KR102363698B1 - 중공 코어 광결정 섬유 및 그 제조 방법 - Google Patents

중공 코어 광결정 섬유 및 그 제조 방법 Download PDF

Info

Publication number
KR102363698B1
KR102363698B1 KR1020197035964A KR20197035964A KR102363698B1 KR 102363698 B1 KR102363698 B1 KR 102363698B1 KR 1020197035964 A KR1020197035964 A KR 1020197035964A KR 20197035964 A KR20197035964 A KR 20197035964A KR 102363698 B1 KR102363698 B1 KR 102363698B1
Authority
KR
South Korea
Prior art keywords
pcf
fiber
hollow core
photonic crystal
coupling section
Prior art date
Application number
KR1020197035964A
Other languages
English (en)
Other versions
KR20200003186A (ko
Inventor
세바스티안 바우어슈미트
패트릭 우에벨
필립 러셀
Original Assignee
막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우. filed Critical 막스-플랑크-게젤샤프트 츄어 푀르더룽 데어 비쎈샤프텐 에.파우.
Publication of KR20200003186A publication Critical patent/KR20200003186A/ko
Application granted granted Critical
Publication of KR102363698B1 publication Critical patent/KR102363698B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02323Core having lower refractive index than cladding, e.g. photonic band gap guiding
    • G02B6/02328Hollow or gas filled core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/023Microstructured optical fibre having different index layers arranged around the core for guiding light by reflection, i.e. 1D crystal, e.g. omniguide
    • G02B6/02304Core having lower refractive index than cladding, e.g. air filled, hollow core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

중공 코어 광결정 섬유(HC-PCF)(10)의 모드 안내 섹션(11)을 따라 광 필드(1)의 적어도 하나의 모드를 안내하기 위한 중공 코어 광결정 섬유(HC-PCF)(10)는, HC-PCF(10)를 따라 연장되는 외부 재킷(12), 내부 클래딩(13) 및 중공 코어(14)를 포함하고, 내부 클래딩(13)은 외부 재킷(12)의 내부 표면에 배치되고 중공 코어(14)를 둘러싸는 반-공진 구조(15)를 포함하며, 중공 코어(14)는 HC-PCF(10)의 모드 안내 섹션을 따라 제공된 모드 안내 코어 직경(d)을 가지며, HC-PCF(10)의 적어도 하나의 섬유 단부(16)는 광 필드 커플링 섹션(17)을 가지되, 광 필드 커플링 섹션(17)에서는 중공 코어(14)가 적어도 하나의 섬유 단부(16)에서 섬유 단부 코어 직경(D)로부터 모드 안내 코어 직경(d)까지 축방향 커플링 섹션 길이에 걸쳐 테이퍼링된다. 또한, HC-PCF를 이용하는 방법 및 HC-PCF를 제조하는 방법에 관해 설명한다.

Description

중공 코어 광결정 섬유 및 그 제조 방법
본 발명은 중공 코어 광결정 섬유(HC-PCF)에 관한 것이고, 특히 비-밴드갭 타입(또는 중공 코어 반-공진-반사 섬유, HC-AF), 특히 축방향 중공 코어 및 이러한 코어를 둘러싸는 반-공진 구조의 배열을 포함하는 내부 클래딩 영역을 갖고, 특히 광 필드의 적어도 하나의 모드를 안내하도록 구성되는 중공 코어 광결정 섬유(HC-PCF)에 관한 것이다. 또한, 본 발명은 HC-PCF를 이용하는 방법 및 HC-PCF를 제조하는 방법에 관한 것이다. 본 발명의 응용은 예를 들어 광학 계측, 분광법, 과학적 연구 및 도광 분야에서 이용 가능하다.
본 명세서에서는, 본 발명의 기술적 배경을 예시하는 다음의 종래 기술을 참조한다:
[1] P. Uebel 등의 "Opt. Lett." 41, 1961-1964(2016);
[2] F. Benabid 등의 "Science" 298, 399-402(2002);
[3] WO 2015/185761 A1;
[4] P. St. J. Russell 등의 "Nature Photonics" 8, 278-286(2014);
[5] EP 1 153 324 B2.
가스로 채워진 중공 코어 광결정 섬유는, 예를 들면 계측 및 분광법에 있어서, 잠재적 응용 분야를 갖춘 차세대 고휘도 광원을 위한 기술 플랫폼이다. 도 8(종래 기술)은 가스로 채워진 HC-PCF(10')에서 비선형 광학기기에 기초한 이러한 광원(100')의 개념을 개략적으로 도시한다. HC-PCF(10')는 외부 재킷(12'), 내부 클래딩(13') 및 중공 코어(14')를 포함한다(도 8의 상단에서 HC-PCF(10')의 종단면 참조). 내부 클래딩(13')은 반-공진 구조(15')를 포함하는데 이는 예컨대, HC-PCF(10')를 따라 축방향으로 연장되고 도 9(종래 기술)의 단면 스캐닝 전자 현미경(SEM) 이미지에 예시된 바와 같이 중공 코어(14')를 둘러싸는 튜브형 모세관의 단일 링 배열(예컨대 [1]에 개시되어 있음)과 같다. 이와 다른 섬유 구조는 Kagome 타입 또는 내포 구조(nested structure)와 같이 더 복잡할 수 있다([2, 3]).
펌프 소스(20')로부터의 펄스 광 필드(1')는 인커플링(incoupling) 단부에서 HC-PCF(10')의 코어(14') 내로 발사(launch)되고, 주로 아웃커플링(outcoupling) 단부를 향해 안내되는 기본 횡방향 모드를 여기시킨다. HC-PCF(10')는, 수십 bar 에 이르는 전형적인 압력으로 제어된 가스 환경(예를 들어, 비활성 가스 또는 라만-활성 가스)을 제공하고 광을 투과시키기 위한 투명 윈도우(31')를 갖는 가스 셀(30') 내에 배치된다. HC-PCF(10')의 도파관 분산과 가스의 비선형성 사이의 상호 작용은 펌프 펄스 광 필드(1')의 강한 변형을 초래하는데, 여기에는 예를 들어 펄스 압축 및 스펙트럼 확장([4]) 및/또는 기타 다른 광학적 비선형 효과가 포함된다.
도 8의 광원(100')의 작동이 실험에서 입증되었지만, 다음과 같은 실질적인 단점이 발견된 바 있다. 본 발명자들에 의해 이루어진 수명 시험의 결과, 평균 출력 파워가 이미 수십 Wh 의 펌프 노출량에서 심각하게 저하되어 실제 일상적인 응용예에서 HC-PCF 기반 광원(100')의 이용가능성을 심각하게 제한한다는 점을 알게 되었다. 다른 단점으로는 종래의 HC-PCF는 HC-PCF(10')의 비선형 동작을 시작할 때 제한된 발사 효율을 가질 수 있다는 문제가 있다.
본 발명의 목적은 종래 기술의 단점을 회피할 수 있는 개선된 중공-코어 광결정 섬유 및 이의 제조 방법을 제공하고자 하는 것이다. 특히 HC-PCF는 증가된 수명 및/또는 증가된 광 파워를 가지고 및/또는 개선된 발사 효율을 가지고 선형 또는 비선형 동작에 적합해야 한다. 또한 HC-PCF는 복잡하지 않은 프로세스로 제조되어야 한다.
이들 목적은 각각 독립항의 특징을 포함하는 HC-PCF 및 이의 제조 방법에 의해 해결된다. 본 발명의 바람직한 실시예 및 응용예는 종속항에 제시되어 있다.
본 발명의 제1의 일반적인 양태에 따르면, 상기 목적은 HC-PCF의 축방향 길이를 따라 연장되는 외부 재킷, 내부 클래딩 및 중공 코어를 갖는 HC-PCF에 의해 해결된다. 내부 클래딩에 의해 둘러싸인 중공 코어는, HC-PCF로의 인커플링 단부에 커플링된 광 필드(펌프 필드)의 적어도 하나의 모드, 예를 들어 기본 횡방향 모드를 안내하기 위한 HC-PCF의 모드 안내 섹션을 제공한다. 외부 재킷은 고체 재료로 만들어지고 내부 클래딩은 외부 재킷의 내부 표면에 의해 지지된다. 내부 클래딩은 HC-PCF의 축방향 길이를 따라 연장되고 중공 코어를 한정하는 반-공진 구조를 포함한다. HC-PCF의 모드 안내 섹션을 따라, 중공 코어는 모드 안내 코어 직경(d)을 갖는다. 모드 안내 코어 직경은 중공 코어 내부 여유공간의 내접(inscribed) 원형 단면 치수이다. 따라서, 모드 안내 섹션은 특정 중심 파장을 갖는 광 필드를 안내하는 데에 적합화되고, 즉 광 필드의 중심 파장과 이에 대응하는 포커싱 특성, 특히 모드 안내 코어 직경 간의 상호 관계가 있다.
본 발명에 따르면, HC-PCF 의 적어도 하나의 섬유 단부는 광 필드 커플링 섹션을 가지되, 상기 광 필드 커플링 섹션에서는 중공 코어가 상기 적어도 하나의 섬유 단부에서 섬유 단부 코어 직경(D)로부터 모드 안내 코어 직경(d)까지 축방향 커플링 섹션 길이에 걸쳐 테이퍼링된다. 섬유 단부 코어 직경은 섬유 단부 개구에서 중공 코어 내부 여유공간의 단면 치수이고, 모드 안내 코어 직경보다 크다.
본 발명자들은 기존 HC-PCF의 출력 파워의 손실이 특히 고출력 펌프 필드를 사용할 때 섬유 입력면(섬유 단부의 개구)의 열화의 결과임을 알게 되었다. 기존 HC-PCF의 횡방향 구조는 일반적으로 섬유를 따라 일정하다. 펌프 에너지에 대한 노출이 적은 비선형 실험 중에는(예컨대, 수 Wh) 입력측의 구조는 변하지 않고 유지되며, 즉 SEM에서 눈에 띄는 차이가 관찰되지 않을 수도 있다. 그러나, 본 발명자들이 수행한 수명 시험에 의해 이미 수십 Wh 펌프 노출량에서 섬유 입력면의 심각한 열화 현상이 드러난 바 있다. 열화는 펌프 필드의 인커플링 효율을 제한하여 HC-PCF의 출력 파워가 그에 따라 제한된다. 이러한 입력면 열화는 기존 HC-PCF의 내부 클래딩과 펌프 필드의 갑작스러운 강한 중첩으로 인해 유발되는 플라즈마 기반 침식 및 유리 가스 경계에서의 필드 강화의 결과이다.
이와 반대로, 본 발명의 HC-PCF의 적어도 하나의 섬유 단부에서의 광 필드 커플링 섹션은 섬유 단부에서 일정한 내경으로 제조되는 종래의 HC-PCF의 섬유 단부에 비해 다른 구조를 제공한다. 본 발명에서는 광 필드 커플링 섹션의 제공에 의해, 섬유 단부에서 예를 들면 유리로 만들어진 내부 재킷과 펌프 필드 사이의 0 또는 무시할 수 있는 필드 중첩으로부터 모드 안내 섹션에서의 모드 중첩으로의 매끄러운 전이가 이루어지며, 이는 필드 강화를 줄이고 플라즈마 기반 침식을 억제하게 된다. 0 또는 무시할 수 있는 필드 중첩은 내부 재킷에 도달하는 펌프 필드 부분의 세기가 0 또는 내부 재킷 침식을 유발하는 임계 세기 미만임을 의미한다. 유리하게는, 본 발명의 HC-PCF 는 1000 Wh 를 넘어서는 펌프 노출량에 대해서도 열화가 관측되지 않으며, 이에 따라 HC-PCF의 수명이 증가된다. 수명이 향상된 것 외에도 발사 효율이 기존 HC-PCF 에 비해 수 % 개선된 것으로 밝혀졌다.
본 발명의 제2의 일반적인 양태에 따르면, 상기 목적은 본 발명의 제1의 일반적인 양태에 따른 HC-PCF를 이용하는 방법에 의해 해결된다. HC-PCF 가 적어도 하나의 섬유 단부의 열화 없이 동작할 수 있도록, 입력 광 필드 파라미터, 특히 세기, 중심 파장, 포커싱 기하구조 및 빔 직경이 선택되고 HC-PCF 의 치수가 설정된다. 바람직한 제1 응용예(비선형 동작)에 따르면, 본 발명의 HC-PCF는 광 필드에 광학적 비선형 프로세스, 특히 스펙트럼 확장 및/또는 펄스 압축을 가하기 위해 이용된다. 바람직하게는, 펌프 소스 및 HC-PCF를 포함하여 광대역 출력 펄스를 발생시키기 위한 광원(특히 진공 또는 심자외선(UV)으로부터 근적외선(IR)까지의 스펙트럼 범위를 커버함)이 제공된다. 본 발명의 HC-PCF를 포함하는 광원은 본 발명의 추가의 독립적인 청구대상으로 여겨진다.
본 발명의 바람직한 제2 응용예(선형 동작)에 따르면, HC-PCF는 예를 들어 재료 가공을 위해 광 필드를 애플리케이션 사이트로 안내하는 데에 사용된다.
본 발명의 제3의 일반적인 양태에 따르면, 상기 목적은 본 발명의 제1의 일반적인 양태에 따른 HC-PCF를 제조하는 방법에 의해 해결된다. 제조 방법은 외부 재킷, 내부 클래딩 및 중공 코어를 포함하는 HC-PCF를 제공하는 단계 및 HC-PCF 의 열 처리에 의해 적어도 하나의 섬유 단부에 광 필드 커플링 섹션을 제공하기 위해 내부 재킷 테이퍼링을 형성하는 단계를 포함한다. 유리하게는, 본 발명의 HC-PCF는 섬유를 섬유 재료, 바람직하게는 유리의 연화점까지 국부적으로 가열함으로써 제조된다. 표면 장력으로 인해, 내부 재킷 구조, 예를 들어 그 모세관이 붕괴되는 경향이 있지만, 바람직하게는 HC-PCF의 외부 직경은 거의 변하지 않고 유지된다.
본 발명의 바람직한 실시예에 따르면, 반-공진 구조는 광 필드 커플링 섹션에서 섬유 단부 개구로부터 광 안내 섹션 쪽으로 점진적으로 증가하는 단면 치수를 갖는다. 유리하게는, HC-PCF의 이러한 구현예는 광 필드 커플링 섹션에서 내부 클래딩의 변형된 구조를 갖는 반면, HC-PCF의 외부 직경은 광 필드 커플링 섹션을 따라 일정하므로, 외부 재킷의 변형을 회피하게 되고, HC-PCF와 홀딩 캐리어의 커플링은 영향을 받지 않게 된다.
본 발명의 바람직한 추가 실시예에 따르면, 광 필드 커플링 섹션의 섬유 단부 코어 직경 및 축방향 커플링 섹션 길이는, HC-PCF에 의해 안내되도록 중공 코어에 포커싱되는 광 필드와 내부 클래딩의 필드 중첩이 섬유 단부 개구에서 배제되거나 무시 가능하게 되도록 선택된다. 유리하게는, 이에 의해 모드 안내 섹션에서 내부 클래딩과 광 필드의 필드 중첩으로의 매끄러운 전이가 이루어진다. 바람직하게는 펌프 소스 및 광학적 셋업은 HC-PCF의 모드 안내 섹션에 대한 광의 커플링 효율을 최대화하도록 구성된다.
유리하게도 광 필드 커플링 섹션은 축방향 커플링 섹션 길이 및 축방향 전이 길이를 포함하는 파라미터들 중 적어도 하나로 특성화될 수 있다. 축방향 커플링 섹션 길이는 광 필드 커플링 섹션의 전체 길이이다. 바람직하게는 광 필드 커플링 섹션이 축방향 전이 길이에 의해 특성화되는데, 이는 섬유 코어 직경 치수가 광 필드 커플링 섹션에서 섬유 단부 코어 직경(D)으로부터 (0.5*(D + d))로 감소하게 되는 섬유 길이이다.
축방향 전이 길이는 바람직하게는 모드 안내 코어 직경(d)의 적어도 0.5 배의 하한 및/또는 전이 치수 π(D2d2-d4)0.5/(4λ)의 최대 0.5 배의 상한을 갖는 것이 바람직하며, 여기서 λ는 펌프 광 필드의 중심 파장이다. 축방향 전이 길이의 이러한 제한은 섬유 단부 코어 직경으로부터 모드 안내 코어 직경으로의 전이가 효과적으로 이루어지면서도 최소화되는 이점을 갖는다. 상한을 가짐으로써 이러한 광 필드 커플링 섹션은, 자유 공간 빔의 안내된 모드로의 단열 전이(adiabatic transition)를 위해 설계된 종래의 광섬유의 업-테이퍼링(예를 들어 [5]에 기술됨)과 특히 상이하다. 특히 바람직하게는, 축방향 전이 길이가 최소 10 μm 및/또는 최대 1000 μm 이다.
축방향 커플링 섹션 길이는 바람직하게는 적어도 모드 안내 코어 직경(d)의 하한 및/또는 최대로 전이 치수(π(D2d2-d4)0.5/(4λ))의 상한을 갖는다. 본 발명의 실제 응용을 위한 특별한 장점은, 광 필드 커플링 섹션의 축방향 커플링 섹션 길이가 최소 20 μm 및/또는 최대 5000 μm 인 경우에 얻게 된다.
바람직하게는, 광 필드 커플링 섹션은 내부 클래딩의 어떠한 예리한(단차 또는 블레이드 형상의) 에지도 입력 펌프 필드에 노출되지 않도록 구성된다. 유리하게는, 내부 클래딩의 에지에서의 필드 강화를 회피하게 된다. 그러나, 특히 반-공진 구조가 임계 광 필드 세기를 갖는 영역 밖으로 이동되면 반-공진 구조의 예리한 에지를 제거할 필요는 없다.
본 발명의 다른 바람직한 실시예에 따르면, 내부 클래딩은 적어도 하나의 섬유 단부의 개구까지 연장된다. 유리하게는, 컴팩트한 사이즈의 광 필드 커플링 섹션을 얻게 된다. 대안으로서, 내부 클래딩은 적어도 하나의 섬유 단부의 개구까지 연장되지 않는다. 다시 말해서, 내부 클래딩에는 적어도 하나의 섬유 단부의 개구로부터 축방향 간극이 제공될 수 있다. 유리하게는, 이에 의해 HC-PCF 내에서 두께가 0에 이르도록 내부 클래딩이 축소될 수 있다.
섬유 단부 열화를 억제하는 이점은 HC-PCF의 인커플링 섬유 단부뿐만 아니라 그 아웃커플링 단부에서도 얻게 된다. 따라서, 본 발명에 따르면, 광 필드 커플링 섹션은 인커플링 및 아웃커플링 섬유 단부 중 적어도 하나에, 예를 들어 양 단부에 제공될 수 있다. 바람직하게는, 광 필드 커플링 섹션이 HC-PCF의 인커플링 단부에만 제공되어 HC-PCF의 제조가 유리한 방식으로 단순화된다.
HC-PCF 제조 방법의 바람직한 변형예에 따르면, HC-PCF의 길이는 이러한 HC-PCF의 단부로부터 소정 거리를 두고 배열된 적어도 하나의 섬유 섹션에서 열처리된다. 열처리로 인하여 내부 재킷의 테이퍼링이 HC-PCF의 길이를 따라 형성된다. 그 다음에, 적어도 하나의 섬유 단부에서 광 필드 커플링 섹션을 형성하기 위해 적어도 하나의 열처리된 섬유 섹션에서, 예를 들면 그 중심부에서, 상기 적어도 하나의 열처리된 섬유 섹션으로부터 미리정해진 섬유 길이까지 소정 거리를 두고 HC-PCF가 절단된다. 인커플링 단부에 광 필드 커플링 섹션을 바람직하게 제공한 경우, 고품질 단부면을 생성하도록 전이 영역을 조심스럽게 쪼갬(cleave in)으로써 인커플링 단부가 준비된다. HC-PCF 제조 방법의 대안적인 변형예에 따르면, HC-PCF는 획득되어야 할 미리정해진 섬유 길이로 절단되고, 적어도 하나의 섬유 단부에서 광 필드 커플링 섹션을 형성하기 위해 절단된 HC-PCF의 적어도 하나의 섬유 단부에 열 처리를 가한다.
적절한 열처리 조건은, 예를 들어 표면 장력에 의해, 가열에 응한 열적 내부 클래딩 변형에 대한 테스트 또는 수치 시뮬레이션에 의해 찾을 수 있다. 특히, 이러한 열처리 조건은 획득될 테이퍼 기하구조를 형성하기 위한 처리 온도 및 처리 범위에 따른 그 분포를 포함한다.
바람직하게는, 열 처리는 예를 들어 레이저 조사, 아크 방전 또는 외부 저항 히터에 의해 하나 이상의 섬유 섹션 또는 하나 이상의 섬유 단부에서 HC-PCF의 가열을 포함하며, 그에 따라 내부 클래딩의 공진 구조가 연화되고 연화된 반-공진 구조에서 표면 장력의 효과에 의해 광 필드 커플링 섹션이 형성된다. 반-공진 구조의 수축과 동시에, 벽 두께가 증가된다. 부가적으로, 진공이 HC-PCF에, 특히 내부 클래딩의 반-공진 구조에 가해질 수 있고, 광 필드 커플링 섹션은 연화된 반-공진 구조에서 표면 장력과 가해진 진공의 결합된 효과에 의해 형성된다. 부가적으로 또는 대안적으로, 내압이 모드 안내 코어에 가해질 수 있고, 그에 따라 광 필드 커플링 섹션은 연화된 반-공진 구조에서의 표면 장력과 가해진 압력의 결합된 효과에 의해 형성된다.
본 발명의 추가 세부 사항 및 장점은 첨부 도면을 참조하여 이하에서 기술된다.
도 1은 본 발명의 바람직한 실시예에 따른 HC-PCF의 개략적인 단면도이다.
도 2는 펌프 광 필드를 예시하는 본 발명의 다른 실시예에 따른 HC-PCF의 개략적인 단면도이다.
도 3은 광학 현미경 사진(A) 및 SEM 이미지(B)를 포함하는 본 발명의 HC-PCF의 섬유 단부의 이미지이다.
도 4는 열화된 종래의 HC-PCF의 입력측의 SEM 이미지이다.
도 5는 본 발명의 HC-PCF(곡선 A) 및 종래의 HC-PCF(곡선 B)의 HC-PCF 출력 파워를 측정한 실험 결과이다.
도 6은 본 발명에 따른 HC-PCF를 포함하는 광원 디바이스의 개략도이다.
도 7은 본 발명에 따른 HC-PCF의 측정된 출력 스펙트럼이다.
도 8 및 도 9는 종래의 HC-PCF를 포함하는 HC-PCF 기반 광원의 개략도 및 종래의 HC-PCF의 입력측의 SEM 이미지이다.
본 발명의 바람직한 실시예의 특징은 HC-PCF의 입력 섬유 단부에서의 광 필드 커플링 섹션의 제공을 참조로 하여 이하에 설명된다. 그에 대응하여 본 발명은 HC-PCF의 출력 섬유 단부 또는 양 단부에서의 광 필드 커플링 섹션으로 구현될 수 있다. 내부 클래딩이 튜브형 모세관의 단일 링 배열에 의해 형성되는 HC-PCF를 예시적으로 참조한다. 본 발명은 Kagome 타입 또는 내포 구조와 같은 다른 반-공진 구조로 그에 대응하여 구현될 수 있다.
도 1과 도 2는 본 발명의 바람직한 실시예에 따른 HC-PCF(10)의 개략적 확대 단면도이다. 도 2는 HC-PCF(10)(입력 섬유 단부만 도시됨)로 포커싱되고 커플링되는 가우시안 빔(입력 광 필드(1))을 도시한다. 실제 응용을 위해서는, HC-PCF(10)는 도 1 및 도 2에 도시된 것보다 더 긴 축방향 치수를 가지며, 이는 HC-PCF(10)의 기능에 따라, 예를 들어 1 cm 내지 5 m 또는 그 이상의 범위에서 선택된다.
HC-PCF(10)는 예를 들면, 두께가 예를 들어 30㎛ 이고 및 내경 Δ가 예를 들어 60㎛ 인 석영 유리로 제조되는 외부 재킷(12), 반-공진 구조(15)를 포함하는 내부 클래딩(13), 그리고 반-공진 구조 사이의 공간에 의해 제공되는 중공 코어(14)를 포함한다. 반-공진 구조는 예를 들어 도 9의 종래 기술을 참조하여 예시된 바와 같이 5 개의 모세관의 단일 링 배열을 포함한다. 이러한 모세관은 예를 들어 0.1 ㎛ 내지 1 ㎛ 또는 그 이상의 두께를 갖는 석영 유리로 제조된다. 내부 클래딩(13)은 외부 재킷(12)의 내부 표면에 의해 지지된다. HC-PCF(10)는 모드 안내 섹션(11)을 포함하고, 여기서 중공 코어(14)는 모드 안내 코어 직경(d), 예를 들어 30㎛를 갖는다.
HC-PCF(10)의 입력 섬유 단부(16)에 광 필드 커플링 섹션(17)이 제공된다. 광 필드 커플링 섹션(17)은 축방향 커플링 섹션 길이(L)를 가지며, 이를 따라 HC-PCF(10)의 내경이 섬유 단부 코어 직경(D)으로부터 모드 안내 코어 직경(d)으로 감소된다. 모드 안내 코어 직경이 30㎛ 인 HC-PCF(10)의 예에서, 축방향 커플링 섹션 길이는 바람직하게 300㎛ 이하이다. 이보다 큰 모드 안내 코어 직경, 예를 들어 50 ㎛ 이상에 대해, 축방향 커플링 섹션 길이는 1 mm 이상, 특히 수 mm 일 수 있다. 내부 클래딩(14)의 모세관(15)은 부분적인 붕괴(도 3B)로부터 미처리된 섬유 구조(도 9)에서의 그들의 치수로 매끄러운 전이를 형성한다.
광 필드 커플링 섹션(17)의 이론상 최대 축방향 커플링 섹션 길이(L)는 가우시안 레이저 빔(입력 광 필드(1))의 포커싱 특성으로부터 다음과 같이 도출될 수 있다. 포커싱된 레이저 빔은, 빔 직경(w(z))(z: HC-PCF(10)의 축방향 및 빔 전파 방향, 도 2에서 z < 0인 영역 참조), 그 중심 파장(λ), 및 그 초점 직경 w0 = w(0)으로 특성화된다. w(z)는 다음을 통해 계산할 수 있다:
w(z)=w 0(1+(z/z R)2)0.5
여기서 zR=πw0 2/(4λ) 는 레일리 길이이다.
섬유 단부에서 광 중첩을 줄이려면 축방향 커플링 섹션 길이(L) 및 광 필드 커플링 섹션의 단부 직경(D)은 w(-L) < D, 즉
Figure 112019125485537-pct00001
이 되도록 선택되어야 하며,
여기서
Figure 112019125485537-pct00002
이다.
이 수식을 L에 대해 풀면:
Figure 112019125485537-pct00003
이 된다.
이러한 길이 제약은 바람직하게는, 섬유 단부를 향하는 섹션에 대한 길이 제한으로 확장되며 여기서 초기 코어 직경(D)이 0.5*(D + d), 즉 전체 감소의 50 %로 감소된다. 바람직하게는, 이러한 길이(소위 축방향 전이 길이)는 π(D2d2-d4)0.5/(4λ)의 0.5 배보다 짧다.
도 3은 본 발명의 HC-PCF의 실제 예의 이미지를 보여준다. 도 3A는 입력 섬유 단부(16)의 광학 현미경 사진이며, 여기서 광 필드 커플링 섹션은 약 250 μm의 길이를 갖는다. 도 3B는 외부 재킷(12) 및 반-공진 구조(15)를 갖는 입력면의 SEM 이미지이다. 본 발명의 근본적인 장점은 도 3B에 의해 표현된다: 수명 시험 이후 반-공진 구조(15)가 도시되어 있는데(도 4 및 도 5 참조) 어떠한 열화의 가시적인 징후도 없다.
종래의 HC-PCF의 파워 유발된 열화와 본 발명의 HC-PCF의 유리하게 더 긴 수명이 도 4 및 도 5에 추가로 예시되어 있다. 도 4A 및 도 4B는 약 100 Wh 이상 펌프 광 필드에 노출된 종래의 HC-PCF의 입력측의 SEM 이미지를 보여준다. 본 발명자들은 클래딩 구조의 이러한 현저한 열화가 플라즈마 강화 침식에 기인한 것임을 알게 되었고, 여기서 플라즈마는 섬유 입력측의 예리한 가스-유리-계면에서 필드 강화로 인해 형성되는 것이다. 열화의 결과로 종래의 HC-PCF의 평균 출력 파워는 수십 Wh 후에 이미 크게 감소한다(도 5의 점선 B 참조). 비선형 실험에서 본 발명의 HC-PCF를 테스트한 결과 수명의 극적인 향상을 얻게 되었다(도 5, 실선 A 참조). 도 5에 따르면, 수천 Wh의 외삽된 값으로 1000 Wh 이상의 노출이 가능하다.
본 발명의 HC-PCF(10)를 포함하는 광대역 고휘도 광원(100)의 실시예가 도 6에 예시되어 있다. 이러한 광원(100)은 광학 계측(예를 들어, 반도체 산업을 위한 광학 계측), UV 현미경 또는 분광법과 같은 고도로 긴 수명이 요구되는 응용예에 바람직하게 사용된다.
광원(100)은 펌프 소스(20), 선택적 안정화 유닛(21), 가스 셀(30)에 배치된 HC-PCF(10) 및 선택적인 추가 출력 광학기기(22)를 포함한다. 펌프 소스(20)는 펄스형 광 필드(1)를 생성하는 펄스 레이저이고, 예를 들어 μJ 레벨 에너지 및 ps 미만 펄스 지속 시간으로, 특히 10 μJ 에너지 및 중심 파장 1030 nm 인 300 fs 펄스 지속시간으로 생성한다. 안정화 유닛(21)은 펌프 소스(20)로부터 출력된 펄스의 공간적 위치를 안정화시키기 위해 제공된다. 펌프 펄스는 가스로 채워진 본 발명의 HC-PCF(10) 내로 발사된다. 가스 셀은 예를 들어 30 bar 의 Ar을 포함한다. 펄스는 HC-PCF(10)에서 스펙트럼 확장을 겪고, 광대역 출력(2)은 출력 광학기기(22)로 시준되어 어플리케이션에 전달된다. 이러한 광원의 예시적인 스펙트럼(3)은 도 7에 도시되어 있는데, 약 240 내지 1700 nm 범위이다. 도 7의 삽입 도면은 출력(2)의 측정된 빔 단면을 보여주는데(570 nm에서 1/e2 직경 3.9 mm), 매우 높은 빔 품질을 나타낸다.
대안적으로, HC-PCF(10)는 선형 광 투과를 위해 이용될 수 있으며, 예를 들어 재료 가공을 위한 CW 또는 펄스형 레이저 광을 생성하는 레이저 소스로부터 가공물(workpiece) 등의 애플리케이션 사이트에 이르기까지 이용될 수 있다.
예를 들어, 도 1에 따른 HC-PCF(10)은 HC-PCF의 섬유 섹션을 융착 접속기로 300 ms의 가열 시간 동안 (용융 실리카의 경우) 예를 들어 1200 ℃의 유리 전이 온도 이상의 온도로 가열함으로써 제조된다. 섬유 섹션은 예를 들어 500 ㎛의 길이를 갖는다. 테이퍼 형상은, 가열된 섬유 섹션의 중심부로부터 그 단부까지 온도를 감소시키거나 또는 단순히 섬유 섹션의 중심부 가열에 의해 생성된 온도 필드에 의해 형성된다. 이어서, 냉각 후에 섬유 섹션이 절단된다.
앞선 발명의 설명, 도면 및 청구 범위에 개시된 본 발명의 특징은 다양한 실시예에서 본 발명의 구현을 위해 개별적으로, 조합하여 또는 하위 조합으로 의미를 가질 수 있다.

Claims (18)

  1. 중공 코어 광결정 섬유(HC-PCF)(10)로서, HC-PCF(10)의 모드 안내 섹션(11)을 따라 광 필드(1)의 적어도 하나의 모드를 안내하도록 구성되며,
    - HC-PCF(10)를 따라 연장되는 외부 재킷(12), 내부 클래딩(13) 및 중공 코어(14)를 포함하고,
    - 상기 내부 클래딩(13)은 외부 재킷(12)의 내부 표면에 배치되고 상기 중공 코어(14)를 둘러싸는 반-공진 구조(15)를 포함하며,
    - 중공 코어(14)는 HC-PCF(10)의 모드 안내 섹션을 따라 제공된 모드 안내 코어 직경(d)을 가지고,
    - HC-PCF(10)의 적어도 하나의 섬유 단부(16)는 광 필드 커플링 섹션(17)을 가지되, 상기 광 필드 커플링 섹션(17)에서는 중공 코어(14)가 상기 적어도 하나의 섬유 단부(16)에서 섬유 단부 코어 직경(D)으로부터 모드 안내 코어 직경(d)까지 축방향 커플링 섹션 길이에 걸쳐 테이퍼링되고,
    상기 외부 재킷(12)은 일정한 두께를 가지며,
    상기 내부 클래딩(13)의 두께는 상기 적어도 하나의 섬유 단부(16)의 개구를 향해 감소하는, 중공 코어 광결정 섬유(HC-PCF)(10).
  2. 제1항에 있어서,
    반-공진 구조(15)는 광 필드 커플링 섹션(17)에서 모드 안내 섹션 쪽으로 점진적으로 증가하는 단면 치수를 갖는, 중공 코어 광결정 섬유(HC-PCF)(10).
  3. 제1항 또는 제2항에 있어서,
    상기 섬유 단부 코어 직경(D) 및 축방향 커플링 섹션 길이는, HC-PCF(10)에 의해 안내되도록 중공 코어(14)에 포커싱되는 광 필드와 내부 클래딩(13)의 중첩이 상기 섬유 단부에서 배제되거나 무시 가능하게 되도록 선택되는, 중공 코어 광결정 섬유(HC-PCF)(10).
  4. 제1항 또는 제2항에 있어서,
    섬유 코어 직경 치수가 광 필드 커플링 섹션(17)에서 섬유 단부 코어 직경(D)으로부터 (0.5*(D + d))로 감소하게 되는 축방향 전이 길이는, 모드 안내 코어 직경(d)의 0.5배 이상이고 및/또는 전이 치수(π(D2d2-d4)0.5/(4λ))의 0.5배 이하이며, λ는 광 필드의 중심 파장인, 중공 코어 광결정 섬유(HC-PCF)(10).
  5. 제4항에 있어서,
    축방향 전이 길이는 최소 10 μm 및/또는 최대 1000 μm 인, 중공 코어 광결정 섬유(HC-PCF)(10).
  6. 제1항 또는 제2항에 있어서,
    광 필드 커플링 섹션(17)의 축방향 커플링 섹션 길이는, 모드 안내 코어 직경(d) 이상이고 및/또는 전이 치수(π(D2d2-d4)0.5/(4λ)) 이하이며, λ는 광 필드의 중심 파장인, 중공 코어 광결정 섬유(HC-PCF)(10).
  7. 제6항에 있어서,
    광 필드 커플링 섹션(17)의 축방향 커플링 섹션 길이는 최소 20 μm 및/또는 최대 5000 μm 인, 중공 코어 광결정 섬유(HC-PCF)(10).
  8. 제1항 또는 제2항에 있어서,
    반-공진 구조(15)는 상기 적어도 하나의 섬유 단부(16)를 향하는 둥근 단부를 가지는, 중공 코어 광결정 섬유(HC-PCF)(10).
  9. 제1항 또는 제2항에 있어서,
    내부 클래딩(13)은 상기 적어도 하나의 섬유 단부(16)의 개구까지 연장되는, 중공 코어 광결정 섬유(HC-PCF)(10).
  10. 제1항 또는 제2항에 있어서,
    내부 클래딩(13)은 상기 적어도 하나의 섬유 단부(16)의 개구까지 연장되지 않는, 중공 코어 광결정 섬유(HC-PCF)(10).
  11. 제1항 또는 제2항에 있어서,
    광 필드 커플링 섹션(17)은 HC-PCF(10)의 인커플링 단부(incoupling end)에만 제공되는, 중공 코어 광결정 섬유(HC-PCF)(10).
  12. 제1항 또는 제2항에 따른 중공 코어 광결정 섬유(HC-PCF)(10)를 이용하는 방법으로서,
    광 필드에 광학적 비선형 프로세스 또는 스펙트럼 확장을 가하기 위해 HC-PCF(10)가 이용되거나,
    광 필드를 애플리케이션 사이트에 전달하기 위해 HC-PCF(10)가 이용되는, 중공 코어 광결정 섬유(HC-PCF)(10)를 이용하는 방법.
  13. 제1항 또는 제2항에 따른 중공 코어 광결정 섬유(HC-PCF)를 제조하는 방법으로서,
    외부 재킷(12) 및 내부 클래딩(13)을 포함하는 HC-PCF(10)를 제공하는 단계; 및
    HC-PCF(10)의 열 처리에 의해 광 필드 커플링 섹션(17)을 형성하는 단계를 포함하는, 중공 코어 광결정 섬유(HC-PCF)(10)를 제조하는 방법.
  14. 제13항에 있어서,
    HC-PCF(10)의 적어도 하나의 섬유 섹션을 열처리하는 단계; 및
    적어도 하나의 섬유 단부(16)에서 광 필드 커플링 섹션(17)을 형성하기 위해, 적어도 하나의 열처리된 섬유 섹션에서 미리정해진 섬유 길이까지 소정 거리를 두고 HC-PCF(10)를 절단하는 단계를 포함하는, 중공 코어 광결정 섬유(HC-PCF)(10)를 제조하는 방법.
  15. 제13항에 있어서,
    HC-PCF(10)를 획득되어야 할 미리정해진 섬유 길이로 절단하는 단계; 및
    적어도 하나의 섬유 단부(16)에서 광 필드 커플링 섹션(17)을 형성하기 위해, 절단된 HC-PCF(10)의 적어도 하나의 섬유 단부(16)에 열 처리를 가하는 단계를 포함하는, 중공 코어 광결정 섬유(HC-PCF)(10)를 제조하는 방법.
  16. 제14항에 있어서,
    상기 열처리는, 내부 클래딩(13)의 공진 구조가 연화(soften)되고 연화된 반-공진 구조(15)에서의 표면 장력의 효과에 의해 광 필드 커플링 섹션(17)이 형성되도록 HC-PCF(10)를 가열하는 것을 포함하는, 중공 코어 광결정 섬유(HC-PCF)(10)를 제조하는 방법.
  17. 제14항에 있어서,
    상기 열처리는, 내부 클래딩(13)의 공진 구조가 연화되고 연화된 반-공진 구조(15)에서의 표면 장력과 적어도 하나의 반-공진 구조(15)에서의 가해진 진공의 결합된 효과에 의해 광 필드 커플링 섹션(17)이 형성되도록 HC-PCF(10)를 가열하는 것을 포함하는, 중공 코어 광결정 섬유(HC-PCF)(10)를 제조하는 방법.
  18. 제14항에 있어서,
    상기 열처리는, 내부 클래딩(13)의 공진 구조가 연화되고 연화된 반-공진 구조(15)에서의 표면 장력과 모드 안내 코어(14)에서의 가해진 압력의 결합된 효과에 의해 광 필드 커플링 섹션(17)이 형성되도록 HC-PCF(10)를 가열하는 것을 포함하는, 중공 코어 광결정 섬유(HC-PCF)(10)를 제조하는 방법.
KR1020197035964A 2017-05-17 2018-05-07 중공 코어 광결정 섬유 및 그 제조 방법 KR102363698B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17171468.6A EP3404454B1 (en) 2017-05-17 2017-05-17 Hollow-core photonic crystal fiber and method of manufacturing thereof
EP17171468.6 2017-05-17
PCT/EP2018/061674 WO2018210598A1 (en) 2017-05-17 2018-05-07 Hollow-core photonic crystal fiber and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
KR20200003186A KR20200003186A (ko) 2020-01-08
KR102363698B1 true KR102363698B1 (ko) 2022-02-15

Family

ID=58715026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197035964A KR102363698B1 (ko) 2017-05-17 2018-05-07 중공 코어 광결정 섬유 및 그 제조 방법

Country Status (9)

Country Link
US (2) US11029464B2 (ko)
EP (1) EP3404454B1 (ko)
JP (1) JP6986095B2 (ko)
KR (1) KR102363698B1 (ko)
CN (1) CN110662990B (ko)
DK (1) DK3404454T3 (ko)
IL (1) IL270669B2 (ko)
TW (1) TWI757486B (ko)
WO (1) WO2018210598A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108061A1 (en) 2015-12-23 2017-06-29 Nkt Photonics A/S Hollow core optical fiber and a laser system
CA3008919C (en) 2015-12-23 2024-03-19 Nkt Photonics A/S Photonic crystal fiber assembly
EP3404454B1 (en) 2017-05-17 2022-07-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hollow-core photonic crystal fiber and method of manufacturing thereof
EP3705942A1 (en) 2019-03-04 2020-09-09 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
WO2021037472A1 (en) 2019-08-29 2021-03-04 Asml Netherlands B.V. End facet protection for a light source and a method for use in metrology applications
WO2021052801A1 (en) * 2019-09-18 2021-03-25 Asml Netherlands B.V. Improved broadband radiation generation in hollow-core fibres
WO2021078690A1 (en) * 2019-10-24 2021-04-29 Asml Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
EP3839586A1 (en) * 2019-12-18 2021-06-23 ASML Netherlands B.V. Hollow-core photonic crystal fiber based optical component for broadband radiation generation
CN111435187B (zh) * 2019-10-30 2022-08-09 济南大学 一种具有高双折射低损耗的空芯负曲率光子晶体光纤
EP3819267B1 (en) 2019-11-07 2022-06-29 ASML Netherlands B.V. Method of manufacture of a capillary for a hollow-core photonic crystal fiber
WO2022028812A1 (en) * 2020-08-06 2022-02-10 Asml Netherlands B.V. Hollow core fiber light source and a method for manufacturing a hollow core fiber
EP4001976A1 (en) * 2020-11-13 2022-05-25 ASML Netherlands B.V. Hollow core fiber light source and a method for manufacturing a hollow core fiber
WO2022122325A1 (en) * 2020-12-10 2022-06-16 Asml Netherlands B.V. Hollow-core photonic crystal fiber based broadband radiation generator
IL305428A (en) * 2021-03-16 2023-10-01 Asml Netherlands Bv A radiation source based on hollow-core optical fibers
TWI831352B (zh) * 2022-08-31 2024-02-01 財團法人工業技術研究院 雷射微加工裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537574A (ja) * 1999-02-19 2002-11-05 ブレイズフォトニクス リミティド フォトニック結晶ファイバ及びこれに係る改良
US20110273712A1 (en) 2006-07-25 2011-11-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods using hollow-core fiber tapers
US20120195554A1 (en) 2009-08-14 2012-08-02 Nkt Photonics A/S Splicing and connectorization of photonic crystal fibers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255249A (ja) 2002-03-01 2003-09-10 Hitachi Printing Solutions Ltd 光記録装置用光ファイバアレイ及びそれを用いた画像形成装置
GB0214118D0 (en) 2002-06-19 2002-07-31 Blazephotonics Ltd Improvements in and relating to optical fibres
JP2008067289A (ja) 2006-09-11 2008-03-21 Fujitsu Media Device Kk 弾性波デバイスおよびフィルタ
GB0719376D0 (en) 2007-10-03 2007-11-14 Univ Bath Hollow-core photonic crystal fibre
DK2585863T3 (en) 2010-06-25 2019-01-21 Nkt Photonics As Single mode optical fiber with large core area
US11034607B2 (en) * 2013-09-20 2021-06-15 University Of Southampton Hollow-core photonic bandgap fibers and methods of manufacturing the same
GB2526879A (en) * 2014-06-06 2015-12-09 Univ Southampton Hollow-core optical fibers
EP3136143B1 (en) * 2015-08-26 2020-04-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hollow-core fibre and method of manufacturing thereof
CN105807363B (zh) * 2016-05-13 2019-01-29 北京工业大学 一种空芯反谐振光纤
EP3404454B1 (en) 2017-05-17 2022-07-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hollow-core photonic crystal fiber and method of manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537574A (ja) * 1999-02-19 2002-11-05 ブレイズフォトニクス リミティド フォトニック結晶ファイバ及びこれに係る改良
US20110273712A1 (en) 2006-07-25 2011-11-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods using hollow-core fiber tapers
US20120195554A1 (en) 2009-08-14 2012-08-02 Nkt Photonics A/S Splicing and connectorization of photonic crystal fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Natalie V. Wheeler 외 5명, ‘Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber, OPTICS LETTERS, (2010.06.01.) 1부.*

Also Published As

Publication number Publication date
IL270669A (ko) 2019-12-31
IL270669B2 (en) 2024-01-01
US20210356656A1 (en) 2021-11-18
US11640028B2 (en) 2023-05-02
CN110662990A (zh) 2020-01-07
TW201901206A (zh) 2019-01-01
US20200166699A1 (en) 2020-05-28
CN110662990B (zh) 2021-06-11
IL270669B1 (en) 2023-09-01
EP3404454B1 (en) 2022-07-06
US11029464B2 (en) 2021-06-08
EP3404454A1 (en) 2018-11-21
TWI757486B (zh) 2022-03-11
KR20200003186A (ko) 2020-01-08
JP6986095B2 (ja) 2021-12-22
JP2020519941A (ja) 2020-07-02
DK3404454T3 (da) 2022-09-19
WO2018210598A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
KR102363698B1 (ko) 중공 코어 광결정 섬유 및 그 제조 방법
JP5921504B2 (ja) ガラス大コア光ファイバ
AU2002350398B9 (en) Hermetically sealed optical fibre with voids or holes, method of its production, and its use
Yu et al. Negative curvature hollow core optical fiber
EP1988412A2 (en) Mode-field resizing in optical fibers
AU2002350398A1 (en) Hermetically sealed optical fibre with voids or holes, method of its production, and its use
US7978947B2 (en) Photonic bandgap fiber
KR20150142920A (ko) 펌프 광 제거기 및 그 제조 방법
JP2008262199A (ja) フォトニックバンドギャップ光ファイバ、光伝送システム及びそのシステムにおける誘導ラマン散乱抑制方法
US11271358B2 (en) Control of heating in active doped optical fiber
US20070008994A1 (en) Method and configurations in achieving high energy operation for photonic band gap (PGB) fiber with end caps
WO2007079750A1 (en) A super continuum source comprising a photonic crystal fibre, a system, a method and use
JP2006160550A (ja) フォトニッククリスタルファイバとその製造方法、フォトニッククリスタルファイバ製造用プリフォーム
Xiong et al. Low-Energy-Threshold Deep-Ultraviolet Generation in a Gas-Filled Single-Ring Hollow-Core Fiber
Mizuno et al. Plastic optical fiber fuse: Observation, characterization, and applications
Al-Janabi et al. Gaussian laser beam propagation through evacuated hollow core photonic crystal fiber

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant