KR102368521B1 - manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst - Google Patents

manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst Download PDF

Info

Publication number
KR102368521B1
KR102368521B1 KR1020220000739A KR20220000739A KR102368521B1 KR 102368521 B1 KR102368521 B1 KR 102368521B1 KR 1020220000739 A KR1020220000739 A KR 1020220000739A KR 20220000739 A KR20220000739 A KR 20220000739A KR 102368521 B1 KR102368521 B1 KR 102368521B1
Authority
KR
South Korea
Prior art keywords
metal oxide
composite metal
oxide catalyst
solution
nitrate
Prior art date
Application number
KR1020220000739A
Other languages
Korean (ko)
Inventor
정상철
정경환
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to KR1020220000739A priority Critical patent/KR102368521B1/en
Application granted granted Critical
Publication of KR102368521B1 publication Critical patent/KR102368521B1/en
Priority to PCT/KR2022/004823 priority patent/WO2023132410A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for manufacturing a composite metal oxide catalyst for hydrogen generation using a liquid phase plasma reaction and a composite metal oxide catalyst, and to a method for manufacturing a composite metal oxide catalyst capable of increasing hydrogen production efficiency and to a composite metal oxide catalyst.

Description

액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법 및 복합 금속산화물 촉매{manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst}Manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst

본 발명은 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법 및 복합 금속산화물 촉매에 관한 것으로서, 수소 생성 효율을 높일 수 있는 복합 금속산화물 촉매의 제조방법 및 복합 금속산화물 촉매에 관한 것이다. The present invention relates to a method for producing a composite metal oxide catalyst for hydrogen generation using a liquid phase plasma reaction and a composite metal oxide catalyst, and to a method for producing a composite metal oxide catalyst capable of increasing hydrogen production efficiency and to a composite metal oxide catalyst.

수소 에너지는 청정에너지로 화석연료를 대체할 미래 에너지로 주목을 받고 있다. 기후 변화가 심각해짐에 따라 이산화탄소의 발생을 감소시키는 방안이 모색되고 있다. 이를 위해서는 수소 에너지 사용을 확대하는 것이 반드시 필요하다. 미래 에너지 문제를 해결하기 위해서는 보다 효율적인 수소 에너지 제조기술을 확보하는 것이 매우 중요하다. Hydrogen energy is attracting attention as a future energy to replace fossil fuels with clean energy. As climate change becomes more serious, measures to reduce the generation of carbon dioxide are being sought. For this, it is absolutely necessary to expand the use of hydrogen energy. In order to solve future energy problems, it is very important to secure more efficient hydrogen energy production technology.

지금까지 수소는 대부분 원유를 기반으로 하는 석유화학 공정에서 생산되거나, 프로판 또는 메탄가스의 수증기 개질을 통해 생산되고 있다. 그러나 이 방법은 탄화수소를 출발물질로 사용하고 생산 공정에서 이산화탄소와 같은 온난화 가스를 배출한다. Until now, hydrogen has been mostly produced in petrochemical processes based on crude oil or through steam reforming of propane or methane gas. However, this method uses hydrocarbons as starting materials and emits greenhouse gases such as carbon dioxide from the production process.

이 때문에 최근에는 이산화탄소를 배출하지 않는 수소 제조 공정에 대한 연구에 관심이 모이고 있다. 그 중 물의 전기분해 또는 광분해 기술에 의한 수소 생산은 반응에 사용되는 전기에너지를 재생에너지로부터 얻을 경우에는 깨끗한 수소를 생산하는 방법으로 평가할 수 있다. 그러나 이러한 방식은 수소 생산성이 낮다는 한계가 있다. 따라서 보다 환경친화적이면서 대량으로 수소를 생산할 수 있는 방법이 주요 연구의 초점이 되었다.For this reason, interest in research on hydrogen production processes that do not emit carbon dioxide has recently been attracting attention. Among them, hydrogen production by water electrolysis or photolysis technology can be evaluated as a method of producing clean hydrogen when electrical energy used in the reaction is obtained from renewable energy. However, this method has a limitation in that the hydrogen productivity is low. Therefore, a more environmentally friendly and mass-produced method of hydrogen has become the focus of major research.

플라즈마는 다양한 단계에서 고전압 방전으로 생성된다. 플라즈마 방전은 다양한 화학반응을 일으킬 수 있는 능력을 가지고 있다. 플라즈마는 기상에서 생성된 플라즈마가 전형적이다. 이는 일반적으로 박막 및 반도체를 위한 미세한 결정을 생성하는데 적용되고 있다. Plasma is generated by a high voltage discharge in various stages. Plasma discharge has the ability to initiate various chemical reactions. Plasma is typically a plasma generated in a gas phase. It is commonly applied to create fine crystals for thin films and semiconductors.

이에 비해, 액상에서 플라즈마를 발생시켜 이를 이용하는 기술은 아직 많이 알려지지 않았다. 액상 플라즈마는 액체로 직접 방출되는 고전압에 의해 생성된다. 고전압 방전에 의해 수중에서 발생된 플라즈마는 강하고 조밀한 자외선과 가시광선을 방출하여 많은 활성종을 생성한다. 액상 플라즈마는 전기장, 강한 자외선, 고압 충격파, 다양한 자유라디칼 생성 및 오존 생성 효과를 동시에 유발한다. 이러한 효과는 유해한 화학물질을 파괴하고 액체의 미생물을 제거할 수 있다. On the other hand, a technique for generating plasma in a liquid phase and using it is not yet known much. Liquid plasma is created by a high voltage that is emitted directly into the liquid. Plasma generated in water by high voltage discharge emits strong and dense ultraviolet and visible light to generate many active species. Liquid plasma simultaneously induces an electric field, strong ultraviolet rays, high-pressure shock waves, various free radical generation and ozone generation effects. This effect can destroy harmful chemicals and eliminate microorganisms in liquids.

최근에는 대한민국 등록특허 제10-1814128호에 개시된 바와 같이 광촉매가 존재하는 수중에서 액상 플라즈마를 발생시킴으로써 물을 분해하여 수소를 생성하는 기술이 알려져 있다. Recently, as disclosed in Korean Patent No. 10-1814128, a technique for generating hydrogen by decomposing water by generating a liquid plasma in water in which a photocatalyst is present is known.

상기 특허기술은 광촉매로 금속산화물의 일종인 이산화티탄(TiO2)을 이용하고 있다. The patented technology uses titanium dioxide (TiO 2 ), a type of metal oxide, as a photocatalyst.

이산화티탄 광촉매는 자외선에서 우수한 광활성을 나타내지만 가시광에서는 광촉매 활성이 매우 낮다는 문제점이 있다. Titanium dioxide photocatalyst exhibits excellent photoactivity in ultraviolet light, but has a problem in that photocatalytic activity is very low in visible light.

대한민국 등록특허 제10-1814128호: 액상 플라즈마와 광촉매를 이용한 수소 제조방법Republic of Korea Patent No. 10-1814128: Hydrogen production method using liquid plasma and photocatalyst

본 발명은 상기의 문제점을 개선하고자 창출된 것으로서, 가시광에서도 광활성화가 가능하여 수소의 생성 효율을 높일 수 있는 수소생성용 복합 금속산화물 촉매의 제조방법 및 복합 금속산화물 촉매를 제공하는 데 그 목적이 있다.The present invention was created to improve the above problems, and the purpose of the present invention is to provide a method for producing a composite metal oxide catalyst for hydrogen production and a composite metal oxide catalyst, which can be photoactivated even in visible light to increase hydrogen production efficiency there is.

상기의 목적을 달성하기 위한 본 발명의 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법은 프라세오디뮴(Pr) 공급원과, 스트론튬(Sr) 공급원과, 아연(Zn) 공급원과, 티타늄(Ti) 공급원이 함유된 전구용액을 합성하는 제 1단계와; 상기 전구용액을 건조시켜 고체 생성물을 수득하는 제 2단계와; 상기 고체 생성물을 소성하여 Pr-Sr-Zn-Ti계 복합 금속산화물을 생성시키는 제 3단계와; 상기 복합 금속산화물을 분쇄하는 제 4단계;를 포함한다.A method for producing a composite metal oxide catalyst for hydrogen generation using a liquid phase plasma reaction of the present invention for achieving the above object is a praseodymium (Pr) source, a strontium (Sr) source, a zinc (Zn) source, and a titanium (Ti) ) a first step of synthesizing a precursor solution containing the source; a second step of drying the precursor solution to obtain a solid product; a third step of calcining the solid product to produce a Pr-Sr-Zn-Ti-based composite metal oxide; and a fourth step of pulverizing the composite metal oxide.

상기 제 1단계는 a)증류수에 질산프라세오디뮴(Pr(NO3)3), 질산스트론튬(Sr(NO3)2), 유기산을 첨가하고 교반하여 제 1용액을 수득하는 단계와, b)상기 제 1용액에 질산아연(Zn(NO3)2)을 첨가하고 교반하여 제 2용액을 수득하는 단계와, c)에탄올에 에탄올아민을 첨가하고 교반한 다음 티타늄 알콕사이드(titanium alkoxide)를 첨가하고 교반하여 제 3용액을 수득하는 단계와, d)에탄올에 유기산을 첨가하고 교반하여 제 4용액을 수득하는 단계와, e)상기 제 2용액에 상기 제 3 및 제 4용액을 첨가한 후 교반하면서 반응시켜 상기 전구용액을 생성하는 단계를 포함한다.The first step is a) adding praseodymium nitrate (Pr(NO 3 ) 3 ), strontium nitrate (Sr(NO 3 ) 2 ), and an organic acid to distilled water and stirring to obtain a first solution, b) the first step Zinc nitrate (Zn(NO 3 ) 2 ) was added to solution 1 and stirred to obtain a second solution, c) ethanolamine was added to ethanol and stirred, and then titanium alkoxide was added and stirred. obtaining a third solution; d) adding an organic acid to ethanol and stirring to obtain a fourth solution; e) adding the third and fourth solutions to the second solution and then reacting with stirring and generating the precursor solution.

상기 유기산은 시트르산이다.The organic acid is citric acid.

상기 제 2단계는 상기 전구용액을 110 내지 150℃에서 10 내지 30시간 동안 건조시킨다.In the second step, the precursor solution is dried at 110 to 150° C. for 10 to 30 hours.

상기 제 3단계는 상기 고체 생성물을 2~8℃/min 속도로 승온시켜 250 내지 350℃에서 1 내지 3시간 동안 유지한 다음 2~8℃/min 속도로 승온시켜 800 내지 1200℃에서 2 내지 8시간 동안 유지하여 소성한다. The third step is to raise the temperature of the solid product at a rate of 2 to 8 ° C./min and maintain it at 250 to 350 ° C. for 1 to 3 hours, and then increase the temperature at a rate of 2 to 8 ° C. / min to 2 to 8 at 800 to 1200 ° C. Firing by holding for a period of time.

그리고 상기의 목적을 달성하기 위한 본 발명의 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매는 프라세오디뮴(Pr), 스트론튬(Sr), 아연(Zn), 티타늄(Ti)이 결합된 Pr-Sr-Zn-Ti계 복합 금속산화물 촉매로서, 수중에서 발생된 플라즈마에 의해 활성화되어 물을 수소와 산소로 분해시킨다. And the composite metal oxide catalyst for hydrogen generation using the liquid phase plasma reaction of the present invention for achieving the above object is Pr-Sr- to which praseodymium (Pr), strontium (Sr), zinc (Zn), and titanium (Ti) are combined. As a Zn-Ti-based composite metal oxide catalyst, it is activated by plasma generated in water to decompose water into hydrogen and oxygen.

상술한 바와 같이 본 발명은 여러 종류의 금속이 결합된 Pr-Sr-Zn-Ti계 복합 금속산화물 촉매의 제조방법을 제공한다. As described above, the present invention provides a method for preparing a Pr-Sr-Zn-Ti-based composite metal oxide catalyst in which various types of metals are bonded.

본 발명의 복합 금속산화물 촉매는 가시광에서도 광활성화가 가능하므로 상업적으로 이용되는 이산화티탄(TiO2) 촉매에 비해 수소의 생성 효율을 높일 수 있다.Since the composite metal oxide catalyst of the present invention can be photoactivated even in visible light, it is possible to increase the hydrogen production efficiency compared to a commercially used titanium dioxide (TiO 2 ) catalyst.

따라서 자외선 영역에서만 광활성화가 되는 이산화티탄(TiO2) 촉매의 문제점을 극복할 수 있으므로 온실가스의 발생을 줄이면서 보다 효율적인 수소 에너지 제조기술을 확보할 수 있다. Therefore, it is possible to overcome the problem of the titanium dioxide (TiO 2 ) catalyst, which is photoactivated only in the ultraviolet region, thereby reducing the generation of greenhouse gases and securing more efficient hydrogen energy production technology.

도 1은 본 발명의 복합 금속산화물 촉매를 이용하여 수소를 생성하기 위한 액상플라즈마 반응장치를 개략적으로 나타낸 구성도이고,
도 2는 복합 금속산화물 촉매의 X선 회절(XRD) 패턴을 나타낸 그래프이고,
도 3은 복합 금속산화물 촉매의 주사 전자 현미경(SEM) 이미지이고,
도 4는 에너지 분산 X선 분광(EDX) 결과를 나타낸 그래프이고,
도 5는 복합 금속산화물 촉매의 질소 흡착 등온선을 나타낸 그래프이고,
도 6은 복합 금속산화물 촉매의 퓨리에 변환 적외선(FT-IR) 스펙트럼 결과를 나타낸 그래프이고,
도 7은 복합 금속산화물 촉매의 자외선-가시광 확산 반사율 분광(DRS) 분석결과를 나타낸 그래프이고,
도 8은 복합 금속산화물 촉매 첨가조건, TiO2 촉매 첨가조건, 촉매가 첨가되지 않은 조건에 따른 수소의 생성률을 나타낸 그래프이다.
1 is a configuration diagram schematically showing a liquid phase plasma reactor for generating hydrogen using the composite metal oxide catalyst of the present invention;
2 is a graph showing the X-ray diffraction (XRD) pattern of the composite metal oxide catalyst,
3 is a scanning electron microscope (SEM) image of the composite metal oxide catalyst,
4 is a graph showing the energy dispersive X-ray spectroscopy (EDX) results,
5 is a graph showing the nitrogen adsorption isotherm of the composite metal oxide catalyst;
6 is a graph showing the Fourier transform infrared (FT-IR) spectrum results of the composite metal oxide catalyst,
7 is a graph showing the results of ultraviolet-visible diffuse reflectance (DRS) analysis of the composite metal oxide catalyst,
8 is a graph showing the hydrogen production rate according to the conditions for adding a composite metal oxide catalyst, a condition for adding a TiO 2 catalyst, and a condition for not adding a catalyst.

이하, 본 발명의 바람직한 실시 예에 따른 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매 및 복합 금속산화물 촉매에 대하여 설명한다. Hereinafter, a composite metal oxide catalyst and a composite metal oxide catalyst for hydrogen generation using a liquid phase plasma reaction according to a preferred embodiment of the present invention will be described.

본 발명의 일 예에 따른 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법은 전구용액을 합성하는 제 1단계와, 전구용액을 건조시켜 고체 생성물을 수득하는 제 2단계와, 고체 생성물을 소성하여 Pr-Sr-Zn-Ti계 복합 금속산화물을 생성시키는 제 3단계와, 복합 금속산화물을 분쇄하는 제 4단계를 포함한다. 각 단계별로 구체적으로 살펴본다. A method for producing a composite metal oxide catalyst for hydrogen generation using a liquid phase plasma reaction according to an embodiment of the present invention includes a first step of synthesizing a precursor solution, a second step of drying the precursor solution to obtain a solid product, and a solid product A third step of calcining to produce a Pr-Sr-Zn-Ti-based composite metal oxide, and a fourth step of pulverizing the composite metal oxide. Let's look at each step in detail.

1. 제 1단계1. Step 1

제 1단계에서 전구용액을 합성한다. 전구용액은 프라세오디뮴(Pr) 공급원, 스트론튬(Sr) 공급원, 아연(Zn) 공급원, 티타늄(Ti) 공급원을 함유한다. In the first step, a precursor solution is synthesized. The precursor solution contains a praseodymium (Pr) source, a strontium (Sr) source, a zinc (Zn) source, and a titanium (Ti) source.

프라세오디뮴(Pr) 공급원으로서 질산염을 이용할 수 있다. 가령, 질산염으로 질산프라세오디뮴(Pr(NO3)3)을 들 수 있다.Nitrate may be used as a source of praseodymium (Pr). For example, the nitrate may include praseodymium nitrate (Pr(NO 3 ) 3 ).

스트론튬(Sr) 공급원으로서 질산염을 이용할 수 있다. 가령, 질산염으로 질산스트론튬(Sr(NO3)2)을 들 수 있다. Nitrate may be used as a strontium (Sr) source. For example, the nitrate may include strontium nitrate (Sr(NO 3 ) 2 ).

그리고 아연(Zn) 공급원으로서 질산염을 이용할 수 있다. 가령, 질산염으로 질산아연(Zn(NO3)2)을 들 수 있다. And nitrate may be used as a zinc (Zn) source. For example, zinc nitrate (Zn(NO 3 ) 2 ) may be mentioned as a nitrate.

그리고 티타늄(Ti) 공급원으로서 티타늄 알콕사이드(titanium alkoxides)를 이용할 수 있다. 가령, 티타늄 알콕사이드로 티타늄테트라프로폭사이드(titanium tetrapropoxide), 티타늄테트라이소프로폭사이드(titanium tetraisopropoxide), 티타늄테트라디이소프로폭사이드(titanium tetradiisopropoxide), 티타늄테트라부톡사이드(titanium tetrabutoxide), 티타늄테트라에톡사이드(titanium tetraethooxide) 및 티타늄테트라메톡사이드(titanium tetramethoopoxide) 중에서 선택된 하나를 이용할 수 있다. And as a titanium (Ti) source, it is possible to use titanium alkoxides (titanium alkoxides). For example, as titanium alkoxide, titanium tetrapropoxide, titanium tetraisopropoxide, titanium tetradiisopropoxide, titanium tetrabutoxide, titanium tetrae One selected from the group consisting of titanium tetraethooxide and titanium tetramethoopoxide may be used.

구체적으로 전구용액을 합성하기 위해 a)증류수에 질산프라세오디뮴(Pr(NO3)3), 질산스트론튬(Sr(NO3)2), 유기산을 첨가하고 교반하여 제 1용액을 수득하는 단계와, b)제 1용액에 질산아연(Zn(NO3)2)을 첨가하고 교반하여 제 2용액을 수득하는 단계와, c)에탄올에 에탄올아민을 첨가하고 교반한 다음 티타늄 알콕사이드(titanium alkoxide)를 첨가하고 교반하여 제 3용액을 수득하는 단계와, d)에탄올에 유기산을 첨가하고 교반하여 제 4용액을 수득하는 단계와, e)제 2용액에 제 3 및 제 4용액을 첨가한 후 교반하면서 반응시켜 전구용액을 생성하는 단계를 포함한다. Specifically, in order to synthesize the precursor solution, a) praseodymium nitrate (Pr(NO 3 ) 3 ), strontium nitrate (Sr(NO 3 ) 2 ), and an organic acid were added to distilled water and stirred to obtain a first solution, b; ) adding zinc nitrate (Zn(NO 3 ) 2 ) to the first solution and stirring to obtain a second solution, c) adding ethanolamine to ethanol and stirring, and then adding titanium alkoxide Stirring to obtain a third solution; d) adding an organic acid to ethanol and stirring to obtain a fourth solution; e) adding the third and fourth solutions to the second solution and then reacting with stirring and generating a precursor solution.

먼저, 증류수에 질산프라세오디뮴(Pr(NO3)3), 질산스트론튬(Sr(NO3)2), 유기산을 첨가하고 교반하여 제 1용액을 수득한다. First, praseodymium nitrate (Pr(NO 3 ) 3 ), strontium nitrate (Sr(NO 3 ) 2 ), and organic acid are added to distilled water and stirred to obtain a first solution.

질산프라세오디뮴(Pr(NO3)3)은 프라세오디뮴(Pr) 공급원으로서, 질산스트론튬(Sr(NO3)2)은 스트론튬(Sr) 공급원으로 이용된다. 질산프라세오디뮴은 수화물 형태, 즉 질산프라세오디뮴 육수화물(Pr(NO3)3·6H2O) 형태로 이용될 수 있다. Praseodymium nitrate (Pr(NO 3 ) 3 ) is used as a source of praseodymium (Pr), and strontium nitrate (Sr(NO 3 ) 2 ) is used as a source of strontium (Sr). Praseodymium nitrate may be used in the form of a hydrate, that is, in the form of praseodymium nitrate hexahydrate (Pr(NO 3 ) 3 .6H 2 O).

유기산은 질산프라세오디뮴과 질산스트론튬의 용해 및 분산 효과를 높인다. The organic acid enhances the dissolution and dispersion effect of praseodymium nitrate and strontium nitrate.

유기산으로 말산(malic acid), 시트르산(citric acid), 아스파르트산(aspartic acid), 포름산(formic acid), 아세트산(acetic acid), 주석산(tartaric acid), 말릭 말레인산(malic maleic acid), 프로피온산(propionic acid), 낙산(butyric acid), 발레르산(valeric acid) 등을 들 수 있다. As organic acids, malic acid, citric acid, aspartic acid, formic acid, acetic acid, tartaric acid, malic maleic acid, propionic acid acid), butyric acid, and valeric acid.

바람직하게 유기산으로 시트르산을 이용한다. 시트르산은 다른 유기산에 비해 유해성이 낮으며 질산프라세오디뮴과 질산스트론튬의 용해 및 분산성을 높이는 효과가 우수하다. Preferably, citric acid is used as the organic acid. Citric acid is less harmful than other organic acids and has an excellent effect of increasing the solubility and dispersibility of praseodymium nitrate and strontium nitrate.

다음으로, 제 1용액에 질산아연(Zn(NO3)2)을 첨가하고 교반하여 제 2용액을 수득한다. Next, zinc nitrate (Zn(NO 3 ) 2 ) is added to the first solution and stirred to obtain a second solution.

질산아연(Zn(NO3)2)은 아연(Zn) 공급원으로 이용된다. 질산아연은 수화물 형태, 즉 질산아연육수화물(Zn(NO3)2·6H2O) 형태로 이용될 수 있다. Zinc nitrate (Zn(NO 3 ) 2 ) is used as a zinc (Zn) source. Zinc nitrate may be used in the form of a hydrate, that is, in the form of zinc nitrate hexahydrate (Zn(NO 3 ) 2 ·6H 2 O).

다음으로, 에탄올에 에탄올아민을 첨가하고 교반한 다음 티타늄 알콕사이드(titanium alkoxides)를 첨가하고 교반하여 제 3용액을 수득한다.Next, ethanolamine is added to ethanol and stirred, then titanium alkoxides are added and stirred to obtain a third solution.

에탄올로 2-메톡시 에탄올(2-metoxy ethanol)을 이용할 수 있다. 그리고 에탄올아민으로는 모노에탄올아민, 디에탄올아민 및 트리에탄올아민 중에서 선택된 적어도 어느 하나를 이용할 수 있다. 티타늄 알콕사이드는 공기와 접촉하면 결정화되는 특성이 강하므로 에탄올과 에탄올아민을 이용하여 티타늄 알콕사이드가 반응 전에 결정으로 석출되는 것을 방지할 수 있다. As ethanol, 2-methoxy ethanol (2-metoxy ethanol) may be used. And as the ethanolamine, at least one selected from monoethanolamine, diethanolamine, and triethanolamine may be used. Since titanium alkoxide has a strong crystallization property when it comes into contact with air, it is possible to prevent the titanium alkoxide from precipitating into crystals before the reaction by using ethanol and ethanolamine.

티타늄 알콕사이드(titanium alkoxides)는 티타늄(Ti) 공급원이다. Titanium alkoxides are a source of titanium (Ti).

다음으로, 에탄올에 유기산을 첨가하고 교반하여 제 4용액을 수득한다. Next, an organic acid is added to ethanol and stirred to obtain a fourth solution.

에탄올로 2-메톡시 에탄올(2-metoxy ethanol)을 이용할 수 있다. 그리고 에탄올아민으로는 모노에탄올아민, 디에탄올아민 및 트리에탄올아민 중에서 선택된 적어도 어느 하나를 이용할 수 있다. 제 4용액은 전구용액의 안정성을 높이는 역할을 한다. As ethanol, 2-methoxy ethanol (2-metoxy ethanol) may be used. And as the ethanolamine, at least one selected from monoethanolamine, diethanolamine, and triethanolamine may be used. The fourth solution serves to increase the stability of the precursor solution.

다음으로, 제 2용액에 제 3용액 및 제 4용액을 첨가한 후 반응시켜 전구용액을 생성시킨다. 제 3용액 및 제 4용액은 제 2용액과 동일한 부피비로 첨가될 수 있다. 가령, 제 2용액:제 3용액:제4용액은 부피비로 1:1:1일 수 있다. Next, the third solution and the fourth solution are added to the second solution and then reacted to form a precursor solution. The third solution and the fourth solution may be added in the same volume ratio as the second solution. For example, the second solution: the third solution: the fourth solution may be 1:1:1 in volume ratio.

제 2용액에 제 3용액 및 제 4용액을 서서히 첨가한 후 70 내지 90℃로 유지하면서 3 내지 7시간 동안 교반하면서 반응시켜 전구용액을 얻는다. After slowly adding the third solution and the fourth solution to the second solution, the mixture is reacted with stirring for 3 to 7 hours while maintaining the temperature at 70 to 90° C. to obtain a precursor solution.

2. 제 2단계2. Step 2

준비된 전구용액을 건조시켜 고체 생성물을 수득한다. The prepared precursor solution is dried to obtain a solid product.

이를 위해 전구용액을 110 내지 150℃에서 10 내지 30시간 동안 건조시킬 수 있다. To this end, the precursor solution may be dried at 110 to 150° C. for 10 to 30 hours.

전구용액이 건조되면 용매가 제거되고 고체 생성물이 남는다. When the precursor solution is dried, the solvent is removed, leaving a solid product.

3. 제 3단계3. Step 3

고체 생성물을 소성하여 Pr-Sr-Zn-Ti계 복합 금속산화물을 생성시킨다. The solid product is calcined to produce a Pr-Sr-Zn-Ti-based composite metal oxide.

이를 위해 고체 생성물을 2~8℃/min 속도로 승온시켜 250 내지 350℃에서 1 내지 3시간 동안 유지하여 1차로 소성한 다음 2~8℃/min 속도로 승온시켜 800 내지 1200℃에서 2 내지 8시간 동안 유지하여 2차로 소성할 수 있다. To this end, the solid product is heated at a rate of 2 to 8 ° C./min, maintained at 250 to 350 ° C. for 1 to 3 hours, calcined first, and then heated at a rate of 2 to 8 ° C./min to 2 to 8 at 800 to 1200 ° C. It can be held for a period of time and fired a second time.

250 내지 350℃의 저온에서의 1차 소성을 통해 유기물과 중간 부산물을 연소시켜 제거할 수 있다. 그리고 1차 소성 후 800 내지 1200℃의 고온에서의 2차 소성을 통해 최종적으로 복합 금속산화물로 전환된다. at a low temperature of 250 to 350 °C Through primary calcination, organic matter and intermediate by-products can be burned and removed. And after the primary firing, it is finally converted into a composite metal oxide through secondary firing at a high temperature of 800 to 1200°C.

생성된 복합 금속산화물은 여러 종류의 금속이 결합된 산화물이다. 가령, Pr, Sr, Zn, Ti의 4종류 금속이 결합된 Pr-Sr-Zn-Ti계 복합 금속산화물이다. 이러한 복합 금속산화물은 하기의 화학식으로 표현될 수 있다. The resulting composite metal oxide is an oxide in which several types of metals are combined. For example, it is a Pr-Sr-Zn-Ti-based composite metal oxide in which four metals of Pr, Sr, Zn, and Ti are combined. Such a composite metal oxide may be represented by the following chemical formula.

PraSrbZncTidOe Pr a Sr b Zn c Ti d O e

상기 화학식에서 a는 0.1~0.5이고, b는 0.5~1이고, c는 0.5~1이고, d는 0.5~1이고, e는 1.5~3일 수 있다. In the above formula, a is 0.1 to 0.5, b is 0.5 to 1, c is 0.5 to 1, d is 0.5 to 1, and e may be 1.5 to 3.

4. 제 4단계4. Step 4

생성된 복합 금속산화물을 분쇄한다. 가령, 0.01~100㎛ 크기로 분쇄할 수 있다. 분쇄된 미세한 입자 형태의 복합 금속산화물이 촉매이다. The resulting composite metal oxide is pulverized. For example, it can be pulverized to a size of 0.01 to 100 μm. Composite metal oxide in the form of pulverized fine particles is a catalyst.

이와 같이 제조된 본 발명의 복합 금속산화물 촉매는 프라세오디뮴(Pr), 스트론튬(Sr), 아연(Zn), 티타늄(Ti)이 결합된 Pr-Sr-Zn-Ti계 화합물이다. The composite metal oxide catalyst of the present invention prepared as described above is a Pr-Sr-Zn-Ti-based compound in which praseodymium (Pr), strontium (Sr), zinc (Zn), and titanium (Ti) are combined.

본 발명의 복합 금속산화물 촉매는 자외선 뿐만 아니라 가시광 영역에서도 활성화되어 물을 광분해시키므로 액상 플라즈마 반응을 통해 수소 생성 효율을 높일 수 있다. 액체 중에 고에너지 플라즈마를 발생시키는 액상플라즈마(liquid phase plasma, LPP) 반응은 다양한 활성종과 함께 빛에너지를 액체 중에서 생성시킬 수 있다. Since the composite metal oxide catalyst of the present invention is activated not only in ultraviolet light but also in the visible light region to photolyse water, it is possible to increase hydrogen production efficiency through liquid phase plasma reaction. A liquid phase plasma (LPP) reaction that generates a high-energy plasma in a liquid can generate light energy in a liquid with various active species.

본 발명의 복합 금속산화물 촉매를 이용하여 수소를 생성시키기 위한 액상플라즈마 반응장치의 일 예를 도 1에 도시하고 있다. An example of a liquid phase plasma reactor for generating hydrogen using the composite metal oxide catalyst of the present invention is shown in FIG. 1 .

도 1을 참조하면, 액상플라즈마 반응장치는 원통형의 반응기(10)와, 반응기(10) 내의 물을 순환시켜 일정한 온도로 유지하기 위한 냉각조(20)와, 반응기(10)에 설치된 한쌍의 전극(30)과, 전극(30)에 전원을 공급하기 위한 전원공급기(bipolar pulse power supply)(35)로 이루어진다. Referring to FIG. 1 , the liquid-phase plasma reactor includes a cylindrical reactor 10 , a cooling tank 20 for circulating water in the reactor 10 to maintain a constant temperature, and a pair of electrodes installed in the reactor 10 . 30 and a power supply (bipolar pulse power supply) 35 for supplying power to the electrode 30 .

전극(30)은 텅스텐 소재로 이루어지며, 전극(30)의 외부는 세라믹 재질의 절연체로 피복된다. 두 전극(30) 간 거리는 약 0.2 내지 0.5mm 정도로 유지시킬 수 있다. The electrode 30 is made of a tungsten material, and the outside of the electrode 30 is covered with an insulator made of a ceramic material. The distance between the two electrodes 30 may be maintained at about 0.2 to 0.5 mm.

전원공급기(35)를 통해 전극(30)에 전원이 공급되면 전기 방전에 의해 액중에서 플라즈마가 발생된다. 전기 방전에 의한 플라즈마 발생시 물의 온도 상승을 방지하기 위해 순환펌프를 이용하여 물을 냉각조(20)로 순환시켜 물의 온도를 18~25℃로 유지시키는 것이 바람직하다. 반응기(10)와 냉각조(20)는 순환라인(11)(13)으로 연결된다.When power is supplied to the electrode 30 through the power supply 35, plasma is generated in the liquid by electric discharge. In order to prevent a rise in the temperature of water when plasma is generated by electric discharge, it is preferable to circulate water to the cooling tank 20 using a circulation pump to maintain the temperature of water at 18 to 25°C. The reactor 10 and the cooling tank 20 are connected by circulation lines 11 and 13 .

전원 공급시 전극에 전원을 지속적으로 공급하는 것보다 펄스(Pulse width 3~5㎲)로 공급하는 것이 바람직하다. 전원을 펄스로 공급하면 현탁에 노출된 전극이 녹는 것을 억제하여 전극 성분이 용출되는 것을 감소시킬 수 있다.When power is supplied, it is preferable to supply power as a pulse (pulse width 3 to 5 μs) rather than continuously supplying power to the electrodes. When power is supplied as a pulse, it is possible to reduce the dissolution of electrode components by inhibiting the melting of the electrode exposed to the suspension.

플라즈마를 발생시키기 위해 전극에 공급되는 전원 조건은 전압 230 내지 250V, 펄스 폭 3 내지 5㎲, 주파수 25 내지 30KHz일 수 있다. Conditions of power supplied to the electrode to generate plasma may be a voltage of 230 to 250V, a pulse width of 3 to 5 ㎲, and a frequency of 25 to 30KHz.

그리고 도 1에 도시된 액상플라즈마 반응장치에는 반응기(10) 내부에서 발생된 기체 생성물을 분석하기 위해서 질소탱크(40)에 저장된 질소 가스를 반응기로 유입시키는 유량조절기(MFC)(45)와, 반응기(10)에서 유출되는 가스를 분석하기 위한 가스크로마토그래프(GC)(50)가 설치되어 있다. And in the liquid-phase plasma reactor shown in FIG. 1, a flow controller (MFC) 45 for introducing nitrogen gas stored in the nitrogen tank 40 into the reactor in order to analyze the gas product generated inside the reactor 10, and the reactor A gas chromatograph (GC) 50 for analyzing the gas flowing out from 10 is installed.

반응기에 수용된 물에는 본 발명의 복합 금속산화물 촉매가 첨가되어 있다. 가령, 물 100중량부에 대하여 복합 금속산화물 촉매 0.001 내지 1중량부를 첨가한 후 교반하여 광촉매를 물에 균일하게 분산시킨다. The composite metal oxide catalyst of the present invention is added to the water accommodated in the reactor. For example, 0.001 to 1 part by weight of the composite metal oxide catalyst is added with respect to 100 parts by weight of water and stirred to uniformly disperse the photocatalyst in water.

복합 금속산화물 촉매가 첨가된 물에서 플라즈마를 발생시키면 다양한 활성종들(H·, OH·, O·, H2O2, O2 -, O3 등)이 발생되고, 이러한 활성종들은 수소 생성을 촉진시킨다. 또한, 플라즈마 발생시 강한 자외선과 가시광이 발광하여 복합 금속산화물 촉매를 활성화시킴으로써 복합 금속산화물 촉매의 광분해에 의해 물분자를 수소와 산소로 분해시킨다. When plasma is generated in water to which a complex metal oxide catalyst is added, various active species (H·, OH·, O·, H 2 O 2 , O 2 - , O 3 , etc.) are generated, and these active species generate hydrogen promotes In addition, when plasma is generated, strong ultraviolet and visible light are emitted to activate the composite metal oxide catalyst, thereby decomposing water molecules into hydrogen and oxygen by photolysis of the composite metal oxide catalyst.

이하, 실험 예를 통하여 본 발명에 대해 설명하고자 한다. 다만, 하기의 실험 예는 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명의 범위를 하기의 실험 예로 한정하는 것은 아니다.Hereinafter, the present invention will be described with reference to an experimental example. However, the following experimental examples are for explaining the present invention in detail, and the scope of the present invention is not limited to the following experimental examples.

(실시예: 복합 금속산화물 촉매의 제조)(Example: Preparation of composite metal oxide catalyst)

증류수 200mL에 질산프라세오디뮴 육수화물(Pr(NO3)3·6H2O) 0.5몰, 질산스트론튬(Sr(NO3)2) 0.5몰, 시트르산 0.03몰을 주입한 후 2시간 동안 교반시켜 제 1용액을 수득하였다. 그리고 제 1용액에 질산아연육수화물(Zn(NO3)2·6H2O) 0.5몰을 주입한 후 2시간 동안 교반시켜 제 2용액을 수득하였다. In 200 mL of distilled water, 0.5 mol of praseodymium nitrate hexahydrate (Pr(NO 3 ) 3 .6H 2 O), 0.5 mol of strontium nitrate (Sr(NO 3 ) 2 ), and 0.03 mol of citric acid were injected, followed by stirring for 2 hours to obtain the first solution was obtained. Then, 0.5 mol of zinc nitrate hexahydrate (Zn(NO 3 ) 2 ·6H 2 O) was injected into the first solution and stirred for 2 hours to obtain a second solution.

2-메톡시 에탄올(2-metoxy ethanol) 200mL에 디에탄올아민(diethanolamine) 0.02몰을 주입한 후 1시간 동안 교반시킨 다음 티타늄테트라부톡사이드(titanium tetrabutoxide) 0.5몰을 주입한 후 5시간 동안 교반시켜 제 3용액을 수득하였다. 그리고 2-메톡시 에탄올(2-metoxy ethanol) 100mL에 시트르산 0.01몰을 주입한 후 1시간 동안 교반시켜 제 4용액을 수득하였다. After injecting 0.02 mol of diethanolamine into 200 mL of 2-methoxy ethanol, stirring for 1 hour, then injecting 0.5 mol of titanium tetrabutoxide and stirring for 5 hours A third solution was obtained. Then, 0.01 mol of citric acid was injected into 100 mL of 2-methoxyethanol (2-metoxy ethanol) and stirred for 1 hour to obtain a fourth solution.

제 2용액에 제 3용액과 제 4용액을 서서히 주입한 후 80℃에서 5시간 동안 교반하면서 반응시켜 전구용액을 합성하였다. 전구용액 합성 시 제 3용액과 제 4용액은 제 2용액과 동일한 부피로 사용하였다. 전구용액은 오븐에 투입하여 130℃에서 15시간 동안 건조시켜 고체생성물을 얻었다. 그리고 고체생성물을 전기로에 투입한 다음 5℃/min 속도로 승온시켜 300℃에서 2시간 동안 유지하여 1차로 소성한 후, 동일한 속도로 승온시켜 600~1100℃에서 5시간 동안 유지하여 2차로 소성하였다. 소성이 끝난 후 상온까지 서서히 냉각시킨 다음 고체 생성물을 분쇄하여 분말 형태의 Pr-Sr-Zn-Ti계 복합 금속산화물 촉매를 제조하였다. A precursor solution was synthesized by slowly injecting the third solution and the fourth solution into the second solution, and then reacting it with stirring at 80° C. for 5 hours. When synthesizing the precursor solution, the 3rd and 4th solutions were used in the same volume as the 2nd solution. The precursor solution was put into an oven and dried at 130° C. for 15 hours to obtain a solid product. Then, the solid product was put into the electric furnace, and then heated at a rate of 5 ° C./min, maintained at 300 ° C. for 2 hours, and calcined first. Then, the temperature was raised at the same rate and maintained at 600 to 1100 ° C. for 5 hours, followed by secondary calcination. . After the sintering was completed, the mixture was cooled slowly to room temperature, and then the solid product was pulverized to prepare a Pr-Sr-Zn-Ti-based composite metal oxide catalyst in powder form.

<실험예 1: X-선 회절분석><Experimental Example 1: X-ray diffraction analysis>

2차 소성온도(600~1100℃)를 각각 달리하여 제조한 복합 금속산화물 촉매의 X선 회절(XRD) 패턴을 도 2에 나타내었다.The X-ray diffraction (XRD) pattern of the composite metal oxide catalyst prepared at different secondary firing temperatures (600 to 1100° C.) is shown in FIG. 2 .

도 2를 참조하면, 복합 금속산화물 촉매의 특성 피크는 32.35°, 39.91°, 46.42°, 57.72°, 67.74°및 77.09°에서 나타났다. 특성 피크의 강도는 2차 소성 온도에 따라 달랐다. 특성 피크의 강도로 정의되는 결정화도는 900, 1000, 1100℃에서의 소성이 600, 700, 800℃의 소성보다 더 높았다. 특히, 1100℃로 소성하였을 때 결정화도가 가장 높게 나타났다. Referring to FIG. 2 , the characteristic peaks of the composite metal oxide catalyst were shown at 32.35°, 39.91°, 46.42°, 57.72°, 67.74° and 77.09°. The intensity of the characteristic peaks depended on the secondary firing temperature. The degree of crystallinity, defined as the intensity of the characteristic peak, was higher for calcinations at 900, 1000, and 1100 °C than at 600, 700 and 800 °C. In particular, the crystallinity was the highest when calcined at 1100°C.

이하의 실험에서는 1100℃에서 소성하여 제조한 복합 금속산화물 촉매를 이용하였다. In the following experiments, a composite metal oxide catalyst prepared by calcining at 1100° C. was used.

<실험예 2: 주사전자현미경(SEM) 이미지와 에너지 분산 X선 분광(EDX) 분석><Experimental Example 2: Scanning electron microscope (SEM) image and energy dispersive X-ray spectroscopy (EDX) analysis>

도 3에 복합 금속산화물 촉매의 주사 전자 현미경(SEM) 이미지를 나타내었고, 도 4에 에너지 분산 X선 분광법(EDX) 결과를 나타내었다. A scanning electron microscope (SEM) image of the composite metal oxide catalyst is shown in FIG. 3, and energy dispersive X-ray spectroscopy (EDX) results are shown in FIG. 4 .

도 3 및 도 4를 참조하면, 마이크론 크기의 복합 금속산화물 촉매는 입방체 결정으로 이루어진 것으로 확인되었다. 그리고 복합 금속산화물 촉매의 결정 크기는 200~300nm 범위로 분포하였다. EDX 스펙트럼에서는 산소(O) 피크와 함께 Sr, Zn, Pr, Ti 등 금속 원소가 관찰되었다. 따라서 복합 금속산화물 촉매는 Pr-Sr-Zn-Ti계 복합 금속산화물로 이루어짐을 알 수 있다. 3 and 4 , it was confirmed that the micron-sized composite metal oxide catalyst was formed of cubic crystals. And the crystal size of the composite metal oxide catalyst was distributed in the range of 200 ~ 300nm. In the EDX spectrum, metal elements such as Sr, Zn, Pr, and Ti were observed along with an oxygen (O) peak. Therefore, it can be seen that the composite metal oxide catalyst is composed of a Pr-Sr-Zn-Ti-based composite metal oxide.

<실험예 3: 질소 흡착 등온선 분석><Experimental Example 3: Nitrogen adsorption isotherm analysis>

도 5에 복합 금속산화물 촉매의 질소 흡착 등온선을 나타내었다. 도 5에서 'ADS'는 흡착그래프이고, 'DES'는 탈착그래프이다. 5 shows the nitrogen adsorption isotherm of the composite metal oxide catalyst. 5, 'ADS' is an adsorption graph, and 'DES' is a desorption graph.

도 5를 참조하면, 흡착-탈착 곡선에서 작은 히스테리시스 곡선이 관찰되었으나 이는 작은 결정 사이의 공극으로 인한 것으로 보인다. 그리고 BET 방정식에서 결정된 비표면적은 0.6 m2/g으로 작았다. 이는 복합 금속산화물 촉매가 기공을 가지고 있지 않음을 시사한다. 액상 플라즈마 반응에 의해 수소를 생성하기 위한 복합 금속산화물 촉매는 광학특성이 중요하므로 비표면적이 작더라도 촉매의 기능에는 별 영향이 없다. Referring to FIG. 5 , a small hysteresis curve was observed in the adsorption-desorption curve, but this appears to be due to the voids between the small crystals. And the specific surface area determined by the BET equation was as small as 0.6 m 2 /g. This suggests that the composite metal oxide catalyst does not have pores. Since the optical properties of the composite metal oxide catalyst for generating hydrogen by liquid-phase plasma reaction are important, even if the specific surface area is small, the function of the catalyst is not significantly affected.

<실험예 4: 푸리에 변환 적외선(FT-IR) 스펙트럼 분석><Experimental Example 4: Fourier transform infrared (FT-IR) spectrum analysis>

도 6에 복합 금속산화물 촉매의 퓨리에 변환 적외선(FT-IR) 스펙트럼 결과를 나타내었다. 6 shows the Fourier transform infrared (FT-IR) spectrum results of the composite metal oxide catalyst.

도 6을 참조하면, FT-IR 스펙트럼에서 3435 cm-1의 흡수 특성 피크는 OH 신축 진동에 의해 나타난다. 카르복실레이트기 CO3 2-의 IR 스펙트럼은 각각 877, 1070 및 1456 cm-1에서 대칭 및 비대칭 신축 진동에서 파생된 특징적인 이중선 흡수를 나타낸다. IR 스펙트럼에서 3435 cm-1에서 O-H 스트레칭에 의해 밴드가 나타났고, 카르복실레이트기 신장 모드에 의해 1456 및 1636 cm-1에서 밴드가 나타났으며, Ti-O 진동 모드에 의해 877, 571 및 495 cm-1에서 밴드가 나타났다.Referring to FIG. 6 , the absorption characteristic peak at 3435 cm −1 in the FT-IR spectrum is represented by OH stretching vibration. The IR spectra of the carboxylate group CO 3 2- show characteristic doublet absorptions derived from symmetric and asymmetric stretching vibrations at 877, 1070 and 1456 cm -1 , respectively. In the IR spectrum, bands appeared by OH stretching at 3435 cm -1 , bands at 1456 and 1636 cm -1 by carboxylate group extension mode, and 877, 571 and 495 by Ti-O vibrational mode A band appeared at cm -1 .

이 스펙트럼에서 OH나 카르복실레이트기 관련 밴드는 복합 화합물 합성에 의해 나타난다. 특히, Ti-O 결합에 의해 생성되는 밴드가 매우 크게 나타났다. 이는 복합 금속산화물은 Ti-O 결합이 주를 이루는 금속산화물의 복합체임을 시사한다. In this spectrum, bands related to OH or carboxylate groups appear by the synthesis of complex compounds. In particular, the band generated by Ti-O bonding was very large. This suggests that the composite metal oxide is a composite of metal oxides in which Ti-O bonds are predominant.

<실험예 5: 자외선-가시광 확산 반사율 분광(DRS) 분석><Experimental Example 5: UV-Visible Light Diffuse Reflectance Spectroscopy (DRS) Analysis>

도 7에 Kubelka-Munk 단위로 나타낸 상업용 TiO2 (P25, Degussa) 및 복합 금속산화물 촉매의 자외선-가시광 흡광도를 확산 반사율 분광분석 결과를 나타내었다. 7 shows the results of diffuse reflectance spectroscopy analysis of UV-visible absorbance of commercial TiO 2 (P25, Degussa) and composite metal oxide catalysts expressed in Kubelka-Munk units.

도 7을 참조하면, DRS(Diffuse Reflectance UV-visible spectrophotometer) 결과에서 TiO2의 흡수 가장자리는 약 380nm로서, 가시광 영역의 빛을 거의 흡수하지 않았다. 반면에 복합 금속산화물 촉매의 DRS 흡수 스펙트럼은 가시광선의 상부 범위에서 관찰되어 흡수 범위가 확장되었음을 알 수 있다. 복합 금속산화물 촉매의 흡수 모서리는 413nm였고, 밴드갭은 약 2.8eV이었다. 따라서 복합 금속산화물 촉매는 자외선뿐만 아니라 가시광에 의해서도 광활성화가 가능하다. Referring to FIG. 7 , in the DRS (Diffuse Reflectance UV-visible spectrophotometer) result, the absorption edge of TiO 2 was about 380 nm, and almost no light was absorbed in the visible region. On the other hand, the DRS absorption spectrum of the composite metal oxide catalyst was observed in the upper range of visible light, indicating that the absorption range was extended. The absorption edge of the composite metal oxide catalyst was 413 nm, and the band gap was about 2.8 eV. Therefore, the composite metal oxide catalyst can be photoactivated not only by ultraviolet light but also by visible light.

<실험예 6: 수소생성 실험><Experimental Example 6: Hydrogen Generation Experiment>

도 1의 액상플라즈마 반응장치를 이용하여 수소 생성 실험을 수행하였다. A hydrogen production experiment was performed using the liquid-phase plasma reactor of FIG. 1 .

증류수 200mL에 복합 금속산화물 촉매 0.3g을 첨가하여 분산시킨 현탁액을 반응기에 주입한 후 전압 240V, 주파수 25kHz, pulse width 6μs 조건으로 60분 동안 방전시켜 플라즈마를 발생시켰다. A suspension dispersed by adding 0.3 g of a composite metal oxide catalyst to 200 mL of distilled water was injected into the reactor, and then discharged for 60 minutes under the conditions of a voltage of 240 V, a frequency of 25 kHz, and a pulse width of 6 μs to generate plasma.

또한, 촉매가 첨가되지 않은 조건과 TiO2(P25, Degussa) 촉매가 첨가된 조건으로 각각 실험을 진행하였다. In addition, experiments were carried out under conditions in which no catalyst was added and under conditions in which TiO 2 (P25, Degussa) catalyst was added.

도 8에 복합 금속산화물 촉매 첨가조건, TiO2 촉매가 첨가된 조건, 촉매가 첨가되지 않은 조건에 따른 수소의 생성률을 나타내었다. 8 shows the hydrogen production rate according to the conditions in which the composite metal oxide catalyst was added, the conditions in which the TiO 2 catalyst was added, and the conditions in which the catalyst was not added.

도 8을 참조하면, 촉매가 첨가되지 않더라도 액상 플라즈마 반응에 의해 소량의 수소가 생성되는 것으로 확인되었다. 촉매가 없더라도 플라즈마가 수중에서 다양한 활성종들(H·, OH·, O·, H2O2, O2 -, O3 등)을 생성하고, 이는 수소 생성을 유발하기 때문이다. 또한, 플라즈마의 강한 에너지가 물을 직접 분해한 결과로 보인다. Referring to FIG. 8 , it was confirmed that a small amount of hydrogen was generated by the liquid phase plasma reaction even if a catalyst was not added. Even without a catalyst, plasma generates various active species (H·, OH·, O·, H 2 O 2 , O 2 , O 3 , etc.) in water, which causes hydrogen production. In addition, the strong energy of plasma appears to be the result of direct decomposition of water.

상업적으로 이용되는 TiO2 촉매가 첨가된 경우 수소 생성률이 높아지는 것으로 나타났다. 그리고 복합 금속산화물 촉매가 첨가된 경우 TiO2 촉매가 첨가된 경우와 비교하여 수소 생성률이 향상된 것으로 나타났다. When a commercially used TiO 2 catalyst was added, it was found that the hydrogen production rate was increased. And when the composite metal oxide catalyst was added, the hydrogen production rate was improved compared to the case where the TiO 2 catalyst was added.

한편, 도 7 및 도 8의 그래프에서 '복합체 촉매'는 '복합 금속산화물 촉매'를 의미한다. Meanwhile, in the graphs of FIGS. 7 and 8 , 'composite catalyst' means 'composite metal oxide catalyst'.

이상, 본 발명은 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다.As mentioned above, although the present invention has been described with reference to one embodiment, it will be understood that this is only exemplary, and that those skilled in the art may make various modifications and equivalent embodiments therefrom. Accordingly, the true protection scope of the present invention should be defined only by the appended claims.

10: 반응기 20: 냉각조
30: 전극 35: 전원공급기
10: reactor 20: cooling bath
30: electrode 35: power supply

Claims (6)

프라세오디뮴(Pr) 공급원과, 스트론튬(Sr) 공급원과, 아연(Zn) 공급원과, 티타늄(Ti) 공급원이 함유된 전구용액을 합성하는 제 1단계와;
상기 전구용액을 건조시켜 고체 생성물을 수득하는 제 2단계와;
상기 고체 생성물을 소성하여 Pr-Sr-Zn-Ti계 복합 금속산화물을 생성시키는 제 3단계와;
상기 복합 금속산화물을 분쇄하는 제 4단계;를 포함하며,
상기 제 1단계는 a)증류수에 질산프라세오디뮴(Pr(NO3)3), 질산스트론튬(Sr(NO3)2), 유기산을 첨가하고 교반하여 제 1용액을 수득하는 단계와, b)상기 제 1용액에 질산아연(Zn(NO3)2)을 첨가하고 교반하여 제 2용액을 수득하는 단계와, c)에탄올에 에탄올아민을 첨가하고 교반한 다음 티타늄 알콕사이드(titanium alkoxide)를 첨가하고 교반하여 제 3용액을 수득하는 단계와, d)에탄올에 유기산을 첨가하고 교반하여 제 4용액을 수득하는 단계와, e)상기 제 2용액에 상기 제 3 및 제 4용액을 첨가한 후 교반하면서 반응시켜 상기 전구용액을 생성하는 단계를 포함하고,
상기 제 3단계는 상기 고체 생성물을 2~8℃/min 속도로 승온시켜 250 내지 350℃에서 1 내지 3시간 동안 유지한 다음 2~8℃/min 속도로 승온시켜 800 내지 1200℃에서 2 내지 8시간 동안 유지하여 소성하며,
상기 복합 금속산화물은 하기의 화학식으로 표시되고,
PraSrbZncTidOe
상기 화학식에서 a는 0.1~0.5이고, b는 0.5~1이고, c는 0.5~1이고, d는 0.5~1이고, e는 1.5~3인 것을 특징으로 하는 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법.
A first step of synthesizing a precursor solution containing a praseodymium (Pr) source, a strontium (Sr) source, a zinc (Zn) source, and a titanium (Ti) source;
a second step of drying the precursor solution to obtain a solid product;
a third step of calcining the solid product to produce a Pr-Sr-Zn-Ti-based composite metal oxide;
Including; a fourth step of pulverizing the composite metal oxide;
The first step is a) adding praseodymium nitrate (Pr(NO 3 ) 3 ), strontium nitrate (Sr(NO 3 ) 2 ), and an organic acid to distilled water and stirring to obtain a first solution, b) the first step Zinc nitrate (Zn(NO 3 ) 2 ) was added to solution 1 and stirred to obtain a second solution, c) ethanolamine was added to ethanol and stirred, and then titanium alkoxide was added and stirred. obtaining a third solution; d) adding an organic acid to ethanol and stirring to obtain a fourth solution; e) adding the third and fourth solutions to the second solution and then reacting with stirring generating the precursor solution;
The third step is to raise the temperature of the solid product at a rate of 2 to 8 ° C./min and maintain it at 250 to 350 ° C. for 1 to 3 hours, and then increase the temperature at a rate of 2 to 8 ° C. / min to 2 to 8 at 800 to 1200 ° C. Firing by holding for a period of time,
The composite metal oxide is represented by the following chemical formula,
Pr a Sr b Zn c Ti d O e
In the above formula, a is 0.1 to 0.5, b is 0.5 to 1, c is 0.5 to 1, d is 0.5 to 1, and e is 1.5 to 3, A method for preparing a metal oxide catalyst.
삭제delete 제 1항에 있어서, 상기 유기산은 시트르산인 것을 특징으로 하는 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법. The method of claim 1, wherein the organic acid is citric acid. 제 1항에 있어서, 상기 제 2단계는 상기 전구용액을 110 내지 150℃에서 10 내지 30시간 동안 건조시키는 특징으로 하는 액상 플라즈마 반응을 이용한 수소생성용 복합 금속산화물 촉매의 제조방법.

[2] The method of claim 1, wherein in the second step, the precursor solution is dried at 110 to 150° C. for 10 to 30 hours.

삭제delete 삭제delete
KR1020220000739A 2022-01-04 2022-01-04 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst KR102368521B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220000739A KR102368521B1 (en) 2022-01-04 2022-01-04 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst
PCT/KR2022/004823 WO2023132410A1 (en) 2022-01-04 2022-04-05 Method for preparing composite metal oxide catalyst for hydrogen production by using liquid phase plasma reaction, and composite metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220000739A KR102368521B1 (en) 2022-01-04 2022-01-04 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst

Publications (1)

Publication Number Publication Date
KR102368521B1 true KR102368521B1 (en) 2022-02-25

Family

ID=80490231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220000739A KR102368521B1 (en) 2022-01-04 2022-01-04 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst

Country Status (2)

Country Link
KR (1) KR102368521B1 (en)
WO (1) WO2023132410A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132410A1 (en) * 2022-01-04 2023-07-13 순천대학교 산학협력단 Method for preparing composite metal oxide catalyst for hydrogen production by using liquid phase plasma reaction, and composite metal oxide catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744636B1 (en) * 2006-08-16 2007-08-01 (재)대구경북과학기술연구원 Method for preparing of zns-zno photocatalyst activated in the visible light
KR100871923B1 (en) * 2007-05-30 2008-12-05 계명대학교 산학협력단 Titanium dioxide photocatalysts immobilized using alkoxysilane and synthetic method thereof
KR20100017342A (en) * 2007-04-24 2010-02-16 블랙라이트 파워 인코포레이티드 Hydrogen-catalyst reactor
KR101814128B1 (en) 2017-07-10 2018-01-02 순천대학교 산학협력단 manufacturing method of hydrogen using liquid phase plasma and photocatalysts
KR20190011964A (en) * 2017-07-26 2019-02-08 인하대학교 산학협력단 Process for producing noble metal-supported titanium dioxide catalyst using atmospheric pressure low-temperature plasma reduction method and plasma apparatus for producing titanium dioxide catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101400891B1 (en) * 2012-08-28 2014-05-30 인하대학교 산학협력단 The oxide composite catalyst for dehydrogenation of ethylbenzene with carbon dioxide as oxidant and the fabrication method thereof
KR102368521B1 (en) * 2022-01-04 2022-02-25 순천대학교 산학협력단 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744636B1 (en) * 2006-08-16 2007-08-01 (재)대구경북과학기술연구원 Method for preparing of zns-zno photocatalyst activated in the visible light
KR20100017342A (en) * 2007-04-24 2010-02-16 블랙라이트 파워 인코포레이티드 Hydrogen-catalyst reactor
KR100871923B1 (en) * 2007-05-30 2008-12-05 계명대학교 산학협력단 Titanium dioxide photocatalysts immobilized using alkoxysilane and synthetic method thereof
KR101814128B1 (en) 2017-07-10 2018-01-02 순천대학교 산학협력단 manufacturing method of hydrogen using liquid phase plasma and photocatalysts
KR20190011964A (en) * 2017-07-26 2019-02-08 인하대학교 산학협력단 Process for producing noble metal-supported titanium dioxide catalyst using atmospheric pressure low-temperature plasma reduction method and plasma apparatus for producing titanium dioxide catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132410A1 (en) * 2022-01-04 2023-07-13 순천대학교 산학협력단 Method for preparing composite metal oxide catalyst for hydrogen production by using liquid phase plasma reaction, and composite metal oxide catalyst

Also Published As

Publication number Publication date
WO2023132410A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
Schubert et al. Immobilization of Co, Mn, Ni and Fe oxide co-catalysts on TiO 2 for photocatalytic water splitting reactions
Augugliaro et al. Clean by light irradiation: Practical applications of supported TiO2
Chen et al. CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: Recent progress and understanding
Sreethawong et al. Investigation of thermal treatment effect on physicochemical and photocatalytic H2 production properties of mesoporous-assembled Nb2O5 nanoparticles synthesized via a surfactant-modified sol–gel method
Witvrouwen et al. The Use of Non‐Equilibrium Plasmas for the Synthesis of Heterogeneous Catalysts
Tryba et al. Influence of pH of sol-gel solution on phase composition and photocatalytic activity of TiO2 under UV and visible light
Pan et al. Dry reforming of CH 4 with CO 2 to generate syngas by combined plasma catalysis
KR102368521B1 (en) manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst
Rahemi et al. Plasma-assisted dispersion of bimetallic Ni–Co over Al 2 O 3–ZrO 2 for CO 2 reforming of methane: influence of voltage on catalytic properties
Chuang et al. Adsorption and photochemistry of CH 3 CN and CH 3 CONH 2 on powdered TiO 2
Chung et al. Preparation of nickel-bismuth titanates enhanced visible-light photosensitivity and their photocatalytic properties for hydrogen generation by plasma cracking
Chung et al. Hydrogen production by cracking of ammonium hydroxide using liquid-phase plasma on the modified TiO2 photocatalysts
Alzard et al. Titania Derived from NH2-MIL-125 (Ti) Metal–Organic Framework for Selective Photocatalytic Conversion of CO2 to Propylene Carbonate
Chung et al. Effect of liquid phase plasma irradiation on production by photocatalytic water splitting over SrTiO3 photocatalysts
KR102410241B1 (en) solid acid catalyst of metal oxide for hydrogen production using liquid-phase plasma reaction and solid acid catalyst of metal oxide manufactured thereby
Chung et al. Application of liquid-phase plasma for the production of hydrogen and carbon from the plasma-induced cracking of liquid hydrocarbons
Garcia-Lopez et al. Photocatalytic generation of H2 by photoreforming of organics in aqueous suspension of Nb2O5/C3N4 composites
Long et al. Visible light responsive TiO 2 modification with nonmetal elements
Morais et al. Scope for spherical Bi 2 WO 6 Quazi-perovskites in the artificial photosynthesis reaction—the effects of surface modification with amine groups
KR100991754B1 (en) Preparation method of nano-sized TiO2 powder during the decomposition of CO2 by thermal plasma
Cheng et al. Effect of preparation conditions on visible photocatalytic activity of titania synthesized by solution combustion method
Khodadadi et al. Preparation, characterization and photocatalytic activity of TiO2/CoO nanocomposite
Chung et al. CO2-free hydrogen production by liquid-phase plasma cracking from benzene over perovskite catalysts
KR20050042763A (en) Preparation of titania nanotubes with high crystallinity and activity
CN111790418B (en) Calcium-titanium composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant