KR100744636B1 - Method for preparing of zns-zno photocatalyst activated in the visible light - Google Patents

Method for preparing of zns-zno photocatalyst activated in the visible light Download PDF

Info

Publication number
KR100744636B1
KR100744636B1 KR1020060077137A KR20060077137A KR100744636B1 KR 100744636 B1 KR100744636 B1 KR 100744636B1 KR 1020060077137 A KR1020060077137 A KR 1020060077137A KR 20060077137 A KR20060077137 A KR 20060077137A KR 100744636 B1 KR100744636 B1 KR 100744636B1
Authority
KR
South Korea
Prior art keywords
zns
zno
solution
photocatalyst
visible light
Prior art date
Application number
KR1020060077137A
Other languages
Korean (ko)
Inventor
김참
도석주
이성준
이세근
김호영
Original Assignee
(재)대구경북과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (재)대구경북과학기술연구원 filed Critical (재)대구경북과학기술연구원
Priority to KR1020060077137A priority Critical patent/KR100744636B1/en
Application granted granted Critical
Publication of KR100744636B1 publication Critical patent/KR100744636B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

A method for preparing a ZnS-ZnO photocatalyst which can substantially improve the visible light absorbance of a reactant, can efficiently remove contaminants under visible lights, and can be applied to hydrogen production, air purification, etc. under visible lights, and the ZnS-ZnO photocatalyst prepared by the method are provided. A method for preparing a ZnS-ZnO photocatalyst responding to visible lights comprises the step of filtering, drying and firing the coprecipitated ZnS-ZnO after coprecipitating ZnS and ZnO by adding a zinc precursor solution into a mixed solution of a sulfur-containing metal salt solution and a hydroxyl group-containing hydroxide salt solution. A ZnS-ZnO photocatalyst responding to visible lights is in the form of a powder having a crystalline structure in which structures of cubic zincblende and hexagonal wurtzite are present at the same time, having a particle size of 15 to 25 nm, and containing Zn, S and O as principal elements.

Description

ZnS-ZnO 광촉매의 제조방법 및 이에 의해 제조된 ZnS-ZnO 광촉매 {METHOD FOR PREPARING OF ZNS-ZNO PHOTOCATALYST ACTIVATED IN THE VISIBLE LIGHT}FIELD OF THE INVENTION [0001] The present invention relates to a ZnS-ZnO photocatalyst and a ZnS-ZnO photocatalyst,

도 1은 본 발명의 일실시예에 따른 ZnS-ZnO와 ZnS, ZnO의 결정구조를 나타낸 X-ray 회절분석도이다.FIG. 1 is an X-ray diffraction diagram showing crystal structures of ZnS-ZnO, ZnS and ZnO according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 따른 ZnS-ZnO의 SEM 사진과 EDS 성분 분석을 나타낸 사진이다.2 is a photograph showing an SEM photograph of ZnS-ZnO and an analysis of EDS component according to an embodiment of the present invention.

도 3은 본 발명의 일실시예에 따른 ZnS-ZnO와 ZnS, ZnO의 UV-vis DRS 분석도이다.3 is a UV-vis DRS analysis of ZnS-ZnO, ZnS and ZnO according to an embodiment of the present invention.

도 4는 본 발명의 일실시예에 따른 ZnS-ZnO와 ZnS, ZnO의 자외선 조사시 BR2 염료의 광분해 특성을 나타낸 그래프이다.4 is a graph showing photodegradation characteristics of BR2 dye upon irradiation of ultraviolet rays of ZnS-ZnO, ZnS and ZnO according to an embodiment of the present invention.

도 5는 본 발명의 일실시예에 따른 ZnS-ZnO와 ZnS, ZnO의 가시광선 조사시 BR2 염료의 광분해 특성을 나타낸 그래프이다.FIG. 5 is a graph showing photodegradation characteristics of BR2 dye upon irradiation of visible light of ZnS-ZnO, ZnS and ZnO according to an embodiment of the present invention.

본 발명은 ZnS-ZnO 광촉매의 제조방법 및 이에 의해 제조된 ZnS-ZnO 광촉매 에 관한 것으로, 더욱 상세하게는 반응체의 가시광 흡광도를 현저히 향상시킬 수 있고, 가시광선 하에서 오염물질들을 효율적으로 제거할 수 있으며, 가시광선 하에서의 수소생산, 공기정화 등에 응용할 수 있는 ZnS-ZnO 광촉매의 제조방법 및 이에 의해 제조된 ZnS-ZnO 광촉매에 관한 것이다.The present invention relates to a ZnS-ZnO photocatalyst and a ZnS-ZnO photocatalyst prepared thereby, and more particularly, to a ZnS-ZnO photocatalyst capable of remarkably improving the visible light absorbance of a reactant and efficiently removing contaminants under visible light ZnO-ZnO photocatalyst, which can be applied to hydrogen production and air purification under visible light, and a ZnS-ZnO photocatalyst produced thereby.

기존 많이 사용되고 있는 산화티타늄 광촉매는 넓은 밴드갭(bandgap) 에너지(3.2 eV)로 인해 태양광의 약 95 %를 차지하고 있는 가시광선을 거의 흡수하지 못하는 반면, ZnO는 그보다 좁은 밴드갭 에너지(3.2 eV)로 가지광선을 제한적으로 흡수하는 특성을 갖는다.The titanium oxide photocatalyst, which is widely used, absorbs little visible light which occupies about 95% of the sunlight due to its wide bandgap energy (3.2 eV), whereas ZnO has a narrower band gap energy (3.2 eV) And has a property of limited absorption of branch rays.

이와 같은 ZnO를 광촉매로 이용하는 종래 기술로 대한민국 특허출원 제10-2005-0020319호는 금속산화물인 TiO2와 ZnO를 나노바늘형태로 제조하여 표면적을 크게 증가시킴으로써 염료 분해에 대한 광촉매 활성이 높은 반응체를 제조하는 방법에 대하여 기재하고 있다. 그러나, 상기 특허는 광촉매 반응 자체가 일반적인 촉매 반응과 같은 표면흡착반응이 아니기 때문에 표면적 증가 대비 광촉매 활성이 크게 증가하지 않는다는 문제점이 있다. 또한, 표면적 증대로 인한 광촉매 활성 증대는 촉매 표면 흡착과 연관이 있으므로 광촉매의 비활성화를 빨리 초래한다는 단점이 있다.Korean Patent Application No. 10-2005-0020319 discloses that a TiO 2 and ZnO, which are metal oxides, are prepared in the form of nano-needle, and the surface area is greatly increased, so that a reaction product having high photocatalytic activity for dye decomposition And a method for producing the same. However, since the photocatalytic reaction itself is not a surface adsorption reaction such as a general catalytic reaction, the above-mentioned patent has a problem that the photocatalytic activity is not greatly increased compared to the surface area increase. In addition, since the increase of the photocatalytic activity due to the increase of the surface area is related to the adsorption of the catalyst surface, the photocatalyst is inactivated quickly.

대한민국 특허출원 제10-1996-0044214호는 Pt/Zn[M]s(여기서, M은 Co, Fe, Ni, P 중 선택된 1 종의 원소임) 광촉매를 제조하여 수소생산에 응용하는 기술에 대하여 개시하고 있다. 그러나, 상기 특허는 활성증대를 위하여 고가의 백금을 사 용해야 하며, 넓은 밴드갭 에너지를 가지는 ZnS(3.7 eV)의 특성상 가시광 감응성이 떨어진다는 문제점이 있다.Korean Patent Application No. 10-1996-0044214 discloses a technique for manufacturing a photocatalyst of Pt / Zn [M] s (where M is one selected from among Co, Fe, Ni and P) Lt; / RTI > However, the above-mentioned patent has a problem in that expensive platinum is used for increasing the activity and the visible light sensitivity is deteriorated due to the characteristic of ZnS (3.7 eV) having wide band gap energy.

또한, 미국공개특허 제2005-0249660호는 질소가스가 포함된 플라즈마 형성 가스와 zinc 전구체를 접촉시키면서 산화시켜 질소가 도핑된 ZnO를 제조하는 방법에 대하여 개시하고 있다. 그러나, 상기 특허 또한 플라즈마를 사용하므로 반응체의 제조단가가 높을 수 밖에 없다는 단점이 있다.In addition, U.S. Published Patent Application No. 2005-0249660 discloses a method for producing nitrogen-doped ZnO by oxidizing a plasma-forming gas containing a nitrogen gas and a zinc precursor in contact with each other. However, since the above-mentioned patent also uses plasma, there is a disadvantage that the manufacturing cost of the reactant is inevitably high.

상기와 같은 종래 기술들은 여러 가지 형태의 광촉매를 사용하여 오염물질들을 정화시키거나, 가시광 감응성이 없는 광촉매에 다양한 불순물들을 도핑시킴으로써 광촉매가 가시광 감응성을 갖도록 하는 기술이나, 현재까지 ZnS와 ZnO를 공침시켜 가시광 감응성을 가지는 복합광촉매를 제조한 사례는 없었다.The conventional techniques described above are technologies for purifying contaminants using various types of photocatalysts or for allowing photocatalyst to have visible light sensitivity by doping various impurities into a photocatalyst having no visible light sensitivity. However, until now, ZnS and ZnO have been co- There has been no case of producing a composite photocatalyst having visible light sensitivity.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 반응체의 가시광 흡광도를 현저히 향상시킬 수 있고, 가시광선 하에서 오염물질들을 효율적으로 제거할 수 있는 ZnS-ZnO 광촉매의 제조방법 및 이에 의해 제조된 ZnS-ZnO 광촉매를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art as described above, the present invention provides a method of producing a ZnS-ZnO photocatalyst capable of remarkably improving the visible light absorbance of a reactant and efficiently removing contaminants under visible light, ZnS-ZnO photocatalyst.

본 발명의 다른 목적은 가시광선 하에서의 수소생산, 공기정화 등에 응용할 수 있는 ZnS-ZnO 광촉매의 제조방법 및 이에 의해 제조된 ZnS-ZnO 광촉매를 제공하는 것이다.Another object of the present invention is to provide a method for producing a ZnS-ZnO photocatalyst applicable to hydrogen production and air purification under visible light, and to provide a ZnS-ZnO photocatalyst produced thereby.

상기 목적을 달성하기 위하여, 본 발명은 황 함유 금속염 용액과 수산기 함 유 수산화염 용액을 혼합한 혼합용액에 아연 전구체 용액을 첨가하여 ZnS와 ZnO를 공침시킨 후, 이를 여과, 건조, 및 소성시키는 단계를 포함하는 가시광 감응 ZnS-ZnO 광촉매의 제조방법을 제공한다.In order to accomplish the above object, the present invention provides a method for preparing ZnS and ZnO by adding a zinc precursor solution to a mixed solution obtained by mixing a sulfur-containing metal salt solution and a hydroxyl-containing oxalic acid hydroxide solution, coprecipitating ZnS and ZnO, ZnS-ZnO-based photocatalyst.

또한 본 발명은 상기 방법으로 제조된 가시광 감응 ZnS-ZnO 광촉매를 제공한다.The present invention also provides a visible light-sensitive ZnS-ZnO photocatalyst prepared by the above method.

이하 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명자들은 기존 광촉매로 사용되던 ZnS와 ZnO를 촉매 제조법 중 하나인 공침법을 이용하여 ZnS-ZnO 복합광촉매로 제조한 결과, 서로의 화학적 작용으로 인해 우수한 가시광 흡광도를 가짐을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.The present inventors have found that ZnS and ZnO used as conventional photocatalysts are produced by ZnS-ZnO composite photocatalyst using coprecipitation, which is one of the catalyst production methods, and that they have excellent visible light absorbance due to chemical action of each other. Thereby completing the invention.

본 발명의 ZnS-ZnO 광촉매는 ZnS 및 ZnO를 촉매 제조법 중 하나인 공침법을 이용하여 제조하여 가시광 감응성을 가지는 것을 특징으로 한다.The ZnS-ZnO photocatalyst according to the present invention is characterized in that ZnS and ZnO are produced by coprecipitation, one of the catalyst production methods, and have visible light sensitivity.

상기 ZnS-ZnO 광촉매는 황 함유 금속염 용액과 수산기 함유 수산화염 용액을 혼합한 혼합용액에 아연 전구체 용액을 첨가하여 ZnS와 ZnO를 공침시킨 후, 이를 여과, 건조, 및 소성시키는 단계로 제조할 수 있다.The ZnS-ZnO photocatalyst can be prepared by adding a zinc precursor solution to a mixed solution of a sulfur-containing metal salt solution and a hydroxyl group-containing hydroxide flame solution, coprecipitating ZnS and ZnO, and then filtering, drying and firing .

상기 황 함유 금속염 용액은 ZnS 제조를 위해 황을 제공하기 위하여 황을 함유하는 금속염 용액이면 제한되지 않으며, 예를 들어 Na2S 용액을 사용할 수 있다. 또한, 상기 수산기 함유 수산화염 용액은 NaOH 용액, KOH 용액 등을 사용할 수 있으며, 상기 아연 전구체 용액은 Zn(NO3)2 용액, ZnSO4 용액 등을 사용할 수 있다. The sulfur-containing metal salt solution is not limited as long as it is a sulfur-containing metal salt solution to provide sulfur for ZnS production, for example, a Na 2 S solution can be used. The hydroxide-containing hydroxide flame may be NaOH solution, KOH solution or the like. The zinc precursor solution may be Zn (NO 3 ) 2 solution, ZnSO 4 solution or the like.

상기 소성은 300 내지 600 ℃의 온도, 질소 및 아르곤 분위기에서 2∼5 시간 동안 실시하는 것이 바람직하며, 더욱 바람직하게는 400 ℃, 질소 및 아르곤 분위기에서 2 시간 동안 소성시키는 것이다.The firing is preferably carried out at a temperature of 300 to 600 DEG C, in a nitrogen and argon atmosphere for 2 to 5 hours, more preferably at 400 DEG C in a nitrogen and argon atmosphere for 2 hours.

본 발명에 따라 최종 수득되는 ZnS-ZnO 광촉매의 ZnS와 ZnO의 몰비율은 1:5 내지 5:1로 목적하는 바에 따라 적절히 조절할 수 있다.The molar ratio of ZnS to ZnO in the final ZnS-ZnO photocatalyst obtained according to the present invention is 1: 5 to 5: 1, and can be suitably adjusted according to the purpose.

이하에서는 상기 반응식 1에 따라 ZnS와 ZnO의 몰비율이 2:1인 ZnS-ZnO 광촉매를 제조하는 방법을 구체적으로 설명하나, 이는 본 발명의 일실시예를 나타내는 것일 뿐 본 발명의 ZnS-ZnO 광촉매의 ZnS와 ZnO 몰비율이 단지 2:1에 한정되는 것은 아니다. 또한, 이하 설명하는 몰비율이 2:1인 ZnS-ZnO 광촉매의 제조시 사용되는 각각의 성분 또한 본 발명을 이루기 위한 일예의 성분들일 뿐, 이 또한 하기 기재하는 화합물들에 한정되는 것은 아니다.Hereinafter, a method for preparing a ZnS-ZnO photocatalyst having a molar ratio of ZnS to ZnO of 2: 1 according to Reaction Scheme 1 will be described in detail. However, the ZnS-ZnO photocatalyst of the present invention Is not limited to a molar ratio of ZnS to ZnO of only 2: 1. In addition, the respective components used in the production of the ZnS-ZnO photocatalyst having a molar ratio of 2: 1 described below are also exemplary components for achieving the present invention, and the present invention is not limited to the compounds described below.

본 발명에 따른 일예인 몰비율이 2:1인 ZnS-ZnO 광촉매의 제조는 하기 반응식 1에 따라 Na2S 용액과 NaOH 용액을 혼합한 혼합용액에 Zinc 전구체인 Zn(NO3)2 용액을 첨가하여 ZnS와 ZnO를 공침시킨 다음, 이 반응물을 여과 및 건조시키고, 소성시키는 방법으로 제조할 수 있다.The ZnS-ZnO photocatalyst having a molar ratio of 2: 1 according to an embodiment of the present invention is prepared by adding Zn (NO 3 ) 2 solution, which is a precursor of zinc, to a mixed solution of Na 2 S solution and NaOH solution according to the following reaction formula 1 Followed by coprecipitation of ZnS and ZnO, followed by filtration, drying, and firing.

[반응식 1][Reaction Scheme 1]

Figure 112006058191059-pat00001
Figure 112006058191059-pat00001

구체적으로, 상기 Na2S 용액과 NaOH 용액은 1.05 g의 Na2S 용액과 6.6 mL의 1M NaOH 버퍼 용액(buffer solution)을 증류수 150 mL에 각각 용해시킨 후, 이를 교반하고 혼합할 수 있다.Specifically, the Na 2 S solution and the NaOH solution can be prepared by dissolving 1.05 g of Na 2 S solution and 6.6 mL of 1 M NaOH buffer solution in 150 mL of distilled water, respectively, followed by stirring and mixing.

또한, 상기 아연 전구체인 Zn(NO3)2 용액은 10.66 g의 Zn(NO3)2를 증류수 50 mL에 용해시킨 후, 이 용액이 균일해질 때까지 약 1 시간 동안 교반하여 사용할 수 있다.The zinc precursor Zn (NO 3 ) 2 solution can be used by dissolving 10.66 g of Zn (NO 3 ) 2 in 50 mL of distilled water and stirring the solution for about 1 hour until the solution becomes homogeneous.

그 다음, 상기 제조한 Na2S 용액과 NaOH 용액을 혼합하여 균일한 용액으로 제조하여 ZnS와 ZnO를 공침시킬 수 있는 용액으로 제조한다. 이때, 두 용액을 완전히 균일하게 혼합하기 위하여 약 1 시간 동안 추가적으로 교반할 수 있다.Then, the prepared Na 2 S solution and NaOH solution are mixed to prepare a homogeneous solution, which is prepared as a solution capable of coprecipitating ZnS and ZnO. At this time, the two solutions can be further stirred for about 1 hour to completely mix them uniformly.

이후 상기 Na2S 용액과 NaOH 용액의 혼합 용액에 상기 제조된 Zn(NO3)2 용액 첨가시에는 시린지와 시린지 펌프를 사용하여 균일한 유량으로 첨가함으로써 ZnS와 ZnO를 공침시킨다. 이때, 상기 Zn(NO3)2 용액의 첨가양은 상기 반응식 1에 따라 적절히 조절할 수 있다.Then, when the prepared Zn (NO 3 ) 2 solution is added to a mixed solution of Na 2 S solution and NaOH solution, ZnS and ZnO are coprecipitated by adding a syringe and a syringe pump at a uniform flow rate. At this time, the addition amount of the Zn (NO 3 ) 2 solution can be appropriately controlled according to the reaction scheme 1.

상기와 같이 공침법에 의해 생성된 반응물은 이후 필터를 사용하여 여과시키고, 다시 진공건조기를 사용하여 건조시킨다. 이때, 여과 및 건조시 사용되는 상기 필터와 진공건조기는 당업계에서 사용되는 통상의 것을 사용할 수 있음은 물론이다.The reaction product produced by coprecipitation as described above is then filtered using a filter and dried again using a vacuum drier. It is needless to say that the filter and the vacuum drier used in the filtration and drying can be the conventional ones used in the art.

마지막으로, 상기 건조된 반응물을 400 ℃, 질소 및 아르곤 분위기에서 2 시간 동안 소성시켜 최종 ZnS-ZnO 광촉매를 수득할 수 있다.Finally, the dried reaction product is fired at 400 ° C in a nitrogen and argon atmosphere for 2 hours to obtain a final ZnS-ZnO photocatalyst.

또한, 본 발명은 상기와 같은 단계를 거쳐 제조한 본 발명의 ZnS-ZnO 광촉매를 제공하는 바, 상기 ZnS-ZnO 광촉매는 파우더 형태로 ZnS와 ZnO가 공침됨으로서 ZnS의 Cubic zincblende와 ZnO의 Hexagonal wurtzite의 결정구조가 동시에 존재하는 구조를 가진다(도 1 참조). 또한, 상기 ZnS-ZnO 광촉매는 Zn, S, O가 주요 원소이며, 모폴로지를 살펴보았을 때 입자가 약 15∼25 ㎚의 크기로 생성된다(도 2 참조).The present invention also provides a ZnS-ZnO photocatalyst according to the present invention, wherein the ZnS-ZnO photocatalyst is prepared by co-precipitation of ZnS and ZnO in the form of a powder, wherein the cobic zincblende of ZnS and the hexagonal wurtzite of ZnO (See Fig. 1). The ZnS-ZnO photocatalyst is a main element of Zn, S, and O. When the morphology is examined, the size of the ZnS-ZnO photocatalyst is about 15 to 25 nm (see FIG. 2).

상기 ZnS-ZnO 광촉매는 ZnO보다 우수한 가시광 흡광능력을 보이며, 염료 광분해 반응에 대해서도 30 % 이상의 우수한 가시광 활성을 얻을 수 있다(도 3 참조).The ZnS-ZnO photocatalyst exhibits a visible light absorbing ability superior to that of ZnO, and exhibits an excellent visible light activity of 30% or more even for a dye photolysis reaction (see FIG. 3).

상기와 같은 특성을 갖는 본 발명의 ZnS-ZnO 광촉매는 가시광선 하에서 오염물질들을 효율적으로 제거할 수 있으며, 가시광선 하에서의 수소생산, 공기정화 등에 응용할 수 있다.The ZnS-ZnO photocatalyst of the present invention having such characteristics can efficiently remove contaminants under visible light, and can be applied to hydrogen production and air purification under visible light.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

[실시예][Example]

실시예 1Example 1

상기 반응식 1에 따라 1.05 g의 Na2S와 6.6 mL의 1M NaOH 버퍼 용액(buffer solution)을 각각 증류수 150 mL에 용해시킨 후, 이를 교반하였다. 또한 10.66 g의 Zn(NO3)2를 증류수 50 mL에 용해시킨 후, 이 용액이 균일해질 때까지 약 1 시간 동안 교반하였다. 그 다음, 상기 제조한 Na2S 용액과 NaOH 용액을 균일하게 혼합한 후, 1 시간 동안 더 교반하였다. 이후 상기 혼합 용액에 상기 제조한 Zn(NO3)2 용액을 시린지와 시린지 펌프를 사용하여 균일한 유량으로 첨가하여 ZnS와 ZnO를 공침시켰다. 이때, 상기 Zn(NO3)2 용액의 첨가양은 상기 반응식 1에 따라 적절히 조절하였다.1.05 g of Na 2 S and 6.6 mL of a 1 M NaOH buffer solution were dissolved in 150 mL of distilled water according to the above Scheme 1, followed by stirring. Further, 10.66 g of Zn (NO 3 ) 2 was dissolved in 50 mL of distilled water, and the solution was stirred for about 1 hour until homogeneous. Then, the prepared Na 2 S solution and NaOH solution were uniformly mixed and stirred for 1 hour. Then, the prepared Zn (NO 3 ) 2 solution was added to the mixed solution at a uniform flow rate using a syringe and a syringe pump to coprecipitate ZnS and ZnO. At this time, the addition amount of the Zn (NO 3 ) 2 solution was appropriately controlled according to the reaction formula 1.

그 다음, 상기 반응물을 0.45 ㎛ 필터를 사용하여 여과하고, 다시 진공건조기를 사용하여 건조시킨 후, 상기 건조된 반응물을 400 ℃, 질소 및 아르곤 분위기에서 2 시간 동안 소성시켜 최종 ZnS-ZnO 광촉매를 제조하였다.Then, the reaction product was filtered using a 0.45 μm filter, dried using a vacuum dryer, and then the dried reaction product was calcined at 400 ° C. in a nitrogen and argon atmosphere for 2 hours to prepare a final ZnS-ZnO photocatalyst Respectively.

상기 제조한 ZnS-ZnO 광촉매, ZnS, 및 ZnO의 결정구조를 측정하기 위하여 X-ray 회절분석을 실시한 결과, 도 1에 나타낸 바와 같이 ZnS는 Cubic zincblende 구조를 가지며, ZnO는 Hexagonal wurtzite를 가졌으며, 상기 실시예 1에서 제조한 ZnS-ZnO는 Cubic zincblende와 Hexagonal wurtzite의 두 구조가 동시에 존재함을 확인할 수 있었다.As a result of X-ray diffraction analysis to determine the crystal structure of the ZnS-ZnO photocatalyst, ZnS, and ZnO, ZnS had a Cubic zinc blende structure, ZnO had hexagonal wurtzite, ZnS-ZnO prepared in Example 1 was found to have two structures of Cubic zinc blende and Hexagonal wurtzite.

또한 상기 제조한 ZnS-ZnO 광촉매의 SEM 사진과 EDS 성분 분석을 한 결과, 도 2에 나타낸 바와 같이 모폴로지를 살펴보았을 때 입자가 약 20 ㎚ 전후로 생성되었음을 알 수 있었으며, EDS 성분 분석을 통하여 Zn, S, O가 ZnS-ZnO 반응체를 이루고 있는 주요 원소임을 확인할 수 있었다.As a result of the SEM photograph and EDS component analysis of the ZnS-ZnO photocatalyst prepared above, it was found that the particles were generated about 20 nm around the morphology as shown in FIG. 2. As a result, , And O were the main elements forming the ZnS-ZnO reactant.

또한 상기 제조한 ZnS-ZnO 광촉매와 ZnS, ZnO의 UV-vis DRS(diffus reflectance spectra)를 분석한 결과, 도 3에 나타낸 바와 같이 ZnS-ZnO는 약 450 ㎚ 수준의 빛에서 최대의 흡수파장을 보임을 확인할 수 있었으며, 이는 일반적으로 최대 흡수 파장이 약 380 ㎚ 수준으로 알려져 있는 ZnO에 비해 더 높은 흡수 파장이라 할 수 있다.The ZnS-ZnO photocatalyst and the ZnS-ZnO photocatalyst were analyzed by UV-vis DRS (diffus reflectance spectra). As a result, as shown in FIG. 3, ZnS-ZnO showed the maximum absorption wavelength at about 450 nm , Which is generally higher than that of ZnO, which has a maximum absorption wavelength of about 380 nm.

상기 제조한 ZnS-ZnO 광촉매를 이용하여 염료 분해 활성을 분석하기 위하여 300 W 제논 램프를 사용하고, cut-off 필터를 이용하여 자외선 및 가시광을 분리하였다. 또한, 상기 제조한 ZnS-ZnO 광촉매와 ZnS, ZnO를 각각 5 ppm 농도의 Basic Red 2(이하 'BR2'라 함)에 0.5 g/L의 비율로 주입한 후, 일정 시간 동안 빛을 조사하였다. 이때, 빛을 조사하기 전 반응체들의 BR2 흡착효과를 고려하기 의하여 빛을 조사하지 않고 30 분 동안 교반을 실시하였다. 또한, 순수한 빛에 의한 BR2의 분해 효과를 고려하기 위하여 일정량의 BR2에 자외선 및 가시광선을 일정 시간 동안 조사하여 BR2의 분해량을 알아보았다.To analyze the dye decomposition activity using the ZnS-ZnO photocatalyst prepared above, a 300 W xenon lamp was used and ultraviolet rays and visible light were separated using a cut-off filter. In addition, the prepared ZnS-ZnO photocatalyst, ZnS and ZnO were injected into Basic Red 2 (hereinafter referred to as 'BR2') at a concentration of 5 ppm at a rate of 0.5 g / L, and then light was irradiated for a predetermined time. At this time, stirring was carried out for 30 minutes without light irradiation considering the BR2 adsorption effect of reactants before light irradiation. In order to consider the decomposition effect of BR2 by pure light, we examined the decomposition amount of BR2 by irradiating a certain amount of BR2 with ultraviolet light and visible light for a certain period of time.

실험결과, 도 4 및 도 5와 하기 표 1 및 2에 나타낸 바와 같이 상기 제조한 ZnS-ZnO 광촉매와 ZnS, ZnO는 자외선 및 가시광선 하에서의 BR2 분해에 대한 활성을 나타냄을 확인할 수 있었다. 상기 ZnS-ZnO 광촉매, ZnS, 및 ZnO의 BR2 흡착 현상은 초기에 조금씩 나타났으나, 광촉매 자체의 활성에 영향을 줄만큼 큰 양은 아님을 알 수 있었다. 순수한 빛에 의한 BR2 분해 효과는 자외선 및 가시광선 조사 후 1 시간을 기준으로 보았을 때, 두 광원 모두 약 20 % 전후임을 알 수 있었으며, 자외선을 광원으로 사용한 경우 ZnS-ZnO, ZnS, 및 ZnO 중 ZnO가 가장 우수한 활성을 나타내었다. 또한, 자외선 조사 후 1 시간을 기준으로 보았을 때에도 ZnO는 46 % 정도의 매우 우수한 활성을 나타냄을 알 수 있었으며, 이는 24 %의 활성을 나타내는 ZnS-ZnO보다 우수한 것임을 알 수 있었다.As shown in FIGS. 4 and 5 and Tables 1 and 2, it was confirmed that the ZnS-ZnO photocatalyst, ZnS and ZnO produced by the present invention exhibit activity against decomposition of BR2 under ultraviolet light and visible light. The BR2 adsorption phenomenon of the ZnS-ZnO photocatalyst, ZnS, and ZnO appeared little at the beginning, but it was not large enough to affect the activity of the photocatalyst itself. The BR2 decomposition effect by pure light was found to be about 20% in both of the two light sources when irradiated with ultraviolet light and visible light. When UV light was used as a light source, ZnS-ZnO, ZnS and ZnO Showed the best activity. In addition, it was found that ZnO had an excellent activity of about 46% even when observed for 1 hour after UV irradiation, which is superior to ZnS-ZnO having 24% activity.

반면, 가시광을 광원으로 사용한 경우에는 ZnS-ZnO가 약 33 %로 가장 우수한 활성을 나타내었으며, 이는 약 15 % 정도의 활성을 나타내는 ZnO보다 훨씬 높은 활성을 나타내는 것임을 알 수 있었다. 또한, ZnS는 자외선 조사에서와 같이 가시광선 조사에서도 가장 낮은 BR2 분해 활성을 나타내었으며, 이러한 가시광 조사시 BR2 분해 활성 경향은 도 3에서 제시한 UV-vis DRS 데이터와도 잘 일치함을 알 수 있었다.On the other hand, when visible light was used as a light source, ZnS-ZnO showed the highest activity of about 33%, which is much higher than that of ZnO having about 15% of activity. In addition, ZnS exhibited the lowest BR2 degradation activity in visible light irradiation as in ultraviolet irradiation, and the tendency of BR2 decomposition activity in the visible light was in good agreement with the UV-vis DRS data shown in FIG. 3 .

자외선 조사 (60 min)UV irradiation (60 min) ZnSZnS ZnOZnO ZnS-ZnOZnS-ZnO 광분해율 (DBR2, UV)Photodegradation rate (D BR2 , UV) 4.9 %4.9% 46.2 %46.2% 23.5 %23.5%

가시광선 조사 (60 min)Visible light irradiation (60 min) ZnSZnS ZnOZnO ZnS-ZnOZnS-ZnO 광분해율 (DBR2, Vis)Photodegradation rate (D BR2 , Vis) 3.4 %3.4% 18.0 %18.0% 32.7 %32.7%

상기와 같은 실험결과를 통하여, 본 발명에 따라 제조한 ZnS-ZnO 광촉매는 가시광선 하에서의 오염물질 분해용 광촉매로 사용하기 적합함을 알 수 있었다. As a result of the above experiment, it was found that the ZnS-ZnO photocatalyst prepared according to the present invention is suitable for use as a photocatalyst for decomposing contaminants under visible light.

본 발명에 따르면 반응체의 가시광 흡광도를 현저히 향상시킬 수 있고, 가시광선 하에서 오염물질들을 효율적으로 제거할 수 있는 ZnS-ZnO 광촉매를 제조할 수 있으며, 이렇게 제조된 ZnS-ZnO 광촉매는 가시광선 하에서의 수소생산, 공기정화 등에 응용할 수 있는 효과가 있다.According to the present invention, it is possible to produce a ZnS-ZnO photocatalyst capable of remarkably improving the visible light absorbance of a reactant and efficiently removing contaminants under visible light, and the ZnS-ZnO photocatalyst thus produced is capable of producing hydrogen Production, and air purification.

이상에서 본 발명의 기재된 구체예에 대해서만 상세히 설명되었지만, 본 발 명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations are possible in light of the above teachings and it is obvious that such variations and modifications are intended to fall within the scope of the appended claims .

Claims (5)

황 함유 금속염 용액과 수산기 함유 수산화염 용액을 혼합한 혼합용액에 아연 전구체 용액을 첨가하여 ZnS와 ZnO를 공침시킨 후, 이를 여과, 건조, 및 소성시키는 단계를 포함하는 가시광 감응 ZnS-ZnO 광촉매의 제조방법.ZnS-ZnO photocatalyst comprising a step of adding a zinc precursor solution to a mixed solution obtained by mixing a sulfur-containing metal salt solution and a hydroxyl group-containing hydroxide flame solution, coprecipitating ZnS and ZnO and filtering, drying and firing the same. Way. 제1항에 있어서,The method according to claim 1, 상기 황 함유 금속염 용액이 Na2S 용액이며, 수산기 함유 수산화염 용액이 NaOH 또는 KOH 용액이며, 아연 전구체 용액이 Zn(NO3)2 또는 ZnSO4 용액인 것을 특징으로 하는 가시광 감응 ZnS-ZnO 광촉매의 제조방법.ZnO photocatalyst characterized in that the sulfur-containing metal salt solution is a Na 2 S solution, the hydroxyl-containing hydroxide solution is NaOH or KOH solution, and the zinc precursor solution is Zn (NO 3 ) 2 or ZnSO 4 solution Gt; 제1항에 있어서,The method according to claim 1, 상기 ZnS-ZnO 광촉매가 ZnS와 ZnO가 1:5 내지 5:1의 몰비율을 가지는 것을 특징으로 하는 가시광 감응 ZnS-ZnO 광촉매의 제조방법.Wherein the ZnS-ZnO photocatalyst has a molar ratio of ZnS to ZnO of 1: 5 to 5: 1. 제1항에 있어서,The method according to claim 1, 상기 소성이 300 내지 600 ℃, 질소 및 아르곤 분위기에서 2∼5 시간 동안 실시되는 것을 특징으로 하는 가시광 감응 ZnS-ZnO 광촉매의 제조방법.Wherein the calcination is carried out at 300 to 600 ° C in a nitrogen and argon atmosphere for 2 to 5 hours. Cubic zincblende와 Hexagonal wurtzite의 구조가 동시에 존재하는 결정구조를 가지며, 입자크기가 15∼25 ㎚이며, Zn, S, O를 주요원소로 하는 파우더 형태인 것을 특징으로 하는 가시광 감응 ZnS-ZnO 광촉매.Cubic zincblende and Hexagonal wurtzite structure, and has a particle size of 15 to 25 nm, and is in powder form having Zn, S and O as main elements.
KR1020060077137A 2006-08-16 2006-08-16 Method for preparing of zns-zno photocatalyst activated in the visible light KR100744636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060077137A KR100744636B1 (en) 2006-08-16 2006-08-16 Method for preparing of zns-zno photocatalyst activated in the visible light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060077137A KR100744636B1 (en) 2006-08-16 2006-08-16 Method for preparing of zns-zno photocatalyst activated in the visible light

Publications (1)

Publication Number Publication Date
KR100744636B1 true KR100744636B1 (en) 2007-08-01

Family

ID=38601469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060077137A KR100744636B1 (en) 2006-08-16 2006-08-16 Method for preparing of zns-zno photocatalyst activated in the visible light

Country Status (1)

Country Link
KR (1) KR100744636B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104624179A (en) * 2015-02-11 2015-05-20 河北大学 Quantum-dot modified nano ZnO transparent photocatalyst emulsion and preparation method thereof
KR20150118305A (en) 2014-04-14 2015-10-22 서울시립대학교 산학협력단 ZnS-ZnO COMPOSITE FORMING METHOD USING THERMAL TREATMENT AND ZnS-ZnO COMPOSITE PRODUCED THEREOF
CN105148949A (en) * 2015-07-30 2015-12-16 中国石油大学(华东) Bismuth oxyiodide-bismuth vanadium oxide heterojunction photocatalyst and preparation method thereof
CN112844413A (en) * 2021-03-03 2021-05-28 福州大学 Preparation method and application of photocatalyst with sphalerite/wurtzite junction
KR102368521B1 (en) * 2022-01-04 2022-02-25 순천대학교 산학협력단 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst
KR20230077450A (en) 2021-11-25 2023-06-01 경상국립대학교산학협력단 Photocatalyst for NO removal and method for preparing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980025911A (en) * 1996-10-07 1998-07-15 이서봉 Novel ZnS-based photocatalyst and its manufacturing method and hydrogen production method using the same
KR20050013566A (en) * 2002-06-05 2005-02-04 쇼와 덴코 가부시키가이샤 Powder comprising silica-coated zinc oxide, organic polymer composition containing the powder and shaped article thereof
KR20060043854A (en) * 2004-03-11 2006-05-15 학교법인 포항공과대학교 A photocatalyst including oxide-based nano-material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980025911A (en) * 1996-10-07 1998-07-15 이서봉 Novel ZnS-based photocatalyst and its manufacturing method and hydrogen production method using the same
KR20050013566A (en) * 2002-06-05 2005-02-04 쇼와 덴코 가부시키가이샤 Powder comprising silica-coated zinc oxide, organic polymer composition containing the powder and shaped article thereof
KR20060043854A (en) * 2004-03-11 2006-05-15 학교법인 포항공과대학교 A photocatalyst including oxide-based nano-material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150118305A (en) 2014-04-14 2015-10-22 서울시립대학교 산학협력단 ZnS-ZnO COMPOSITE FORMING METHOD USING THERMAL TREATMENT AND ZnS-ZnO COMPOSITE PRODUCED THEREOF
CN104624179A (en) * 2015-02-11 2015-05-20 河北大学 Quantum-dot modified nano ZnO transparent photocatalyst emulsion and preparation method thereof
CN105148949A (en) * 2015-07-30 2015-12-16 中国石油大学(华东) Bismuth oxyiodide-bismuth vanadium oxide heterojunction photocatalyst and preparation method thereof
CN112844413A (en) * 2021-03-03 2021-05-28 福州大学 Preparation method and application of photocatalyst with sphalerite/wurtzite junction
KR20230077450A (en) 2021-11-25 2023-06-01 경상국립대학교산학협력단 Photocatalyst for NO removal and method for preparing thereof
KR102368521B1 (en) * 2022-01-04 2022-02-25 순천대학교 산학협력단 manufacturing method of composite metal oxide catalyst for hydrogen generation using liquid phase plasma reaction and composite metal oxide catalyst
WO2023132410A1 (en) * 2022-01-04 2023-07-13 순천대학교 산학협력단 Method for preparing composite metal oxide catalyst for hydrogen production by using liquid phase plasma reaction, and composite metal oxide catalyst

Similar Documents

Publication Publication Date Title
Ramesh et al. Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
KR100763226B1 (en) Photocatalyst materials manufacturing method of transition metal ion added and 10? mean particle diameter sized metal oxide having semiconductor characteristic, material manufactured thereby, and filter, fan filter unit and clean room system having the same material
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
KR100744636B1 (en) Method for preparing of zns-zno photocatalyst activated in the visible light
KR101359443B1 (en) Photocatalytic materials and process for producing the same
KR101725059B1 (en) System for photocatalytic activation
ES2725153T3 (en) Photocatalytic powder production method comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
KR20060128758A (en) Photocatalyst and use thereof
KR101789296B1 (en) Method for preparing titanium dioxide photocatalyst dopped silver and photocatalyst prepared thereby
Dong et al. Synthesis of mesoporous polymeric carbon nitride exhibiting enhanced and durable visible light photocatalytic performance
CN110813276A (en) Preparation method and application of bismuth oxide-based photocatalyst
Phiankoh et al. Effect of pH on crystal structure and morphology of hydrothermally-synthesized BiVO4
US20060034752A1 (en) Visible-light-activated photocatalyst and method for producing the same
US9061272B2 (en) Tungsten oxide photocatalyst modified with copper ion, and process for production thereof
Miyake et al. Photocatalytic degradation of methylene blue with metal-doped mesoporous titania under irradiation of white light
JP2008006344A (en) Visible light-responsive photocatalyst
KR20160123178A (en) A manufacturing method of nanocomposite photocatalyst
CN109317160B (en) Semiconductor heterojunction photocatalytic material and preparation method and application thereof
Rodrigues et al. Enhanced 4-chlorophenol degradation under visible and solar radiation through TiO2/gC 3N4 Z-scheme heterojunction
KR101532719B1 (en) Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same
RU2637120C1 (en) Method of producing metal-applied catalyst for process of photocatalytic oxidation of carbon monoxide
KR20210128102A (en) Visible Light Sensitive Bismuth Ferrite Nanocrystalline Composite, Method of Preparing the Same and Photocatalyst Using the Same
Purwaningrum et al. Effect of Al Concentration over ZnO-Al2O3 Physicochemical Characteristics and Removal of Remazol Red RB

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120628

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130716

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee