KR101532719B1 - Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same - Google Patents

Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same Download PDF

Info

Publication number
KR101532719B1
KR101532719B1 KR1020140092058A KR20140092058A KR101532719B1 KR 101532719 B1 KR101532719 B1 KR 101532719B1 KR 1020140092058 A KR1020140092058 A KR 1020140092058A KR 20140092058 A KR20140092058 A KR 20140092058A KR 101532719 B1 KR101532719 B1 KR 101532719B1
Authority
KR
South Korea
Prior art keywords
water treatment
photocatalyst
water
titanium dioxide
transition metal
Prior art date
Application number
KR1020140092058A
Other languages
Korean (ko)
Inventor
최세영
박경애
김재영
최명호
양승기
Original Assignee
박경애
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박경애 filed Critical 박경애
Priority to KR1020140092058A priority Critical patent/KR101532719B1/en
Application granted granted Critical
Publication of KR101532719B1 publication Critical patent/KR101532719B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a technology of manufacturing a water treatment carrier coated with a non-photocatalyst, which includes: a) titanium dioxide; b) transition metal; c) lower alcohol having 1 to 4 carbon atoms; and d) de-ionized water, and purifying the quality of water using a water treatment apparatus comprising the same. The water treatment carrier coated with a non-photocatalyst, in accordance with the present invention, is capable of eliminating total phosphorus and total nitrogen in sewage or wastewater with high efficiency by exhibiting a catalytic activity even under the condition of no light irradiation and preventing water pollution by removing green tide, red tide, oil spills in the water, nonpoint pollutants, and the like. Moreover, the present invention exhibits continuous reusability due to excellent color fastness to washing, thereby being able to be applied to various water treatment apparatuses.

Description

무광촉매가 코팅된 수처리 담체, 이의 제조방법 및 그를 포함하는 수처리 장치{Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same}TECHNICAL FIELD The present invention relates to a water treatment carrier coated with a non-photocatalyst, a method for manufacturing the same, and a water treatment apparatus including the water treatment support coated with a non-photocatalyst,

본 발명은 무광촉매가 코팅된 수처리 담체, 이의 제조방법 및 그를 포함하는 수처리 장치에 관한 것으로, 보다 상세하게는 a) 이산화티타늄; b) 전이금속; c) 탄소수 1 내지 4의 저급 알코올, 및 d) 탈이온수;를 포함하는 무광촉매가 코팅된 수처리 담체를 제조하고, 이를 포함하는 수처리 장치를 이용하여 수질을 정화하는 기술에 관한 것이다.
The present invention relates to a water treatment carrier coated with a non-photocatalyst, a method for producing the same, and a water treatment apparatus including the same, and more particularly, to a water treatment carrier coated with a titanium dioxide; b) a transition metal; c) a lower alcohol having 1 to 4 carbon atoms, and d) deionized water, and purifying the water quality by using a water treatment apparatus including the water treatment carrier.

최근 산업화의 가속으로 환경문제가 크게 대두되고 있는바, 하수나 오폐수 등으로 인한 수질오염에 대한 관심이 높아지고 있다. 특히, 부영양화에 따른 수질오염의 주범인 인(phosphorus) 또는 질소 성분을 생활하수나 산업폐수로부터 효율적으로 제거하는 방법, 녹조 또는 적조의 제거방법, 해상에 유출된 오일을 제거하는 방법 및 비점오염물질의 제거방법 등에 관한 연구가 활발히 전개되고 있다.Recently, due to the acceleration of industrialization, environmental problems have been increasing, and interest in water pollution due to sewage, wastewater, and the like is increasing. Particularly, a method of efficiently removing phosphorus or nitrogen component, which is a main cause of water pollution due to eutrophication, from domestic wastewater or industrial wastewater, a method of removing green algae or red tide, a method of removing oil spilled on the sea, And the like have been actively developed.

이에 따라, 근래에는 화학적 침전물 또는 생물학적 고형물 형태로 폐수 중의 인 또는 질소 성분을 제거하는 전통적인 방법 이외에 광촉매의 광활성을 이용하여 인 성분을 제거하는 기술이 제안되고 있으며, 그 중에서도 이산화티타늄으로 대표되는 광촉매를 이용한 연구가 다수를 차지하고 있다. 즉, 이산화티타늄계 광촉매는 상온에서 광에너지를 화학에너지로 변환시키는 환경친화형의 재료로서 질소와 인 성분에 의하여 조류가 대량으로 번성하는 부영양화를 방지하기 위한 수질정화 등의 분야에 응용되고 있고, 광활성을 향상시키기 위한 방법으로는 이산화티타늄을 나노단위로 초미립자화시키는 방법과 백금, 은, 니켈 등의 금속을 이산화티타늄에 첨가시키는 방법 등 다양한 기술들이 보고되고 있다.Accordingly, in recent years, there has been proposed a technique of removing the phosphorus component by using the photoactivity of the photocatalyst in addition to the conventional method of removing phosphorus or nitrogen component in the wastewater in the form of a chemical precipitate or a biological solid. Among them, a photocatalyst represented by titanium dioxide Many researches have been used. That is, the titanium dioxide photocatalyst is an environmentally friendly material that converts light energy into chemical energy at room temperature, and is applied to fields such as water purification to prevent eutrophication in which a large number of algae thrive due to nitrogen and phosphorus, As a method for improving the optical activity, various techniques such as a method of ultrafine titanium dioxide nanoparticles and a method of adding a metal such as platinum, silver or nickel to titanium dioxide have been reported.

특히, 자외선뿐만 아니라 형광등, LED, 백열등과 같은 가시광영역(약 400~800nm)에서도 광촉매 작용이 이루어지는 재료의 개발이 이루어지고 있으나, 이들 촉매는 광 즉, 자외선이나 가시광이 존재하는 한정된 조건하에서만 반응이 수행되므로 암실이나 광이 존재하지 않는 무광하에서는 반응이 일어나지 않아 촉매의 효과를 얻을 수 없다는 단점이 있다.Particularly, development of materials capable of photocatalytic action not only in ultraviolet rays but also in a visible light region (about 400 to 800 nm) such as fluorescent lamps, LEDs, and incandescent lamps has been developed. However, these catalysts can be used only in a limited condition in which light, The reaction does not occur under a mild condition in which no dark room or light is present, and thus the effect of the catalyst can not be obtained.

이러한 단점을 해소하기 위해 광의 유무에 관계없이 공기 속에 포함된 산소와 물에 의한 산화반응으로 유해물질의 분해 및 항균작용을 수행하는 인산티타늄화합물의 '공기촉매'가 새로운 대안책으로 제시되고 있는데, 이는 인산염에 유해물질을 흡착시켜 분해시키는 방법으로 적용 초기에는 일시적인 효과가 있으나 인산염이 갖는 흡착능력의 한계로 인해 지속성이 없다는 단점이 있다.In order to overcome these disadvantages, 'air catalyst' of titanium phosphate compound which performs decomposition and antibacterial action of harmful substances by oxidation reaction with oxygen and water contained in air, whether or not light exists, is proposed as a new alternative. It is a method of decomposing harmful substances into phosphates by a method of adsorbing them, but it has a temporary effect in the early stage of application, but has a disadvantage that it is not persistent due to the limit of the adsorption capacity of the phosphate.

이러한 단점을 해결하고자 산화제일철 전구체를 이용하여 공기 중에 존재하는 산소 또는 물과의 산화·환원반응을 수행하여 2가의 산소와 3가의 오존을 형성시켜 서로간의 산화반응으로 유해물질을 분해하는 무광촉매 조성물이 보고되어 있으나, 이 또한 안정한 이온상태를 유지하기가 어려워 시장에서 실용성 있는 제품으로 널리 응용되기에는 그 효과가 미약하며, 산업적으로는 현실성이 부족하다는 문제점이 있다(특허문헌 1).In order to solve such disadvantages, a photocatalytic composition which decomposes harmful substances by oxidation reaction of each other by forming bivalent oxygen and trivalent ozone by performing oxidation / reduction reaction with oxygen or water present in the air using a ferric oxide precursor However, it is difficult to maintain a stable ionic state. Therefore, it is not effective to be widely used as a practically useful product in the market, and there is a problem in that the practicality is not industrially available (Patent Document 1).

한편, 총인(total phosphorus) 또는 총질소(total nitrogen)는 오폐수 내에 함유된 부영양화의 원인이 되는 유ㅇ무기계 인 또는 질소 화합물의 총량을 지칭하는 것으로, 수질오염을 방지하기 위해서는 반드시 허용치 농도 이하로 조절하여야 한다.On the other hand, total phosphorus or total nitrogen refers to the total amount of inorganic phosphorus or nitrogen compounds that cause eutrophication in wastewater. To prevent water pollution, shall.

종래에는 이러한 총인 또는 총질소를 기술적으로 저감하기 위하여 활성 알루미나와 같은 흡착부재 또는 제올라이트 등의 흡착제를 수용하는 흡착조를 구비한 수처리 장치가 개발되었으나, 활성 알루미나 흡착부재는 350~450℃의 고온에서 1~3 시간 열처리하여 제조하므로 흡착부재를 제조하는 과정에서 에너지 비용이 상승하는 단점이 있고, 제올라이트 등의 흡착제를 포함하는 수처리 장치에서는 총인 또는 총질소 제거율이 명확하게 알려지지 않아 산업적으로 응용하기 어려운 문제가 있다(특허문헌 2, 3).Conventionally, a water treatment apparatus having an adsorption member such as activated alumina or an adsorption tank containing an adsorbent such as zeolite has been developed in order to technically reduce the total phosphorus or total nitrogen. However, It is disadvantageous in that the energy cost is increased in the process of manufacturing the adsorbent member for 1 to 3 hours and there is a problem that the total phosphorus or total nitrogen removal rate is not clearly known in the water treatment apparatus including the adsorbent such as zeolite, (Patent Documents 2 and 3).

또한, 이산화티타늄계 광촉매 담체를 이용한 수처리 장치도 공지된바 있으나, 광촉매 활성을 위하여 자외선 램프와 같은 광원을 반드시 설치하여야 하는 단점이 여전히 상존한다(특허문헌 4).In addition, although a water treatment apparatus using a titanium dioxide photocatalyst carrier is known, there is still a disadvantage that a light source such as an ultraviolet lamp must be installed for photocatalytic activity (Patent Document 4).

따라서 본 발명자는 무광 조건하에서도 수질오염 물질의 제거를 위한 촉매 활성을 나타내는 이산화티타늄계 촉매가 코팅된 담체를 사용하면 오폐수 중의 총인 또는 총질소를 고효율로 제거할 수 있고, 나아가 녹조 또는 적조, 수중에 유출된 오일 및 비점오염물질 등의 제거를 포함하여 광범위한 수질정화에 기여할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
Therefore, the present inventors have found that when a carrier coated with a titanium dioxide-based catalyst exhibiting catalytic activity for removing water pollutants even under matt condition is used, the total phosphorus or total nitrogen in the wastewater can be removed with high efficiency, and further, The present invention has been completed based on the fact that it can contribute to the purification of a wide range of water quality, including the removal of oil and non-point pollutants,

특허문헌 1. 공개특허공보 제10-2005-0114855호Patent Document 1: Japanese Patent Application Laid-Open No. 10-2005-0114855

특허문헌 2. 등록특허공보 제10-1330207호Patent Document 2: Registered Patent Publication No. 10-1330207

특허문헌 3. 등록특허공보 제10-1075955호Patent Document 3: Registered Patent Publication No. 10-1075955

특허문헌 4. 등록특허공보 제10-0704298호
Patent Document 4: Registration Patent No. 10-0704298

따라서 본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 무광 조건 하에서도 촉매 활성을 나타내어 하수나 오폐수 중의 총인 또는 총질소를 고효율로 제거할 수 있고, 녹조 또는 적조, 수중 유출오일 및 비점오염물질 등도 제거하여 수질오염을 방지할 수 있을 뿐만 아니라, 세탁견뢰도가 우수하여 재사용이 가능한 무광촉매가 코팅된 수처리 담체, 이의 제조방법 및 그를 포함하는 수처리 장치를 제공하고자 하는 것이다.
SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a method for removing nitrogen oxides from a wastewater or wastewater, The present invention is to provide a water treatment carrier coated with a non-photocatalyst, which is excellent in washing fastness and reusable, as well as capable of preventing water pollution by removing oil and non-point pollutants, etc., and a water treatment apparatus including the water treatment carrier.

상기한 바와 같은 목적을 달성하기 위한 본 발명은 a) 이산화티타늄; b) 전이금속; c) 탄소수 1 내지 4의 저급 알코올, 및 d) 탈이온수;를 포함하는 무광촉매가 코팅된 수처리 담체를 제공한다.In order to achieve the above object, b) a transition metal; c) a lower alcohol having 1 to 4 carbon atoms, and d) deionized water.

상기 전이금속은 Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, 및 Au로 이루어진 군으로부터 선택된 2종 이상의 것을 포함하는 것을 특징으로 한다.The transition metal includes at least two selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt and Au.

상기 탄소수 1 내지 4의 저급 알코올은 메탄올, 에탄올, 프로판올, 부탄올, 및 이소프로판올로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The lower alcohol having 1 to 4 carbon atoms is any one selected from the group consisting of methanol, ethanol, propanol, butanol, and isopropanol.

상기 수처리 담체는 천연섬유 또는 합성섬유의 부직포, 분말 또는 펠렛 상의 활성탄, 분말 또는 펠렛 상의 제올라이트, 카본 블랙, 및 탄소나노튜브로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The water treatment carrier is any one selected from the group consisting of nonwoven fabrics of natural fibers or synthetic fibers, activated carbon in powder or pellet form, zeolite in powder or pellet form, carbon black, and carbon nanotubes.

또한, 본 발명은 i) 탄소수 1 내지 4의 저급 알코올에 티타늄 알콕시드와 킬레이트제를 첨가하여 이산화티타늄 졸을 형성하는 단계; ii) 탈이온수에 전이금속염을 용해시켜 전이금속염 수용액을 얻는 단계; iii) 상기 i) 단계의 이산화티타늄 졸을 상기 ii) 단계의 전이금속염 수용액에 부가하고 산 촉매 하에서 20~90℃, 1~6시간 반응시켜 용액상 무광촉매를 형성하는 단계; 및 iv) 용액상 무광촉매를 수처리 담체에 코팅하는 단계;를 포함하는 무광촉매가 코팅된 수처리 담체의 제조방법을 제공한다.The present invention also provides a method for producing a titanium dioxide sol, comprising the steps of: i) adding a titanium alkoxide and a chelating agent to a lower alcohol having 1 to 4 carbon atoms to form a titanium dioxide sol; ii) dissolving a transition metal salt in deionized water to obtain a transition metal salt aqueous solution; iii) adding the titanium dioxide sol of step i) to the transition metal salt aqueous solution of step ii) and reacting the solution at 20 to 90 ° C for 1 to 6 hours under an acid catalyst to form a photocatalyst in a solution state; And iv) coating the photocatalyst with a photocatalyst in a solution state on a water treatment carrier.

상기 탄소수 1 내지 4의 저급 알코올은 메탄올, 에탄올, 프로판올, 부탄올, 및 이소프로판올로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The lower alcohol having 1 to 4 carbon atoms is any one selected from the group consisting of methanol, ethanol, propanol, butanol, and isopropanol.

상기 티타늄 알콕시드는 티타늄-(n)메톡시드, 티타늄-(n)에톡시드, 티타늄-(n)프로폭시드, 티타늄-(n)부톡시드, 및 티타늄-(n)이소프로폭시드로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.Wherein the titanium alkoxide is selected from the group consisting of titanium- (n) methoxide, titanium- (n) ethoxide, titanium- (n) propoxide, titanium- (n) butoxide, and titanium- (n) isopropoxide And is characterized by any one selected.

상기 킬레이트제는 에틸렌디아민테트라아세트산(EDTA), 디메틸글리옥심, 시트릭산, 폴리인산, 디아세틸메탄, 니트릴로트리아세트산(NTA) 및 알파히드록시산(AHA)으로 이루어진 군으로부터 선택된 1종 이상의 것을 특징으로 한다.The chelating agent is at least one selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), dimethylglyoxime, citric acid, polyphosphoric acid, diacetylmethane, nitrilotriacetic acid (NTA) and alphahydroxy acid (AHA) .

상기 전이금속염은 Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, 및 Au로 이루어진 군으로부터 선택된 2종 이상의 금속의 질산염(nitrate), 황산염(sulfate) 또는 염화염(chloride)인 것을 특징으로 한다.The transition metal salt may be at least one selected from the group consisting of nitrate and sulfate of at least two metals selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, ) Or a salt thereof.

상기 전이금속염은 티타늄 알콕시드 100 중량부에 대하여 0.1~20 중량부를 사용하는 것을 특징으로 한다.The transition metal salt is used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the titanium alkoxide.

상기 산 촉매는 염산, 질산, 황산, 및 아세트산으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The acid catalyst is any one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and acetic acid.

상기 수처리 담체는 천연섬유 또는 합성섬유의 부직포, 분말 또는 펠렛 상의 활성탄, 분말 또는 펠렛 상의 제올라이트, 카본 블랙, 및 탄소나노튜브로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The water treatment carrier is any one selected from the group consisting of nonwoven fabrics of natural fibers or synthetic fibers, activated carbon in powder or pellet form, zeolite in powder or pellet form, carbon black, and carbon nanotubes.

상기 iv) 단계의 코팅은 수처리 담체를 용액상 무광촉매에 20~30℃에서 0.1~1시간 딥 코팅하는 것을 특징으로 한다.The coating of step iv) is characterized in that the water treatment carrier is dip-coated on a photocatalyst in a solution state at 20 to 30 ° C for 0.1 to 1 hour.

상기 iv) 단계 후, 무광촉매가 코팅된 수처리 열처리 하는 단계;를 더욱 포함하는 것을 특징으로 한다.And performing a water treatment heat treatment in which the photocatalyst is coated after step iv).

또한, 본 발명은 상기 무광촉매가 코팅된 수처리 담체를 포함하는 수처리 장치를 제공한다.
In addition, the present invention provides a water treatment apparatus including the water treatment carrier coated with the non-photocatalyst.

본 발명에 따른 무광촉매가 코팅된 수처리 담체는 무광 조건 하에서도 촉매 활성을 나타내어 하수나 오폐수 중의 총인 또는 총질소를 고효율로 제거할 수 있고, 녹조 또는 적조, 수중 유출오일 및 비점오염물질 등도 제거하여 수질오염을 방지할 수 있을 뿐만 아니라, 세탁견뢰도가 우수하여 지속적으로 재사용이 가능한 효과를 나타내므로, 다양한 수처리 장치에 적용할 수 있다.
The photocatalyst-coated water treatment carrier according to the present invention exhibits catalytic activity even under matt condition and can remove total phosphorus or total nitrogen in sewage or wastewater with high efficiency, and can remove green alga or red tide, Not only can prevent water pollution, but also has an excellent washing fastness and can be continuously reused, so that it can be applied to various water treatment apparatuses.

도 1은 본 발명의 이산화티타늄에 전이금속이온을 도핑시킴에 따른 에너지 준위 및 깁스 자유에너지 변화 개념도.
도 2는 종래 콜로이드상 광촉매 입자가 피착재에 코팅되는 모식도.
도 3은 본 발명에 따른 용액상 무광촉매 입자가 피착재에 코팅되는 모식도.
도 4는 본 발명의 실시예 1에 따른 용액상 무광촉매 입자 및 참고예에 따른 종래 콜로이드상 광촉매 입자가 폴리프로필렌 섬유 부직포에 코팅된 표면의 주사전자현미경(SEM) 사진[(a) 실시예 1 (b) 참고예]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of energy level and Gibbs free energy change according to doping of transition metal ions with titanium dioxide of the present invention. FIG.
2 is a schematic view of a conventional method in which colloidal-phase photocatalyst particles are coated on an adherend.
3 is a schematic view showing a state in which the solution phase-free photocatalyst particles according to the present invention are coated on the adherend.
4 is a scanning electron microscope (SEM) photograph of the surface of the solution-phase-free photocatalyst particle according to Example 1 of the present invention and the conventional colloidal-phase photocatalyst particle according to Reference Example coated on a polypropylene fiber nonwoven fabric [ (b) Reference example]

이하에서는 본 발명에 따른 무광촉매가 코팅된 수처리 담체와 이의 제조방법 및 그를 포함하는 수처리 장치에 대하여 실시예 및 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, a water treatment carrier coated with a non-photocatalyst according to the present invention, a method for manufacturing the same, and a water treatment apparatus including the same will be described in detail with reference to embodiments and accompanying drawings.

본 발명에서는 a) 이산화티타늄; b) 전이금속; c) 탄소수 1 내지 4의 저급 알코올, 및 d) 탈이온수;를 포함하는 무광촉매가 코팅된 수처리 담체를 제공한다.In the present invention a) titanium dioxide; b) a transition metal; c) a lower alcohol having 1 to 4 carbon atoms, and d) deionized water.

먼저, 본 발명에서는 수처리를 위한 촉매 활성을 나타내는 물질로 이산화티타늄을 사용하였다. 이산화티타늄은 밴드 갭이 3.0~3.2 eV로 상대적으로 큰 편이기 때문에 자외선 영역의 빛을 흡수하여 광촉매 역할을 수행하는 것으로 알려져 있고, 다른 유기물과 혼합되어 가시광 영역에서도 광촉매로서 작용할 수 있다. 이산화티타늄이 광촉매로 거동하는 것을 자세히 살펴보면, 이산화티타늄에 빛을 쪼이게 되면 이산화티타늄 표면에 전자와 정공이 생기게 되고, 전자는 이산화티타늄 표면에 있는 산소와 반응해서 슈퍼옥사이드 음이온을 만든다. 또한 정공은 공기 속에 존재하고 있는 수분과 반응하여 히드록시 라디칼을 만들게 되며, 이때 생성된 히드록시 라디칼이 유기물질을 산화분해시켜 물과 이산화탄소로 변화시키는 것이다. 이렇듯 이산화티타늄이 광촉매로서 기능을 수행하기 위해서는 자외선 또는 가시광 등의 광원이 반드시 필요하였다. First, in the present invention, titanium dioxide is used as a material exhibiting catalytic activity for water treatment. Since titanium dioxide has a relatively large band gap of 3.0 to 3.2 eV, it is known to act as a photocatalyst by absorbing light in the ultraviolet region and can act as a photocatalyst in a visible region mixed with other organic materials. Looking carefully at how titanium dioxide behaves as a photocatalyst, when light is applied to titanium dioxide, electrons and holes are created on the titanium dioxide surface, and the electrons react with oxygen on the titanium dioxide surface to form a superoxide anion. The hole reacts with the water present in the air to form a hydroxy radical, and the generated hydroxy radical oxidizes and decomposes the organic material into water and carbon dioxide. Thus, in order for titanium dioxide to function as a photocatalyst, a light source such as ultraviolet light or visible light is indispensable.

그런데 본 발명에서는 이산화티타늄에 전이금속을 도핑시키면 놀랍게도 무광 조건 하에서도 촉매 활성을 나타내어 유기물질뿐만 아니라 총인 또는 총질소와 같은 하수나 오폐수 중의 오염물질까지 분해할 수 있는 강력한 산화력을 갖는 것을 발견하였다. 즉, 이산화티타늄에 산소의 2p 궤도보다 높은 에너지를 갖고 있는 2종 이상의 전이금속을 도핑시키면 도 1에 나타낸 바와 같이 전이금속이 가전자대보다 위의 준위에 들어가 가전자대 상단의 레벨이 상승되도록 하고, 이산화티타늄으로부터 밴드 갭 에너지를 극복하여 전자가 생성되는 과정의 깁스 자유에너지 변화(Gibbs free-energy change, △G) 값을 음수(△G<0)가 되게 함으로써 무광 조건하에서도 전자가 자발적으로 이산화티타늄의 표면으로 계속 이행할 수 있는 것이다. 이렇게 이행된 전자는 하수나 오폐수 중의 인산염 또는 질산염 이온을 환원시키고, 이어서 이산화티타늄에 의해 생성된 정공과 반응하여 산화됨으로써 총인 또는 총질소를 효율적으로 제거할 수 있다. However, in the present invention, when titanium dioxide is doped with a transition metal, it is surprisingly found that the catalyst exhibits catalytic activity even under matt condition, and has strong oxidizing power capable of decomposing not only organic substances but also contaminants in sewage or wastewater such as total phosphorus or total nitrogen. That is, when two or more kinds of transition metals having an energy higher than the 2p orbit of oxygen are doped in titanium dioxide, the transition metal enters the level above the valence band as shown in Fig. 1, so that the level of the top of the valence band is raised, By making the value of Gibbs free-energy change (ΔG) in the process of electron generation by overcoming the band gap energy from titanium dioxide to be negative (ΔG <0), electrons spontaneously decompose It is possible to continue to the surface of titanium. The electrons thus transferred can efficiently remove phosphorus or total nitrogen by reducing phosphates or nitrate ions in sewage or wastewater, and then oxidizing by reacting with holes generated by titanium dioxide.

이산화티타늄에 도핑되는 상기 전이금속은 특별한 제한은 없으나 반응성을 고려하여 Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, 및 Au로 이루어진 군으로부터 선택된 2종 이상의 것을 사용하는 것이 바람직하다.The transition metal doped to titanium dioxide is not particularly limited, but is selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, It is preferable to use two or more species.

또한, 본 발명에 따른 전이금속이 도핑된 이산화티타늄 무광촉매는 용액상의 것이 바람직한바, 탄소수 1 내지 4의 저급 알코올과 탈이온수를 포함한다. 상기 탄소수 1 내지 4의 저급 알코올로서는 메탄올, 에탄올, 프로판올, 부탄올, 및 이소프로판올로 이루어진 군으로부터 선택된 어느 하나의 것을 포함할 수 있고, 이소프로판올을 더욱 바람직하게 포함한다.In addition, the titanium dioxide-free photocatalyst doped with a transition metal according to the present invention is preferably in the form of a solution, and includes a lower alcohol having 1 to 4 carbon atoms and deionized water. The lower alcohol having 1 to 4 carbon atoms may include any one selected from the group consisting of methanol, ethanol, propanol, butanol, and isopropanol, and more preferably isopropanol.

종래 콜로이드상 이산화티타늄 광촉매 입자는 도 2에 도시한 바와 같이 분자나 이온 또는 원자 등이 분자 사이의 힘이나 쿨롱 인력의 작용으로 응집현상(aggregation)이 일어나기 때문에 바인더 없이는 피착재에 코팅이 불가능하다. 이러한 콜로이드상에 바인더를 사용하면 바인더가 금속이온이 도핑된 이산화티타늄의 표면을 감싸기 때문에 전자와 정공이 인산염 또는 질산염 이온과 수분과의 접촉을 차단하여 강한 산화력을 발휘하기 어렵기 때문에 하수나 오폐수 중의 총인 또는 총질소와 같은 오염물질을 제거하기 위한 촉매 활성이 떨어진다.Conventional colloidal titanium dioxide photocatalyst particles can not be coated on the adherend without a binder because aggregation occurs due to the action of molecules or ions or atoms between molecules or coulomb attraction as shown in FIG. If a binder is used on such a colloid, the binder wraps the surface of the titanium dioxide doped with the metal ion, so that the electrons and the holes interfere with the contact with the phosphate or nitrate ions and moisture, The catalytic activity for removing contaminants such as total phosphorus or total nitrogen is reduced.

그러나 본 발명에 따른 전이금속이 도핑된 용액상의 이산화티타늄 무광촉매입자는 물질의 상태에 관계없이 서로 다른 물질들이 균일하게 섞여있는 상이기 때문에, 도 3에 도시한 바와 같이 바인더 없이도 구상 입자(spherical particles)가 아닌 표면적이 큰 상태로 도포되어 접촉면적을 크게 하고 흐름성(flow property)을 좋게 하여 피착재의 미세구조에 잘 젖게 하며, 수분 등이 건조된 후 고형 성분이 피착재에 접근 및 경화되어 박막으로 코팅이 원활하게 이루어져 강한 산화력을 바탕으로 하수나 오폐수 중의 총인 또는 총질소를 고효율로 분해하여 제거할 수 있게 되는 것이다.However, since the titanium dioxide-free photocatalyst particles in the solution-phase in which the transition metal is doped according to the present invention are uniformly mixed with each other regardless of the state of the substance, spherical particles ) Is applied in a large surface area so that the contact area is increased and the flow property is improved to wet the microstructure of the adherend well and the solid component approaches and hardens after the moisture is dried, So that the total phosphorus or total nitrogen in sewage or wastewater can be decomposed and removed with high efficiency based on the strong oxidizing power.

또한, 수중에 과량의 총인 또는 총질소로 인하여 부영양화가 생기고 이로 말미암아 플랑크톤의 이상 증식으로 발생하는 녹조 또는 적조가 또 다른 수질오염을 야기하고 있는데, 종래에는 이를 해결하기 위하여 황토나 화학적 응집제 등을 살포하여 일시적으로 흡착제거하는 정도에 불과하여 근본적인 해결책이 되지 못하였으나, 본 발명의 무광촉매가 코팅된 수처리 담체는 수중의 총인 또는 총질소를 고효율로 제거함으로써 녹조 또는 적조의 발생을 원천적으로 방지할 수 있고, 발생된 녹조 또는 적조의 제거 성능도 매우 우수하다.In addition, eutrophication occurs due to excessive total phosphorus or total nitrogen in the water, thereby causing another water pollution caused by abnormal growth of plankton. In order to solve this problem, conventionally, in order to solve this problem, The photocatalyst-coated water-treated carrier of the present invention can remove the total phosphorus or total nitrogen in the water with high efficiency, thereby preventing the occurrence of green tide or red tide And the removal performance of the generated green or red tide is also excellent.

한편, 종래에는 수상에서 유조선 등의 전복 사고에 따른 오일 유출로 수질이 오염되는 것을 방지하고자 유화제 또는 흡착포를 사용하고 있는바, 유화제는 화학물질로서 수중에 잔류하여 2차 수질오염을 유발할 수 있고, 흡착포를 사용하는 경우에는 오일 뿐만 아니라 물까지도 흡수하는 경향이 있어 오일 제거 효율이 떨어지므로 다량의 흡착포가 소요되는 문제가 있다. 그러나 본 발명의 무광촉매가 코팅된 수처리 담체는 수중 오일의 흡착 성능이 뛰어나 담체 중량 대비 20배 이상의 오일을 흡착할 수 있다.Conventionally, an emulsifier or an adsorbent is used in order to prevent water from being contaminated due to an oil leakage due to an overturning accident such as an oil tanker in an aquarium. The emulsifier may remain in the water as a chemical substance to cause secondary water pollution, In the case of using an adsorbent, there is a tendency to absorb not only oil but also water, which lowers the oil removal efficiency, thus requiring a large amount of adsorbent. However, the water treatment carrier coated with the non-photocatalyst of the present invention is excellent in the adsorption performance of the oil in water and can adsorb oil 20 times or more as much as the weight of the carrier.

또한, 본 발명의 무광촉매가 코팅된 수처리 담체는 우수관로로 유입되는 초기 우수에 포함된 고형물질을 비롯한 기름성분 및 부유물질 등의 비점오염물질이 담체 표면과 공간 사이를 타고 이동하면서 합체되어 입자크기가 증가한 후 부유물질(suspended solids: SS)성분의 고형물은 중력에 의해 바닥으로 침전하여 제거되고 기름성분과 미세부유물질, 중금속 및 다핵방향족탄화수소(polynuclear aromatic hydrocarbons : PAHs) 등을 흡착하는 특성을 갖는다.In the water treatment carrier coated with the non-photocatalyst of the present invention, the non-point pollutants such as the oil component and the suspended substance, including the solid matter contained in the initial rainwater flowing into the gut pipe, After the increase in size, the solids of suspended solids (SS) are removed by sedimentation to the bottom by gravity and the adsorbed properties of oil components, fine suspended solids, heavy metals and polynuclear aromatic hydrocarbons (PAHs) .

본 발명에서는 용액상의 이산화티타늄 무광촉매 입자가 코팅되는 피착재로서 수처리 담체(water treatment support)를 사용하는바, 상기 수처리 담체로서는 면, 셀룰로오스와 같은 천연섬유, 또는 폴리에스테르, 나일론, 레이온, 폴리우레탄 또는 아크릴 섬유와 같은 합성섬유의 부직포, 분말 또는 펠렛 상의 활성탄, 분말 또는 펠렛 상의 제올라이트, 카본 블랙, 및 탄소나노튜브로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 특히 섬유 부직포나 펠렛 상의 활성탄을 바람직하게 사용한다. In the present invention, a water treatment support is used as an adherend on which titanium dioxide-free photocatalyst particles in a solution phase are coated. As the water treatment carrier, natural fibers such as cotton, cellulose, or polyester, nylon, rayon, polyurethane Or nonwoven fabrics of synthetic fibers such as acrylic fibers, activated carbon in powder or pellet form, zeolite in powder or pellet form, carbon black, and carbon nanotubes can be used, and in particular, fibrous nonwoven fabric or activated carbon in pellet form Preferably used.

또한, 본 발명은 i) 탄소수 1 내지 4의 저급 알코올에 티타늄 알콕시드와 킬레이트제를 첨가하여 이산화티타늄 졸을 형성하는 단계; ii) 탈이온수에 전이금속염을 용해시켜 전이금속염 수용액을 얻는 단계; iii) 상기 i) 단계의 이산화티타늄 졸을 상기 ii) 단계의 전이금속염 수용액에 부가하고 산 촉매 하에서 20~90℃, 1~6시간 반응시켜 용액상 무광촉매를 형성하는 단계; 및 iv) 용액상 무광촉매를 수처리 담체에 코팅하는 단계;를 포함하는 무광촉매가 코팅된 수처리 담체의 제조방법을 제공한다.The present invention also provides a method for producing a titanium dioxide sol, comprising the steps of: i) adding a titanium alkoxide and a chelating agent to a lower alcohol having 1 to 4 carbon atoms to form a titanium dioxide sol; ii) dissolving a transition metal salt in deionized water to obtain a transition metal salt aqueous solution; iii) adding the titanium dioxide sol of step i) to the transition metal salt aqueous solution of step ii) and reacting the solution at 20 to 90 ° C for 1 to 6 hours under an acid catalyst to form a photocatalyst in a solution state; And iv) coating the photocatalyst with a photocatalyst in a solution state on a water treatment carrier.

우선, 탄소수 1 내지 4의 저급 알코올에 티타늄 알콕시드와 킬레이트제를 첨가하여 이산화티타늄 졸을 형성하게 되는데, 상기 탄소수 1 내지 4의 저급 알코올로서는 메탄올, 에탄올, 프로판올, 부탄올, 및 이소프로판올로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 이소프로판올을 더욱 바람직하게 사용한다. 이산화티타늄의 전구체인 티타늄화합물로서는 공지의 티타늄화합물을 제한 없이 사용할 수 있으나, 킬레이트제와의 반응을 고려하여 티타늄 알콕시드를 바람직하게 사용할 수 있는바, 상기 티타늄 알콕시드로서는 티타늄-(n)메톡시드, 티타늄-(n)에톡시드, 티타늄-(n)프로폭시드, 티타늄-(n)부톡시드, 및 티타늄-(n)이소프로폭시드로 이루어진 군으로부터 선택된 어느 하나의 것을 사용하며, 티타늄-(n)에톡시드를 더욱 바람직하게 사용한다.First, a titanium alkoxide and a chelating agent are added to a lower alcohol having 1 to 4 carbon atoms to form a titanium dioxide sol. Examples of the lower alcohol having 1 to 4 carbon atoms include methanol, ethanol, propanol, butanol, and isopropanol Any one selected may be used, and isopropanol is more preferably used. As a titanium compound which is a precursor of titanium dioxide, a known titanium compound can be used without limitation, but titanium alkoxide can be preferably used in consideration of a reaction with a chelating agent. Examples of the titanium alkoxide include titanium- (n) methoxide , Titanium- (n) ethoxide, titanium- (n) propoxide, titanium- (n) butoxide and titanium- (n) isopropoxide, n) ethoxide is more preferably used.

그리고 티타늄-(n)에톡시드를 균일하고 안정적으로 반응시키기 위해 킬레이트제를 사용하는데, 상기 킬레이트제로서는 에틸렌디아민테트라아세트산(EDTA), 디메틸글리옥심, 시트릭산, 폴리인산, 디아세틸메탄, 니트릴로트리아세트산(NTA) 및 알파히드록시산(AHA)으로 이루어진 군으로부터 선택된 1종 이상의 것을 사용할 수 있고, 반응성을 고려하면 에틸렌디아민테트라아세트산(EDTA)을 더욱 바람직하게 사용한다.In order to uniformly and stably react the titanium- (n) ethoxide, a chelating agent is used. Examples of the chelating agent include ethylenediamine tetraacetic acid (EDTA), dimethylglyoxime, citric acid, polyphosphoric acid, diacetylmethane, At least one selected from the group consisting of acetic acid (NTA) and alphahydroxy acid (AHA) can be used, and ethylenediaminetetraacetic acid (EDTA) is more preferably used in view of reactivity.

한편으로, 탈이온수에 전이금속염을 용해시켜 전이금속염 수용액을 얻게 되는데, 상기 전이금속염은 Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, 및 Au로 이루어진 군으로부터 선택된 2종 이상의 금속의 질산염(nitrate), 황산염(sulfate) 또는 염화염(chloride)인 것을 특징으로 하며, 질산염을 더욱 바람직하게 사용하는바, 그 예로서 질산철, 질산금, 질산구리, 및 질산코발트의 조합을 들 수 있다.상기 2종 이상의 전이금속염은 티타늄 알콕시드 100 중량부에 대하여 0.1~20 중량부를 사용하는 것이 바람직하다.On the other hand, a transition metal salt solution is obtained by dissolving a transition metal salt in deionized water to obtain a transition metal salt aqueous solution, wherein the transition metal salt is at least one selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, Nitrate, sulfate, or chloride of at least two metals selected from the group consisting of iron nitrate, nitrate, nitrate, and nitrate. Copper, and cobalt nitrate. The two or more transition metal salts are preferably used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the titanium alkoxide.

이어서 이산화티타늄 졸을 전이금속염이 완전히 용해된 수용액에 서서히 부가하고, 90 rpm 이상으로 교반하면서 산 촉매를 사용하여 20~90℃에서 1~6시간 반응시킴으로써 용액상 이산화티타늄 무광촉매를 형성하게 되는바, 상기 산 촉매로서는 염산, 질산, 황산, 및 아세트산으로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 특히 질산 또는 염산을 바람직하게 사용할 수 있으며, 질산을 더욱 바람직하게 사용할 수 있다.The titanium dioxide sol is gradually added to an aqueous solution completely dissolved with the transition metal salt and reacted at 20 to 90 ° C for 1 to 6 hours using an acid catalyst while stirring at 90 rpm or more to form a titanium dioxide photocatalyst in a solution state As the acid catalyst, any one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and acetic acid can be used. In particular, nitric acid or hydrochloric acid can be preferably used, and nitric acid is more preferably used.

마지막으로 상기 용액상 이산화티타늄 무광촉매를 수처리 담체에 코팅함으로써 본 발명의 목적물인 이산화티타늄 무광촉매가 코팅된 수처리 담체를 제조하게 되는데, 상기 코팅은 딥 코팅 또는 스프레이 코팅 등 공지의 코팅 방법을 이용할 수 있고, 바람직하게는 수처리 담체를 용액상 이산화티타늄 무광촉매에 20~30℃에서 0.1~1시간 딥 코팅하는 것이 무광촉매로 코팅된 수처리 담체가 촉매 활성을 지속적으로 유지하면서 재사용 될 수 있어야 함을 고려할 때 세탁견뢰도를 향상시키면서도 코팅 공정을 간단히 수행할 수 있어 좋다.Finally, the solution-phase titanium dioxide-free photocatalyst is coated on a water-treatment carrier to produce a water-treated carrier coated with a titanium dioxide-free photocatalyst, which is the object of the present invention. The coating can be a known coating method such as dip coating or spray coating Preferably, the water-treated carrier coated with a non-photocatalyst can be reused while maintaining the catalytic activity by dip-coating the water-treated carrier in a solution-phase titanium dioxide-free photocatalyst at 20 to 30 ° C for 0.1 to 1 hour It is possible to easily perform the coating process while improving washing fastness.

또한, 상기 iv) 단계 후, 무광촉매가 코팅된 수처리 담체를 열처리 하는 단계를 추가로 포함함으로써 무광촉매가 코팅된 수처리 담체의 기계적 물성 및 내구성을 더욱 향상시킬 수 있다. Further, after the step iv), the step of heat-treating the water-treatment substrate coated with the non-photocatalyst may further include the step of further improving the mechanical properties and durability of the water-treatment substrate coated with the non-photocatalyst.

이하 구체적인 실시예를 상세히 설명한다.
Hereinafter, specific examples will be described in detail.

(( 실시예Example 1)  One) 무광촉매가No photocatalyst 코팅된 수처리  Coated water treatment 담체의Carrier 제조 Produce

교반기가 장착된 1L 반응기에 이소프로판올 75g을 주입하여 서서히 교반하면서 티타늄에톡사이드 150g과 에틸렌디아민테트라아세트산(EDTA) 18g을 첨가하여 20℃에서 10분간 반응시켜 이산화티타늄 졸을 형성하였다. 한편으로, 또 다른 반응기에 증류수 760g을 주입한 후, 전이금속염의 조합으로 질산철 1.8g, 질산금 0.6g, 질산구리 1.5g, 질산코발트 2.2g을 순서에 상관없이 첨가하여 450 rpm으로 교반하면서 완전히 용해시켜 전이금속염 수용액을 얻었다. 이어서 상기 이산화티타늄 졸을 상기 전이금속염 수용액에 부가한 다음, 산 촉매로서 질산 1.2g을 적하하고 90℃에서 3시간 반응시켜 전이금속이 도핑된 투명한 용액상 이산화티타늄 무광촉매를 형성하였다. 상기 형성된 용액상 이산화티타늄 무광촉매를 두께 3mm의 폴리프로필렌 섬유 부직포에 20℃에서 10분 동안 딥 코팅함으로써 무광촉매가 코팅된 수처리 담체를 제조하였다.
75 g of isopropanol was poured into a 1 L reactor equipped with a stirrer, 150 g of titanium ethoxide and 18 g of ethylenediaminetetraacetic acid (EDTA) were added while stirring slowly, and reacted at 20 ° C for 10 minutes to form a titanium dioxide sol. On the other hand, 760 g of distilled water was injected into another reactor, and 1.8 g of iron nitrate, 0.6 g of gold nitrate, 1.5 g of copper nitrate and 2.2 g of cobalt nitrate were added in any order in combination with transition metal salts and stirred at 450 rpm And completely dissolved to obtain a transition metal salt aqueous solution. Next, the titanium dioxide sol was added to the transition metal salt aqueous solution, and then 1.2 g of nitric acid was added dropwise as an acid catalyst and reacted at 90 ° C for 3 hours to form a transparent solution-phase titanium dioxide photocatalyst doped with a transition metal. The formed solution-phase titanium dioxide-free photocatalyst was dip-coated on a 3 mm-thick polypropylene fiber non-woven fabric at 20 ° C for 10 minutes to prepare a water-treated carrier coated with no photocatalyst.

(실시예 2) 무광촉매가 코팅된 수처리 담체의 제조(Example 2) Preparation of a water treatment carrier coated with a non-photocatalyst

실시예 1과 동일한 방법으로 형성한 용액상 이산화티타늄 무광촉매를 펠렛 상의 활성탄에 25℃에서 1시간 동안 딥 코팅함으로써 무광촉매가 코팅된 수처리 담체를 제조하였다.
A photocatalyst-coated water treatment carrier was prepared by dip-coating a solution-phase titanium dioxide-free photocatalyst formed in the same manner as in Example 1 on activated carbon on pellets at 25 ° C for 1 hour.

도 4에 본 발명의 실시예 1에 따른 용액상 무광촉매 입자 및 참고예에 따른 종래 콜로이드상 광촉매 입자가 부직포에 코팅된 표면의 주사전자현미경(SEM) 사진[(a) 실시예 1 (b) 참고예]을 나타내었는바, 도 4에서 보는 바와 같이 종래 콜로이드상 광촉매입자는 폴리프로필렌 섬유 부직포 표면에서 응집되어 바인더 없이는 코팅이 불가능한 반면, 본 발명의 실시예 1에 따른 용액상 무광촉매 입자는 바인더 없이도 표면적이 큰 상태로 부직포 표면에 잘 도포되어 박막으로 코팅이 원활하게 수행되었음을 확인할 수 있다.
FIG. 4 is a scanning electron microscope (SEM) photograph of the surface of the non-woven fabric coated with the solution-phase-free photocatalyst particles according to Example 1 of the present invention and the conventional colloidal-phase photocatalyst particles according to Reference Example [ 4, the conventional colloid-based photocatalyst particles are aggregated on the surface of the polypropylene fiber nonwoven fabric and thus can not be coated without a binder, whereas the solution-based photocatalyst particles according to Example 1 of the present invention are formed of a binder It can be confirmed that the coating was smoothly applied to the surface of the non-woven fabric with a large surface area.

(시험예 1) 총인 제거 성능 평가(Test Example 1) Evaluation of total removal performance

실시예 1, 2로부터 제조된 무광촉매가 코팅된 수처리 담체의 총인 제거 성능을 다음과 같은 방법으로 평가하였는바, 인산칼륨(KH2PO4)을 증류수에 넣어 인산염-인(PO4-P) 100ppm 용액을 얻고 10배로 희석하여 총인 분해 시험용 원수를 제조하였다. 실시예 1에 따른 무광촉매가 코팅된 3mm 두께의 폴리프로필렌 섬유 부직포를 40mmㅧ60mm로 절단하여 꽈리모양으로 하고, 원수 200ml에 10g을 침지시킨 후, 각각 10분, 30분 동안 무광조건 하에 그대로 방치한 다음, 여액을 채취하여 총인을 측정하였다. 또한, 대조군으로서는 무광촉매가 코팅되지 않은 폴리프로필렌 섬유 부직포 50g을 원수 200ml에 침지한 후, 30분 동안 무광조건 하에 그대로 방치한 다음, 여액을 채취하여 동일한 방법으로 총인을 측정하였다. 한편으로, 실시예 2에 따른 무광촉매가 코팅된 활성탄 50g을 원수 200ml에 침지시킨 후, 각각 10분, 20분, 30분, 60분 동안 무광조건 하에 그대로 방치한 다음, 여액을 채취하여 총인을 측정하였으며, 대조군으로서는 무광촉매가 코팅되지 않은 펠렛 상의 활성탄 50g을 원수 200ml에 침지한 후, 60분 동안 무광조건 하에 그대로 방치한 다음, 여액을 채취하여 동일한 방법으로 총인을 측정하였다. 그 결과를 각각 아래 표 1, 2에 나타내었다.
The total removal performance of the water-treated photocatalyst-treated water-treated support prepared in Examples 1 and 2 was evaluated by the following method. Potassium Phosphate (KH 2 PO 4 ) was added to distilled water to obtain phosphate-phosphorus (PO 4 -P) 100 ppm solution was obtained and diluted 10-fold to prepare raw water for total phosphorus decomposition test. A 3 mm thick non-woven polypropylene fiber nonwoven fabric coated with the non-photocatalyst according to Example 1 was cut into 40 mm × 60 mm to form an acicular shape. 10 g of the nonwoven fabric was immersed in 200 ml of raw water, and left for 10 minutes and 30 minutes And then the filtrate was collected to measure total phosphorus. As a control group, 50 g of polypropylene fiber nonwoven fabric not coated with no photocatalyst was immersed in 200 ml of raw water, left to stand for 30 minutes under matt condition, and the filtrate was collected and the total phosphorus was measured by the same method. On the other hand, after 50 g of the non-photocatalyst-coated activated carbon according to Example 2 was immersed in 200 ml of raw water, it was allowed to stand under matt condition for 10 minutes, 20 minutes, 30 minutes and 60 minutes respectively, 50 g of pellet-like activated carbon in a non-photocatalyst-free coating solution was immersed in 200 ml of raw water and allowed to stand under matt condition for 60 minutes. Then, the filtrate was collected and the total phosphorus was measured in the same manner. The results are shown in Tables 1 and 2, respectively.

수처리 시간Water treatment time 실시예 1Example 1 대조군Control group 10분10 minutes N.D.(불검출)N.D. (Not detected) -- 30분30 minutes N.D.(불검출)N.D. (Not detected) 총인 3.608(mg/L)Total of 3.608 (mg / L)

원수(10배 희석액) 총인 3.608(mg/L)
Raw water (10 times dilution) Total 3.608 (mg / L)

수처리 시간Water treatment time 실시예 2Example 2 대조군Control group 10분10 minutes N.D.(불검출)N.D. (Not detected) -- 20분20 minutes N.D.(불검출)N.D. (Not detected) -- 30분30 minutes N.D.(불검출)N.D. (Not detected) -- 60분60 minutes N.D.(불검출)N.D. (Not detected) 총인 6.437(mg/L)Total of 6.437 (mg / L)

원수(10배 희석액) 총인 9.838(mg/L)
Raw water (10 times dilution) Total 9.838 (mg / L)

상기 표 1, 2에서 보는 바와 같이, 본 발명의 실시예 1, 2로부터 제조된 무광촉매가 코팅된 수처리 담체를 사용한 경우에는 총인이 10분만에 검출되지 않은 반면, 대조군에서는 30분이 경과하여도 총인이 그대로 잔존하거나 60분이 경과하여도 제거율이 약 35%정도에 불과함을 확인할 수 있어 무광촉매가 코팅된 수처리 담체는 하수나 오폐수 중의 총인을 10분만에 완전히 제거할 수 있음을 알 수 있다.
As shown in Tables 1 and 2, when the photocatalyst-coated water treatment carrier prepared in Examples 1 and 2 of the present invention was used, total phosphorus was not detected in 10 minutes, whereas in the control group, It can be seen that the removal rate is only about 35% even after 60 minutes or more. It can be seen that the photocatalyst-coated water treatment carrier can completely remove the total phosphorus in sewage or wastewater in 10 minutes.

(시험예 2) 오일 흡착 성능 평가(Test Example 2) Evaluation of oil adsorption performance

실시예 1로부터 제조된 무광촉매가 코팅된 수처리 담체의 오일 흡착 성능을 ASTM F726-81 '흡수제의 흡수성능' 측정방법에 따라 평가하였는바, 담체의 중량을 달리하면서 자동차 오일을 사용하여 3회 반복 시험하였으며, 그 결과를 표 3에 나타내었다.
The oil adsorption performance of the photocatalyst-coated water treatment carrier prepared in Example 1 was evaluated according to ASTM F726-81 'absorption performance of absorbent' measurement method. And the results are shown in Table 3. &lt; tb &gt;&lt; TABLE &gt;

시험exam 담체 중량(g)Carrier weight (g) 오일 흡착량(g)Oil adsorption amount (g) 담체 중량 대비 흡착비Adsorption ratio to carrier weight 1One 2.462.46 49.8849.88 20.320.3 22 2.302.30 53.3653.36 23.223.2 33 2.442.44 52.4652.46 21.521.5

상기 표 3에서 보는 바와 같이, 본 발명의 실시예 1로부터 제조된 무광촉매가 코팅된 수처리 담체는 오일을 담체 중량 대비 20배 이상 흡착하는 것으로 나타나 오일 흡착 성능이 매우 우수함을 알 수 있었다. As shown in Table 3, the water-treated carrier coated with the non-photocatalyst prepared from Example 1 of the present invention adsorbed oil 20 times or more as much as the weight of the carrier, indicating excellent oil adsorption performance.

아울러 본 발명에 따른 무광촉매가 코팅된 수처리 담체를 산업폐수처리장의 산업폐수에 적용하여 여과선속도를 40m/hr로 하고, 담체에의 체류시간을 5분으로 하여 수질정화를 수행하였으며, '수질오염공정시험방법'에 따라 다양한 시험항목을 통하여 수질정화 성능을 평가한 결과를 표 4에 나타내었다.
In addition, the water treatment carrier coated with the non-photocatalyst according to the present invention was applied to industrial wastewater in an industrial wastewater treatment plant to purify water by setting the filtration linear velocity to 40 m / hr and the retention time to the carrier to 5 minutes. Table 4 shows the results of evaluating the water purification performance through various test items according to the 'pollution process test method'.

시험항목Test Items 시험상태Test Status 측정값(mg/L)Measured value (mg / L) 효율(%)efficiency(%) 생물학적 산소요구량(BOD)Biological oxygen demand (BOD) 원수enemy 32.432.4 78.778.7 담체 통과 후After the carrier has passed 6.96.9 총질소(T-N)Total nitrogen (T-N) 원수enemy 19.63219.632 80.780.7 담체 통과 후After the carrier has passed 3,7863,786 총인(T-P)Total (T-P) 원수enemy 3.9873.987 97.197.1 담체 통과 후After the carrier has passed 0.1140.114 부유물질(SS)Suspended substance (SS) 원수enemy 368.2368.2 90.890.8 담체 통과 후After the carrier has passed 34.034.0 광유류(N-H)Light oil (N-H) 원수enemy 241.0241.0 94.794.7 담체 통과 후After the carrier has passed 12.812.8 탁도(NTU)Turbidity (NTU) 원수enemy 3,7803,780 92.992.9 담체 통과 후After the carrier has passed 268268

상기 표 4에서 보는 바와 같이, 본 발명에 따른 무광촉매가 코팅된 수처리 담체는 고효율로 다양한 수질오염물질을 제거할 수 있어 수질정화 성능이 매우 우수함을 알 수 있다.As shown in Table 4, it can be seen that the water treatment carrier coated with the non-photocatalyst according to the present invention has excellent water purification performance because it can remove various water pollutants with high efficiency.

또한, 본 발명에 따른 무광촉매가 코팅된 수처리 담체에 있어서 촉매 활성이 지속적으로 유지되는지를 확인하기 위하여 DIN EN 20105-C01 법에 따라 25회 세탁 후 총인 제거량을 측정하여 세탁견뢰도를 평가한 결과, 수처리 시간이 60분 경과한 후에도 99% 이상의 총인 제거 성능을 나타내어 세탁 전 초기 총인 제거 성능과 거의 차이가 없으므로 세탁견뢰도가 우수하여 재사용이 가능함을 알 수 있었다.Further, in order to confirm whether the catalytic activity of the water-treated carrier coated with the non-photocatalyst according to the present invention is continuously maintained, the washing fastness was evaluated by measuring the total phosphorus removal amount after 25 times of washing according to DIN EN 20105- It was found that the total removal performance was 99% or more even after the water treatment time of 60 minutes, so that there was almost no difference from the initial total removal performance before washing, so that the washing fastness was excellent and reusable.

따라서 본 발명에 따라 제조된 용액상 이산화티타늄 무광촉매가 코팅된 수처리 담체는 무광 조건 하에서도 촉매 활성을 나타내어 하수나 오폐수 중의 총인 또는 총질소를 고효율로 제거할 수 있고, 녹조 또는 적조, 수중 유출오일 및 비점오염물질 등도 제거하여 수질오염을 방지할 수 있을 뿐만 아니라, 세탁견뢰도가 우수하여 지속적으로 재사용이 가능한 효과를 나타내므로, 광원을 구비하지 않은 채로 다양한 수처리 장치에 적용할 수 있다.Accordingly, the water-treated carrier coated with the solution-phase titanium dioxide-free photocatalyst prepared according to the present invention exhibits catalytic activity even under the matt condition and can remove the total phosphorus or total nitrogen in the wastewater or wastewater with high efficiency, And non-point pollutants can be also removed to prevent water pollution, and since the washing fastness is excellent, it can be continuously reused, so that it can be applied to various water treatment apparatus without a light source.

Claims (15)

삭제delete 삭제delete 삭제delete 삭제delete i) 이소프로판올에 티타늄-(n)에톡시드와 에틸렌디아민테트라아세트산(EDTA)을 첨가하여 이산화티타늄 졸을 형성하는 단계;
ii) 탈이온수에 Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, Pt, 및 Au로 이루어진 군으로부터 선택된 2종 이상의 금속의 질산염(nitrate), 황산염(sulfate) 또는 염화염(chloride)을 용해시켜 전이금속염 수용액을 얻는 단계;
iii) 상기 i) 단계의 이산화티타늄 졸을 상기 ii) 단계의 전이금속염 수용액에 부가하고 산 촉매 하에서 20~90℃, 1~6시간 반응시켜 용액상 무광촉매를 형성하는 단계; 및
iv) 용액상 무광촉매를 수처리 담체에 코팅하는 단계;를 포함하는 무광촉매가 코팅된 수처리 담체의 제조방법.
i) adding titanium- (n) ethoxide and ethylenediaminetetraacetic acid (EDTA) to isopropanol to form a titanium dioxide sol;
ii) nitrate and sulfate of at least two metals selected from the group consisting of Zn, Mn, Fe, Cu, Ni, Co, Cr, V, Zr, Mo, Ag, W, sulfate or chloride to obtain a transition metal salt aqueous solution;
iii) adding the titanium dioxide sol of step i) to the transition metal salt aqueous solution of step ii) and reacting the solution at 20 to 90 ° C for 1 to 6 hours under an acid catalyst to form a photocatalyst in a solution state; And
iv) coating the photocatalyst on a water treatment carrier in the form of a solution.
삭제delete 삭제delete 삭제delete 삭제delete 제5항에 있어서, 상기 전이금속염은 티타늄-(n)에톡시드 100 중량부에 대하여 0.1~20 중량부를 사용하는 것을 특징으로 하는 무광촉매가 코팅된 수처리 담체의 제조방법.[6] The method of claim 5, wherein the transition metal salt is used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the titanium- (n) ethoxide. 제5항에 있어서, 상기 산 촉매는 염산, 질산, 황산, 및 아세트산으로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 무광촉매가 코팅된 수처리 담체의 제조방법.6. The method of claim 5, wherein the acid catalyst is any one selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid, and acetic acid. 제5항에 있어서, 상기 수처리 담체는 천연섬유 또는 합성섬유의 부직포, 분말 또는 펠렛 상의 활성탄, 분말 또는 펠렛 상의 제올라이트, 카본 블랙, 및 탄소나노튜브로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 무광촉매가 코팅된 수처리 담체의 제조방법.The water treatment carrier according to claim 5, wherein the water treatment carrier is any one selected from the group consisting of nonwoven fabrics of natural fibers or synthetic fibers, activated carbon in powder or pellet form, zeolite in powder or pellet form, carbon black, and carbon nanotubes A method for manufacturing a water treatment carrier coated with a photocatalyst. 제5항에 있어서, 상기 iv) 단계의 코팅은 수처리 담체를 용액상 무광촉매에 20~30℃에서 0.1~1시간 딥 코팅하는 것을 특징으로 하는 무광촉매가 코팅된 수처리 담체의 제조방법.The method of claim 5, wherein the coating of step iv) is performed by dip coating a water treatment carrier on a photocatalyst in a solution state at 20 to 30 ° C for 0.1 to 1 hour. 제5항에 있어서, 상기 iv) 단계 후, 무광촉매가 코팅된 수처리 담체를 열처리 하는 단계;를 더욱 포함하는 것을 특징으로 하는 무광촉매가 코팅된 수처리 담체의 제조방법.[7] The method of claim 5, further comprising, after the step iv), heat treating the water treatment carrier coated with the non-photocatalyst. 삭제delete
KR1020140092058A 2014-07-21 2014-07-21 Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same KR101532719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140092058A KR101532719B1 (en) 2014-07-21 2014-07-21 Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140092058A KR101532719B1 (en) 2014-07-21 2014-07-21 Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same

Publications (1)

Publication Number Publication Date
KR101532719B1 true KR101532719B1 (en) 2015-06-29

Family

ID=53520088

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140092058A KR101532719B1 (en) 2014-07-21 2014-07-21 Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same

Country Status (1)

Country Link
KR (1) KR101532719B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092039A (en) * 2017-02-08 2018-08-17 주식회사 블루인더스 Adsorption tower having functional active carbon which is non-light catalyst
KR20200014494A (en) 2018-08-01 2020-02-11 박경애 Nonphotocatalyst coated multifunctional activated carbon fiber filter and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050018738A (en) * 2004-06-02 2005-02-28 윤여범 Photoless-catalysis compositions and wallpaper which have Anti-bacterial, deodorizing, and anti-mold effects
KR20100053950A (en) * 2008-11-13 2010-05-24 박경애 Manufacturing method of visible-light active tio2 photocatalyst
KR20100092622A (en) * 2009-02-13 2010-08-23 (주)엘지하우시스 Wallpaper with deodorizing function and method of maunfacturing of the wallpaper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050018738A (en) * 2004-06-02 2005-02-28 윤여범 Photoless-catalysis compositions and wallpaper which have Anti-bacterial, deodorizing, and anti-mold effects
KR20100053950A (en) * 2008-11-13 2010-05-24 박경애 Manufacturing method of visible-light active tio2 photocatalyst
KR20100092622A (en) * 2009-02-13 2010-08-23 (주)엘지하우시스 Wallpaper with deodorizing function and method of maunfacturing of the wallpaper

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Mphilisi M.Mahlambi외 5인, Ind. Eng. Chem. Res., 52권, 1783-1794쪽 *
Mphilisi M.Mahlambi외 5인, Ind. Eng. Chem. Res., 52권, 1783-1794쪽*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180092039A (en) * 2017-02-08 2018-08-17 주식회사 블루인더스 Adsorption tower having functional active carbon which is non-light catalyst
KR101951409B1 (en) * 2017-02-08 2019-05-10 주식회사 블루인더스 Adsorption tower having functional active carbon which is non-light catalyst
KR20200014494A (en) 2018-08-01 2020-02-11 박경애 Nonphotocatalyst coated multifunctional activated carbon fiber filter and method for manufacturing the same

Similar Documents

Publication Publication Date Title
Khasawneh et al. Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: A review
Dutta et al. Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water
Li et al. Hierarchically porous MoS2/CoAl-LDH/HCF with synergistic adsorption-photocatalytic performance under visible light irradiation
Ahmed et al. Recent progress in semiconductor/graphene photocatalysts: synthesis, photocatalytic applications, and challenges
Rengaraj et al. Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger
Xu et al. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis
Shi et al. Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation
WO2014033642A2 (en) Material used in the removal of contaminants from liquid matrices
Sheikhsamany et al. Synthesis of novel HKUST-1-based SnO2 porous nanocomposite with the photocatalytic capability for degradation of metronidazole
Pillai et al. Photocatalysis as an effective advanced oxidation process
Khan et al. Polyethylene glycol capped copper ferrite porous nanostructured materials for efficient photocatalytic degradation of bromophenol blue
Shawky et al. Visible-light photooxidation of ciprofloxacin utilizing metal oxide incorporated sol-gel processed La-doped NaTaO3 nanoparticles: A comparative study
Nzaba et al. Comparative study of visible-light active BiOI and N, Pd-TiO2 photocatalysts: Catalytic ozonation for dye degradation
Zhang et al. A facile fabrication of ZnFe2O4/Sepiolite composite with excellent photocatalytic performance on the removal of tetracycline hydrochloride
Sharma et al. Carbon quantum dots embedded trimetallic oxide: Characterization and photocatalytic degradation of Ofloxacin
KR101532719B1 (en) Water treatment support coated with nonphotocatalyst, manufacturing method thereof and water treatment apparatus containing the same
Yang et al. Photocatalytic reduction of Cr (VI) on a 3.0% Au/Sr0. 70Ce0. 20WO4 photocatalyst
Darabdhara et al. Efficient photocatalytic degradation of an organic dye by the fabrication of a novel ternary composite based on zeolitic imidazolate framework via a facile in-situ synthetic approach
Ahmadi et al. Investigation on polysulfone blended NH2-MIL125 (Ti) membrane for photocatalytic degradation of Methylene Blue dye
Cui et al. Silver Orthophosphate Immobilized on Flaky Layered Double Hydroxides as the Visible‐Light‐Driven Photocatalysts
Puscasu et al. MgZnFeAlLDHs nanoarchitectonics for photocatalytic removal of some organic pollutants by using solar irradiation
Gorsi et al. Sunlight-active, Sg-C3N4 boosts Ni-doped ZnFe2O4 photocatalysts for efficient organic pollutants degradation
Zhang et al. Photocatalytic degradation of glyphosate using Ce/N co-doped TiO2 with oyster shell powder as carrier under the simulated fluorescent lamp
Liu et al. Synthesis of BiOI/ZnCo-CLDH hybrid photocatalyst with highly efficient degradation of rhodamine B and tetracycline hydrochloride
Iqbal et al. Synthesis and characterization of Zn–Mn–Fe nano oxide composites for the degradation of reactive yellow 15 dye

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180426

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190415

Year of fee payment: 5