용되거나, 신호마다 다른 별도의 파라미터가 (예를 들어 P0, alpha, power 오프셋 등등) 설정/시그널링될 수 있다.
상기 제안한 방식은 D2D신호에 따라 다른 방식이 적용될 수 있다. 예를 들어 D2D 커뮤니케이션 신호중 기지국의 제어하에 동작하는 모드의 전송에는 폐루프(losed-loop) 전력 제어를 사용하겠지만, D2D 커뮤니케이션 신호중 기지국의 개별적 제어가 없는 상황에서 동작하는 모드의 경우에는 상기 제안한 방식 중 일부가 적용될 수 있을 것이다.
본 발명의 실시예에 의한 장치 구성
도 8은 본 발명의 실시 형태에 따른 전송포인트 장치 및 단말 장치의 구성을 도시한 도면이다.
도 8을 참조하여 본 발명에 따른 전송포인트 장치(10)는, 수신모듈(11), 전송모듈(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 복수개의 안테나(15)는 MIMO 송수신을 지원하는 전송포인트 장치를 의미한다. 수신모듈(11)은 단말로부터의 상향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(12)은 단말로의 하향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 전송포인트 장치(10) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 전송포인트 장치(10)의 프로세서(13)는, 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
전송포인트 장치(10)의 프로세서(13)는 그 외에도 전송포인트 장치(10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
계속해서 도 8을 참조하면 본 발명에 따른 단말 장치(20)는, 수신모듈(21), 전송모듈(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 복수개의 안테나(25)는 MIMO 송수신을 지원하는 단말 장치를 의미한다. 수신모듈(21)은 기지국으로부터의 하향링크 상의 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송모듈(22)은 기지국으로의 상향링크 상의 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다.
본 발명의 일 실시예에 따른 단말 장치(20)의 프로세서(23)는 앞서 설명된 각 실시예들에서 필요한 사항들을 처리할 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 전송포인트 장치 및 단말 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
또한, 도 8에 대한 설명에 있어서 전송포인트 장치(10)에 대한 설명은 하향링크 전송 주체 또는 상향링크 수신 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있고, 단말 장치(20)에 대한 설명은 하향링크 수신 주체 또는 상향링크 전송 주체로서의 중계기 장치에 대해서도 동일하게 적용될 수 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (13)

  1. 무선통신시스템에서 단말 간 통신 동작을 수행하는 단말이 디스커버리 신호를 전송하는 방법에 있어서,
    상기 단말이 네트워크 신호에 대한 RSRP (Reference Signal Received Power) 측정결과에 기초하여 네트워크가 설정한 복수의 리소스 풀에서 리소스 풀을 선택하되, 상기 복수의 리소스 풀에 설정된 RSRP 범위는 상기 네트워크로부터 RRC 시그널링을 통해 시그널링되며;
    상기 단말이 호핑 패턴을 적용하여, 선택된 리소스 풀에서 디스커버리 신호를 반복적으로 전송할 자원을 결정; 및
    상기 단말이 상기 자원을 사용하여 디스커버리 신호를 반복적으로 전송;
    을 포함하는, 디스커버리 신호 전송 방법.
  2. 삭제
  3. 제1항에 있어서,
    상기 디스커버리 신호의 전송에는 오픈 루프 파워 콘트롤이 적용되는, 디스커버리 신호 전송 방법.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제1항에 있어서,
    상기 디스커버리 신호가 전송되는 자원 유닛의 크기는 상기 RSRP 측정 결과에 따라 변동되는, 디스커버리 신호 전송 방법.
  8. 제7항에 있어서,
    상기 단말 간 통신 동작을 수행하는 단말이 커버리지 밖(out of coverage) 단말인 경우, 상기 디스커버리 신호가 전송되는 자원 유닛의 크기는 네트워크 오퍼레이터에 의해 미리 설정된 것인, 디스커버리 신호 전송 방법.
  9. 제1항에 있어서,
    상기 복수의 리소스 풀 각각에는 디스커버리 신호의 반복 횟수가 할당되어 있는, 디스커버리 신호 전송 방법.
  10. 제9항에 있어서,
    상기 반복 횟수는 리소스 풀의 주파수 영역에서의 크기에 따라 결정된 것인, 디스커버리 신호 전송 방법.
  11. 제1항에 있어서,
    상기 디스커버리 신호가 전송되는 서브프레임에서 물리상향링크제어채널 전송에 사용되는 전송 전력은, 디스커버리 신호가 전송되지 않는 서브프레임에서 물리상향링크제어채널 전송에 사용되는 전송 전력보다 큰, 디스커버리 신호 전송 방법.
  12. 제11항에 있어서,
    상기 디스커버리 신호가 전송되는 서브프레임에서 물리상향링크제어채널 전송에 사용되는 전송 전력에 관련된 파라미터는 상위계층시그널링을 통해 전달되는, 디스커버리 신호 전송 방법.
  13. 무선통신시스템에서 디스커버리 신호를 전송하는 D2D(Device-to-Device) 단말 장치에 있어서,
    수신 모듈; 및
    프로세서를 포함하고,
    상기 프로세서는, 네트워크 신호에 대한 RSRP (Reference Signal Received Power) 측정결과에 기초하여 네트워크가 설정한 복수의 리소스 풀에서 리소스 풀을 선택하되, 상기 복수의 리소스 풀에 설정된 RSRP 범위는 상기 네트워크로부터 RRC 시그널링을 통해 시그널링되며;
    호핑 패턴을 적용하여, 선택된 리소스 풀에서 디스커버리 신호를 반복적으로 전송할 자원을 결정하고,
    상기 단말이 상기 자원을 사용하여 디스커버리 신호를 반복적으로 전송하는, 단말 장치.
KR1020167027071A 2014-03-11 2015-03-11 무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치 KR102378132B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201461950842P 2014-03-11 2014-03-11
US61/950,842 2014-03-11
US201461994109P 2014-05-15 2014-05-15
US61/994,109 2014-05-15
US201462031155P 2014-07-30 2014-07-30
US62/031,155 2014-07-30
US201462033639P 2014-08-05 2014-08-05
US62/033,639 2014-08-05
PCT/KR2015/002347 WO2015137720A1 (ko) 2014-03-11 2015-03-11 무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20160133474A KR20160133474A (ko) 2016-11-22
KR102378132B1 true KR102378132B1 (ko) 2022-03-24

Family

ID=54072084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167027071A KR102378132B1 (ko) 2014-03-11 2015-03-11 무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치

Country Status (6)

Country Link
US (2) US10897787B2 (ko)
EP (1) EP3119012B1 (ko)
JP (1) JP6702634B2 (ko)
KR (1) KR102378132B1 (ko)
CN (1) CN106105056B (ko)
WO (1) WO2015137720A1 (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102191800B1 (ko) * 2014-03-28 2020-12-17 삼성전자주식회사 안테나 스위칭 방법
WO2015170937A1 (en) * 2014-05-09 2015-11-12 Samsung Electronics Co., Ltd. Method and apparatus for performing communication by d2d communication terminal
JP2017523666A (ja) * 2014-06-27 2017-08-17 シャープ株式会社 デバイス・ツー・デバイス通信のためのリソースプール・アクセス
US10306571B2 (en) * 2014-07-29 2019-05-28 Sharp Kabushiki Kaisha Terminal device, base station device, communication method, and integrated circuit
US10225810B2 (en) * 2014-08-06 2019-03-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving synchronization signal in device-to-device communication system
CN105338639A (zh) * 2014-08-08 2016-02-17 中兴通讯股份有限公司 一种对设备到设备资源池测量及上报的方法及设备
EP3198956B1 (en) 2014-09-25 2022-04-06 Samsung Electronics Co., Ltd. Synchronization procedure and resource control method and apparatus for communication in d2d system
US10470162B2 (en) * 2014-10-14 2019-11-05 Lg Electronics Inc. Resource pool selecting method performed by terminal in wireless communication system and terminal using the method
CN107431902B (zh) * 2015-02-06 2021-02-19 三星电子株式会社 在支持设备到设备方案的通信系统中发送和接收信号的方法和装置
EP4075901A1 (en) * 2015-05-15 2022-10-19 Kyocera Corporation Base station and radio terminal
WO2017032701A1 (en) * 2015-08-24 2017-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Method of adapting radio resources, device and computer program
US20190075547A1 (en) * 2015-11-04 2019-03-07 Lg Electronics Inc. Method for transmitting data of v2x terminal in wireless communication system and device
JP6949153B2 (ja) * 2016-02-05 2021-10-13 華為技術有限公司Huawei Technologies Co.,Ltd. 制御シグナリング送信の方法及びデバイス
WO2017133013A1 (zh) 2016-02-05 2017-08-10 华为技术有限公司 一种传输控制信令的方法及设备
WO2017146448A1 (ko) * 2016-02-25 2017-08-31 엘지전자 주식회사 측정을 수행하는 방법 및 이를 이용한 기기
CN107295496B (zh) * 2016-04-13 2019-12-20 普天信息技术有限公司 载波间终端直通d2d发现资源冲突的处理方法和装置
WO2017193350A1 (zh) * 2016-05-12 2017-11-16 华为技术有限公司 信息传输的方法及用户设备
WO2017222351A1 (ko) * 2016-06-24 2017-12-28 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
CN107666681B (zh) * 2016-07-29 2022-08-26 北京三星通信技术研究有限公司 传输数据的方法及设备
WO2018058440A1 (zh) * 2016-09-29 2018-04-05 广东欧珀移动通信有限公司 传输信息的方法、网络设备和终端设备
JP2018191130A (ja) * 2017-05-02 2018-11-29 ソニー株式会社 通信装置及び通信方法
CN110786041A (zh) * 2017-07-03 2020-02-11 株式会社Ntt都科摩 用户装置以及发送方法
WO2019022443A1 (ko) * 2017-07-28 2019-01-31 엘지전자 주식회사 무선통신시스템에서 단말이 자원을 선택하고 신호를 전송하는 방법 및 장치
CN111226493B (zh) 2017-10-18 2022-07-26 联想(北京)有限公司 确定发现公告池
US11284370B2 (en) 2017-11-08 2022-03-22 Lg Electronics Inc. Method by which terminal transmits ranging response signal in wireless communication system, and terminal using method
CN110740511A (zh) * 2018-07-18 2020-01-31 普天信息技术有限公司 非正交多址接入资源池的配置方法和系统
KR102165806B1 (ko) * 2018-08-16 2020-10-14 에스케이텔레콤 주식회사 전송장치 및 전송장치의 동작 방법
CN110944394B (zh) * 2018-09-25 2023-04-21 华硕电脑股份有限公司 无线通信中导出用于侧链路传送的反馈资源的方法和设备
JP7195406B2 (ja) * 2018-10-12 2022-12-23 オッポ広東移動通信有限公司 情報を繰り返し伝送する方法、端末機器及びネットワーク機器
US11018707B2 (en) 2019-03-29 2021-05-25 Qualcomm Incorporated Adaptive gain control for sidelink communications
US11882554B2 (en) 2019-06-27 2024-01-23 Qualcomm Incorporated Opportunistic transmission for sidelink communications
CN110856230B (zh) * 2019-11-13 2021-06-04 维沃移动通信有限公司 一种网络切换方法及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112194A1 (en) 2012-10-19 2014-04-24 Samsung Electronics Co., Ltd System and method for ad-hoc/network assisted device discovery protocol for device to device communications

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873662B2 (en) * 2002-02-14 2005-03-29 Interdigital Technology Corporation Wireless communication system having adaptive threshold for timing deviation measurement and method
KR100698125B1 (ko) * 2005-06-28 2007-03-26 엘지전자 주식회사 간섭 제거 방법과, 그를 위한 통신단말기
JP5222793B2 (ja) 2009-06-05 2013-06-26 株式会社日立製作所 無線通信システム、基地局及び端末
US9198162B2 (en) 2010-03-23 2015-11-24 Nokia Solutions And Networks Oy Resource allocation for direct terminal-to-terminal communication in a cellular system
KR101896001B1 (ko) * 2011-07-12 2018-09-06 한국전자통신연구원 이종 네트워크 환경에서 단말의 이동성 관리 방법
US8812680B2 (en) * 2011-09-14 2014-08-19 Qualcomm Incorporated Methods and apparatus for peer discovery interference management in a wireless wide area network
US8750167B2 (en) * 2011-10-28 2014-06-10 Freescale Semiconductor, Inc. Transmit power control techniques for nodes in an ad-hoc network
GB2496153B (en) 2011-11-02 2014-07-02 Broadcom Corp Device-to-device communications
KR20130063615A (ko) * 2011-12-07 2013-06-17 한국전자통신연구원 셀룰러 이동통신 시스템 기반의 디바이스 투 디바이스 통신을 위한 통신 자원 제어 방법
GB2501088B (en) * 2012-04-11 2014-11-12 Broadcom Corp Methods and apparatus for transmitting and/or controlling device-to-device discovery signals
US9154267B2 (en) * 2012-07-02 2015-10-06 Intel Corporation Sounding reference signal (SRS) mechanism for intracell device-to-device (D2D) communication
WO2014034573A1 (ja) 2012-08-28 2014-03-06 京セラ株式会社 基地局、ユーザ端末及びプロセッサ
US9247508B2 (en) * 2012-09-28 2016-01-26 Sharp Kabushiki Kaisha Transmission power control for signals used by user equipment terminals for device-to-device services
US9408137B2 (en) * 2012-10-22 2016-08-02 Electronics And Telecommunications Research Institute Discovery signal transmitted in direct communication system, and method of transmitting/receiving the discovery signal
US9143291B2 (en) * 2012-12-27 2015-09-22 Google Technology Holdings LLC Method and apparatus for device-to-device communication
JP6101822B2 (ja) * 2013-01-16 2017-03-22 インターデイジタル パテント ホールディングス インコーポレイテッド ディスカバリ信号生成および受信
CN104956740B (zh) * 2013-01-24 2019-03-29 Lg 电子株式会社 在无线通信系统中控制用于设备对设备通信的发现信号的发送功率的方法及其装置
US9949286B2 (en) * 2013-04-26 2018-04-17 Telefonaktiebolaget L M Ericsson (Publ) Method and network efficiency node for increased data throughput in wireless networks
ES2769631T3 (es) * 2013-07-26 2020-06-26 Lg Electronics Inc Procedimiento de transmisión de una señal para MTC y aparato correspondiente
EP3100573B1 (en) * 2014-01-29 2019-03-13 Interdigital Patent Holdings, Inc. Resource selection for device to device discovery or communication
JP6364196B2 (ja) * 2014-01-30 2018-07-25 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システム及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112194A1 (en) 2012-10-19 2014-04-24 Samsung Electronics Co., Ltd System and method for ad-hoc/network assisted device discovery protocol for device to device communications

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
3GPP R1-132260
3GPP R1-135481
3GPP R1-140332
3GPP R1-140337
3GPP R1-140493
3GPP R1-140825
3GPP TS 36.213 v11.5.0, 3GPP 서버공개일(2013.12.15.) 1부.*
Alcatel-Lucent Shanghai Bell et al., R1-140175, D2D discovery channel design, 3GPP TSG RAN WG1 #76, 3GPP 서버공개일(2014.02.01.) 1부.*
LG Electronics, R1-135481, Discussion on Resource Allocation in D2D Communications, 3GPP TSG RAN WG1 #75, 3GPP 서버공개일(2013.11.01.) 1부.*

Also Published As

Publication number Publication date
KR20160133474A (ko) 2016-11-22
EP3119012A1 (en) 2017-01-18
WO2015137720A1 (ko) 2015-09-17
CN106105056B (zh) 2019-07-12
US20170027011A1 (en) 2017-01-26
EP3119012B1 (en) 2020-04-29
US20200323003A1 (en) 2020-10-08
US11064546B2 (en) 2021-07-13
CN106105056A (zh) 2016-11-09
EP3119012A4 (en) 2017-12-13
JP6702634B2 (ja) 2020-06-03
JP2017514346A (ja) 2017-06-01
US10897787B2 (en) 2021-01-19

Similar Documents

Publication Publication Date Title
KR102378132B1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 디스커버리 신호 전송 방법 및 장치
US11671303B2 (en) Method and device for transmission of synchronization signal by device-to-device terminal in wireless communication system
US10225847B2 (en) Method and device for transmitting/receiving D2D signal considering priority in wireless communication system
US11076368B2 (en) Method for synchronization signal transmission in wireless communication system
KR102029245B1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
US20180077633A1 (en) Method and device for transmitting and receiving plurality of d2d signals in wireless communication system
KR102450886B1 (ko) 무선 통신 시스템에서 단말의 측정을 통한 자원 선택 및 데이터 전송 방법 및 장치
US10959194B2 (en) Method and apparatus for transmitting sidelink signal in wireless communication system
KR20160132417A (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 전송 방법 및 장치
JP6502473B2 (ja) 無線通信システムにおける同期信号送信方法。

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant