KR102376913B1 - Hyperbranched polymers, metal recovery agents, metal recovery methods and catalyst activity inhibitors - Google Patents

Hyperbranched polymers, metal recovery agents, metal recovery methods and catalyst activity inhibitors Download PDF

Info

Publication number
KR102376913B1
KR102376913B1 KR1020197007213A KR20197007213A KR102376913B1 KR 102376913 B1 KR102376913 B1 KR 102376913B1 KR 1020197007213 A KR1020197007213 A KR 1020197007213A KR 20197007213 A KR20197007213 A KR 20197007213A KR 102376913 B1 KR102376913 B1 KR 102376913B1
Authority
KR
South Korea
Prior art keywords
group
hyperbranched polymer
formula
metal
polymer
Prior art date
Application number
KR1020197007213A
Other languages
Korean (ko)
Other versions
KR20190103137A (en
Inventor
나오키 우스키
아키코 기토
아츠시 유사
Original Assignee
맥셀 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 맥셀 주식회사 filed Critical 맥셀 주식회사
Priority to KR1020227008764A priority Critical patent/KR102483813B1/en
Publication of KR20190103137A publication Critical patent/KR20190103137A/en
Application granted granted Critical
Publication of KR102376913B1 publication Critical patent/KR102376913B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • C08G83/006After treatment of hyperbranched macromolecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3276Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • C22B11/042Recovery of noble metals from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Catalysts (AREA)

Abstract

하기 식 (1)로 나타나고, 중량 평균 분자량이, 1,000~1,000,000인 것을 특징으로 하는 하이퍼브랜치 폴리머를 제공한다. 식 (1)에 있어서, A1은 방향환을 포함하는 기이며, A2는, 아미드기를 포함하는 기이고, A3은, 유황을 포함하는 기이며, R0은, 수소 또는 탄소수 1~10개의 치환 혹은 무치환의 탄화수소기이고, m1은 0.5~11이며, n1은 5~100이다.
[화학식 1]

Figure 112019025187793-pct00018
It is represented by the following formula (1) and provides a hyperbranched polymer having a weight average molecular weight of 1,000 to 1,000,000. In Formula (1), A 1 is a group containing an aromatic ring, A 2 is a group containing an amide group, A 3 is a group containing sulfur, R 0 is hydrogen or C 1-10 substituted or unsubstituted hydrocarbon group, m1 is 0.5-11, and n1 is 5-100.
[Formula 1]
Figure 112019025187793-pct00018

Description

하이퍼브랜치 폴리머, 금속 회수제, 금속 회수 방법 및 촉매 활성 방해제Hyperbranched polymers, metal recovery agents, metal recovery methods and catalyst activity inhibitors

본 발명은, 신규인 하이퍼브랜치 폴리머에 관한 것으로서, 또한 당해 하이퍼브랜치 폴리머를 이용한 금속 회수제, 금속 회수 방법 및 촉매 활성 방해제에 관한 것이다.The present invention relates to a novel hyperbranched polymer, and also to a metal recovery agent, a metal recovery method, and a catalyst activity inhibitor using the hyperbranched polymer.

하이퍼브랜치 폴리머는, 덴드리머와 함께 덴드리틱 폴리머로 분류된다. 덴드리틱 폴리머란, 빈번히 규칙적인 분기를 반복하는 분자 구조로 구성된 폴리머이다. 덴드리머는, 핵이 되는 분자를 중심으로, 규칙적으로 완전히 수상(樹狀) 분기된 구조를 가지는, 직경 수㎚의 구형(球形)의 폴리머이며, 하이퍼브랜치 폴리머는, 완전한 수상 구조를 가지는 덴드리머와는 상이하며, 불완전한 수상 분기를 가지는 폴리머이다. 덴드리틱 폴리머 중에서도, 하이퍼브랜치 폴리머는, 비교적 합성이 용이하고 또한 저렴하기 때문에, 공업적 생산에 있어서 유리하다. 하이퍼브랜치 폴리머 및 그 제조 방법으로서는, 예를 들면, 특허 문헌 1~3에 개시되는 구조의 하이퍼브랜치 폴리머 및 그 제조 방법이 알려져 있다.Hyperbranched polymers are classified as dendritic polymers along with dendrimers. The dendritic polymer is a polymer composed of a molecular structure that frequently repeats regular branching. A dendrimer is a spherical polymer with a diameter of several nanometers having a structure in which the dendritic branch is regularly and completely branched around a molecule that becomes a nucleus, and a hyperbranched polymer is different from a dendrimer having a complete dendrimer structure. It is a polymer with different, incomplete aqueous branching. Among dendritic polymers, hyperbranched polymers are advantageous in industrial production because they are relatively easy to synthesize and are inexpensive. As a hyperbranched polymer and its manufacturing method, the hyperbranched polymer of the structure disclosed by patent documents 1 - 3, and its manufacturing method are known, for example.

일본국 특허 제5499477호 공보Japanese Patent No. 5499477 Publication 일본국 특허 제5748076호 공보Japanese Patent No. 5748076 Publication 일본국 특허 제5534244호 공보Japanese Patent No. 5534244 Publication

하이퍼브랜치 폴리머는, 그 특수한 분지(分枝) 구조에 의해 많은 말단기를 가지고, 말단기의 종류에 따라 다양한 특성의 발현이 기대되고 있다. 본 발명은, 금속 포착 능력이 높고, 금속 회수제나 촉매 활성 방해제로서 이용 가능한, 신규인 하이퍼브랜치 폴리머를 제공한다.The hyperbranched polymer has many terminal groups due to its special branching structure, and expression of various properties is expected depending on the type of the terminal group. The present invention provides a novel hyperbranched polymer that has high metal trapping ability and can be used as a metal recovery agent or catalyst activity inhibitor.

본 발명의 제 1 양태에 따르면, 하기 식 (1)로 나타나고, 중량 평균 분자량이, 1,000~1,000,000인 것을 특징으로 하는 하이퍼브랜치 폴리머가 제공된다.According to the first aspect of the present invention, a hyperbranched polymer represented by the following formula (1) and having a weight average molecular weight of 1,000 to 1,000,000 is provided.

Figure 112019025187793-pct00001
Figure 112019025187793-pct00001

식 (1)에 있어서, A1은 방향환을 포함하는 기이며, A2는, 아미드기를 포함하는 기이고, A3은, 유황을 포함하는 기이며, R0은, 수소 또는 탄소수 1~10개의 치환 혹은 무치환의 탄화수소기이고, m1은 0.5~11이며, n1은 5~100이다.In Formula (1), A 1 is a group containing an aromatic ring, A 2 is a group containing an amide group, A 3 is a group containing sulfur, R 0 is hydrogen or C 1-10 substituted or unsubstituted hydrocarbon group, m1 is 0.5-11, and n1 is 5-100.

상기 식 (1)에 있어서, A1이 하기 식 (2)로 나타나는 기이며, A3이, 디티오카바메이트기여도 된다. 또한, 상기 식 (1)에 있어서, A2가, 하기 식 (3)으로 나타나는 기여도 된다.In the formula (1), A 1 is a group represented by the following formula (2), and A 3 may be a dithiocarbamate group. Moreover, in said Formula ( 1 ), A2 may also contribute represented by following formula (3).

Figure 112019025187793-pct00002
Figure 112019025187793-pct00002

Figure 112019025187793-pct00003
Figure 112019025187793-pct00003

식 (3)에 있어서, R1은 탄소수가 1~5인 치환 혹은 무치환의 알킬렌기, 또는 단결합이며, R2 및 R3은, 각각, 탄소수가 1~10인 치환 혹은 무치환의 알킬기 또는 수소이다.In formula (3), R 1 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms or a single bond, and R 2 and R 3 are each a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms. or hydrogen.

상기 식 (3)에 있어서, R1이 단결합이며, R2가 수소이고, R3이 이소프로필기여도 된다.In the formula (3), R 1 may be a single bond, R 2 may be hydrogen, and R 3 may be an isopropyl group.

상기 식 (1)에 있어서, A3이, 하기 식 (4)로 나타나는 기여도 된다.In said Formula (1), A3 may also contribute represented by following formula (4).

Figure 112019025187793-pct00004
Figure 112019025187793-pct00004

식 (4)에 있어서, R4 및 R5는, 각각, 탄소수가 1~5인 치환 혹은 무치환의 알킬기, 또는 수소이다.In Formula (4), R< 4 > and R< 5 > are respectively a C1-C5 substituted or unsubstituted alkyl group, or hydrogen.

식 (4)에 있어서, R4 및 R5가 에틸기여도 된다.In formula (4), R 4 and R 5 may be an ethyl group.

식 (1)에 있어서, 유황을 포함하는 기인 A3의 몰수에 대한, A2에 포함되는 아미드기의 총 몰수의 비율이, 0.5 이상, 1.5 미만이어도 된다. 또한, A3이, 디티오카바메이트기이며, 유황을 포함하는 기인 A3의 몰수에 대한, A2에 포함되는 아미드기의 총 몰수의 비율이, 0.5~1.5여도 된다.In Formula (1), 0.5 or more and less than 1.5 may be sufficient as the ratio of the total number of moles of the amide group contained in A2 with respect to the number of moles of A3 of group containing sulfur. Moreover, 0.5-1.5 may be sufficient as A3 is a dithiocarbamate group, and the ratio of the total number of moles of the amide group contained in A2 with respect to the number of moles of A3 which is group containing sulfur.

식 (1)에 있어서, R0이, 비닐기여도 된다. 또한, 상기 하이퍼브랜치 폴리머가, 상기 식 (1)에 있어서, R0이 비닐기인 하이퍼브랜치 폴리머와, R0이 에틸기인 하이퍼브랜치 폴리머와의 혼합물이어도 된다.In Formula (1), R 0 may be a vinyl group. Further, the hyperbranched polymer may be a mixture of a hyperbranched polymer in which R 0 is a vinyl group in the formula (1) and a hyperbranched polymer in which R 0 is an ethyl group.

본 발명의 제 2 양태에 따르면, 금속이 용해되어 있는 액체 중의 상기 금속을 회수하는 금속 회수제로서, 제 1 양태의 하이퍼브랜치 폴리머를 포함하는 것을 특징으로 하는 금속 회수제가 제공된다.According to a second aspect of the present invention, there is provided a metal recovery agent for recovering the metal in a liquid in which the metal is dissolved, comprising the hyperbranched polymer of the first aspect.

본 발명의 제 3 양태에 따르면, 금속이 용해되어 있는 액체 중의 상기 금속을 회수하는 금속 회수 방법으로서, 제 1 양태의 하이퍼브랜치 폴리머를 용매에 용해하여, 하이퍼브랜치 폴리머 용액을 조제하는 것과, 상기 하이퍼브랜치 폴리머 용액을 기재 상에 도포하여 하이퍼브랜치 폴리머층을 형성하는 것과, 상기 하이퍼브랜치 폴리머층에 상기 액체를 접촉시켜, 상기 액체 중의 상기 금속을 흡착시켜 회수하는 것을 포함하는 금속 회수 방법이 제공된다.According to a third aspect of the present invention, as a metal recovery method for recovering the metal in a liquid in which the metal is dissolved, the hyperbranched polymer of the first aspect is dissolved in a solvent to prepare a hyperbranched polymer solution; There is provided a metal recovery method comprising applying a branched polymer solution on a substrate to form a hyperbranched polymer layer, and contacting the liquid with the hyperbranched polymer layer to adsorb and recover the metal in the liquid.

본 발명의 제 4 양태에 따르면, 무전해 도금 촉매의 촉매 활성을 방해하는 촉매 활성 방해제로서, 제 1 양태의 하이퍼브랜치 폴리머를 포함하는 것을 특징으로 하는 촉매 활성 방해제가 제공된다.According to a fourth aspect of the present invention, there is provided a catalytic activity inhibitor for inhibiting the catalytic activity of an electroless plating catalyst, comprising the hyperbranched polymer of the first aspect.

본 발명은, 금속 포착 능력이 높고, 금속 회수제나 촉매 활성 방해제로서 이용 가능한 신규인 하이퍼브랜치 폴리머를 제공한다.The present invention provides a novel hyperbranched polymer that has high metal trapping ability and can be used as a metal recovery agent or catalyst activity inhibitor.

도 1은 실시 형태의 하이퍼브랜치 폴리머의 모식도이다.
도 2는 실시예 1에서 합성한 하이퍼브랜치 폴리머 A1의 IR 스펙트럼이다.
도 3은 실시예 1에서 합성한 하이퍼브랜치 폴리머 A1의 1H-NMR 스펙트럼이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the hyperbranched polymer of embodiment.
FIG. 2 is an IR spectrum of hyperbranched polymer A1 synthesized in Example 1. FIG.
3 is a 1 H-NMR spectrum of hyperbranched polymer A1 synthesized in Example 1. FIG.

본 실시 형태의 하이퍼브랜치 폴리머는, 하기 식 (1)로 나타난다.The hyperbranched polymer of this embodiment is represented by following formula (1).

Figure 112019025187793-pct00005
Figure 112019025187793-pct00005

식 (1)에 있어서, A1은 방향환을 포함하는 기이며, A2는 아미드기를 포함하는 기이고, A3은 유황을 포함하는 기이며, R0은, 수소 또는 탄소수 1~10개의 치환 혹은 무치환의 탄화수소기이고, m1은 0.5~11이며, n1은 5~100이다.In formula (1), A 1 is a group containing an aromatic ring, A 2 is a group containing an amide group, A 3 is a group containing sulfur, and R 0 is hydrogen or a substitution having 1 to 10 carbon atoms. or an unsubstituted hydrocarbon group, m1 is 0.5-11, and n1 is 5-100.

A1은, 방향환을 포함하는 기이면, 임의의 것을 이용할 수 있지만, 예를 들면, 하기 식 (2)로 나타나는 기인 것이 바람직하다.As long as it is group containing an aromatic ring, although A< 1 > can use arbitrary things, for example, it is preferable that it is group represented by following formula (2).

Figure 112019025187793-pct00006
Figure 112019025187793-pct00006

A1이, 식 (2)로 나타나는 기인 경우, 본 실시 형태의 하이퍼브랜치 폴리머의 하이퍼브랜치 구조는, 스티렌 골격을 가진다. 하이퍼브랜치 구조가 스티렌 골격을 가지면, 하이퍼브랜치 폴리머의 내후성, 내열성의 향상이 예상된다.When A 1 is a group represented by Formula (2), the hyperbranched structure of the hyperbranched polymer of the present embodiment has a styrene skeleton. When the hyperbranched structure has a styrene skeleton, it is expected that the weather resistance and heat resistance of the hyperbranched polymer will be improved.

본 실시 형태의 하이퍼브랜치 폴리머는, 복수의 말단기를 가진다. 상기 식 (1)로 나타나는 하이퍼브랜치 폴리머의 말단기에 있어서, A2는, 아미드기를 포함하는 기이며, A3은, 유황을 포함하는 기이다. 또한, m1은, 각 말단기에 있어서의 아미드기를 포함하는 기 (A2)의 수(반복수) m의 평균값이다. 따라서, m1은 정수가 아니어도 된다. 본 실시 형태의 하이퍼브랜치 폴리머는, 평균값인 m1이 0.5~11이면되고, 아미드기를 포함하는 기 (A2)를 갖지 않는 말단기(m=0)를 가져도 된다.The hyperbranched polymer of the present embodiment has a plurality of terminal groups. In the terminal group of the hyperbranched polymer represented by Formula (1), A 2 is a group containing an amide group, and A 3 is a group containing sulfur. In addition, m1 is an average value of the number (repetition number) m of the group (A2) containing an amide group in each terminal group. Therefore, m1 does not need to be an integer. The hyperbranched polymer of the present embodiment may have an average value of m1 of 0.5 to 11, and may have a terminal group (m=0) having no group (A 2 ) including an amide group.

이하에, 상기 식 (1) 중의 m1과, 각 말단기에 있어서의 아미드기를 포함하는 기 (A2)의 반복수 m에 대해 더 설명한다. 도 1에 나타내는 모식화한 하이퍼브랜치 폴리머 100A~100D는, 말단기 이외의 중심부 S와, 10개의 말단기를 가지는 하이퍼브랜치 폴리머의 예이다. 흰색 원으로 나타내는 말단기 E1은, 아미드기를 포함하는 기 (A2)를 가지지 않고(m=0), 검은색 원으로 나타내는 말단기 E2는, 아미드기를 포함하는 기 (A2)를 1개 가지고(m=1), 세로 사선의 원으로 나타내는 말단기 E3은, 아미드기를 포함하는 기 (A2)를 2개 가진다(m=2). 하이퍼브랜치 폴리머 100A 및 100B와 같이, 아미드기를 포함하는 기 (A2)를 갖지 않는 말단기 E1이 존재해도 된다. 또한, 하이퍼브랜치 폴리머 100C와 같이, 모든 말단기에 있어서, 아미드기를 포함하는 기 (A2)의 수가 동일해도 되고, 하이퍼브랜치 폴리머 100A, 100B 및 100D와 같이, 각 말단기에 있어서의 아미드기를 포함하는 기 (A2)의 수는, 동일하지 않아도 된다. 각 말단기에 있어서의 아미드기를 포함하는 기 (A2)의 수(반복수) m은, 예를 들면, 0~11이다. 식 (1)의 m1은, 분자 내에 있어서의 아미드기를 포함하는 기 (A2)의 총 수(분자 내에 있어서의 m의 합계)를 말단기의 수로 나눈 몫이다. 하이퍼브랜치 폴리머 100A 및 100B에 있어서, m1은 0.5이며, 하이퍼브랜치 폴리머 100C에 있어서, m1은 1.0이고, 하이퍼브랜치 폴리머 100D에 있어서, m1은 1.5이다. m1의 값은, NMR법이나 원소 분석법과 같은 방법으로 정량할 수 있다.Below, the repetition number m of the group (A2) containing m1 in said Formula ( 1 ) and the amide group in each terminal group is demonstrated further. Hyperbranched polymers 100A to 100D schematically shown in Fig. 1 are examples of hyperbranched polymers having a central portion S other than terminal groups and 10 terminal groups. The terminal group E1 indicated by the white circle does not have a group containing an amide group (A 2 ) (m=0), and the terminal group E2 indicated by the black circle has one group containing an amide group (A 2 ) (m=1), the terminal group E3 shown by the vertical diagonal circle has two groups (A2) containing an amide group (m= 2 ). As in the hyperbranched polymers 100A and 100B, a terminal group E1 having no group (A 2 ) containing an amide group may be present. In addition, as in the hyperbranched polymer 100C, in all the terminal groups, the number of groups (A 2 ) containing an amide group may be the same, and as in the hyperbranched polymer 100A, 100B and 100D, the amide group in each terminal group is included. The number of groups (A 2 ) to do does not need to be the same. The number (repetition number) m of the group (A2) containing an amide group in each terminal group is 0-11, for example. m1 in Formula (1) is the quotient obtained by dividing the total number of groups (A 2 ) containing amide groups in the molecule (the sum of m in the molecule) by the number of terminal groups. In the hyperbranched polymers 100A and 100B, m1 is 0.5, in the hyperbranched polymer 100C, m1 is 1.0, and in the hyperbranched polymer 100D, m1 is 1.5. The value of m1 can be quantified by the same method as NMR method or elemental analysis method.

본 실시 형태의 하이퍼브랜치 폴리머는, 복수의 말단기를 가짐으로써, 다양한 기능을 발현시키는 것이 기대된다. 예를 들면, 상기 식 (1)로 나타나는 하이퍼브랜치 폴리머의 말단기는, 아미드기 및 유황을 포함하는 기를 가지기 때문에, 금속 이온과 상호 작용한다. 이와 같은 말단기를 복수 가지는 본 실시 형태의 하이퍼브랜치 폴리머는, 금속 이온의 다좌 배위자로서 작용하고, 금속 이온과 킬레이트 결합한다. 이에 따라, 본 실시 형태의 하이퍼브랜치 폴리머는, 금속을 흡착(트랩)할 수 있다. 이 기능을 응용하여, 본 실시 형태의 하이퍼브랜치 폴리머는, 예를 들면, 금속 회수제나 무전해 도금 촉매의 촉매 활성을 방해하는 촉매 활성 방해제로서 이용할 수 있다.The hyperbranched polymer of the present embodiment is expected to exhibit various functions by having a plurality of terminal groups. For example, since the terminal group of the hyperbranched polymer represented by said Formula (1) has an amide group and group containing sulfur, it interacts with a metal ion. The hyperbranched polymer of the present embodiment having a plurality of such terminal groups acts as a polydentate ligand of a metal ion and chelates with the metal ion. Thereby, the hyperbranched polymer of this embodiment can adsorb|suck (trap) a metal. By applying this function, the hyperbranched polymer of the present embodiment can be used as, for example, a metal recovery agent or a catalytic activity inhibitor that hinders the catalytic activity of the electroless plating catalyst.

상기 식 (1)에 있어서, A2는 아미드기를 포함하는 기이면 특별히 한정되지 않고, 또한, A2에 포함되는 아미드기는, 1급 아미드기, 2급 아미드기, 3급 아미드기 중 어느 것이어도 된다. 또한, A2는, 아미드기를 1개 포함하는 기여도 되고, 2개 이상 포함하는 기여도 된다. A2는 하기 식 (3)으로 나타나는 기인 것이 바람직하다. A2가 하기 식 (3)으로 나타나는 기이면, 본 실시 형태의 하이퍼브랜치 폴리머는, 예를 들면, 금속 포착 능력이 향상된다.In the formula (1), A 2 is not particularly limited as long as it is a group containing an amide group, and the amide group contained in A 2 may be any of a primary amide group, a secondary amide group, and a tertiary amide group. do. In addition, A 2 may be a contribution containing one amide group, and may be a contribution containing two or more. It is preferable that A2 is group represented by following formula ( 3 ). When A2 is group represented by following formula ( 3 ), the hyperbranched polymer of this embodiment improves a metal capture|acquisition ability, for example.

Figure 112019025187793-pct00007
Figure 112019025187793-pct00007

식 (3)에 있어서, R1은 탄소수가 1~5인 치환 혹은 무치환의 알킬렌기, 또는 단결합이며, R2 및 R3은, 각각, 탄소수가 1~10인 치환 혹은 무치환의 알킬기 또는 수소이다. 또한, 식 (3)에 있어서, R1은 단결합인 것이 바람직하고, R2는 수소인 것이 바람직하며, R3은 이소프로필기인 것이 바람직하다.In formula (3), R 1 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms or a single bond, and R 2 and R 3 are each a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms. or hydrogen. Moreover, in Formula (3), it is preferable that it is preferable that R< 1 > is a single bond, it is preferable that R< 2 > is hydrogen, and it is preferable that R< 3 > is an isopropyl group.

상기 식 (1)에 있어서, A3은, 유황을 포함하는 기이면 특별히 한정되지 않고, 예를 들면, 디티오카바메이트기, 트리티오카보네이트기, 설파이드기, 티오시안기 등을 들 수 있고, 그 중에서도, 디티오카바메이트기인 것이 바람직하다. A3이 디티오카바메이트기이면, 본 실시 형태의 하이퍼브랜치 폴리머는, 합성이 용이해지고, 또한, 금속 포착 능력이 향상된다. 또한, A3은, 하기 식 (4)로 나타나는 기인 것이 바람직하다.In the formula (1), A 3 is not particularly limited as long as it is a group containing sulfur, and examples thereof include a dithiocarbamate group, a trithiocarbonate group, a sulfide group, and a thiocyanate group, Especially, it is preferable that it is a dithiocarbamate group. When A 3 is a dithiocarbamate group, the hyperbranched polymer of the present embodiment can be easily synthesized, and the metal trapping ability is improved. Moreover, it is preferable that A3 is group represented by following formula (4).

Figure 112019025187793-pct00008
Figure 112019025187793-pct00008

식 (4)에 있어서, R4 및 R5는, 각각, 탄소수가 1~5인 치환 혹은 무치환의 알킬기, 또는 수소이다. 또한, 식 (4)에 있어서, R4 및 R5는 에틸기인 것이 바람직하다.In Formula (4), R< 4 > and R< 5 > are respectively a C1-C5 substituted or unsubstituted alkyl group, or hydrogen. Moreover, in Formula (4), it is preferable that R< 4 > and R< 5 > are an ethyl group.

본 실시 형태의 하이퍼브랜치 폴리머는, 말단기에 포함되는 아미드기의 수를 증감시킴으로써, 다양한 기능을 발현시키는 것이 기대된다. 말단기에 포함되는 아미드기의 수는, 식 (1)로 나타나는 하이퍼브랜치 폴리머에 있어서의, 유황을 포함하는 기인 A3에 대한, A2에 포함되는 아미드기의 몰비(이하, 적절히 「몰비(N/S)」라고 기재함)로서 표현할 수 있다. 즉, 몰비(N/S)는, 식 (1)로 나타나는 하이퍼브랜치 폴리머에 있어서, 유황을 포함하는 기인 A3의 몰수(수)에 대한, A2에 포함되는 아미드기의 총 몰수(총 수)의 비율이다. 또한, 식 (1)에 있어서, A2의 하나의 유닛에 포함되는 아미드기의 수가 1개인 경우, 몰비(N/S)는, m1의 값과 대략 동등하다. 또한, 몰비(N/S)는, 예를 들면, 하이퍼브랜치 폴리머의 1H-NMR 스펙트럼(1H-핵 자기 공명 측정의 분석 결과)에 있어서, 유황을 포함하는 기인 A3과, A2에 포함되는 아미드기와의 프로톤 면적 강도의 비로부터 환산할 수 있다.The hyperbranched polymer of the present embodiment is expected to exhibit various functions by increasing or decreasing the number of amide groups contained in the terminal groups. The number of amide groups contained in the terminal groups is the molar ratio of the amide groups contained in A 2 to the sulfur-containing group A 3 in the hyperbranched polymer represented by Formula (1) (hereinafter, appropriately “molar ratio ( N/S)"). That is, the molar ratio (N/S) is, in the hyperbranched polymer represented by Formula (1), the total number of moles (total number) of amide groups contained in A 2 with respect to the number of moles (number) of A 3 , which is a group containing sulfur. ) is the ratio of In addition, in Formula (1), when the number of the amide groups contained in one unit of A 2 is one, molar ratio (N/S) is substantially equivalent to the value of m1. Incidentally, the molar ratio (N/S) is, for example, in the 1 H-NMR spectrum of the hyperbranched polymer (analysis result of 1 H-nuclear magnetic resonance measurement), A 3 and A 2 of a group containing sulfur It can be converted from the ratio of the proton area strength with the amide group contained.

본 실시 형태의 하이퍼브랜치 폴리머에 있어서, 몰비(N/S)는, 0.5~11이어도 된다. 몰비(N/S)가 상기 범위 내이며, 식 (1)로 나타나는 하이퍼브랜치 폴리머는, 범용의 용매인 테트라히드로푸란(THF), 메틸에틸케톤(MEK) 등에 용해 가능하다. 또한, 몰비(N/S)를 적절히 설정함으로써, 예를 들면, 탄소수가 5 이하인 저급 알코올에 대한 용해성을 제어할 수 있다.In the hyperbranched polymer of this embodiment, the molar ratio (N/S) may be 0.5-11. The molar ratio (N/S) is within the above range, and the hyperbranched polymer represented by Formula (1) is soluble in tetrahydrofuran (THF), methyl ethyl ketone (MEK), etc., which are general-purpose solvents. Further, by appropriately setting the molar ratio (N/S), the solubility in a lower alcohol having 5 or less carbon atoms can be controlled, for example.

몰비(N/S)는, 0.5 이상, 1.5 미만이어도 된다. 몰비(N/S)가 상기 범위 내이면, 식 (1)로 나타나는 하이퍼브랜치 폴리머는, 시클로헥사논, 톨루엔 등의 비교적, 극성이 낮은 용매에 대한 용해성이 향상된다. 이 이유는 확실하지는 않지만, 말단기에 포함되는 아미드기의 수를 1.5개 미만으로 함으로써, 하이퍼브랜치 폴리머의 극성이 저하되기 때문이라고 추측된다.The molar ratio (N/S) may be 0.5 or more and less than 1.5. When the molar ratio (N/S) is within the above range, the solubility of the hyperbranched polymer represented by Formula (1) in a solvent having relatively low polarity, such as cyclohexanone and toluene, is improved. Although the reason for this is not certain, it is estimated that the polarity of a hyperbranched polymer falls by making the number of amide groups contained in a terminal group less than 1.5.

하이퍼브랜치 폴리머는, 우선, 하이퍼브랜치 폴리머 용액을 조제하고, 이어서, 하이퍼브랜치 폴리머 용액을 기재 상에 도포하여 하이퍼브랜치 폴리머층을 형성하여, 기재 상의 하이퍼브랜치 폴리머층의 형태로 이용되는 경우가 있다. 하이퍼브랜치 폴리머 용액은, 고농도여도 저점도이다. 이 때문에, 복잡 형상의 기재에 도포해도, 균일한 막 두께의 도포층(하이퍼브랜치 폴리머층)을 형성할 수 있다. 또한, 하이퍼브랜치 폴리머층이 박막이어도, 많은 말단기를 포함하기 때문에, 충분한 특성을 나타낼 수 있다. 하이퍼브랜치 폴리머 용액의 용매는, 기재의 종류에 따라 적절히 선택할 필요가 있다.The hyperbranched polymer may be used in the form of a hyperbranched polymer layer on the substrate by first preparing a hyperbranched polymer solution, then applying the hyperbranched polymer solution on a substrate to form a hyperbranched polymer layer. The hyperbranched polymer solution has a low viscosity even at a high concentration. For this reason, even if it apply|coats to the base material of complex shape, the application layer (hyperbranched polymer layer) of a uniform film thickness can be formed. In addition, even if the hyperbranched polymer layer is a thin film, since it contains many terminal groups, sufficient properties can be exhibited. The solvent of the hyperbranched polymer solution needs to be appropriately selected according to the type of the substrate.

본 실시 형태의 하이퍼브랜치 폴리머에 있어서, 몰비(N/S)는, 0.5~3.5여도 되고, 바람직하게는 0.5~2.5여도 된다. 몰비(N/S)가 상기 범위 내이면, 식 (1)로 나타나는 하이퍼브랜치 폴리머는, 금속 포착 능력이 향상된다. 이 이유는 확실하지는 않지만, 몰비(N/S)가 이 범위보다 작으면, 상기 식 (1)로 나타나는 하이퍼브랜치 폴리머의 말단기에 있어서, 금속과 상호 작용하는 아미드기의 수가 충분하지 않고, 몰비(N/S)가 이 범위보다 크면, 말단기가 길어지고, 또한 금속과 상호 작용하는 아미드기가 과잉이 되기 때문에, 말단기와 금속으로 형성되는 킬레이트 구조에 입체적인 변형이 발생하며, 이 결과, 킬레이트 결합이 불안정화되기 때문이라고 추측된다.In the hyperbranched polymer of the present embodiment, the molar ratio (N/S) may be 0.5 to 3.5, preferably 0.5 to 2.5. The hyperbranched polymer represented by Formula (1) as molar ratio (N/S) is in the said range improves metal trapping ability. Although the reason for this is not certain, when the molar ratio (N/S) is smaller than this range, the number of amide groups interacting with the metal in the terminal groups of the hyperbranched polymer represented by the above formula (1) is insufficient, and the molar ratio When (N/S) is larger than this range, the terminal group becomes long and the amide group interacting with the metal becomes excessive, so that a steric modification occurs in the chelate structure formed from the terminal group and the metal. As a result, the chelate bond This is presumed to be due to destabilization.

또한, 상기 식 (1)로 나타나는 본 실시 형태의 하이퍼브랜치 폴리머에 있어서, A3이 디티오카바메이트기이며, 몰비(N/S)가 0.5~1.5인 것이 바람직하다. A3을 디티오카바메이트기로 하는 경우, 상기 식 (1)로 나타나는 하이퍼브랜치 폴리머의 말단기가 비교적 짧아, 몰비(N/S)가 비교적 작은 구조의 하이퍼브랜치 폴리머를 효율적으로 합성할 수 있다. 상기 식 (1) 중의 A3이 디티오카바메이트기이며, 몰비(N/S)가 0.5~1.5인 하이퍼브랜치 폴리머는, 높은 금속 포착 능력을 가진다.Moreover, in the hyperbranched polymer of this embodiment represented by said Formula (1), it is preferable that A3 is a dithiocarbamate group, and it is preferable that molar ratio (N/S) is 0.5-1.5. When A 3 is a dithiocarbamate group, the terminal group of the hyperbranched polymer represented by the formula (1) is relatively short, and a hyperbranched polymer having a structure having a relatively small molar ratio (N/S) can be efficiently synthesized. A 3 in the formula (1) is a dithiocarbamate group, and the hyperbranched polymer having a molar ratio (N/S) of 0.5 to 1.5 has a high metal trapping ability.

상기 식 (1)에 있어서, R0은, 수소 또는 탄소수 1~10개의 치환 혹은 무치환의 탄화수소기이면, 임의의 탄화수소기를 이용할 수 있다. 상기 탄화수소기는, 쇄상(鎖狀) 혹은 환상(環狀)의 포화 지방족 탄화수소기, 쇄상 혹은 환상의 불포화 지방족 탄화수소기, 또는 방향족 탄화수소기여도 된다. R0이, 치환의 탄화수소기인 경우의 치환기는, 예를 들면, 알킬기, 시클로알킬기, 비닐기, 알릴기, 아릴기, 알콕시기, 할로겐기, 히드록시기, 아미노기, 이미노기, 니트로기, 실릴기 또는 에스테르기 등이어도 된다. 또한, R0은, 무치환의 탄화수소기여도 되고, 예를 들면, 비닐기 또는 에틸기여도 된다.In the formula (1), any hydrocarbon group can be used as R 0 as long as it is hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group may be a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group. When R 0 is a substituted hydrocarbon group, the substituent is, for example, an alkyl group, a cycloalkyl group, a vinyl group, an allyl group, an aryl group, an alkoxy group, a halogen group, a hydroxyl group, an amino group, an imino group, a nitro group, a silyl group, or An ester group, etc. may be sufficient. In addition, an unsubstituted hydrocarbon group may be sufficient as R <0> , for example, a vinyl group or an ethyl group may be sufficient as it.

본 실시 형태의 하이퍼브랜치 폴리머는, 식 (1)에 있어서, R0이 상이한 하이퍼브랜치 폴리머의 혼합물이어도 된다. 예를 들면, R0이 불포화 결합을 가지는 경우, 하이퍼브랜치 폴리머의 합성 과정에 있어서, 불포화 결합의 일부에 어떠한 부가 반응이 발생하여 포화 결합이 되는 경우가 있다. 이 경우, 상기 식 (1)에 있어서, R0이 불포화 탄화수소기의 하이퍼브랜치 폴리머와, R0이 포화 탄화수소기의 하이퍼브랜치 폴리머와의 혼합물이 얻어진다. 본 실시 형태의 하이퍼브랜치 폴리머는, 상기 식 (1)에 있어서, R0이 비닐기인 하이퍼브랜치 폴리머와, R0이 에틸기인 하이퍼브랜치 폴리머와의 혼합물이어도 된다.The hyperbranched polymer of the present embodiment may be a mixture of hyperbranched polymers having different R 0 in Formula (1). For example, when R 0 has an unsaturated bond, in the synthesis process of the hyperbranched polymer, some addition reaction may occur to a part of the unsaturated bond to form a saturated bond. In this case, in the formula (1), a mixture of a hyperbranched polymer in which R 0 is an unsaturated hydrocarbon group and a hyperbranched polymer in which R 0 is a saturated hydrocarbon group is obtained. The hyperbranched polymer of the present embodiment may be a mixture of a hyperbranched polymer in which R 0 is a vinyl group in the formula (1) and a hyperbranched polymer in which R 0 is an ethyl group.

본 실시 형태의 하이퍼브랜치 폴리머의 중량 평균 분자량은, 1,000~1,000,000이다. 또한, 본 실시 형태의 하이퍼브랜치 폴리머는, 수평균 분자량이, 3,000~30,000이며, 중량 평균 분자량이, 10,000~300,000인 것이 바람직하고, 수평균 분자량이, 5,000~30,000이며, 중량 평균 분자량이, 14,000~200,000인 것이 보다 바람직하다. 수평균 분자량 또는 중량 평균 분자량이 상기 범위보다 작으면, 하이퍼브랜치 폴리머는 물에 용해될 우려가 있다. 한편, 수평균 분자량 또는, 중량 평균 분자량이 상기 범위보다 크면, 하이퍼브랜치 폴리머는, 용매에 대한 용해성이 저하되어, 금속 회수제나 촉매 활성 방해제로서의 사용이 어려워질 우려가 있다. 또한, 하이퍼브랜치 폴리머의 중량 평균 분자량 및 수평균 분자량은, 예를 들면, 겔 침투 크로마토그래피(GPC)에 의한 폴리스티렌 환산에 의해 측정된다.The weight average molecular weight of the hyperbranched polymer of this embodiment is 1,000-1,000,000. Further, the hyperbranched polymer of the present embodiment has a number average molecular weight of 3,000 to 30,000, preferably a weight average molecular weight of 10,000 to 300,000, a number average molecular weight of 5,000 to 30,000, and a weight average molecular weight of 14,000 It is more preferable that it is ~200,000. When the number average molecular weight or the weight average molecular weight is smaller than the above range, the hyperbranched polymer may be dissolved in water. On the other hand, when the number average molecular weight or the weight average molecular weight is larger than the above range, the solubility of the hyperbranched polymer in a solvent is lowered, and there is a fear that the use as a metal recovery agent or catalyst activity inhibitor may become difficult. In addition, the weight average molecular weight and number average molecular weight of a hyperbranched polymer are measured by polystyrene conversion by gel permeation chromatography (GPC), for example.

본 실시 형태의 하이퍼브랜치 폴리머의 합성 방법은, 특별히 한정되지 않고, 임의의 방법에 의해 합성할 수 있다. 예를 들면, 시판의 하이퍼브랜치 폴리머를 출발 물질로 하여, 본 실시 형태의 하이퍼브랜치 폴리머를 합성해도 된다. 또한, 모노머의 합성, 모노머의 중합, 말단기 수식 등을 차례로 행하여, 본 실시 형태의 하이퍼브랜치 폴리머를 합성해도 된다. 또한, 본 실시 형태의 하이퍼브랜치 폴리머의 중량 평균 분자량 및 수평균 분자량, 식 (1) 중의 m1 및 n1은, 합성에 이용하는 시약의 비율, 합성 조건 등을 임의의 방법으로 조정함으로써, 소정의 범위 내로 조정할 수 있다.The method for synthesizing the hyperbranched polymer of the present embodiment is not particularly limited, and may be synthesized by any method. For example, the hyperbranched polymer of the present embodiment may be synthesized using a commercially available hyperbranched polymer as a starting material. Further, the hyperbranched polymer of the present embodiment may be synthesized by sequentially performing monomer synthesis, monomer polymerization, terminal group modification, and the like. In addition, the weight average molecular weight and number average molecular weight of the hyperbranched polymer of this embodiment, and m1 and n1 in Formula (1) are within a predetermined range by adjusting the ratio of reagents used for synthesis, synthesis conditions, etc. by any method. Can be adjusted.

본 실시 형태의 하이퍼브랜치 폴리머의 용도는, 특별히 한정되지 않는다. 예를 들면, 금속의 포착제, 다관능 가교제, 금속 혹은 금속 산화물의 분산제 또는 코팅제, 도료, 잉크, 접착제, 수지 필러, 각종 성형 재료, 나노미터 사이즈의 다공 형성제, 화학적 기계적 연마제, 기능 물질의 담지 재료, 나노 캡슐, 포토닉 결정, 레지스트 재료, 광학 재료, 전자 재료, 정보 기록 재료, 인쇄 재료, 전지 재료, 의료용 재료, 자성 재료, 중간 원재료 등으로서 적합하게 이용된다.The use of the hyperbranched polymer of this embodiment is not specifically limited. For example, metal trapping agent, polyfunctional crosslinking agent, metal or metal oxide dispersant or coating agent, paint, ink, adhesive, resin filler, various molding materials, nanometer-sized pore former, chemical mechanical abrasive agent, functional substance It is suitably used as a carrier material, a nanocapsule, a photonic crystal, a resist material, an optical material, an electronic material, an information recording material, a printing material, a battery material, a medical material, a magnetic material, an intermediate raw material, etc.

특히, 본 실시 형태의 하이퍼브랜치 폴리머는, 그 금속을 포착하는 성질을 이용하여, 금속이 용해되어 있는 액체 중의 금속을 회수하는 금속 회수제로서 이용할 수 있다. 예를 들면, 이하의 금속 회수 방법을 실시해도 된다. 우선, 하이퍼브랜치 폴리머를 용매에 용해하여, 하이퍼브랜치 폴리머 용액을 조제하고, 이어서, 하이퍼브랜치 폴리머 용액을 기재 상에 도포하여 하이퍼브랜치 폴리머층을 형성한다. 그리고, 하이퍼브랜치 폴리머층에 금속이 용해되어 있는 액체를 접촉시켜, 금속(금속 이온)을 흡착시켜 회수한다. 기재로서, 표면적이 큰 다공체나 섬유를 선택한 경우, 금속이 용해되는 액체와 금속 회수제(하이퍼브랜치 폴리머)와의 접촉 면적이 커져, 금속의 회수 효율이 향상된다. 금속이 용해되어 있는 액체 및 금속은, 특별히 한정되지 않는다. 금속이 용해되어 있는 액체로서는, 예를 들면, 바닷물, 폐액, 오니, 하수 등을 들 수 있고, 금속으로서는, 예를 들면, Pd, Pt, Ag, Au 등의 귀금속, Co, Ti, Nb, V, 희토류 원소 등을 들 수 있다. 하이퍼브랜치 폴리머층에 흡착시켜 회수한 금속은, 예를 들면, 회수한 금속이 귀금속 등이며, 재이용을 목적으로 하는 경우에는, 금속을 흡착한 하이퍼브랜치 폴리머층을 기재마다 연소 등 하여 제거해 금속을 취출해도 된다. 또한, 회수한 금속이 유해 금속인 경우에는, 금속을 흡착한 하이퍼브랜치 폴리머층을 기재마다 폐기해도 된다.In particular, the hyperbranched polymer of the present embodiment can be used as a metal recovery agent for recovering a metal in a liquid in which the metal is dissolved by utilizing the property of trapping the metal. For example, you may implement the following metal recovery methods. First, a hyperbranched polymer is dissolved in a solvent to prepare a hyperbranched polymer solution, and then, the hyperbranched polymer solution is applied on a substrate to form a hyperbranched polymer layer. Then, the liquid in which the metal is dissolved is brought into contact with the hyperbranched polymer layer to adsorb and recover the metal (metal ion). When a porous body or fiber having a large surface area is selected as the substrate, the contact area between the liquid in which the metal is dissolved and the metal recovery agent (hyperbranched polymer) is increased, and the metal recovery efficiency is improved. The liquid and metal in which the metal is dissolved are not particularly limited. Examples of the liquid in which the metal is dissolved include seawater, waste liquid, sludge, and sewage, and examples of the metal include noble metals such as Pd, Pt, Ag, Au, Co, Ti, Nb, V , rare earth elements, and the like. Metals recovered by adsorption to the hyperbranched polymer layer are, for example, noble metals, etc., and in the case of reuse, the hyperbranched polymer layer to which the metal has been adsorbed is removed by burning, etc. for each substrate to remove the metal. You can do it. In addition, when the recovered metal is a hazardous metal, the hyperbranched polymer layer to which the metal is adsorbed may be discarded for each substrate.

또한, 금속 회수제와 마찬가지로, 금속을 포착하는 성질을 이용하여, 본 실시 형태의 하이퍼브랜치 폴리머는, 무전해 도금 촉매의 촉매 활성을 방해하는 촉매 활성 방해제로서 이용할 수 있다. 예를 들면, 기재 표면의 일부분에만 무전해 도금막을 형성할 때, 무전해 도금막을 형성하지 않은 부분에 하이퍼브랜치 폴리머 용액을 도포하여 하이퍼브랜치 폴리머층을 형성한다. 그 후, 하이퍼브랜치 폴리머층을 형성한 기재에, 무전해 도금 촉매액 및 무전해 도금액을 접촉시킴으로써, 하이퍼브랜치 폴리머층이 형성되어 있지 않은 부분에만, 무전해 도금막을 형성할 수 있다. 이 이유는 확실하지 않지만, 아래와 같이 추측된다. 기재 상의 하이퍼브랜치 폴리머는, 무전해 도금 촉매액 중의 무전해 도금 촉매(Pd 등)를 금속 이온의 상태로, 강고하게 트랩한다. 이 때문에, 금속 이온은, 환원되어 산화수 0(제로)의 금속이 될 수 없다. Pd 이온인 채로는, 무전해 촉매 활성을 발현시키지 않기 때문에, 하이퍼브랜치 폴리머층 상에는 무전해 도금막이 형성되지 않는다고 추측된다. 또한, 이 메커니즘은 추정에 지나지 않고, 본 실시 형태는 이에 한정되지 않는다.Moreover, similarly to the metal recovery agent, using the property of trapping metals, the hyperbranched polymer of the present embodiment can be used as a catalytic activity inhibitor that prevents the catalytic activity of the electroless plating catalyst. For example, when the electroless plating film is formed on only a portion of the surface of the substrate, the hyperbranched polymer solution is applied to the portion where the electroless plating film is not formed to form the hyperbranched polymer layer. Thereafter, by bringing the electroless plating catalyst solution and the electroless plating solution into contact with the substrate on which the hyperbranched polymer layer is formed, the electroless plating film can be formed only in the portion where the hyperbranched polymer layer is not formed. The reason for this is not certain, but it is speculated as follows. The hyperbranched polymer on the substrate firmly traps the electroless plating catalyst (Pd or the like) in the electroless plating catalyst solution in the state of metal ions. For this reason, metal ions cannot be reduced to become a metal having an oxidation number of 0 (zero). Since the Pd ion does not exhibit electroless catalytic activity, it is presumed that an electroless plating film is not formed on the hyperbranched polymer layer. In addition, this mechanism is only estimation, and this embodiment is not limited to this.

실시예Example

이하, 실시예 및 비교예에 의해 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예 및 비교예에 의해 제한되지 않는다.Hereinafter, the present invention will be specifically described by way of Examples and Comparative Examples, but the present invention is not limited by the following Examples and Comparative Examples.

[실시예 1][Example 1]

<폴리머 A1의 합성><Synthesis of Polymer A1>

식 (6)으로 나타나는, 시판의 하이퍼브랜치 폴리머(폴리머 D)에 아미드기를 가지는 기를 도입하여, 식 (5)로 나타나는 폴리머 A1을 합성했다. 식 (5)로 나타나는 폴리머 A1은, 식 (1)로 나타나는 폴리머이며, 식 (1)에 있어서, A1이 식 (2)로 나타나는 기이고; A2가 식 (3)으로 나타나는 기로서, R1이 단결합이며, R2가 수소이고, R3이 이소프로필기이며; A3이 식 (4)로 나타나는 디티오카바메이트기이고, R4 및 R5가 에틸기이며, R0이 비닐기 또는 에틸기이다.A group having an amide group was introduced into a commercially available hyperbranched polymer (polymer D) represented by formula (6) to synthesize polymer A1 represented by formula (5). Polymer A1 represented by Formula (5) is a polymer represented by Formula (1), In Formula (1), A 1 is group represented by Formula (2); A2 is group represented by Formula ( 3 ), R< 1 > is a single bond, R< 2 > is hydrogen, R< 3 > is an isopropyl group; A 3 is a dithiocarbamate group represented by Formula (4), R 4 and R 5 are ethyl groups, and R 0 is a vinyl group or an ethyl group.

우선, 식 (6)으로 나타나는 하이퍼브랜치 폴리머(폴리머 D)(닛산화학공업제, 하이퍼테크 HPS-200)(1.3g, 디티오카바메이트기: 4.9mmol), N-이소프로필아크릴아미드(NIPAM)(1.10g, 9.8mmol), α,α'­아조비스이소부티로니트릴(AIBN)(81mg, 0.49mmol), 탈수 테트라히드로푸란(THF)(10mL)을 쉬렝크(schlenk) 관에 가해, 동결 탈기를 3회 행했다. 그 후, 오일 배스를 이용하여 70℃에서 하룻밤(18시간) 교반하여 반응시키고, 반응 종료 후, 얼음 물에 의해 냉각하며, THF에 의해 적절히 희석했다. 이어서, 헥산 중에서 재침전시켜, 얻어진 고체를 60℃에서 하룻밤 진공 건조시켰다. 건조시킨 고체를 추가로 THF에 용해하고, 물에 의해 재침전시켰다. 얻어진 고체를 60℃에서 하룻밤 진공 건조하여, 생성물을 얻었다. 생성물의 수율은, 69%였다.First, a hyperbranched polymer (polymer D) represented by formula (6) (Nissan Chemicals Co., Ltd., Hypertech HPS-200) (1.3 g, dithiocarbamate group: 4.9 mmol), N-isopropylacrylamide (NIPAM) (1.10 g, 9.8 mmol), α,α' azobisisobutyronitrile (AIBN) (81 mg, 0.49 mmol), dehydrated tetrahydrofuran (THF) (10 mL) were added to a Schlenk tube, freeze degassed was performed 3 times. Thereafter, the reaction was stirred overnight (18 hours) at 70°C using an oil bath, and after completion of the reaction, the mixture was cooled with ice water and appropriately diluted with THF. Then, it was reprecipitated in hexane, and the obtained solid was vacuum-dried at 60 degreeC overnight. The dried solid was further dissolved in THF and reprecipitated with water. The obtained solid was vacuum-dried at 60 degreeC overnight, and the product was obtained. The yield of the product was 69%.

생성물의 1H-NMR(핵자기 공명) 측정 및 IR(적외 흡수 스펙트럼) 측정을 행했다. 이 결과, 식 (6)으로 나타나는 시판의 하이퍼브랜치 폴리머(폴리머 D)에 아미드기가 도입되어, 식 (5)로 나타나는 폴리머 A1이 생성되고 있는 것을 확인할 수 있었다. 도 2에 나타내는 폴리머 A1의 IR 스펙트럼에는, 아미드기에 유래하는 흡수 a1(1600~1700cm-1 부근)이 출현하고 있었다. 또한, 도 3에 나타내는 폴리머 A1의 1H-NMR 스펙트럼의 Peak1(4.0ppm) 및 Peak2(3.7ppm)에 의거하여 이하의 식에 의해, 유황을 포함하는 기인 A3의 몰수에 대한, A2에 포함되는 아미드기의 총 몰수의 비율(몰비: N/S)을 계산했다. 몰비(N/S)는, 0.96였다. 1 H-NMR (nuclear magnetic resonance) measurement and IR (infrared absorption spectrum) measurement of the product were performed. As a result, it was confirmed that the amide group was introduced into the commercially available hyperbranched polymer (polymer D) represented by the formula (6), and the polymer A1 represented by the formula (5) was produced. In the IR spectrum of the polymer A1 shown in Fig. 2, absorption a1 derived from the amide group (around 1600 to 1700 cm -1 ) appeared. In addition, based on the Peak1 (4.0 ppm) and Peak2 (3.7 ppm) of the 1 H-NMR spectrum of the polymer A1 shown in Fig. 3, by the following formula, the number of moles of the sulfur-containing group A 3 in A 2 The ratio (molar ratio: N/S) of the total number of moles of the amide groups included was calculated. The molar ratio (N/S) was 0.96.

(N/S)=(IP1-IP2)/(IP2/2)(N/S)=(I P1 -I P2 )/(I P2 /2)

IP1: Peak1의 피크 면적I P1 : Peak area of Peak1

IP2: Peak2의 피크 면적I P2 : Peak area of Peak2

도 3에, 폴리머 A1의 구조의 모식도를 함께 나타낸다. Peak1은, 폴리머 A1의 말단기에 있어서의, 유황을 포함하는 기 (A3) 중 2개의 수소 (b) 및 아미드기를 포함하는 기 (A2) 중 1개의 수소 (c)에 유래하는 피크이며, Peak2는, 유황을 포함하는 기 (A3) 중 2개의 수소 (a)에 유래하는 피크이다.3, the schematic diagram of the structure of polymer A1 is shown together. Peak1 is a peak derived from one hydrogen (c) of two hydrogens (b) of the sulfur-containing group (A 3 ) and one hydrogen (c) of the amide group (A 2 ) in the terminal group of the polymer A1, , Peak2 is a peak derived from two hydrogens (a) among sulfur-containing groups (A 3 ).

이어서, 생성물의 분자량을 GPC(겔 침투 크로마토그래피)로 측정했다. 분자량은, 수평균 분자량(Mn)=9,946, 중량 평균 분자량(Mw)=24,792이며, 하이퍼브랜치 구조 독특의 수평균 분자량(Mn)과 중량 평균 분자량(Mw)이 크게 상이한 값이었다.Then, the molecular weight of the product was determined by GPC (gel permeation chromatography). The molecular weight was number average molecular weight (Mn) = 9,946 and weight average molecular weight (Mw) = 24,792, and the number average molecular weight (Mn) and weight average molecular weight (Mw) unique to the hyperbranched structure were significantly different values.

폴리머 A1Polymer A1

Figure 112019025187793-pct00009
Figure 112019025187793-pct00009

폴리머 Dpolymer D

Figure 112019025187793-pct00010
Figure 112019025187793-pct00010

[실시예 2][Example 2]

<폴리머 A2의 합성><Synthesis of Polymer A2>

NIPAM을 2.20g, 반응 시간을 24시간으로 한 것 이외는, 실시예 1과 동일한 방법에 의해, 폴리머 A2를 합성했다. 실시예 1과 동일한 방법에 의해, 생성물(폴리머 A2)의 1H-NMR 측정, IR 측정 및 분자량 측정을 행했다. 이 결과, 폴리머 A2는, 폴리머 A1과 마찬가지로 식 (5)로 나타나는 하이퍼브랜치 폴리머인 것을 확인할 수 있었다. 또한, 몰비(N/S)는, 1.22이며, 수평균 분자량(Mn)=10,700, 중량 평균 분자량(Mw)=25,200이었다.Polymer A2 was synthesized in the same manner as in Example 1 except that NIPAM was 2.20 g and the reaction time was 24 hours. In the same manner as in Example 1, 1 H-NMR measurement, IR measurement, and molecular weight measurement of the product (polymer A2) were performed. As a result, it was confirmed that polymer A2 was a hyperbranched polymer represented by Formula (5) similarly to polymer A1. In addition, the molar ratio (N/S) was 1.22, number average molecular weight (Mn) = 10,700, and weight average molecular weight (Mw) = 25,200.

[실시예 3][Example 3]

<폴리머 A3의 합성><Synthesis of Polymer A3>

반응 시간을 8시간으로 한 것 이외는, 실시예 1과 동일한 방법에 의해, 폴리머 A3을 합성했다. 실시예 1과 동일한 방법에 의해, 생성물(폴리머 A3)의 1H-NMR 측정, IR 측정 및 분자량 측정을 행했다. 이 결과, 폴리머 A3은, 폴리머 A1과 마찬가지로 식 (5)로 나타나는 하이퍼브랜치 폴리머인 것을 확인할 수 있었다. 또한, 몰비(N/S)는, 0.78이며, 수평균 분자량(Mn)=9,400, 중량 평균 분자량(Mw)=24,000이었다.Polymer A3 was synthesized in the same manner as in Example 1 except that the reaction time was 8 hours. In the same manner as in Example 1, 1 H-NMR measurement, IR measurement, and molecular weight measurement of the product (polymer A3) were performed. As a result, it was confirmed that polymer A3 was a hyperbranched polymer represented by Formula (5) similarly to polymer A1. In addition, the molar ratio (N/S) was 0.78, number average molecular weight (Mn) = 9,400, and weight average molecular weight (Mw) = 24,000.

[평가][evaluation]

실시예 1에서 합성한 폴리머 A1~A3에 대해, 이하에 기재하는 평가를 행했다.Polymers A1 to A3 synthesized in Example 1 were evaluated below.

(1) 용해성의 평가(1) Evaluation of solubility

표 1에 나타내는 4종류의 용매에, 농도가 2중량%가 되도록 폴리머 A1~A3을 가해, 용해할지 시험했다. 시험은 실온에서 행했다. 결과를 표 1에 나타낸다.Polymers A1 to A3 were added to each of the four solvents shown in Table 1 so that the concentration was 2% by weight, and whether or not to be dissolved was tested. The test was conducted at room temperature. A result is shown in Table 1.

Figure 112019025187793-pct00011
Figure 112019025187793-pct00011

폴리머 A1~A3은, 테트라히드로푸란(THF), 메틸에틸케톤(MEK), 시클로헥사논, 톨루엔의 범용의 용매에 용해했다. Polymers A1 to A3 were dissolved in general-purpose solvents such as tetrahydrofuran (THF), methyl ethyl ketone (MEK), cyclohexanone, and toluene.

(2) 금속 포착 능력의 평가 1(2) Evaluation of metal trapping ability 1

하이퍼브랜치 폴리머층을 형성한 기재에, 무전해 도금 촉매(Pd)의 부여 및 무전해 도금 처리를 행하고, 하이퍼브랜치 폴리머의 금속 포착 능력을 평가했다. 금속 포착 능력이 높은 경우, 하이퍼브랜치 폴리머는 많은 무전해 도금 촉매를 강고하게 흡착(트랩)하기 때문에, 무전해 도금 반응이 발생하기 어렵다. 한편, 금속 포착 능력이 낮은 경우, 하이퍼브랜치 폴리머가 흡착하는 무전해 도금 촉매의 수는 적고, 또한, 흡착도 강고하지 않기 때문에, 무전해 도금 반응이 발생하기 쉽다. 이와 같이, 하이퍼브랜치 폴리머층 상의 도금 반응성은, 하이퍼브랜치 폴리머의 금속 포착 능력에 의해 결정된다. 본 평가에서는, 하이퍼브랜치 폴리머를 촉매 활성 방해제로서 이용하고, 촉매 활성 방해제의 효과가 높은 폴리머를 금속 포착 능력이 높다고 평가했다. 본 평가는, 비교를 위해, 폴리머 A1~A3에 더해, 폴리머 D에 대해서도 동일한 평가를 행했다.To the substrate on which the hyperbranched polymer layer was formed, an electroless plating catalyst (Pd) was applied and an electroless plating treatment was performed, and the metal trapping ability of the hyperbranched polymer was evaluated. When the metal trapping ability is high, since the hyperbranched polymer strongly adsorbs (traps) many electroless plating catalysts, the electroless plating reaction hardly occurs. On the other hand, when the metal trapping ability is low, the number of electroless plating catalysts adsorbed by the hyperbranched polymer is small, and since the adsorption is not strong, the electroless plating reaction tends to occur. As such, the plating reactivity on the hyperbranched polymer layer is determined by the metal trapping ability of the hyperbranched polymer. In this evaluation, the hyperbranched polymer was used as the catalyst activity inhibitor, and the polymer having a high effect of the catalyst activity inhibitor was evaluated as having a high metal trapping ability. This evaluation performed the same evaluation also about the polymer D in addition to the polymers A1 - A3 for comparison.

<평가 방법><Evaluation method>

폴리머 A1을 톨루엔에 용해하여, 폴리머 농도 0.5중량%의 폴리머 용액을 조제했다. 수지 기재(폴리아미드, 도요보제, 바이로아미드)에, 폴리머 A1의 용액을 딥 코팅하고, 건조하여, 폴리머 A1의 폴리머층을 형성했다. 동일한 방법에 의해, 폴리머 A2, A3 및 D를 이용하여, 수지 기재 상에 폴리머 A2, A3 및 D의 폴리머층을 형성했다.Polymer A1 was dissolved in toluene to prepare a polymer solution having a polymer concentration of 0.5 wt%. A solution of polymer A1 was dip-coated on a resin substrate (polyamide, manufactured by Toyobo, Viroamide) and dried to form a polymer layer of polymer A1. By the same method, polymer layers of the polymers A2, A3 and D were formed on the resin substrate using the polymers A2, A3 and D.

이어서, 폴리머층을 형성한 수지 기재에, 시판의 무전해 도금용 촉매액을 이용하여 이하의 방법에 의해, 무전해 도금 촉매를 부여했다. 우선, 수지 기재를 상온의 감응성 부여제(오쿠노제약공업제, 센시타이저)에 침지하고, 5분간 초음파를 조사하여 센시타이저 처리를 행하여, 수지 기재 표면에 주석 콜로이드를 흡착시켰다. 그 후, 수지 기재를 감응성 부여제에 의해 취출하여, 충분히 수세(水洗)했다. 이어서, 수지 기재를 상온의 촉매화 처리제(오쿠노제약공업제, 액티베이터)에 침지하고, 2분간 방치하여 액티베이터 처리를 행하여, 수지 기재 표면에 Pd를 흡착시켰다. 그 후, 수지 기재를 촉매화 처리제로부터 취출하여, 충분히 수세했다.Next, the electroless-plating catalyst was provided to the resin base material in which the polymer layer was formed by the following method using a commercially available catalyst liquid for electroless-plating. First, the resin substrate was immersed in a sensitivity imparting agent (Okuno Pharmaceutical Co., Ltd., Sensitizer) at room temperature and subjected to a sensitizer treatment by irradiating ultrasonic waves for 5 minutes to adsorb the tin colloid onto the surface of the resin substrate. Thereafter, the resin substrate was taken out with the sensitizer and sufficiently washed with water. Next, the resin substrate was immersed in a catalytic treatment agent (manufactured by Okuno Pharmaceutical Co., Ltd., Activator) at room temperature, and left to stand for 2 minutes to perform an activator treatment, whereby Pd was adsorbed on the surface of the resin substrate. Thereafter, the resin substrate was taken out from the catalytic treatment agent and thoroughly washed with water.

무전해 도금 촉매를 부여한 수지 기재를 61℃의 무전해 구리 도금액(오쿠노제약공업제, OPC-NCA)에 15분 침지하여, 무전해 도금막의 생성의 유무를 판단했다.The resin base material to which the electroless plating catalyst was provided was immersed in 61 degreeC electroless copper plating solution (Okuno Pharmaceutical Co., Ltd. make, OPC-NCA) for 15 minutes, and the presence or absence of generation|occurrence|production of the electroless plating film|membrane was judged.

폴리머 A1~A3 및 D의 금속 포착 능력을 이하의 평가 기준에 따라 평가했다. 평가 결과를 표 2에 나타낸다.The metal trapping ability of polymers A1 to A3 and D was evaluated according to the following evaluation criteria. Table 2 shows the evaluation results.

<금속 포착 능력의 평가 기준><Evaluation criteria for metal capture ability>

○: 무전해 도금막이 생성되지 않았다. 따라서, 금속 포착 능력은 높다.(circle): An electroless plating film was not produced|generated. Therefore, the metal trapping ability is high.

×: 무전해 도금막이 생성되었다. 따라서, 금속 포착 능력은 낮다.x: An electroless plating film was produced|generated. Therefore, the metal trapping ability is low.

Figure 112019025187793-pct00012
Figure 112019025187793-pct00012

표 2에 나타내는 바와 같이, 폴리머 A1~A3은, 금속 포착 능력이 높았다. 한편, 말단기에 아미드기를 포함하지 않는 폴리머 D((N/S)=0)는, 금속 포착 능력이 낮았다. 이 이유는, 폴리머 D는, 말단기에 금속과 상호 작용하는 아미드기를 갖지 않기 때문에 금속을 트랩할 수 없기 때문이라고 추측된다.As shown in Table 2, polymers A1-A3 had high metal capture|acquisition ability. On the other hand, the polymer D ((N/S)=0) which did not contain an amide group in the terminal group had low metal capture|acquisition ability. The reason for this is presumed to be that the polymer D cannot trap a metal since it does not have an amide group interacting with the metal at the terminal group.

(3) 금속 포착 능력의 평가 2(3) Evaluation of metal trapping ability 2

하이퍼브랜치 폴리머층을 형성한 기재를 금속이 용해하고 있는 액체에 침지하여 금속의 회수를 행해, 하이퍼브랜치 폴리머의 금속 포착 능력을 평가했다. 즉, 본 평가에서는, 하이퍼브랜치 폴리머를 금속 회수제로서 이용했다.The base material on which the hyperbranched polymer layer was formed was immersed in the liquid in which the metal was dissolved, the metal was recovered, and the metal trapping ability of the hyperbranched polymer was evaluated. That is, in this evaluation, a hyperbranched polymer was used as a metal recovery agent.

<평가 방법><Evaluation method>

우선, 금속이 용해되어 있는 액체로서, 이하의 3종류의 용액을 준비했다. 각각의 용액 중의 금속 농도는, 150ppm이다.First, as a liquid in which a metal is dissolved, the following three types of solutions were prepared. The metal concentration in each solution is 150 ppm.

Pd 용액: 시판의 Pd 수용액(오쿠노제약공업제, 액티베이터)Pd solution: Commercially available Pd aqueous solution (Okuno Pharmaceutical Co., Ltd., Activator)

Pt 용액: 테트라클로로백금(II)산 칼륨 수용액Pt solution: aqueous potassium tetrachloroplatinum(II) acid solution

Ag 용액: 질산은 수용액Ag solution: aqueous silver nitrate solution

상기 서술한 (2) 금속 포착 능력의 평가 1과 동일한 방법에 의해, 폴리머 A1을 이용하여, 폴리머층을 가지는 수지 기재를 제조했다. 또한, 비교를 위해, 폴리머층을 갖지 않는 수지 기재도 준비했다. 폴리머층을 가지는 수지 기재, 폴리머층을 갖지 않는 수지 기재를 각각, Pd 용액에 5분간 침지하고, 수세, 건조를 행했다. 마찬가지로, Pt 용액 및 Ag 용액에도, 폴리머층을 가지는 수지 기재, 폴리머층을 갖지 않는 수지 기재를 각각 침지하고, 수세, 건조를 행했다.By the method similar to evaluation 1 of (2) metal capture|acquisition ability mentioned above, the resin base material which has a polymer layer was manufactured using polymer A1. Moreover, for comparison, the resin base material which does not have a polymer layer was also prepared. The resin base material with a polymer layer and the resin base material without a polymer layer were respectively immersed in Pd solution for 5 minutes, and water washing and drying were performed. Similarly, the resin substrate having a polymer layer and the resin substrate having no polymer layer were immersed in the Pt solution and the Ag solution, respectively, and washed with water and dried.

각 용액에 침지한 수지 기재의 표면을 XPS 분석(X선 광전자 분광)했다. Pd 용액에 침지한 수지 기재에서는 Pd의 정량을 행하고, Pt 용액에 침지한 수지 기재에서는 Pt의 정량을 행하며, 그리고, Ag 용액에 침지한 수지 기재에서는 Ag의 정량을 행했다. 결과를 표 3에 나타낸다.The surface of the resin substrate immersed in each solution was subjected to XPS analysis (X-ray photoelectron spectroscopy). In the resin substrate immersed in the Pd solution, Pd was quantified, in the resin substrate immersed in the Pt solution, Pt was quantified, and in the resin substrate immersed in the Ag solution, Ag was quantified. A result is shown in Table 3.

Figure 112019025187793-pct00013
Figure 112019025187793-pct00013

표 3에 나타내는 바와 같이, Pd, Pt 및 Ag 전체에 있어서, 폴리머층을 가지는 수지 기재가, 많은 금속을 회수할 수 있었다. 이 결과로부터, 폴리머 A1이, 금속인 Pd, Pt 및 Ag를 포착하는 능력을 가지는 것을 확인할 수 있었다.As shown in Table 3, in all of Pd, Pt, and Ag, the resin base material which has a polymer layer was able to collect|recover many metals. From this result, it has been confirmed that the polymer A1 has the ability to trap metals Pd, Pt, and Ag.

본 발명의 신규인 하이퍼브랜치 폴리머는, 금속 포착 능력을 가진다. 이 때문에, 예를 들면, 금속이 용해되어 있는 액체 중의 상기 금속을 회수하는 금속 회수제나, 무전해 도금 촉매의 촉매 활성을 방해하는 촉매 활성 방해제로서 이용 가능하다.The novel hyperbranched polymer of the present invention has a metal trapping ability. For this reason, for example, it can be utilized as a metal recovery agent which collect|recovers the said metal in the liquid in which the metal is melt|dissolved, and a catalytic activity inhibitor which interferes with the catalytic activity of an electroless plating catalyst.

Claims (13)

하기 식 (1)로 나타나고, 중량 평균 분자량이, 1,000~1,000,000인 것을 특징으로 하는 하이퍼브랜치 폴리머.
[화학식 1]
Figure 112019025187793-pct00014

식 (1)에 있어서,
A1은 방향환을 포함하는 기이며,
A2는, 아미드기를 포함하는 기이고,
A3은, 유황을 포함하는 기이며,
R0은, 수소 또는 탄소수 1~10개의 치환 혹은 무치환의 탄화수소기이고,
m1은 0.5~11이며, n1은 5~100이다.
It is represented by following formula (1), and a weight average molecular weight is 1,000-1,000,000, The hyperbranched polymer characterized by the above-mentioned.
[Formula 1]
Figure 112019025187793-pct00014

In formula (1),
A 1 is a group containing an aromatic ring,
A 2 is a group containing an amide group,
A 3 is a group containing sulfur,
R 0 is hydrogen or a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms,
m1 is 0.5-11, n1 is 5-100.
제 1 항에 있어서,
상기 식 (1)에 있어서,
A1이 하기 식 (2)로 나타나는 기이며,
A3이, 디티오카바메이트기인 것을 특징으로 하는 하이퍼브랜치 폴리머.
[화학식 2]
Figure 112019025187793-pct00015
The method of claim 1,
In the formula (1),
A 1 is a group represented by the following formula (2),
A 3 is a dithiocarbamate group, hyperbranched polymer, characterized in that.
[Formula 2]
Figure 112019025187793-pct00015
제 1 항 또는 제 2 항에 있어서,
상기 식 (1)에 있어서,
A2가, 하기 식 (3)으로 나타나는 기인 것을 특징으로 하는 하이퍼브랜치 폴리머.
[화학식 3]
Figure 112019025187793-pct00016

식 (3)에 있어서,
R1은 탄소수가 1~5인 치환 혹은 무치환의 알킬렌기, 또는 단결합이며,
R2 및 R3은, 각각, 탄소수가 1~10인 치환 혹은 무치환의 알킬기 또는 수소이다.
3. The method of claim 1 or 2,
In the formula (1),
A2 is group represented by following formula ( 3 ), The hyperbranched polymer characterized by the above-mentioned.
[Formula 3]
Figure 112019025187793-pct00016

In formula (3),
R 1 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, or a single bond,
R 2 and R 3 are each a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms or hydrogen.
제 3 항에 있어서,
상기 식 (3)에 있어서, R1이 단결합이며, R2가 수소이고, R3이 이소프로필기인 것을 특징으로 하는 하이퍼브랜치 폴리머.
4. The method of claim 3,
In the formula (3), R 1 is a single bond, R 2 is hydrogen, R 3 is a hyperbranched polymer, characterized in that the isopropyl group.
제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 식 (1)에 있어서,
A3이, 하기 식 (4)로 나타나는 기인 것을 특징으로 하는 하이퍼브랜치 폴리머.
[화학식 4]
Figure 112019025187793-pct00017

식 (4)에 있어서,
R4 및 R5는, 각각, 탄소수가 1~5인 치환 혹은 무치환의 알킬기, 또는 수소이다.
5. The method according to any one of claims 1 to 4,
In the formula (1),
A 3 is group represented by following formula (4), The hyperbranched polymer characterized by the above-mentioned.
[Formula 4]
Figure 112019025187793-pct00017

In formula (4),
Each of R 4 and R 5 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, or hydrogen.
제 5 항에 있어서,
식 (4)에 있어서, R4 및 R5가 에틸기인 것을 특징으로 하는 하이퍼브랜치 폴리머.
6. The method of claim 5,
In the formula (4), R 4 and R 5 is an ethyl group, characterized in that the hyperbranched polymer.
제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
식 (1)에 있어서,
유황을 포함하는 기인 A3의 몰수에 대한, A2에 포함되는 아미드기의 총 몰수의 비율이, 0.5 이상, 1.5 미만인 것을 특징으로 하는 하이퍼브랜치 폴리머.
7. The method according to any one of claims 1 to 6,
In formula (1),
A hyperbranched polymer characterized in that the ratio of the total number of moles of the amide groups contained in A 2 to the number of moles of the sulfur-containing group A 3 is 0.5 or more and less than 1.5.
제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
식 (1)에 있어서,
A3이, 디티오카바메이트기이며,
유황을 포함하는 기인 A3의 몰수에 대한, A2에 포함되는 아미드기의 총 몰수의 비율이, 0.5~1.5인 것을 특징으로 하는 하이퍼브랜치 폴리머.
7. The method according to any one of claims 1 to 6,
In formula (1),
A 3 is a dithiocarbamate group,
The hyperbranched polymer, characterized in that the ratio of the total number of moles of the amide group contained in A 2 to the number of moles of the sulfur-containing group A 3 is 0.5 to 1.5.
제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
식 (1)에 있어서, R0이, 비닐기인 것을 특징으로 하는 하이퍼브랜치 폴리머.
9. The method according to any one of claims 1 to 8,
In Formula (1), R 0 is a vinyl group, The hyperbranched polymer characterized in that it.
제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
상기 하이퍼브랜치 폴리머가, 상기 식 (1)에 있어서, R0이 비닐기인 하이퍼브랜치 폴리머와, R0이 에틸기인 하이퍼브랜치 폴리머와의 혼합물인 것을 특징으로 하는 하이퍼브랜치 폴리머.
9. The method according to any one of claims 1 to 8,
The hyperbranched polymer is a hyperbranched polymer, characterized in that the hyperbranched polymer in the formula (1), wherein R 0 is a vinyl group, and R 0 is a mixture of a hyperbranched polymer having an ethyl group.
금속이 용해되어 있는 액체 중의 상기 금속을 회수하는 금속 회수제로서, 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 하이퍼브랜치 폴리머를 포함하는 것을 특징으로 하는 금속 회수제.A metal recovery agent for recovering the metal in a liquid in which the metal is dissolved, the metal recovery agent comprising the hyperbranched polymer according to any one of claims 1 to 10. 금속이 용해되어 있는 액체 중의 상기 금속을 회수하는 금속 회수 방법으로서,
제 1 항 내지 제 10 항 중 어느 한 항에 기재된 하이퍼브랜치 폴리머를 용매에 용해하여, 하이퍼브랜치 폴리머 용액을 조제하는 것과,
상기 하이퍼브랜치 폴리머 용액을 기재 상에 도포하여 하이퍼브랜치 폴리머층을 형성하는 것과,
상기 하이퍼브랜치 폴리머층에 상기 액체를 접촉시켜, 상기 액체 중의 상기 금속을 흡착시켜 회수하는 것을 포함하는 금속 회수 방법.
A metal recovery method for recovering the metal in a liquid in which the metal is dissolved,
Dissolving the hyperbranched polymer according to any one of claims 1 to 10 in a solvent to prepare a hyperbranched polymer solution;
forming a hyperbranched polymer layer by applying the hyperbranched polymer solution on a substrate;
and contacting the liquid with the hyperbranched polymer layer to adsorb and recover the metal in the liquid.
무전해 도금 촉매의 촉매 활성을 방해하는 촉매 활성 방해제로서, 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 하이퍼브랜치 폴리머를 포함하는 것을 특징으로 하는 촉매 활성 방해제.11. A catalyst activity inhibitor for hindering the catalytic activity of an electroless plating catalyst, comprising the hyperbranched polymer according to any one of claims 1 to 10.
KR1020197007213A 2017-01-13 2017-12-27 Hyperbranched polymers, metal recovery agents, metal recovery methods and catalyst activity inhibitors KR102376913B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227008764A KR102483813B1 (en) 2017-01-13 2017-12-27 Hyperbranched polymer, metal recovery agent, metal recovery method, and catalytic activity inhibitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017004296 2017-01-13
JPJP-P-2017-004296 2017-01-13
PCT/JP2017/047054 WO2018131492A1 (en) 2017-01-13 2017-12-27 Hyperbranched polymer, metal recovery agent, metal recovery method, and catalytic activity inhibitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227008764A Division KR102483813B1 (en) 2017-01-13 2017-12-27 Hyperbranched polymer, metal recovery agent, metal recovery method, and catalytic activity inhibitor

Publications (2)

Publication Number Publication Date
KR20190103137A KR20190103137A (en) 2019-09-04
KR102376913B1 true KR102376913B1 (en) 2022-03-21

Family

ID=62839539

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227008764A KR102483813B1 (en) 2017-01-13 2017-12-27 Hyperbranched polymer, metal recovery agent, metal recovery method, and catalytic activity inhibitor
KR1020197007213A KR102376913B1 (en) 2017-01-13 2017-12-27 Hyperbranched polymers, metal recovery agents, metal recovery methods and catalyst activity inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020227008764A KR102483813B1 (en) 2017-01-13 2017-12-27 Hyperbranched polymer, metal recovery agent, metal recovery method, and catalytic activity inhibitor

Country Status (6)

Country Link
US (1) US11186657B2 (en)
JP (2) JP7030721B2 (en)
KR (2) KR102483813B1 (en)
CN (2) CN114736340A (en)
DE (1) DE112017006823T5 (en)
WO (1) WO2018131492A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6898740B2 (en) * 2017-01-17 2021-07-07 マクセルホールディングス株式会社 Manufacturing method of plated parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070681A1 (en) 2010-11-26 2012-05-31 国立大学法人九州大学 Water-soluble hyperbranch polymer having paramagnetism
JP2015221917A (en) 2014-05-22 2015-12-10 日立マクセル株式会社 Production method of compact having plating film
JP2017160518A (en) 2016-03-11 2017-09-14 日立マクセル株式会社 Producing method of plating part, plating part, catalytic activity disturbing agent, and electroless plating compound material
JP2017226890A (en) 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2256923B1 (en) 1974-01-03 1976-11-26 Ugine Kuhlmann
JPS5450111A (en) 1977-09-28 1979-04-19 Hideo Sakamoto Method of piling construction
JPS5499477A (en) 1978-01-14 1979-08-06 Citizen Watch Co Ltd Hand position detecting circuit
JPS5534244A (en) 1978-08-31 1980-03-10 Toyobo Co Ltd Antistatic polyester composition
JPS5748076A (en) 1980-08-30 1982-03-19 Yoshida Kanamono Kk Pin tumbler lock mechanism
US5938934A (en) * 1998-01-13 1999-08-17 Dow Corning Corporation Dendrimer-based nanoscopic sponges and metal composites
US7985424B2 (en) * 2004-04-20 2011-07-26 Dendritic Nanotechnologies Inc. Dendritic polymers with enhanced amplification and interior functionality
US20100240792A1 (en) * 2006-06-19 2010-09-23 Tokyo Institute Of Technology Hyperbranched Polymer and Method for Producing the Same
KR101406330B1 (en) 2006-09-01 2014-07-14 닛산 가가쿠 고교 가부시키 가이샤 Hyperbranched polymer and method for producing the same
JPWO2008117772A1 (en) * 2007-03-26 2010-07-15 日産化学工業株式会社 Curable material and cured product containing photopolymerizable polymer
WO2009031594A1 (en) * 2007-09-03 2009-03-12 Nissan Chemical Industries, Ltd. Metal fine particle-dispersing agent composed of polymer compound having dithiocarbamate group
WO2009054455A1 (en) * 2007-10-26 2009-04-30 Kyusyu University Hyperbranched polymer having nitroxyl group
WO2010101252A1 (en) 2009-03-06 2010-09-10 日産化学工業株式会社 Hyperbranched polymer production method
CN103282116B (en) * 2010-12-28 2015-06-10 东曹株式会社 Method for collecting precious metals from solution containing precious metal ions, extractant or adsorbent used therefor, and back extractant or desorbent
JP6112288B2 (en) * 2012-08-24 2017-04-12 日産化学工業株式会社 Hyperbranched polymer having ethylene oxide chain and use thereof
JP2017199803A (en) * 2016-04-27 2017-11-02 日立マクセル株式会社 Three-dimensional molded circuit component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070681A1 (en) 2010-11-26 2012-05-31 国立大学法人九州大学 Water-soluble hyperbranch polymer having paramagnetism
JP2015221917A (en) 2014-05-22 2015-12-10 日立マクセル株式会社 Production method of compact having plating film
JP2017160518A (en) 2016-03-11 2017-09-14 日立マクセル株式会社 Producing method of plating part, plating part, catalytic activity disturbing agent, and electroless plating compound material
JP2017226890A (en) 2016-06-23 2017-12-28 マクセルホールディングス株式会社 Method of manufacturing plating component

Also Published As

Publication number Publication date
WO2018131492A1 (en) 2018-07-19
KR102483813B1 (en) 2023-01-03
KR20190103137A (en) 2019-09-04
DE112017006823T5 (en) 2019-10-02
US20190309104A1 (en) 2019-10-10
JPWO2018131492A1 (en) 2019-11-07
US11186657B2 (en) 2021-11-30
JP2022081508A (en) 2022-05-31
CN114736340A (en) 2022-07-12
KR20220039832A (en) 2022-03-29
CN109715676B (en) 2022-04-15
JP7354321B2 (en) 2023-10-02
CN109715676A (en) 2019-05-03
JP7030721B2 (en) 2022-03-07

Similar Documents

Publication Publication Date Title
Cao et al. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines
US20220168706A1 (en) Composites for extraction of metal or contaminating chemical species
EP3078688B1 (en) Block copolymer
KR101763010B1 (en) Block copolymer
Zheng et al. Poly (styrene)‐Supported Co–Salen Complexes as Efficient Recyclable Catalysts for the Hydrolytic Kinetic Resolution of Epichlorohydrin
Quan et al. Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: Facilitating the separation of perfluorinated alkyl substances from water
JP7354321B2 (en) Hyperbranched polymers, metal recovery agents, metal recovery methods and catalyst activity inhibitors
JP2017520667A (en) A novel complex for the separation of cations.
Jung et al. An efficient and facile method of grafting Allyl groups to chemically resistant polyketone membranes
CN103408756A (en) Method for preparing polytriazole through catalysis of recyclable supported cuprous catalyst and prepared polytriazole
Valdés et al. Synthesis and characterization of an insoluble polymer based on polyamidoamine: applications for the decontamination of metals in aqueous systems
WO2014024322A1 (en) Glycidyl 4-functionalized-1,2,3-triazole polymer derivatives and method for synthesis of the same
JP2006335806A (en) Method for producing low-molecular weight polyphenylene ether
Witte et al. Nickel‐Mediated Surface Grafting From Polymerization of α‐Amino Acid‐N‐Carboxyanhydrides
CN113457643B (en) Porphyrin-purple Luo Jianyang ionic porous polymer and preparation method and application thereof
WO1990011390A2 (en) Composite element comprising a polyether or copolyether, process for its preparation and its use for the extraction and separation of metallic cations
CA3150355C (en) Redox active materials, processes and uses thereof
JP5004149B2 (en) Novel aromatic polymer
JP5798979B2 (en) Functional network polymer composition
KR101827488B1 (en) Method for catalysts seperation/reactivation from a copolymerization process of epoxide/carbon dioxide
JP5012409B2 (en) Molecular assembly
Keerthiga et al. Metal Uptake Properties of Chelating Azo Polymeric Resin: Synthesis, Characterization and Biological Properties
Furusho et al. Polymer synthesis
Novak Atom Transfer Radical Processes: From Catalyst Design to Polymer Synthesis, Characterization, and Application
Lang Advanced Metallopolymer Architectures in Solution and on Surfaces

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant