KR102348638B1 - 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도 - Google Patents

비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도 Download PDF

Info

Publication number
KR102348638B1
KR102348638B1 KR1020200158239A KR20200158239A KR102348638B1 KR 102348638 B1 KR102348638 B1 KR 102348638B1 KR 1020200158239 A KR1020200158239 A KR 1020200158239A KR 20200158239 A KR20200158239 A KR 20200158239A KR 102348638 B1 KR102348638 B1 KR 102348638B1
Authority
KR
South Korea
Prior art keywords
nbfuct13
ser
leu
val
lys
Prior art date
Application number
KR1020200158239A
Other languages
English (en)
Other versions
KR20210062588A (ko
Inventor
최성화
천지녕
최수민
박종진
최선미
김해림
Original Assignee
(주)지플러스 생명과학
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지플러스 생명과학, 서울대학교산학협력단 filed Critical (주)지플러스 생명과학
Publication of KR20210062588A publication Critical patent/KR20210062588A/ko
Priority to KR1020210167718A priority Critical patent/KR20210150335A/ko
Application granted granted Critical
Publication of KR102348638B1 publication Critical patent/KR102348638B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/011524-Galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase (2.4.1.152)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Abstract

본 발명은 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도에 관한 것이다. 본 발명에 따른 비푸코실화된 담배를 이용하여 생산한 항체는 기존의 동물세포를 이용하여 생산한 항체와 다른 형태의 당쇄를 가지며, 항체의 당쇄에 푸코스가 존재하지 않는 것을 확인하였다. 또한, 본 발명에 따른 변형된 당쇄를 갖는 항체가 기존의 동물세포를 이용하여 생산한 항체보다 우수한 항암효과를 나타내는 것을 확인하였다. 따라서, 본 발명에 따른 변형된 당쇄를 갖는 항체는 암의 예방 또는 치료에 유용하게 사용될 수 있다.

Description

비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도{ANTIBODY PRODUCED BY USING AFUCOSYLATED N.BENTHAMIANA AND USES THEREOF}
본 발명은 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도에 관한 것이다.
최근 단백질 의약품 시장에서 항체 의약품에 대한 개발이 이루어지고 있다. 특히, 단클론 항체(mAbs)와 면역글로불린의 Fc 영역을 융합시킨 약물에 대한 연구가 활발히 진행되고 있다. 이러한 항체 의약품은 목적 세포의 신호 전달 체계를 저해하여 세포사멸(apoptosis)을 직접 유도하거나, 항체의존성 세포독성(Antibody Dependent Cell-mediated Cytotoxicity, ADCC) 또는 보체의존성 세포독성(Complement Dependent Cytotoxicity, CDC)과 같은 간접적인 면역 반응을 유도함으로써 치료 효과를 나타낸다.
구체적으로, 항체의 CDC에 영향을 주는 요인으로는 Fc 영역의 갈락토실화(galactosylation)가 알려져 있다. 갈락토실화의 메커니즘에서 갈락토스(Galactose)는 글리코실화 연쇄 반응(glycosylation chain reaction)에서 갈락토스전달효소(galactosyltransferase)에 의해 N-아세틸글루코사민(N-acetylglucosamine) 다음에 붙게 된다. 망간(Manganese, Mn2+)은 갈락토스전달효소의 조효소(cofactor)로 효소의 성능을 향상시키는 역할을 수행한다.
또한, 항체의 ADCC를 향상시키기 위해 항체의 당 함량을 조절하고자 하는 연구가 수행되고 있다. 그 이유는 당사슬의 성분 및 구조가 항체의 인체 내 체류시간, 약리 활성 및 면역 반응 등의 치료 효과에 큰 영향을 미치기 때문이다. 이와 관련하여, 애보트(Abbott) 사의 아달리무맙(adalimumab) 특허(US 2012/0276631 및 WO 2012/149197)에 망간과 갈락토즈를 이용하는 항체 당쇄 조절에 대한 내용이 개시되어 있다. 그러나, 아직까지도 원하는 목표 함량으로 당쇄가 조절된 항체를 제조하는데 어려움을 겪고 있는 실정이다.
한편, 트라스투주맙(Trastuzumab)은 유방암에서 높은 활성을 가지는 인간상피증식인자 수용체 2(Human epidermal growth factor receptor 2, 이하, HER2)에 특이적으로 결합하여 세포 분열을 억제하는 인간화 항체이다. 트라스투주맙은 직접적으로 세포의 증식을 억제할 뿐만 아니라, ADCC와 혈관신생을 저해시킨다. 트라스투주맙은 HER2를 과발현하는 유방암 환자에게 정맥내 투여하여 유방암 치료에 사용되고 있다.
또한, 트라스투주맙은 동물세포나 미생물을 이용하여 생산되고 있다. 하지만, 동물세포와 미생물을 이용하여 트라스투주맙을 생산할 경우 비용이 많이 들고, 동물 유래 바이러스나 독소(toxin) 등의 감염이 발생할 수 있다는 문제점이 남아있다. 반면, 식물세포를 이용하여 트라스투주맙을 생산할 경우, 동물 유래의 바이러스와 독소 등을 포함하지 않는다는 이점이 있다. 또한, 동물세포 배양액에서 항체를 정제하는 과정에 비해, 식물로부터 항체를 정제하는 과정이 간단하고 경제적인 이점이 있다(Doran P.M., Curr. Opin. Biotechnol. 11: 199-204, 2000).
US 2012/0276631 WO 2012/149197
Doran P.M., Curr. Opin. Biotechnol. 11: 199-204, 2000
이에 본 발명자들은 당쇄가 조절된 항체를 생산하는 기술을 연구하던 중, 크리스퍼 기술, 특히, 리보핵단백질(RNP)을 이용하여 담배를 형질전환 시킬 경우, 담배에 다른 유전자는 변이시키지 않고, 특정 유전자만을 녹아웃 시킬 수 있음을 확인하였다. 또한, 상기 형질전환 식물에 트라스투주맙을 코딩하는 유전자를 도입하여, 트라스투주맙을 생산한 결과, 트라스투주맙의 당쇄가 변형된 것을 확인하였다. 나아가, 변형된 당쇄를 갖는 트라스투주맙이 우수한 항암효과를 나타내는 것을 확인함으로써 본 발명을 완성하였다.
상기 목적을 달성하기 위하여, 본 발명의 일 측면은, 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13)의 발현이 억제된 형질전환 식물을 제공한다.
본 발명의 다른 측면은, 푸코스(fucose), 자일로스(xylose), 갈락토스(galactose) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 잔기가 포함되지 않은, 변형된 당쇄를 갖는 목적 단백질을 제공한다.
본 발명의 또 다른 측면은, 변형된 당쇄를 갖는 목적 단백질을 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다.
본 발명의 또 다른 측면은, i) 서열번호 3으로 표시되는 염기서열; 및 서열번호 4로 표시되는 염기서열을 포함하는 유전자를 상기 알파 1,3-푸코실트랜스퍼라제의 발현이 억제된 형질전환 식물에 도입하는 단계; ii) 상기 형질전환 식물을 재배하는 단계; 및 iii) 상기 재배한 형질전환 식물로부터 항체를 회수하는 단계를 포함하는 변형된 당쇄를 갖는 항체(예컨대, 트라스투주맙)를 생산하는 방법을 제공한다.
본 발명에 따른 비푸코실화된 담배를 이용하여 생산한 항체는 기존의 동물세포를 이용하여 생산한 항체와 다른 형태의 당쇄를 가지며, 항체의 당쇄에 푸코스가 존재하지 않는 것을 확인하였다. 또한, 본 발명에 따른 변형된 당쇄를 갖는 항체가 기존의 동물세포를 이용하여 생산한 항체보다 우수한 항암효과를 나타내는 것을 확인하였다. 따라서, 본 발명에 따른 변형된 당쇄를 갖는 항체는 암의 예방 또는 치료에 유용하게 사용될 수 있다.
도 1은 담배(N.benthamiana)에 존재하는 5개의 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13) 유전자의 개요도를 나타낸 것이다.
도 2는 담배의 알파 1,3-푸코실트랜스퍼라제 유전자와 상추 및 애기장대에 존재하는 유사한 유전자 간의 계통수(phylogenic tree)를 나타낸 것이다. 스케일은 위치당 존재하는 아미노산 치환 정도를 나타낸다. 식물에 존재하는 유전자를 다음과 같이 표기하였다:
N.benthamiana: FucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494), NbFucT13_4(Niben101Scf17626) 및 NbFucT13_5(Niben101Scf05447);
Lactuca sativa: FucT13_1(Lsa020014.1), LsFucT13_2(Lsa143107.1), LsFucT13_3(Lsa040691.1), LsFucT13_4(Lsa090095.1) 및 LsFucT13_5(Lsa035782.1);
Arabidopsis: FUT11(At1g49710) 및 FUT12(At3g19280).
도 3은 담배에 존재하는 5개의 알파 1,3-푸코실트랜스퍼라제 유전자의 발현 정도를 확인한 그래프이다.
도 4는 5개의 FucT13을 타겟팅하기 위한 sgRNA의 개요도이다.
도 5는 5개의 FucT13을 타겟팅하기 위한 sgRNA의 개요도이다. 이때, 모든 sgRNA는 엑손 1을 타겟팅하였고, 20머의 뉴클레오티드로 구성되었다. 또한, T7 프로모터의 전사체에 효과적이도록 5'에 "G"를 포함한다. 도 5a는 AFT1 및 AFT2에 대한 sgRNA 서열이다. 도 5b는 AFT3 및 AFT4에 대한 sgRNA 서열이다. 도 5c는 AFT5 및 AFT6에 대한 sgRNA 서열이다. 붉은 박스는 sgRNA가 타겟으로 하는 부분을 포함하고 있는 엑손을 나타낸다.
도 6은 gRNA-tRNA 시스템에 적용될 6개의 sgRNA가 포함된 유전자 편집용 바이너리 벡터(binary vector)의 개요를 도식화한 것이다. 6개의 gRNA는 20 bp로 구성되어 있으며, AtU6 프로모터에 의해 발현이 된다.
도 7은 담배의 캘러스 및 식물체를 나타낸 도면이다.(A) 5일이 경과된 마이크로캘리(microcalli)로서, 단일 세포로부터 생산된 프라머리포이다.(B) 2주 경과 후의 마이크로캘리이다.(C) 4주 경과 후의 마이크로캘리이다.(D) 7주 경과 후의 캘리이다.(E) 3개의 캘리에서 녹색의 싹이 형성되었음을 알 수 있다.(F) 두달 경과 후에 성장 호르몬이 존재하지 않는 half-strength MS 배지에서 뿌리가 생성됨을 알 수 있다. 단일 세포에서 식물체까지 5개월이 소요되었다. 흰색바 및 검은색바는 1 cm를 나타내며, 붉은바는 100 ㎛를 나타낸다.
도 8은 아그로박테리움 매개 유전자 편집 기술을 이용하여 제조한 담배를 나타낸 것이다.(A) 아그로박테리움과 함께 공배양한 후의 체외 배양 조직(explants)를 나타낸 것이다.(B) 25 ㎎/ℓ 히그로마이신(hygromycin) 존재하에서 6주 체외 배양 조직에서 싹이 나는 것을 나타낸 것이다.(C) 묘목(plantlets)을 나타낸 것이다.(D) 형질전환 식물을 나타낸 것이다. 이때, 흰색바는 1 cm를 나타내며, 붉은바는 10 cm를 나타낸다.
도 9는 5개의 FucT13s 유전자를 PCR을 통해 증폭한 것이다. 15개의 식물 개체에서 상기 유전자의 돌연변이를 검출하였다. PCR 증폭물은 TA 벡터를 이용하여 증폭하였고, 각각의 PCR 증폭물을 시퀀싱하였다.
도 10은 5개의 FucT13s 유전자를 PCR을 통해 증폭한 것이다. 16개의 식물 개체에서 상기 유전자의 돌연변이를 검출하였다. PCR 증폭물은 TA 벡터를 이용하여 증폭하였고, 각각의 PCR 증폭물을 시퀀싱하였다.
도 11은 sgRNA의 타겟 영역을 정렬한 것이다. T0 Plant line #8는 세개의 유전자 FucT13_1, FucT13_2 및 FucT13_3은 이중 대립 돌연변이(biallelic mutations) +5/+1, -1/+1, -593, -1 및 +1/+1을 가진다. FucT13_1은 이중 대립 돌연변이 -5/+1, -1/+1을 가진다. FucT13_2은 이중 대립 돌연변이 -593, -1를 가진다. FucT13_3은 이중 대립 돌연변이, +1/+1을 가진다. FucT13_4는 헤테로 돌연변이(hetero mutations) +1/wt을 가짐을 확인하였다. 반면, FucT13_5는 돌연변이가 없었다. 빨간색 도트라인(Red dotlines)은 삭제된 염기(deletion bases)를 의미한다. 빨간색 문자(Red letters)는 삽입된 염기(insertion bases)를 의미한다. 파란색 문자(Blue letters)는 SNP(single nucleotide polymorphism)를 의미한다. 괄호안의 숫자는 결실(-) 및 삽입(+)을 의미한다.
도 12는 sgRNA의 타겟 영역을 정렬한 것이다. T0 Plant line #10는 네개의 유전자 FucT13_1, FucT13_2, fuct13_3 및 fuct13_4는 이중 대립 돌연변이 +1/+1, -715/-3/+1, +1, +1를 가진다. FucT13_1은 헤테로 돌연변이(hetero mutations), +1/+1/wt를 가진다. FucT13_2는 헤테로 돌연변이, -715/wt를 가진다. FucT13_3은 헤테로 돌연변이, +1/wt을 가진다. FucT13_4는 헤테로 돌연변이(hetero mutations) +1/wt을 가짐을 확인하였다. 반면, FucT13_5는 돌연변이가 없었다. 빨간색 도트라인은 삭제된 염기를 의미한다. 빨간색 문자는 삽입된 염기를 의미한다. 파란색 문자는 SNP를 의미한다. 괄호안의 숫자는 결실(-) 및 삽입(+)을 의미한다.
도 13은 sgRNA의 타겟 영역을 정렬한 것이다. T0 Plant line #27는 두개의 유전자 FucT13_2 및 fuct13_3는 이중 대립 돌연변이 -714 및 +1/+1를 가진다. FucT13_2는 헤테로 돌연변이, -714/wt를 가진다. FucT13_3은 이중 대립 돌연변이, +1 and +1을 가진다. FucT13_4는 헤테로 돌연변이(hetero mutations) +1/wt을 가짐을 확인하였다. 반면, FucT13_1, FucT13_4, 및 FucT13_5 는 돌연변이가 없었다. 빨간색 도트라인은 삭제된 염기를 의미한다. 빨간색 문자는 삽입된 염기를 의미한다. 파란색 문자는 SNP를 의미한다. 괄호안의 숫자는 결실(-) 및 삽입(+)을 의미한다.
도 14은 sgRNA의 타겟 영역의 서열을 비교한 것이다. T1 plant line #37-26은 4개의 유전자가 조작되었으며, FucT13_1, FucT13_2, FucT13_3, 및 FucT13_4. FucT13_1은 이중 대립 돌연변이(biallelic mutations), -709/+1, +1/+1을 가짐을 확인하였다. FucT13_2 이중 대립 돌연변이, -2/-592; -1/-593을 가짐을 확인하였다. FucT13_3 이중 대립 돌연변이, +1, -9를 가짐을 확인하였다. FucT13_4 이중 대립 돌연변이, +1, +1을 가짐을 확인하였다. FucT13_5은 돌연변이가 생기지 않았다. 빨간색 도트라인은 삭제된 염기를 의미한다. 빨간색 문자는 삽입된 염기를 의미한다. 파란색 문자는 SNP를 의미한다. 괄호안의 숫자는 결실(-) 및 삽입(+)을 의미한다.
도 15는 sgRNA의 FucT13_1 타겟 영역을 정렬한 것이다.
도 16은 sgRNA의 FucT13_2 타겟 영역을 정렬한 것이다.
도 17은 sgRNA의 FucT13_3 타겟 영역을 정렬한 것이다.
도 18은 sgRNA의 FucT13_4 타겟 영역을 정렬한 것이다.
도 19는 sgRNA의 FucT13_5 타겟 영역을 정렬한 것이다.
도 20은 타겟 gRNA가 in vivo 상에서 유전자 편집이 일어났는지 확인한 것이다. 이때, 유전자 편집 효율(%)은 각 밴드 위에 숫자로 표시하였다.
도 21은 타겟 gRNA가 in vivo 상에서 유전자 편집이 일어났는지 확인한 것이다. 이때, 유전자 편집 효율(%)은 각 밴드 위에 숫자로 표시하였다.
도 22는 생산된 항체의 당화를 확인하기 위하여, N-글리칸의 프로파일을 나타낸 것이다.(A)는 야생형의 담배(NBwt)의 프로파일을 나타내며,(B)는 4개의 유전자가 녹아웃된 담배인 #37의 프로파일을 나타낸 것이다(*: 미확인된 피크를 의미함).
도 23은 생산된 항체를 이용하여 항체 의존적 세포 매개 세포독성(Antibody-Dependent Cell-Mediated Cytotoxicity, ADCC) 효과를 분석한 결과이다.
도 24는 형질전환 식물로부터 수득한 트라스투주맙의 발현양을 발현양을 웨스턴 블랏을 통해 확인한 도면이다: M; 단백질 크기 마커, P; 트라스투주맙, v1; 코돈 최적화 전 유전자, v2; 코돈 최적화된 유전자.
도 25는 형질전환 식물로부터 수득한 트라스투주맙의 발현양을 확인한 그래프이다: M: 단백질 크기 마커, P: 트라스투주맙, v1: 코돈 최적화 전 유전자, v2: 코돈 최적화된 유전자.
도 26 및 27은 기존의 트라스투주맙(herceptin) 및 형질전환 식물로부터 수득한 트라스투주맙(GF003)의 당쇄 구조를 분석한 도면이다.
도 28은 형질전환 식물로부터 수득한 트라스투주맙(GF003)의 항암효과를 확인한 도면이다.
도 29는 담배에 존재하는 2개의 베타 1,2-자일로실트랜스퍼라제(beta 1,2 xylosyltransferase, XylT12) 유전자 및 베타 1,3-갈락토실트랜스퍼라제(beta 1,3 galactosyltransferase, GalT13) 유전자의 개요도를 나타낸 것이다.
도 30은 담배에 존재하는 5개의 알파 1,3-푸코실트랜스퍼라제 유전자, 2개의 베타 1,2-자일로실트랜스퍼라제 유전자 및 2개의 베타 1,3-갈락토실트랜스퍼라제 유전자의 발현 정도를 확인한 그래프이다.
도 31a 내지 도 31c는 2개의 XylT12를 타겟팅하기 위한 sgRNA의 개요도이다. 이때, 모든 sgRNA는 엑손 1을 타겟팅하였고, 23머 또는 24머의 뉴클레오티드로 구성되었다. 또한, T7 프로모터의 전사체에 효과적이도록 5'에 "G"를 포함한다. 도 31a는 AXT1 및 AXT2에 대한 sgRNA 서열이다. 도 31b는 AXT5 및 AXT3에 대한 sgRNA 서열이다. 도 31c는 AXT4 및 AXT6에 대한 sgRNA 서열이다. 붉은 박스는 sgRNA가 타겟으로 하는 부분을 포함하고 있는 엑손을 나타낸다.
도 32a 내지 도 32c는 2개의 GalT13을 타겟팅하기 위한 sgRNA의 개요도이다. 이때, sgRNA는 엑손 1 또는 엑손 2를 타겟팅하였고, 23머의 뉴클레오티드로 구성되었다. 또한, T7 프로모터의 전사체에 효과적이도록 5'에 "G"를 포함한다. 도 32a는 AGT3 및 AGT4에 대한 sgRNA 서열이다. 도 32b는 AGT1 및 AGT2에 대한 sgRNA 서열이다. 도 32c는 AGT5, AGT6 및 AGT7에 대한 sgRNA 서열이다. 붉은 박스는 sgRNA가 타겟으로 하는 부분을 포함하고 있는 엑손을 나타낸다.
도 33a는 gRNA-tRNA 시스템에 적용될 3개의 sgRNA(AXT1, AXT2, AXT3)가 포함된 유전자 편집용 바이너리 벡터의 개요를 도식화한 것이다. 3개의 gRNA는 23 bp로 구성되어 있으며, AtU6 프로모터에 의해 발현이 된다.
도 33b는 gRNA-tRNA 시스템에 적용될 3개의 sgRNA(AXT4, AXT5, AXT6)가 포함된 유전자 편집용 바이너리 벡터의 개요를 도식화한 것이다. 3개의 gRNA는 23 bp 또는 24 bp로 구성되어 있으며, AtU6 프로모터에 의해 발현이 된다.
도 33c는 gRNA-tRNA 시스템에 적용될 7개의 sgRNA(AGT1, AGT2, AGT3, AXT1, AXT2, AXT3, AXT4)가 포함된 유전자 편집용 바이너리 벡터의 개요를 도식화한 것이다. 7개의 gRNA는 23 bp로 구성되어 있으며, AtU6 프로모터에 의해 발현이 된다.
도 33d는 gRNA-tRNA 시스템에 적용될 7개의 sgRNA(AGT4, AGT5, AGT6)가 포함된 유전자 편집용 바이너리 벡터의 개요를 도식화한 것이다. 3개의 gRNA는 23 bp로 구성되어 있으며, AtU6 프로모터에 의해 발현이 된다.
도 34는 아그로박테리움 매개 유전자 편집 기술을 이용하여 제조한 담배를 나타낸 것이다.(A) 아그로박테리움과 함께 공배양한 후 히그로마이신 존재하에서 체외 배양한 조직에서 싹이 나는 것을 나타낸 것이다. (B) 형질전환 식물을 나타낸 것이다.
도 35 및 도 36은 T1 세대의 생어-염기서열 분석결과를 통해 mono-allelic homo와 bi-allelic homo를 찾아서 단일 또는 이중으로 당이 제거된 식물체를 분류한 것이다.
도 37은 T1 세대 및 T3 세대의 생어-염기서열 분석결과를 통해 mono-allelic homo와 bi-allelic homo를 찾아서 이중으로 당이 제거된 식물체를 분류한 것이다.
도 38은 T1 세대 및 T2 세대의 생어-염기서열 분석결과를 통해 mono-allelic homo와 bi-allelic homo를 찾아서 삼중으로 당이 제거된 식물체를 분류한 것이다.
도 39 및 도 40은 α-1,3 푸코실트랜스퍼라제 유전자 및 ß-1,3 갈락토실트랜스퍼라제 유전자가 녹아웃된 담배로부터 생산된 트라스투주맙의 당패턴을 분석한 것이다.
도 41 및 도 42는 형질전환 식물로부터 수득한 트라스투주맙(GF003)의 당쇄 구조를 분석한 도면이다.
도 43은 형질전환 식물로부터 수득한 트라스투주맙(GF003)의 발현양을 확인한 도면이다. M: 단백질 크기 마커, P: 통과분획(pass fraction), W: 척분획(washing fraction), E: 용출 분획(elution fraction).
도 44는 형질전환 식물로부터 수득한 트라스투주맙(GF003)의 항체의존세포독성(ADCC) 효과를 확인한 도면이다.
이하, 본 발명을 상세히 설명한다.
형질전환 식물
본 발명의 일 측면은, 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13)의 발현이 억제된 형질전환 식물을 제공한다.
상기 형질전환 식물이 베타 1,2-자일로실트랜스퍼라제(beta 1,2-xylosyltransferase, XylT12), 베타 1,3-갈락토실트랜스퍼라제(beta 1,3-galactosyltransferase, GalT13) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 발현이 추가적으로 억제된 것일 수 있다.
구체적으로, 상기 형질전환 식물은 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13)의 발현이 억제된 형질전환 식물일 수 있다. 상기 형질전환 식물은 베타 1,2-자일로실트랜스퍼라제의 발현이 추가적으로 억제된 것일 수 있으며, 이 경우, 상기 형질전환 식물은 알파 1,3-푸코실트랜스퍼라제 및 베타 1,2-자일로실트랜스퍼라제의 발현이 억제된 것일 수 있다. 상기 형질전환 식물은 베타 1,3-갈락토실트랜스퍼라제 의 발현이 추가적으로 억제된 것일 수 있으며, 이 경우, 상기 형질전환 식물은 알파 1,3-푸코실트랜스퍼라제 및 베타 1,3-갈락토실트랜스퍼라제의 발현이 억제된 것일 수 있다. 상기 형질전환 식물은 베타 1,2-자일로실트랜스퍼라제 및 베타 1,3-갈락토실트랜스퍼라제의 발현이 추가적으로 억제된 것일 수 있으며, 이 경우, 상기 형질전환 식물은 알파 1,3-푸코실트랜스퍼라제, 베타 1,2-자일로실트랜스퍼라제 및 베타 1,3-갈락토실트랜스퍼라제의 발현이 억제된 것일 수 있다.
상기 알파 1,3-푸코실트랜스퍼라제는 NbFucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494) 및 NbFucT13_4(Niben101Scf17626)일 수 있다. 상기 NbFucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494) 및 NbFucT13_4(Niben101Scf17626)는 각각 서열번호 70, 71, 72 및 73로 표시되는 염기서열에 의해 코딩되는 것일 수 있다.
이때, 상기 형질전환 식물은 NbFucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494) 및 NbFucT13_4(Niben101Scf17626)을 코딩하는 유전자에 상보적으로 결합하는 sgRNA 및 크리스퍼 연관 단백질의 복합체를 이용하여 알파 1,3-푸코실트랜스퍼라제의 발현이 억제되도록 제작된 것일 수 있다.
상기 NbFucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494) 및 NbFucT13_4(Niben101Scf17626)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA는 서열번호 17 내지 36 중 어느 하나로 표시되는 염기서열을 포함하는 것일 수 있다. 상기 sgRNA가 타겟으로 하는 부분은 도 4 내지 도 5a, 5b, 5c 및 표 6을 참고할 수 있다.
상기 베타 1,2-자일로실트랜스퍼라제는 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)일 수 있다. 상기 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)는 각각 서열번호 75 및 76으로 표시되는 아미노산 서열을 포함하는 것일 수 있다. 상기 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)는 각각 서열번호 77 및 78로 표시되는 염기서열에 의해 코딩되는 것일 수 있다.
이때, 상기 형질전환 식물은 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA 및 크리스퍼 연관 단백질의 복합체를 이용하여 베타 1,2-자일로실트랜스퍼라제의 발현이 억제되도록 제작된 것일 수 있다.
상기 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA는 서열번호 57 내지 62 중 어느 하나로 표시되는 염기서열을 포함하는 것일 수 있다. 상기 gRNA가 타겟으로 하는 부분은 도 31a 내지 도 31c 및 표 13을 참고할 수 있다.
상기 베타 1,3-갈락토실트랜스퍼라제는 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)일 수 있다. 상기 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)는 각각 서열번호 79 및 80으로 표시되는 아미노산 서열을 포함하는 것일 수 있다. 상기 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)는 각각 서열번호 81 및 82로 표시되는 염기서열에 의해 코딩되는 것일 수 있다.
이때, 상기 형질전환 식물은 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA 및 크리스퍼 연관 단백질의 복합체를 이용하여 베타 1,3-갈락토실트랜스퍼라제의 발현이 억제되도록 제작된 것일 수 있다.
상기 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA는 서열번호 63 내지 69 중 어느 하나로 표시되는 염기서열을 포함하는 것일 수 있다. 상기 gRNA가 타겟으로 하는 부분은 도 32a 내지 도 32c 및 표 13을 참고할 수 있다.
상기 식물은 담배, 애기장대, 옥수수, 벼, 대두, 카놀라, 알팔파, 해바라기, 수수, 밀, 목화, 땅콩, 토마토, 감자, 상추 및 고추로 이루어진 군에서 선택되는 어느 하나로부터 유래된 것일 수 있다. 구체적으로 상기 식물은 담배일 수 있다.
상기 형질전환 식물은 형질전환된 식물은 목적 단백질을 코딩하는 유전자를 포함하는 발현벡터가 추가적으로 도입된 것일 수 있다. 구이때, 상기 목적 단백질을 코딩하는 유전자는 서열번호 3으로 표시되는 염기서열; 및 서열번호 4로 표시되는 염기서열을 포함할 수 있다.
상기 발현벡터는 숙주세포(host cell)에서 목적하는 단백질을 발현할 수 있는 벡터로서, 폴리뉴클레오티드(유전자) 삽입물이 발현될 수 있도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다.
본 발명에서 사용하는 용어 "작동가능하게 연결된(operably linked)"이란, 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것으로, 발현조절 서열에 의해 유전자가 발현될 수 있도록 연결된 것을 의미한다.
본 발명에서 사용하는 용어 "발현조절 서열(expression control sequence)"이란, 특정한 숙주세포에서 작동가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열, 개시 코돈, 종결 코돈, 폴리아데닐화 시그널 및 인핸서 등을 포함할 수 있다.
상기 발현조절 서열과 기타 유전자 발현에 필수적인 요소들은 숙주로 하는 식물에서 유래한 것이거나 식물에서의 발현에 최적화된 것이 바람직하다. 예를 들어 식물 유전자의 프로모터 또는 식물을 숙주로 하거나 식물에서 발현가능한 유전자의 프로모터를 본 발명에 따른 식물 코돈 최적화 재조합 유전자에 작동가능하게 연결하여 발현벡터에 삽입할 수 있다.
식물에서 유래한 프로모터로는 당업계에서 통상적으로 이용되는 것이면 어느 것이나 선택하여 사용할 수 있으나, 예를 들어 리불로스-1,6-비스포스페이트(RUBP) 카르복실라제 소형 서브유닛(ssu), 베타-콘글리시닌 프로모터, 파세올린 프로모터, ADH(알콜 데히드로게나제) 프로모터, 충격 프로모터, ADF(액틴 해중합 인자) 프로모터 및 조직 특이 프로모터 등을 제한없이 사용할 수 있다. 또한, 박테리아에서 유래한 옥토파인 중합효소(synthase) 프로모터, 노팔린 중합효소 프로모터, 만노파인 중합효소 프로모터, 및 바이러스에서 유래한 컬리플라워 모자이크 바이러스(CaMV)의 35S 및 19S 프로모터 등을 사용할 수 있다.
또한, 프로모터 외에 전사 효율을 높일 수 있는 인핸서 등 부가적인 발현 조절 서열을 추가적으로 포함할 수 있다. 상기 프로모터는 모든 식물세포에서 계속적으로 유전자를 발현시키는 구성적 프로모터이거나, 특정한 식물의 조직/기관에서만 또는 특정한 식물의 발달 시기에만 유전자를 발현시키거나 빛, 호르몬 등의 특정 자극이나 환경에 의해 프로모터 활성을 갖는 유도성 프로모터일 수 있다.
식물에서의 발현을 위한 발현벡터는 아그로박테리움 바이너리 벡터를 사용할 수 있다. 상기 "바이너리 벡터(binary vector)"는 아그로박테리움으로 매개되는 형질전환에서, 종양 유발 유전자인 Ti 플라스미드(tumor inducible plasmid, Ti plasmid)를 두 개의 플라스미드로 분리한 것으로서, 재조합 유전자를 식물의 유전체로 이동시키는데 필요한 LB(left border)와 RB(right border) 서열을 갖는 플라스미드와 재조합 유전자를 이동시키는데 필요한 단백질을 암호화하는 플라스미드로 분리한 벡터를 의미한다.
변형된 당쇄를 갖는 목적 단백질
본 발명의 다른 측면은, 푸코스(fucose), 자일로스(xylose), 갈락토스(galactose) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 잔기가 포함되지 않은, 변형된 당쇄를 갖는 목적 단백질을 제공한다.
이때, 상기 목적 단백질은 항체일 수 있고, 구체적으로 트라스투주맙일 수 있다. 상기 트라스투주맙은 서열번호 1로 표시되는 아미노산 서열로 이루어진 중쇄 및 서열번호 2로 표시되는 아미노산 서열로 이루어진 경쇄를 포함하는 것일 수 있다.
상기 변형된 당쇄는 푸코스(fucose), 자일로스(xylose), 갈락토스(galactose) 및 이들의 조합으로 이루어진 군으로부터 선택되는 어느 하나의 잔기가 포함되지 않을 수 있다. 구체적으로, 상기 변형된 당쇄는 푸코스를 포함하지 않는 것일 수 있다. 상기 변형된 당쇄는 푸코스 및 자일로스; 푸코스 및 갈락토스를 포함하지 않는 것일 수 있다. 상기 변형된 당쇄는 푸코스, 자일로스 및 갈락토스를 포함하지 않는 것일 수 있다.
또한, 상기 변형된 당쇄는 3개, 7개 또는 8개의 만노스(manose) 잔기 및 2개 또는 4개의 N-아세틸글루코사민(GlcNAc) 잔기를 포함할 수 있다. 구체적으로, 상기 변형된 당쇄는
Figure 112020125973407-pat00001
,
Figure 112020125973407-pat00002
,
Figure 112020125973407-pat00003
,
Figure 112020125973407-pat00004
,
Figure 112020125973407-pat00005
또는
Figure 112020125973407-pat00006
형태일 수 있으며, 이때, 상기
Figure 112020125973407-pat00007
는 만노스이고, 상기
Figure 112020125973407-pat00008
는 N-아세틸글루코사민이며, 상기
Figure 112020125973407-pat00009
는 자일로스이다.
상기
Figure 112020125973407-pat00010
Figure 112020125973407-pat00011
,
Figure 112020125973407-pat00012
또는
Figure 112020125973407-pat00013
일 수 있다. 또한, 상기
Figure 112020125973407-pat00014
Figure 112020125973407-pat00015
,
Figure 112020125973407-pat00016
또는
Figure 112020125973407-pat00017
일 수 있다. 나아가, 상기
Figure 112020125973407-pat00018
Figure 112020125973407-pat00019
또는
Figure 112020125973407-pat00020
일 수 있다.
상기 목적 단백질은 알파 1,3-푸코실트랜스퍼라제의 발현이 억제된 형질전환 식물로부터 생산되는 것일 수 있다. 상기 알파 1,3-푸코실트랜스퍼라제의 발현이 억제된 형질전환 식물은 형질전환 식물에서 상술한 바와 동일하다.
변형된 당쇄를 갖는 목적 단백질(예컨대, 트라스투주맙)을 유효성분으로 포함하는 약학 조성물
본 발명의 다른 측면은, 상기 변형된 당쇄를 갖는 목적 단백질을 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물을 제공한다. 상기 변형된 당쇄를 갖는 목적 단백질은 상술한 바와 동일하다.
상기 목적 단백질은 알파 1,3-푸코실트랜스퍼라제의 발현이 억제된 형질전환 식물로부터 생산되는 것일 수 있다. 상기 알파 1,3-푸코실트랜스퍼라제의 발현이 억제된 형질전환 식물은 형질전환 식물에서 상술한 바와 동일하다.
상기 약학 조성물은 3개, 5개, 7개 또는 8개의 만노스(manose) 잔기 및 2개 또는 4개의 N-아세틸글루코사민(GlcNAc) 잔기를 포함하는 이중 안테나 형태의 당쇄를 갖는 항체의 총량을 100%로 하였을 때, 푸코스(fucose) 잔기가 없는 항체의 양이 99% 이상이고, 상기 당쇄 내에 갈락토스(galactose)의 양이 1% 이하인, 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13)의 발현이 억제된 형질전환 식물로부터 생산된 목적 단백질을 포함하는 것일 수 있다.
상기 약학 조성물은 3개, 5개, 7개, 8개 또는 9개의 만노스(manose) 잔기 및 2개 또는 4개의 N-아세틸글루코사민(GlcNAc) 잔기를 포함하는 이중 안테나 형태의 당쇄를 갖는 항체의 총량을 100%로 하였을 때, 푸코스(fucose) 및 갈락토스(galactose) 잔기가 없는 항체의 양이 95% 이상이고, 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13) 및 베타 1,3-갈락토실트랜스퍼라제(beta 1,3 galactosyltransferase, GalT13)의 발현이 억제된 형질전환 식물로부터 생산된 목적 단백질을 포함하는 것일 수 있다.
상기 약학 조성물은 3개, 5개 또는 8개의 만노스(manose) 잔기 및 2개 또는 4개의 N-아세틸글루코사민(GlcNAc) 잔기를 포함하는 이중 안테나 형태의 당쇄를 갖는 항체의 총량을 100%로 하였을 때, 푸코스(fucose) 및 자일로스(xylose) 잔기가 없는 항체의 양이 95% 이상이고, 상기 당쇄 내에 갈락토스(galactose)의 양이 1% 이하인, 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13) 및 베타 1,2-자일로실트랜스퍼라제(beta 1,2 xylosyltransferase, XylT12)의 발현이 억제된 형질전환 식물로부터 생산된 목적 단백질을 포함하는 것일 수 있다.
상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군으로부터 선택되는 어느 하나인 것일 수 있다.
상기 약학 조성물은 약학적으로 허용되는 담체를 추가로 포함할 수 있다. 경구 투여 시에는 결합제, 활탁제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있고, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소 투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다.
상기 약학 조성물의 제형은 상술한 약제학적으로 허용되는 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여 시에는 정제, 트로키, 캡슐, 엘릴시르, 서스펜션, 시럽, 웨이퍼 등의 형태로 제조될 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조될 수 있다.
약학 조성물은 암 또는 그들의 전이를 치료하거나 암의 성장을 억제하기 위해 약학적으로 효과적인 양으로 투여될 수 있다. 암 종류, 환자의 연령, 체중, 증상의 특성 및 정도, 현재 치료법의 종류, 치료 회수, 투여 형태 및 경로 등 다양한 요인에 따라 달라질 수 있으며, 해당 분야의 전문가들에 의해 용이하게 결정될 수 있다.
상기 약학 조성물은 상기한 약리학적 또는 생리학적 성분과 함께 투여되거나 순차적으로 투여될 수 있으며, 또한 추가의 종래의 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 이러한 투여는 단일 또는 다중 투여일 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
본 명세서에서 사용된 용어 "투여"는 어떠한 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 상기 약학적 조성물은 목적 조직에 도달할 수 있는 한 어떠한 경로를 통해서도 투여될 수 있다. 이러한 투여 방법으로 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 경구 투여, 국소 투여, 비강내 투여, 폐내 투여 또는 직장내 투여 등을 들 수 있으나, 이에 한정되는 것은 아니다. 다만 경구 투여시, 단백질은 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 하는 것이 바람직할 수 있다.
변형된 당쇄를 갖는 항체의 생산 방법
본 발명의 또 다른 측면은, i) 서열번호 3으로 표시되는 염기서열; 및 서열번호 4로 표시되는 염기서열을 포함하는 유전자를 상기 알파 1,3-푸코실트랜스퍼라제의 발현이 억제된 형질전환 식물에 도입하는 단계; ii) 상기 형질전환 식물을 재배하는 단계; 및 iii) 상기 재배한 형질전환 식물로부터 트라스투주맙을 회수하는 단계를 포함하는 변형된 당쇄를 갖는 항체를 생산하는 방법을 제공한다.
상기 형질전환 식물은 상술한 바와 동일하다.
상기 i) 단계는 형질전환 식물에 목적 단백질을 코딩하는 유전자를 포함하는 발현벡터를 도입하는 단계이다. 구체적으로, 상기 식물을 형질전환시키는 방법은 당업계에 공지된 식물의 형질전환 방법을 제한 없이 사용할 수 있다. 당업자는 숙주로 선택한 식물의 특성을 고려하여 특정 식물에 적절한 공지의 형질전환 방법을 선택하여 실시할 수 있다. 이때, 상기 목적 단백질은 항체일 수 있으며, 구체적으로 트라스투주맙일 수 있다.
식물의 형질전환 방법으로는, 예를 들어, 발현벡터를 포함하는 리포좀과 식물 원형질체를 융합하는 방법, PEG를 이용하여 발현벡터를 식물 원형질체로 주입하는 방법, 발현벡터의 식물세포로의 직접주입법, 미세입자충격법, 유전자총, 전기천공법(electroporation), 바이러스를 이용한 형질전환법, 진공을 이용한 형질전환법(vaccum infiltration method), 화아침지법(floral meristem dippingmethod) 등을 사용할 수 있다. 바람직하게는, 상기 식물을 형질전환시키는 방법은 아그로박테리움을 이용한 형질전환 방법을 사용할 수 있다.
상기 '아그로박테리움을 이용한 형질전환 방법'은 식물의 뿌리와 줄기에 종양을 일으키는 토양의 그람 음성 세균인 아그로박테리움을 이용하여 식물세포에 외부 유전자를 전달하는 방법이다. 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens), 아그로박테리움 리조게네스(Agrobacterium rhizogenes) 등의 아그로박테리움에서 발견되는 종양 유발 플라스미드(tumor-inducing plasmid, Ti plasmid)의 T-DNA(transfer DNA)가 식물의 유전체(genome)에 삽입되는 현상을 이용한 방법이다. 아그로박테리움을 이용한 형질전환에서는 식물에 도입하려는 외부 유전자(exogenous DNA)와 T-DNA(외부 유전자의 양쪽 가장자리에 위치하는 LB와 RB 서열)를 포함하는 바이너리 플라스미드(또는 바이너리 벡터) 및 T-DNA가 식물 유전체에 삽입되도록 하는 보조 플라스미드(helper plasmid)의 두 가지 플라스미드로 이루어진 바이너리 시스템을 이용하는 것이 일반적이다. 아그로박테리움을 이용한 형질전환 방법은 잎, 줄기, 뿌리 등 다양한 식물의 조직에 사용할 수 있으며, 어린 조직이 형질전환이 잘되는 경향이 있다.
본 발명에서의 아그로박테리움을 이용한 형질전환 방법을 이용하여 재조합 단백질을 일시적으로 발현(transient expression)할 수도 있고, 안정적 발현(stable expression)할 수도 있다.
일시적인 발현을 위해서는 식물의 일부, 예를 들어 식물의 잎을 재조합 발현벡터를 포함하는 아그로박테리움으로 감염시켜 형질전환하고, 목적하는 단백질이 충분히 발현될 수 있는 시간이 지난 뒤 식물에서 감염된 부분을 수득할 수 있다.
안정적 발현을 위하여 식물의 세포나 조직을 배양하여 아그로박테리움으로 감염시켜 형질전환한 뒤, 추가 배양하여 적합한 형질전환체를 선별하고 재분화 과정을 거친 뒤, 완전한 구조를 갖는 형질전환 식물체로 배양할 수 있다. 상기 형질전환 식물체에서 종자를 수득하고 발아시킴으로써 다음 세대에서도 안정적으로 형질전환 식물을 수득할 수 있다.
상기 ii) 단계는 상기 형질전환 식물을 재배하는 단계이다.
상기 식물을 재배하는 단계는 식물을 형질전환한 후, 목적하는 바에 부합하는 양의 단백질을 발현하는 시간 동안 식물의 성장에 필요한 빛, 온도, 습도 등의 환경 조건과 물, 무기염류, 영양소, 호르몬 등 식물 성장에 필요한 요소들을 제공하는 것을 의미한다.
식물에서 분리된 세포, 조직 또는 이들의 배양물을 형질전환한 경우, 상기 물, 영양소, 무기염류, 생장조절제 등 식물 조직 배양에 필요한 요소들은 배양 배지(culture media)를 통해 전달될 수 있다. 또한 유도성 프로모터를 이용하여 식물에서 본 발명에 따른 EC-SOD을 발현시킨 경우, 상기 유도성 프로모터를 활성화하는데 필요한 해당 자극, 예를 들어 빛, 열 또는 호르몬 등을 가하면서 재배할 수 있다.
상기 iii) 단계는 재배한 형질전환 식물을 수득하고, 이로부터 목적 단백질을 분리 및 회수하는 단계이다.
상기 식물을 수득하는 것은 형질전환되어 목적하는 단백질을 과발현하는 식물의 전체 또는 일부를 수득하는 것을 의미한다. 상기 목적 단백질을 과발현하는 뿌리, 줄기, 잎 등의 형질전환된 부분 또는 형질전환 식물의 종자를 수득하는 것일 수 있으며, 식물세포나 조직의 배양물, 예를 들어 재조합 유전자로 형질전환된 캘러스나 원형질체 등을 수득하는 것일 수도 있다.
또한, 형질전환 식물로부터 목적 단백질을 분리 및 회수하는 방법은 상기 수득한 형질전환 식물을 분쇄하고 여과함으로써 트라스투주맙을 추출할 수 있다. 구체적으로, 크로마토그래피 등의 공지의 방법으로 여과하여 목적 단백질을 고순도로 분리해낼 수 있다. 목적 단백질을 추출하기 위하여 식물을 냉동, 건조시키는 등의 전처리를 할 수 있다. 본 발명에 따른 목적 단백질을 과발현하는 형질전환체 담배를 대량으로 급속 증식하여 목적 단백질을 대량 생산할 수 있다.
본 발명의 또 다른 측면은, 상기 변형된 당쇄를 갖는 목적 단백질을 개체에 투여하는 단계를 포함하는 암의 예방 또는 치료하는 방법을 제공한다. 이때, 상기 목적 단백질은 항체일 수 있으며, 구체적으로, 트라스투주맙일 수 있다.
상기 개체는 인간을 포함하는 포유류일 수 있으며, 인간이 아닌 동물일 수 있다. 상기 "인간이 아닌 동물"이라는 용어는 모든 척추동물로서, 인간이 아닌 영장류, 양, 개, 고양이, 말, 소, 닭, 양서류, 파충류 등과 같은 포유동물 및 비(非) 포유동물을 포함할 수 있다. 또한, 상기 개체는 상기 변형된 당쇄를 갖는 트라스투주맙을 투여하여 질환이 경감, 억제 또는 치료될 수 있는 상태이거나 암 질환을 앓고 있는 개체를 의미한다.
상기 투여는 어떠한 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 투여방법 및 투여경로는 약학 조성물에서 상술한 바와 동일하다.
본 발명의 또 다른 측면은, 암을 예방 또는 치료하기 위한 상기 변형된 당쇄를 갖는 목적 단백질의 용도를 제공한다. 이때, 상기 목적 단백질은 항체일 수 있으며, 구체적으로, 트라스투주맙일 수 있다.
본 발명의 또 다른 측면은, 암의 예방 또는 치료용 약제를 제조하기 위한 상기 변형된 당쇄를 갖는 목적 단백질의 용도를 제공한다. 이때, 상기 목적 단백질은 항체일 수 있으며, 구체적으로, 트라스투주맙일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
I. 비푸코실화된 담배( N . benthamiana ) 제조
실시예 1. 담배의 5개의 알파-1,3-푸코실트랜스퍼라제 동정
5개의 NbFucT13의 게놈 DNA를 NCBI(https://blast.ncbi.nlm.nih.gov/Blast.cgi) 및 Sol Genomics Network(https://solgenomics.net;(Fernandez-Pozo et al., 2015))에서 블라스팅하여 담배에서 동정한 후에 시퀀싱하였다.
구체적으로, NbFucT13_1은 7개의 엑손(검은 박스) 및 6개의 인트론(흰 박스)을 포함하는 7,280 bp의 길이를 가지며, 코딩 영역 1,503 bp의 cDNA로 스플라이싱되어 500개의 아미노산으로 번역된다. 또한, NbFucT13_2는 7개의 엑손 및 6개의 인트론을 포함하는 7,728 bp의 길이를 가지며, 코딩 영역 1,500 bp의 cDNA로 스플라이싱되어 499개의 아미노산으로 번역된다. NbFucT13_3은 7개의 엑손 및 6개의 인트론을 포함하는 6,600 bp의 길이를 가지며, 코딩 영역 1,545 bp의 cDNA로 스플라이싱되어 514개의 아미노산으로 번역된다. NbFucT13_4는 7개의 엑손 및 6개의 인트론을 포함하는 13,774 bp의 길이를 가지며, 코딩 영역 1,545 bp의 cDNA로 스플라이싱되어 514개의 아미노산으로 번역된다. NbFucT13_5는 단일 엑손을 포함하는 2,312 bp의 길이를 가지며, 코딩 영역 1,535 bp의 cDNA로 전사되어 509개의 아미노산으로 번역된다. 인트론(검은선)은 NbFucT13_1, NbFucT13_2, NbFucT13_3NbFucT13_4에 보존되어 있지만, 상기 인트론은 NbFucT13_5에는 존재하지 않았다(도 1).
5개의 NbFucT13, 5개의 LsFucT13, 및 2개의 Arabidopsis FUT11 및 FUT12를 갖는 계통수를 도 2에 나타내었다. 5개의 NbFucT13a는 LsFucT13 및 Arabidopsis FUT와 구별되었다. 2개의 NbFucT13_1 및 NbFucT13_2를 그룹화 하고 나머지 NbFucT13_3, NbFucT13_4, 및 NbFucT13_5를 그룹화 하였다. NbFucT13_1 단백질은 NbFucT13_2, NbFucT13_3, NbFucT13_4, 및 NbFucT13_5와 각각 88%, 77%, 78%, 및 73% 단백질 동일성을 가졌다. NbFucT13_2는 NbFucT13_3, NbFucT13_4, 및 NbFucT13_5와 각각 71%, 72%, 및 72% 단백질 동일성을 가졌다. NbFucT13_3은 NbFucT13_4 및 NbFucT13_5와 각각 95% 및 89% 단백질 동일성을 가졌다. NbFucT13_4는 NbFucT13_5와 각각 91% 단백질 동일성을 가졌다. 5개의 NbFucT13은 5개의 LsFucT13 단백질과 41% 내지 69%의 동일성을 가졌고, 2개의 Arabidopsis FUT 단백질과 60% 내지 67%의 동일성을 가졌다(하기 표 1 참조).
Figure 112020125973407-pat00021
실시예 2. NbFucT13 의 전사 측정
5개의 NbFucT13의 정량적인 전사 측정을 위해, NbFucT13_1NbFucT13_2에 대한 5' 비번역 영역(UTR)을 증폭하도록, NbFucT13_3NbFucT13_4에 대해 3' UTR 영역을 증폭하도록 프라이머 쌍을 설계하였다. NbFucT13_5에 대해 단일 엑손 상에서 증폭하도록 프라이머 쌍을 설계하였다. 모든 프라이머를 각각의 유전자 발현을 나타내는 유전자 특이적 영역 상에 설계하였다. 5개의 NbFucT13에 대해 설계한 프라이머는 하기 표 2에 나타내었다.
Figure 112020125973407-pat00022
상기 표 2에 기재된 프라이머들을 이용하여 5개의 NbFucT13의 정량적인 전사를 측정하였다. 구체적으로, QIAzol Lysis Reagent(Cat NO. 79306, QIAGEN)를 사용하여 제조사의 매뉴얼에 따라 조직 식물에서 총 RNA를 분리하였다. 2 ㎍의 전체 RNA를 사용하여 RevertAid RT Reverse Transcription Kit(Cat NO. K1691, Molecular Biology, Thermo fisher)를 사용하여 역전사 과정을 수행한 후, 1차 가닥의 DNA의 실시간 정량적 PCR(RT-qPCR) 분석을 수행하였다.
정량적 PCR은 20 ㎕의 부피로 KAPA SYBR® FAST qPCR Master Mix(2X) Kit(Cat NO. KK4601, KAPABiosystems)를 사용하여 StepOnePlus™ Real-Time PCR System Upgrade(Cat No. 4379216, Applied Biosystems)로 96-웰 블록에서 수행하였다. 반응을 각 수행마다 3회 중복하여 실시하였고, 적어도 2개 이상의 생물학적 복제를 포함시켰다. 절대 정량은 개별 유전자를 함유하는 cDNA의 연속 희석의 증폭에 의해 생성된 표준 곡선을 사용하여 수행하였다. 상이한 샘플에서 각 유전자의 전사 수준을 내부 대조군 PP2A mRNA에 대해 표준화하였다.
그 결과, 5개의 NbFucT13 전사체는 뿌리, 줄기, 4주령 잎, 6주령 잎, 및 꽃에서 보편적으로 존재하였다(도 3). 이때, 두드러진 발현 패턴 없이 상이한 조직에서 일관되게 발현되는 전사체 수준을 기준으로 하였고, 5개의 NbFucT13 모두 전사 활성이었다.
실시예 3. NbFucT13 를 타겟으로 하는 sgRNA의 설계 및 벡터 제작
고도로 보존된 엑손 서열을 정렬하여 CRISPR/Cas9 RNP의 결합 부위인 sgRNA 표적 영역을 동정하였다. DNA-프리 게놈 편집 방법을 사용하기 위해, 3개의 sgRNA가 5개의 NbFucT13이 녹아웃 시킬 수 있도록 sgRNA를 설계하였다(도 4).
PFT1 sgRNA는 5개의 NbFucT13 중 엑손 4에 표적되며, 20 bp의 PFT1은 NbFucT13_1 NbFucT13_2와 완전히 일치하지만, PFT1은 NbFucT13_3NbFucT13_4에서 PFT1 표적 부위의 PAM 서열의 20번째 상류에서 "G"에서 "C"로의 하나의 불일치를 갖고, 붉은색의 단일 뉴클레오티드 다형성(SNP)으로 인해 NbFucT13_5에서 PFT1 표적 부위의 PAM 서열의 5번째 및 20번째 상류에서 "T"에서 "C"로 및 "G"에서 "C"로의 2개의 불일치를 갖는다(도 4).
PFT2 sgRNA는 5개의 NbFucT13 중 엑손 5에 표적되며, 20 bp의 PFT2는 NbFucT13_1 NbFucT13_2와 완전히 일치하지만, PFT2는 NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에서 PTF2 표적 부위의 PAM 서열의 8번째 및 18번째 상류에서 "T"에서 "A"로 및 "C"에서 "A"로의 2개의 불일치를 갖는다.
PFT3 sgRNA는 5개의 NbFucT13 중 엑손 3에 표적되며, 20 bp의 PFT3은 NbFucT13_1 NbFucT13_2와 완전히 일치하지만, PFT3은 NbFucT13_3NbFucT13_4의 PFT3 표적 부위에 5개의 불일치를 갖고, NbFucT13_5의 PFT3 표적 부위에 4개의 불일치를 갖는다. 아그로박테리움(Agrobacterium)-매개 게놈 편집 방법을 사용하여, 5-유전자-편집된 계통 사이에서 혼동을 방지하기 위해 6개의 sgRNA를 DNA-프리 방법의 3개의 sgRNA와 다르게 설계하였다.
AFT1 및 AFT2는 NbFucT13_1의 엑손 1을 표적하고(도 5a), AFT3 및 AFT4는 FucT13_2의 엑손 1을 표적하고(도 5b), AFT5 및 AFT6은 NbFucT13_3, NbFucT13_4, 및 NbFucT13_5의 엑손 1을 표적하였다(도 5c). 6개의 sgRNA를 모두 일렬로(tandemly) 배열된 tRNA-표적 20 bp-sgRNA 스캐폴드 시스템으로 제작하였고, 골든-게이트 클로닝 시스템을 사용하여 각각의 일렬의 tRNA-sgRNA를 또 다른 일렬의 tRNA-sgRNA와 결합시켰다. 6개의 일렬 반복을 AtU6 프로모터 아래에 배치하였다(도 6).
실시예 4. SpCas9 및 FnCpf1 제조
실시예 4.1. pET28a-SpCas9-BPNLS 또는 pET28a-FnCpf1-BPNLS의 BL21 수용 세포(competent cell)로의 형질전환
먼저, SpCas9는 플라스미드 벡터, pET28a-SpCas9(S. pyogenic Cas9) 및 pET28a-FnCpf1(Francisella novicida Cpf1)을 E. coli 균주 BL21 DE3에 형질전환시켰다. 그 후, 상기 균주가 충분히 배양되었을 때, 균주를 파쇄하고, His6-태그를 이용해 정제하였다. 이때, 발현 가능한 플라스미드 벡터는 N-말단 His6-태그 및 SpCas9의 1 내지 1368 번째 아미노산 서열을 코딩하는 염기서열이 포함된다.
1일차에는 상기 제조한 pET28a-SpCas9-BPNLS 또는 pET28a-FnCpf1-BPNLS를 수용 BL21 RosettaTM2(DE3) pLysS(Novagen, Madison, WI) 세포(Agilent, Santa Clara, CA)에 화학적으로 형질전환하였다. 10 ng의 플라스미드 DNA를 50 ㎕의 해동시킨 수용 세포에 처리하고 얼음에서 30분 동안 배양하였다. 그 후, 42℃ 온도에서 1분 동안 배양하여 세포에 열충격(heat-shock)을 가하고, 600 ㎕의 SOC 배지를 세포에 첨가하고 진탕배양기에서 37℃ 온도에서 1시간 동안 배양물을 배양하였다. 50 ㎍/㎖/ℓ의 카나마이신이 포함된 LB 한천 상에 50 ㎕의 배양물을 분주하였다. 상기 플레이트를 37℃ 온도에서 하룻밤 동안 배양하였다.
실시예 4.2. 세포 배양
2일차에는 연속 희석(원래, 1,000Х, 100,000Х 희석)된 3개의 25-㎖ 종균 배양물을 진탕(baffled) 플라스크에서 하룻밤 동안 배양하여 성장시켰다. 한천 플레이트로부터 1개의 콜로니를 선택하여 50 ㎍/㎖/ℓ의 카나마이신을 포함하는 25 ㎖의 LB배지에 접종하였다(원래). 그 후, 25 ㎕을 50 ㎍/㎖/ℓ의 카나마이신을 포함하는 새로운 25 ㎖의 LB배지로 옮겼다(1,000 희석). 250 ㎕을 50 ㎍/㎖/ℓ의 카나마이신을 포함하는 새로운 25 ㎖의 LB배지로 옮겼다(100,000 희석). 예비 배양물을 진탕배양기에서 30℃ 또는 37℃ 온도, 250 rpm 조건에서 하룻밤 동안 배양하였다.
실시예 4.3. SpCas9 또는 FnCpf1 단백질 생성
10 ㎖의 예비 배양물을 사용하여 21개의 진탕 플라스크 내의 50 ㎍/㎖/ℓ의 카나마이신이 보충된 500 ㎖의 사전 가온된 LB배지에 접종하였다. 세포를 2×500 ㎖의 총 배양 부피로 한번에 발현시켰다. 배양물을 진탕배양기에서 37℃ 온도 및 200 rpm 조건에서 배양하면서 600 nm 파장에서의 광학 밀도(O.D.값)를 매 시간마다 측정하여 세포 성장을 모니터링하였다. 0.6 내지 0.7의 O.D값에서, 온도를 18℃로 낮추고 500 ㎕의 0.5 M IPTG(isopropyl-β-D-1-thiogalactopyranoside)를 각각의 플라스크에 첨가하고 20시간 동안 진탕 배양하였다.
실시예 4.4. 세포 재현탁
세포 배양액을 500 ㎖의 튜브 넣고 4,000 rpm 조건에서 30분 동안 원심분리하였다. 상청액을 제거하고, 1 ℓ의 세포 배양액에서 세포 펠릿 당 25 ㎖의 용균 완충액(20 mM Tris-HCl(pH 8.0), 0.5 NaCl, 5 mM 이미다졸, 1 mM 1,4-디티오트레이톨(DTT), 및 1 mM 페닐메틸설포닐 플루오라이드(PMSF))을 사용하여 세포 펠릿을 재현탁하였다. 재현탁한 세포 펠릿은 추가 정제하여 바로 사용하거나, 액체 질소 내에서 급속 냉각하여 SpCas9 또는 FnCpf1 정제 과정까지 -80℃ 온도에서 보관하였다.
실시예 4.5 세포 용균
초음파분산기를 사용하여 재현탁된 세포 펠릿을 용균하였다. 이때, 세포 현탁물을 초음파분산기에서 40%의 진폭으로 1분 동안 3회 내지 4회 분쇄시켜 세포가 완전히 용균되도록 하였다. 세포 현탁물은 얼음 위에서 용균되었으며, 용균물을 얼음 위에서 보관되었다.
실시예 4.6. 파편(debris) 제거
그 후, 용균물을 50 ㎖ Nalgene Oak Ridge 튜브 내에서 4℃ 온도 및 15,000 rpm(~30,000Хg) 조건에서 60분 동안 원심분리하였다. 그 후, 상청액을 수집하여 1 ㎛ 및 0.45 ㎛의 2개의 연결된 주사기 필터로 여과하고 여과물을 수집하였다.
실시예 4.7. 결합 완충액 및 용리 완충액 제조
먼저, 결합 완충액(20 mM Tris-HCl(pH 8.0), 0.5 M NaCl, 5 mM 이미다졸, 및 1 mM DTT)을 제조하였다. 또한, 용리 완충액(20 mM Tris-HCl(pH 8.0), 0.5 M NaCl, 500 mM 이미다졸, 및 1 mM DTT)을 제조하였다. Histrap-HP 친화 컬럼으로 정제하였다.
이때, 모든 크로마토그래피 단계는 4℃ 온도에서 수행하였다. 20 ㎖의 정제된 용균물을 수퍼루프 상에 한번에 탑재하였다. 단백질이 부착된 컬럼을 결합 완충액(20 mM Tris-HCl(pH 8.0), 0.5 M NaCl, 5 mM 이미다졸) 중에서 평형된 FPLC 시스템에 부착하였다. 흡광도가 다시 기준선에 거의 도달할 때까지 50 ㎖의 세척 완충액으로 5 ㎖/분으로 세척하였다. 50 ㎖의 용리 완충액(20 mM Tris-HCl(pH 8.0), 0.5 M NaCl, 500 mM 이미다졸)으로 용리하였다. Histrap-HP 컬럼을 사용하는 다음 단계에서 유속을 5 ㎖/분으로 설정하고 압력 한계를 0.3 MPa로 설정하였다. 2개의 5 ㎖ 분획을 수집하였다.
실시예 4.8. HisTrap-HP 친화성 컬럼을 이용한 His-단백질 정제
50 ㎖ 주사기를 Histrap-HP 컬럼에 연결하였다. Histrap-HP 컬럼을 10 컬럼 부피의 증류수로 세척하였다. 새로운 50 ㎖ 주사기로 교체하고, 이를 Histrap-HP 컬럼에 연결하였다. Histrap-HP 컬럼을 10 컬럼 부피의 결합 완충액으로 평형화하였다. 주사기 피스톤을 눌러서 유속 및 FPLC 유속(5 ㎖/분)을 조정하였다. 새로운 50 ㎖ 주사기로 교체하고, 이를 Histrap-HP 컬럼에 연결하였다. 10 ㎖의 여과물을 50 ㎖ 주사기에 탑재하였다. 주사기 피스톤을 눌러서 유속 및 FPLC 유속(5 ㎖/분)을 조정하였다. 유속 통과물을 수집하여 His-단백질 손실을 관찰하였다. 새로운 50 ㎖ 주사기로 교체하고, 이를 Histrap-HP 컬럼에 연결하였다. 컬럼을 10 컬럼 부피의 결합 완충액으로 세척하였다. 새로운 50 ㎖ 주사기로 교체하고, 이를 Histrap-HP 컬럼에 연결하였다. 5 컬럼 부피의 용리 완충액을 첨가하였다. 5 ㎖의 용리물마다 분획화하였다. 새로운 50 ㎖ 주사기로 교체하고, 이를 Histrap-HP 컬럼에 연결하였다. 컬럼을 10 컬럼 부피의 결합 완충액으로 세척하였다.
실시예 4.9. His-정제된 SpCas9 또는 FnCpf1 단백질 탈염
10 ㎖의 분획을 53 ㎖ HiPrep 탈염 컬럼을 사용하여 10 ㎖의 저장 완충액(20 mM HEPES, 150 mM KCl, 1 mM DTT, pH7.5, 10 %(v/v) 글리세롤, 1 mM DTT)으로 탈염하였다. 이때, DTT는 사용 직전에 첨가되었다. 그 후, SDS-PAGE를 사용하여 피크 분획을 분석하였다. 브래드포드(Bradford) 분석을 이용하여 단백질 농도를 추정하였다.
실시예 4.10. 농축
용리된 SpCas9 또는 FnCpf1 단백질을 30 kDa Amicon(Millipore)을 사용하여 농축하고, 실험에 요구되는 농도가 되도록 하였다. 이때, SpCas9 또는 FnCpf1 단백질은 침전없이 3 ㎎/㎖ 내지 7 ㎎/㎖까지 농축될 수 있다. 농도는 1 ㎎/㎖이 280 nm 파장에서 0.76의 흡광도를 갖는다(120,450/Mcm의 계산된 흡광 계수를 기초로 함)는 가정에 기초하여 결정하였다.
실시예 5. sgRNA 전사
실시예 5.1. 단일 가닥 sgDNA의 이량체화
sgRNA 전사를 위한 주형을 생성하기 위하여, T7(5'-TAATACGACTCACTATA-3') 프로모터 서열, PAM이 없는 20개 염기의 표적 부위, 및 상보적 영역을 함유하는 유전자 특이적 올리고뉴클레오티드를 tracrRNA 꼬리의 역-상보체를 코딩하는 일정한 올리고뉴클레오티드에 어닐링시켰다. ssDNA 오버행을 T4 DNA 중합효소(M0203S, NEB)로 채우고, 생성된 sgRNA 주형을 QIAquick PCR 정제 키트(28104, QIAGEN)를 사용하여 정제하였다. sgRNA는 MEGAshortscript™ T7 Transcription Kit(A1335, ThermoFisher)를 사용하여 전사시켰다. 이어서 모든 sgRNA를 DNase로 처리하고 MEGAclear™ Transcription Clean-Up Kit(A1908, ThermoFisher)로 처리하였다. Microplate Reader System(FLUOstar Omega, BMG LABTECH)을 사용하여 RNA 농도를 정량화하였다.
구체적으로, SpCas9는 단일 올리고뉴클레오티드 사슬 내의 crRNA 및 tracrRNA 분자의 필수 부분이 결합된 키메라 sgRNA로 프로그램화될 수 있다(Jinek et al., 2012). 생성된 sgRNA는 이의 상류에 T7 중합효소 결합 부위 및 이의 하류에 Cas9 단백질 결합 부위를 갖는 20-mer 표적 특이적 서열을 포함하였다. 유전자 특이적 표적화 서열의 설계는 웹 도구 CHOPCHOP(http://chopchop.cbu.uib.no)를 사용하여 수행하였다. 상기 sgRNA를 어떠한 불일치도 없이 코딩 영역 내를 표적화하도록 설계하였으며, 서열은 바람직하게는 5'-말단에 GG를 포함하고 있었다. 상기 서열은 이의 PAM 모티프로서 NGG가 뒤따랐다. 이중-RNA 가이드를 사용하는 경우, crRNA 가이드는 5'-말단 20-nt 스페이서 서열과, 이어서 3'-말단에 불변의 76-nt 가이드 RNA 스캐폴드로 이루어져 있다(5'-XXXXXXXXXXXXXXXXXXXX-GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGC -3').
실시예 5.2. Cas9 sgRNA에 대한 전사 주형 제조
표적 특이적 sgRNA 서열을 이의 5'-말단에 17-mer T7 프로모터 영역, 및 이의 3'-말단에 23-mer gRNA 스캐폴드 어닐링 영역과 함께 합성하였으며, 상기 올리고뉴클레오티드의 총 길이는 60-mer가 되도록 하였다. 전사된 sgRNA가 이의 3'-말단에 gRNA 결합 영역을 갖도록 하기 위해, 80-mer gRNA 스캐폴드 서열을 또한 따로 합성하였다. 이어서, 60-mer 및 80-mer 올리고뉴클레오티드를 써모사이클러(thermocycler)를 사용하여 함께 어닐링하고, 완성된 dsDNA를 T4 DNA 중합효소 및 주형으로서 어닐링된 이량체화된 올리고뉴클레오티드를 사용하여 합성하였다.
실시예 5.3. SpCas9 sgRNA에 대한 전사 주형의 대안적인 제조
T7 프로모터 및 가이드 RNA 스캐폴드를 포함하는 플라스미드를 제작하였다. 골든 게이트 클로닝 방법으로 2개의 BsaI 유형 IIS 제한 효소에 의해 T7 프로모터와 가이드 RNA 스캐폴드 사이에 위치한 2개의 BsaI 부위(A↓TAGGTGAGACCGCAGGTCTCG↓GTTTT)의 중앙에 표적의 20 bp의 이중 가닥 올리고뉴클레오티드만을 클로닝하였다. 순방향 단일 올리고뉴클레오티드는 표적 20 nt 앞에 5′-TAGG-3′오버행을 포함해야 하고, 역방향 단일 뉴클레오티드는 역방향 표적 20 nt 앞에서 5′-CAAA-3′로 시작해야 한다. 둘 모두 1 피코몰의 순방향 및 역방향 단일 올리고뉴클레오티드를 45 ㎕의 증류수 중에 혼합하고, 이를 0.2 ㎖ PCR 튜브에 옮기고, 써모사이클러에 의해 95℃ 온도에서 5분 및 55℃ 온도에서 10분 어닐링(annealing)하고, 어닐링된 올리고뉴클레오티드를 얼음 위에 두었다. 그 결과, 이량체화된 올리고뉴클레오티드를 사용하여 2개의 플랭킹 서열인 5-CCTA-3′및 5′-GTTT-3′을 갖는 선형 플라스미드 내로 클로닝하였다. 완성된 작제물을 주형으로서 sgRNA를 합성하는데 사용하였다.
실시예 5.4. FnCpf1 crRNA에 대한 전사 주형 제조
T7 프로모터 및 가이드 RNA 스캐폴드를 포함하는 플라스미드를 제작하였다. 골든 게이트 클로닝 방법으로 2개의 BsaI 유형 IIS 제한 효소에 의해 가이드 RNA 스캐폴드의 말단에 표적의 20 bp 이중 가닥 올리고뉴클레오티드만을 클로닝하였다. 이때, 순방향 단일 올리고뉴클레오티드는 표적 20 nt 앞에 5′-AGAT-3′오버행을 포함해야 하고, 역방향 단일 뉴클레오티드는 역방향 표적 20 nt 앞에서 5′-AAAA-3′으로 시작해야 한다. 둘 모두 1 피코몰의 순방향 및 역방향 단일 올리고뉴클레오티드를 45 ㎕의 증류수 중에 혼합하고, 이를 0.2 ㎖ PCR 튜브에 옮기고, 써모사이클러에 의해 95℃ 온도에서 5분 및 55℃ 온도에서 10분 어닐링하고, 어닐링된 이중가닥 올리고뉴클레오티드(dsODN)를 얼음 위에 두었다. 그 결과, 이량체화된 올리고뉴클레오티드를 사용하여 2개의 플랭킹 서열인 5′-ATCT-3′ 및 5′-TTTT-3′을 갖는 선형 플라스미드 내로 클로닝하였다. 완성된 작제물을 주형으로서 sgRNA를 합성하는데 사용하였다.
실시예 5.5. FnCpf1 crRNA에 대한 전사 주형의 대안적인 제조
T7 프로모터 앞에 5 nt 오버행, 19 nt T7 프로모터, 및 20 nt 표적 스페이서 서열로 이루어진 2개의 63 nt 단일 가닥 올리고뉴클레오티드를 합성하였다. 둘 모두 10 ㎕의 200 nmol의 순방향 및 역방향 단일 올리고뉴클레오티드를 혼합하고, 20 ㎕의 혼합물을 0.2 ㎖ PCR 튜브에 옮기고, 써모사이클러에 의해 95℃ 온도에서 5분 및 55℃ 온도에서 10분 어닐링하고, 어닐링된 dsODN을 얼음 위에 두었다.
실시예 5.6. PCR 증폭에 의한 sgRNA에 대한 dsDNA 주형의 증폭
sgRNA 합성을 위한 전사 주형을 적절한 PCR 프라이머(순방향 프라이머는 5′-AATTCTAATACGACTCACTATAGG-3′이고, 이는 T7 프로모터 서열 앞에 추가의 5개의 AATTC를 포함하고, 역방향 프라이머는 sgRNA 스캐폴드 5′-GCACCGACTCGGTGCCACTT-3′의 말단에 있음)를 사용하여 플라스미드 또는 합성 올리고뉴클레오티드 주형으로부터 PCR 증폭을 할 수 있다. 다량의 dsDNA 주형을 PCR 수행으로 간단하게 수득하였다. Q5® 중합효소를 전사 주형을 증폭하는데 사용하였다. PCR 증폭물은 DNA 전기영동을 수행하여 농도를 예측하고 증폭물 크기를 T7 RNA 전사 합성에서 사용하기 전에 확인하였다. 이때, PCR 혼합물은 전사 반응에서 적어도 10X로 희석하는 경우 바로 사용할 수 있다. 그러나, 정제된 PCR 증폭물을 사용하는 것이 수율이 더 좋다. PCR 증폭물을 상업용 정제(clean-up) 키트 지침에 대한 프로토콜에 따라 정제할 수 있다. PCR 조건을 하기 표 3 및 표 4에 나타내었다.
Figure 112020125973407-pat00023
Figure 112020125973407-pat00024
실시예 5.7. T7 RNA 중합효소에 의한 sgRNA 전사
일반적으로, 1.4 ㎛(1 ㎍의 120 bp PCR 증폭물 또는 어닐링된 dsODN)을 20 ㎕ 시험관 내 전사 반응에서 사용하였다. 이때, 1 ㎍ 주형을 사용하는 것이 1 ㎍/㎕ 초과의 고농도로 100 ㎍ sgRNA를 회수하는데 결정적으로 필요하다.
RNase 오염을 피하기 위해 장갑을 끼고 뉴클레아제가 없는 튜브 및 시약을 사용하였다. 반응은 전형적으로 20 ㎕이지만 필요에 따라 증가할 수 있다. 반응은 뉴클레아제가 없는 마이크로원심분리 튜브 또는 PCR 스트립 튜브에서 구성하였다.
MEGA short script T7 전사 키트 또는 HiScribe™ T7 High Yield RNA 합성 키트의 성분을 해동 및 혼합하여 마이크로원심분리에서 펄스-스핀하여 튜브의 바닥에 용액을 수집하였으며, 그 후, 얼음 위에 두었다.
하기 표 5에 기재된 조건으로 PCR 반응액을 제조하였다.
Figure 112020125973407-pat00025
상기 PCR 반응액을 완전히 혼합하고 마이크로원심분리기에서 펄스 스핀하였다. 최대 수율을 위해 37℃ 온도에서 4시간 이상(O/N 가능) 배양하였다. 이때, 16시간 동안 반응물을 배양하는 것이 안전하다. sgRNA의 양은 4시간 내에 충분히 합성될 수 있으며, 샘플의 증발을 방지하기 위해 써모사이클러에서 배양하였다. DNase를 처리하여 DNA 주형을 제거한 후, 주형 DNA를 제거하기 위해, 20 ㎕의 뉴클레아제가 없는 물을 각각의 20 ㎕ 반응물에 첨가하고, 이어서 2 ㎕의 DNase I(RNase 없음)을 첨가하고, 37℃ 온도에서 15분 동안 배양하였다.
실시예 5.8. sgRNA 정제 (1)
15분 후에, 전사 생성물을 MEGAclean-up 키트를 통해 정제하였다. 정제된 생성물을 새로운 1.5 ㎖ 튜브에 옮겨 100 ㎕의 용리 용액을 첨가하였다. 그 후, 350 ㎕의 결합 용액 농축물을 샘플에 첨가하였다. 피펫팅으로 혼합하고, 250 ㎕의 100% 에탄올을 샘플에 첨가하고 피펫팅으로 혼합하였다. MEGAclean-up 키트의 매뉴얼에 따라, 혼합한 샘플을 스핀-다운 컬럼/2 ㎖에 옮겼다. 12,000 rpm 조건에서 1분 동안 원심분리하였다. 스핀-다운된 용액을 제거하고, 500 ㎕의 세척 용액을 첨가한 후, 다시 12,000 rpm 조건에서 1분 동안 원심분리하였다. 다시 한번, 스핀-다운된 용액을 제거하고, 500 ㎕의 세척 용액을 첨가한 후, 12,000 rpm 조건에서 1분 동안 원심분리 하였다. 스핀-다운된 용액을 제거하고, 스핀-컬럼/2 ㎖ 튜브를 12,000 rpm 조건에서 1분 동안 원심분리하였다. 스핀-컬럼만 새로운 1.5 ㎖ 튜브에 옮겼다. 50 ㎕의 물을 스핀-컬럼/1.5 ㎖ 튜브에 각각 첨가하였다. 스핀-컬럼/1.5 ㎖ 튜브를 70℃ 온도의 힛-블록 위에 10분 동안 반응시켰다. 10분 후에, 스핀-컬럼/1.5 ㎖ 튜브를 12,000 rpm 조건에서 1분 동안 원심분리 하였다. 50 ㎕의 물을 스핀-컬럼/1.5 ㎖ 튜브에 각각 추가로 첨가하였다. 스핀-다운된 용액에서 sgRNA의 농도를 측정하였다.
실시예 5.9. sgRNA 정제 (2)
15분 후에, 전사 생성물을 에탄올 침전에 의해 정제하였다. 에탄올 침전은 sgRNA 농축뿐만 아니라 100 nt 미만의 소형 RNA에도 적용할 수 있다. FnCpf1 crRNA 크기는 100 nt보다 훨씬 작은 66 nt이며, 이는 MEGAclean-up 키트를 사용하기 위한 최소 크기이다. PCR 증폭물의 1/10 부피의 3M 소듐 아세테이트를 PCR 증폭물에 첨가하고, 샘플을 거꾸로 뒤집어서 부드럽게 혼합하였다. 100% 에탄올을 각각의 샘플 튜브에 첨가하였다. 샘플 튜브를 -20℃ 온도에서 30분 동안 배양하였다. 침전된 sgRNA를 4℃ 온도 및 14,000 rpm(16,900Хg) 조건에서 10분 동안 원심분리하였다. 상청액을 제거하고 sgRNA 펠릿을 200 ㎕의 70% 에탄올로 세척하였다. 1분 동안 원심분리하고, 상청액을 제거하고 sgRNA 펠릿을 5분 동안 공기중에서 건조시켰다. sgRNA 펠릿을 50 ㎕의 RNase가 없는 물에 용해시켰다. 260 nm 파장에서의 자외선 흡광도를 측정하여 RNA 농도를 결정하였다.
실시예 6. CRISPR/Cas9을 이용한 형질감염 후 식물 재생
원형질체가 시험관 내 소식물체(plantlet)의 4주령의 5번째 내지 8번째 잎에서 나왔다. CRISPR/Cas9 형질감염 후, 원형질체를 저-용융 한천 배지에 고정시켰다. 고정된 원형질체가 포매(embedding) 후 5일차에 번식하여 마이크로캘러스가 형성되었다(도 7; a). 마이크로캘러스를 2,4-D 및 BAP 식물호르몬을 함유하는 1/2 B5 배지에서 계대배양 하였다(도 7; b 내지 d). 포매 후 3 개월차에 39개의 캘러스 표면에 17개의 녹색 싹이 나타났다(도 7; e). 17개의 녹색 싹은 포매 후 4개월차에 소식물체로 변하였으며, 17개의 소식물체는 포매 후 5개월차에 식물 호르몬이 없는 1/2 MS 배지에 뿌리를 내렸다(도 7; f). 17개의 소식물체가 편집된 NbFucT13 유전자를 포함하고 있는지 여부를 시험하였다.
구체적으로, 먼저, 녹아웃 작제물은 카나마이신 및 히그로마이신에 대한 양성 선별을 위한 항생제 내성 유전자 카세트, Cas9 카세트 및 일렬 폴리시스트로닉 tRNA-gRNA 카세트를 포함하였다. 인간 코돈 최적화된 Cas9 유전자를 pCAMBIA1300 플라스미드 내로 클로닝하여 Cas9 단백질이 발현되도록 하였다. AtUbi(Arabidopsis thaliana ubiquitin 10) 프로모터를 사용하여 담배에서 hCas9 발현을 유도하였다. 담배 세포에서 Cas9 단백질의 핵 위치화(localization)를 용이하게 하기 위해, 이연(bipartite)(KRPAATKKAGQAKKKK) 핵 위치화 신호를 hCas9 개방형 판독 틀의 아미노 및 카복실 말단에 각각 추가하였다. 6개의 gRNA를 pCAMBIA-Cas9에 삽입하였으며, gRNA가 A.thaliana U6 프로모터의 제어 하에 발현되었다. gRNA가 N.benthamiana 유전자 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4 및 NbFucT13_5를 표적화하도록 설계하였다.
담배(Nicotiana benthamiana) 종자를 0.4% 히포클로라이트 용액에서 1분 동안 멸균시키고, 증류수로 3회 세척하고, 2% 수크로스가 보충된 0.5ХGamborg B5 고체 배지에 뿌렸다. B5 배지에서 성장한 4주령 잎을 효소(1.5% 셀룰로스 R10, 0.3% 마세로자임 R10, 0.5 M 만니톨, 8 mM CaCl2, 5 mM MES [pH 5.7], 0.1% BSA)로 4시간 동안 25℃ 온도에서 어두운 곳에서 반응시켰다.
둥근 바닥 튜브에서 100×g에서 6분 동안 원심분리하여 원형질체를 수집하기 전에 혼합물을 여과하였다. 재현탁된 원형질체를 W5(154 mM NaCl, 125 mM CaCl22H2O, 5 mM KCI, 2 mM MES [pH5.7]) 용액으로 세척하고, 100Хg 조건에서 6분 동안 원심분리하여 펠릿화 하였다. 마지막으로, 원형질체를 MMG(0.4 M 만니톨, 15 mM MgCl2, 4 mM MES [pH 5.7]) 용액에 재현탁하고 혈구계수기를 사용하여 현미경으로 계수하였다. 원형질체를 MMG 용액의 1Х106 원형질체/㎖의 밀도로 희석하고 PEG-매개 형질감염 전에 4℃ 온도에서 적어도 30분 동안 안정화시켰다.
2Х105 원형질체 세포를 시험관 내-전사된 sgRNA(20 ㎍)와 미리 혼합한 Cas9 단백질(10 ㎍)로 형질감염시켰다. 형질감염 전에, Cas9 단백질을 1Х NEB 완충액 3 중에서 sgRNA와 혼합하고 실온에서 10분간 배양하였다. 200 ㎕ MMG 용액에 재현탁된 원형질체 혼합물을 10 ㎕ 내지 20 ㎕의 RNP 복합체 및 210 ㎕ 내지 220 ㎕의 제조한 PEG(0.2M 만니톨, 40% w/v PEG-4000, 100 mM CaCl2) 용액과 혼합하고 25℃ 온도에서 15분간 배양하였다.
실온에서 15분 배양한 후, 840 ㎕ 내지 880 ㎕의 W5 용액을 첨가하여 형질전환을 중단시켰다. 이어서, 원형질체를 실온에서 100×g 조건에서 2분간 원심분리하여 펠릿을 수집하고, 1 ㎖의 세척 완충액을 첨가하여 100×g 조건에서 2분간 추가로 원심분리하여 한번 더 세척하였다. 원형질체의 밀도를 1×105/㎖로 조정한 후, 이를 변형 PIM(B5 배지 1.58 g, 수크로오스 103 g, 2,4-D 0.2 ㎎, BAP 0.3 ㎎, MES 0.1 g, CaCl22H2O 375 ㎎, NaFe-EDTA 18.35 ㎎ 및 숙신산 나트륨 270 ㎎) 배지에서 배양하였다.
RNP-형질감염된 세포를 PIM 배지에 재현탁시켰다. 세포를 PIM 배지와 2.4% 아가로스의 1:1 용액과 혼합하여 2.5Х105 세포/㎖의 배양 밀도로 만들었다. 아가로스에 포매된 원형질체를 6-웰 플레이트에 플레이팅하고, 액체 PIM 배양 배지 1 ㎖를 깔고, 25℃ 온도에서 배양하였다. 7일 후에, 액체 배지를 새로운 배양 배지로 교체하였다. 배양물을 빛(14 h 명 [50 ㎛ol m-2 s-1] 및 10 h 암)으로 옮기고 25℃ 온도에서 배양하였다. 3주 동안 배양한 후, 수십 밀리미터 직경으로 자란 마이크로-캘러스를 30 g/ℓ 수크로스, 0.6% 식물 한천, 0.2 ㎎/ℓ의 α-나프탈렌아세트산(NAA), 0.3 ㎎/ℓ BAP로 보충된 MS 재생 배지로 옮겼다. 재생 배지에서 약 4주 후에 다수의 싹의 유도가 관찰되었다.
전체 식물을 재생시키기 위해, 증식되고 신장된 부정지(adventitious shoot)를 신선한 재생 배지로 옮겨 25℃ 온도에서 빛(14 h 명 [150 ㎛ol m2 s1] 및 10 h 암)에서 4주 내지 6주간 배양하였다. 뿌리 유도를 위해, 길이가 약 3 ㎝ 내지 5 ㎝인 소식물체를 잘라서 마젠타 용기 내의 고체 호르몬이 없는 1X MS 배지에 옮겼다. 부정지에서 발달한 소식물체를 순응시켜 포팅 토양에 이식하고, 25℃ 온도의 성장 챔버에서 유지시켰다.
모든 식물을 장일(14-h 명/10-h 암 광주기)조건 하에서 25℃ 온도에서 150Em-2s-1 LED 빛 아래서 성장시켰다.
아그로박테리움-매개 게놈 편집 방법에 아그로박테리움과 공동-배양한 1 cm 사각형의 잎 외식편을 사용하였다(도 8; a). 공동-배양한 외식편을 2회 또는 3회의 한천 플레이트 교체를 통해 6주 동안 25 ㎎/ℓ 히그로마이신 하에 계대배양하고, 이어서 새로운 싹이 생성되었다(도 8; b). 새로운 싹을 절반 강도의 MS 배지로 옮기고 용기 내에서 소식물체로 성장시켰다(도 8; c). 소식물체를 포트에 옮기고 종자가 수확될 때까지 유지시켰다(도 8; d).
구체적으로, 8주령 담배 식물의 잎을 수확하고 50%(v/v) NaCl2로 1분간 멸균하였다. 이어서 잎을 멸균수로 4회 세척하였다. 멸균된 잎을 1 cm 사각형으로 절단하고, O.D값이 0.6인 액체 형질전환 배지(1X Murashige and Skoog 염기성 염 혼합물, 3% 수크로스, 2.0 ㎎/ℓ BAP, 0.2 ㎎/ℓ NAA, pH 5.8)에서 희석된 pCAMBIA-Cas9-gRNA를 함유하는 예비-배양한 아그로박테리움과 함께 실온에서 10분 동안 배양하였다. 사각형 잎을 이어서 어두운 곳에서 실온에서 고체 형질전환 배지(1X Murashige and Skoog 염기성 염 혼합물, 3% 수크로스, 2.0 ㎎/ℓ BAP, 0.2 ㎎/ℓ 1%(w/v) 식물 한천, pH 5.8)에 두었다.
2일 후에, 사각형 잎을 선별 유도 배지(1X Murashige and Skoog 염기성 염 혼합물, 3% 수크로스, 2.0 ㎎/ℓ BAP, 0.2 ㎎/ℓ NAA, 1%(w/v) 식물 한천, 25 ㎎/ℓ 히그로마이신, 200 ㎎/ℓ 티멘틴, pH 5.8)로 옮겼다. 5주 후에, 캘러스 조직을 선별 유도 배지로 옮겼다. 캘러스로부터 싹을 절단하고 뿌리 유도 배지(1X Murashige and Skoog 염기성 염 혼합물, 3% 수크로스, 1%(w/v) 식물 한천, 25 ㎎/ℓ 히그로마이신, 200 ㎎/ℓ 티멘틴® 멸균 티카실린 다이소듐 및 클라불산 포타슘, pH 5.8)로 옮겼다. 뿌리가 있는 형질전환 식물을 흙으로 옮겼다. 6주 내지 7주 후에, 형질전환 식물로부터 종자를 수집하였다. 이때, 모든 식물을 장일(14-h 명/10-h 암 광주기)조건 하에서 25℃ 온도에서 150Em-2s-1 LED 빛 아래서 성장시켰다.
실시예 7. NbFucT13 에 대한 게놈 편집된 계통의 스크리닝
5개의 NbFucT13은 고도로 보존된 코딩 영역을 가지고 있어서 NbFucT13 편집 효과를 모니터링하기 전에 프라이머가 특정 영역을 증폭하도록 설계할 때 어려움이 있었다. 유전자 특이적 프라이머를 표적 sgRNA 부위 및 충분한 SNP를 포함하여 각 유전자를 증폭하도록 설계하였고, 이는 5개의 NbFucT13을 구별할 수 있도록 한다(표 6).
Figure 112020125973407-pat00026
DNA-프리 게놈 편집 방법을 적용하였을 때, 유전자 특이적 프라이머 쌍은 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에 대해 각각 2,978 bp, 3,434 bp, 4,393 bp, 1,028 bp, 및 1,664 bp를 증폭하였다(도 9). PCR 증폭물은 NbFucT13_1의 #37에서 다중 크기의 증폭물을 나타냈으며; NbFucT13_2의 #10, #33 및 #36에서 다중 크기의 증폭물을 나타냈고 NbFucT13_2의 #37에서 더 작은 크기의 증폭물을 나타냈다(도 9).
아그로박테리움-매개 게놈 편집 방법을 적용하였을 때, 유전자 특이적 프라이머 쌍은 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에 대해 각각 774 bp, 760 bp, 411 bp, 461 bp, 및 1,664 bp를 증폭하였다(도 10). PCR 증폭물은 16개의 형질전환 계통에서 #101 내지 #116의 다중 크기 증폭물을 나타냈다(도 10).
구체적으로, 상기 아그로박테리움-매개 게놈 편집 방법으로 형질전환시킨 식물체의 Q5 Hot Start High-Fidelity 2x Master Mix(NewEngland Biolabs)를 사용하여 게놈 DNA로부터 증폭힌 PCR 증폭물을 All in one Cloning Kit(Biofact, South Korea)를 사용하여 TA 벡터에 클로닝 하였다. 각각의 PCR 증폭물에 대해 클로닝된 TA 벡터의 양성의 15개의 콜로니를 시퀀싱 하였다.
실시예 8. NbFucT13 에 대해 게놈 편집된 계통의 동정
시퀀싱 결과에 따라, 6개의 T0 계통 #8, #10, #27, #33, #36, 및 #37을 DNA-프리 게놈 편집 방법으로 유전자를 편집하였다. 그 결과를 하기 표 7에 나타내었다.
Figure 112020125973407-pat00027
상기 표 7에 나타난 바와 같이, 계통 #8은 NbFucT13_1, NbFucT13_2, 및 NbFucT13_3에 대한 3중 KO 및 NbFucT13_4에 대한 이형접합체를 포함하였다(도 11). 계통 #10은 NbFucT13_2에 대한 단일 KO 및 NbFucT13_1, NbFucT13_3, 및 NbFucT13_4에 대한 3개의 이형접합체를 포함하였다(도 12). 계통 #27은 NbFucT13_3에 대한 단일 KO 및 NbFucT13_2에 대한 이형접합체를 포함하였다(도 13).
계통 #33은 NbFucT13_1 NbFucT13_2에 대한 2 중 KO NbFucT13_3NbFucT13_4에 대한 2개의 이형접합체를 포함하였다. 계통 #36은 계통 #10과 동일한 결과를 가졌다. 계통 #37은 NbFucT13_1, NbFucT13_2, 및 NbFucT13_3에 대한 3중 KO 및 NbFucT13_4에 대한 이형접합체를 가졌다(표 4). T1 세대에서, 계통 #27-4는 NbFucT13_3에 대한 단일 KO를 가졌고, 계통 #27-21은 NbFucT13_2 NbFucT13_3에 대해 2중 KO를 가졌다. 계통 #10-15는 NbFucT13_1NbFucT13_2에 대한 2중 KO를 가졌고 계통 #10-8은 NbFucT13_1, NbFucT13_2, 및 NbFucT13_4에 대해 3중 KO를 가졌다. 계통 #37-26은 NbFucT13_1, NbFucT13_2, NbFucT13_3 NbFucT13_4에 대해 4중 KO를 가졌다(표 7).
구체적으로, 계통 #37-26은 NBFucT13_1, NBFucT13_2, NBFucT13_3, 및 NBFucT13_4에 대해 4개의 편집된 유전자를 포함하였다. 구체적으로, NBFucT13_1은 -709/+1, +1/+1의 쌍대립형질(biallelic) 돌연변이가 있음; NBFucT13_2는 -2/-592; -1/-593의 쌍대립형질 돌연변이가 있음; NBFucT13_3은 +1, -9의 쌍대립형질 돌연변이가 있음; NBFucT13_4는 +1, +1의 쌍대립형질 돌연변이가 있음; 한편, NbFucT13_5는 돌연변이가 없음; 이를 도 14에 나타내었다.
#101에서 #116까지의 16개의 T1 형질전환 계통을 아그로박테리움-매개 게놈 편집 방법으로 유전자를 편집하였다(표 8 및 도 15 내지 도 19).
Figure 112020125973407-pat00028
계통 #101은 NbFucT13_1NbFucT13_5에 대한 2중 KO 및 NbFucT13_2, NbFucT13_3NbFucT13_4에 대한 3개의 이형접합체를 가졌다. 계통 #102는 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4NbFucT13_5에 대한 4중 KO를 가졌다. 계통 #4는 NbFucT13_1에 대한 단일 KO 및 NbFucT13_2, NbFucT13_3 및 ㅍ5에 대한 3개의 이형접합체를 가졌다.
계통 #107은 NbFucT13_1, NbFucT13_3NbFucT13_5에 대한 3중 KO 및 NbFucT13_2NbFucT13_4에 대한 2개의 이형접합체를 가졌다. 계통 #108은 NbFucT13_1, NbFucT13_2, NbFucT13_3NbFucT13_4에 대한 4중 KO 및 NbFucT13_4에 대한 1개의 이형접합체를 가졌다. 계통 #109는 NbFucT13_1NbFucT13_2에 대한 2중 KO 및 NbFucT13_3, NbFucT13_4NbFucT13_5에 대한 3개의 이형접합체를 가졌다. 계통 #111은 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4NbFucT13_5에 대한 4중 KO를 가졌다. 계통 #112는 NbFucT13_1, NbFucT13_3, NbFucT13_4NbFucT13_5에 대한 4중 KO 및 NbFucT13_2에 대한 1개의 이형접합체를 가졌다. 계통 #113은 NbFucT13_1, NbFucT13_4NbFucT13_5에 대한 3중 KO 및 NbFucT13_2NbFucT13_3에 대한 2개의 이형접합체를 가졌다. 계통 #114는 NbFucT13_1NbFucT13_3에 대한 2중 KO 및 NbFucT13_2, NbFucT13_45에 대한 3개의 이형접합체를 가졌다. 계통 #15는 NbFucT13_45에 대한 2중 KO 및 NbFucT13_1, NbFucT13_2NbFucT13_3에 대한 3개의 이형접합체를 가졌다. 계통 #116은 NbFucT13_1에 대한 단일 KO 및 NbFucT13_2, NbFucT13_3, NbFucT13_4NbFucT13_5에 대한 4개의 이형접합체를 가졌다.
실시예 9. 고도로 상동인 NbFucT13 에서 편집된 서열 복잡성
3개의 sgRNA를 DNA-프리 게놈 편집 방법으로 담배의 원형질체에 한번에 형질감염시켰다. 각각의 sgRNA는 생어-염기서열 분석(Sanger-sequencing)을 기준으로 다른 게놈 편집 효율성을 나타냈다(표 9).
Figure 112020125973407-pat00029
상기 표 9에 나타난 바와 같이, PFT1은 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에서 각각 29%, 37%, 22%, 9%, 및 0%의 편집 효율을 가졌다. PFT2는 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에서 각각 17%, 14%, 11%, 7%, 및 0%의 편집 효율을 가졌다.
PFT3은 NbFucT13_1, NbFucT13_2, NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에서 각각 12%, 22%, 0%, 0%, 및 0%의 편집 효율을 가졌다. PFT1은 3개의 sgRNA 중에서 가장 높은 게놈 편집 효율을 보였으며, NbFucT13_3NbFucT13_4의 스페이서 중 20번째에서 1 bp 불일치를 갖는 19 bp의 일치는 22% 및 9 %의 편집 효율을 나타냈지만, NbFucT13_5의 스페이서 중 5번째 및 20번째에서 2 bp의 불일치를 갖는 18 bp의 일치는 0%의 효율을 나타냈다.
6개의 sgRNA를 아그로박테리움-매개 게놈 편집 방법으로 N.benthamiana의 잎 외식편에 형질전환시켰다. 각각의 sgRNA는 생어-염기서열 분석 기준으로 다른 게놈 편집 효율성을 나타냈다(표 10).
Figure 112020125973407-pat00030
상기 표 10에 나타난 바와 같이, AFT1 및 AFT2는 NbFucT13_1에서만 80% 및 27%의 편집 효율을 나타냈다. AFT3은 NbFucT13_1NbFucT13_2에서 각각 8% 및 37%의 편집 효율을 나타냈다. AFT4는 NbFucT13_1NbFucT13_2에서 각각 25% 및 26%의 편집 효율을 나타냈다. AFT5는 NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에서 각각 46%, 42%, 및 72%의 편집 효율을 나타냈다. AFT6은 NbFucT13_3, NbFucT13_4, 및 NbFucT13_5에서 각각 58%, 44%, 및 71%의 편집 효율을 나타냈다.
실시예 10. RGEN(RNA-guided engineered nucleases)으로 유전자 변이 효율 검증
하기 표 11과 같이 타겟 PCR 증폭물을 제외한 Cas9 단백질과 sgRNA, NEB3.1 버퍼를 PCR 튜브에 넣어 주었다. 이때, Cas9과 sgRNA는 1:1.2의 분자비로 처리하였다.
Figure 112020125973407-pat00031
그 후, 상온에서 10분 동안 배양한 후, RNP 복합체에 타겟 PCR 증폭물을 넣어주었다. 37℃ 온도에서 1시간 배양한 후, DNA 염색약을 이용해 아가로스겔(agarose gel)에 로딩한 후 전기영동하여 결과를 확인하였다. 식물세포에 형질도입될 때 RNP 복합체 조합 두 가지(A와 B)로 한 후, 시간별로 세포를 확인하였다.
그 결과, 유전자 편집 효율은 잘리지 않은 밴드의 강도로 알 수 있으며, 각 밴드 위에 숫자로 유전자 편집 효율을 %로 표시하였다(도 20 및 도 21). 먼저, A 조합(set A)에서는 NbFucT13_1 유전자의 경우 72시간에 29%의 유전자 편집을 보이며, NbFucT13_3 유전자의 경우 48시간에 35%, NbFucT13_4 유전자에서는 24시간의 22%의 유전자 편집을 나타내었다. 또한, B 조합(set B)에서는 NbFucT13_1 유전자의 경우 24시간에 28%의 유전자 편집을 보이며, NbFucT13_3 유전자의 경우는 48시간에 42%, NbFucT13_4 유전자의 경우 72시간에 20% 의 유전자 편집을 나타내었다. 이를 통해, A 조합과 B 조합의 차이는 나타나지만 전체적인 유전자 편집 효율은 20% 내지 30%로 나타나며. 현재 사용했던 타겟 sgRNA가 in vivo, 즉 생체 내에서도 유전자 편집 효과를 나타낼 수 있는 것을 확인하였다.
II. 비푸코실화된 담배( N . benthamiana )로부터 생산된 트라스투주맙
실시예 11. NbFucT13 에 대해 게놈 편집된 계통으로부터 생산된 트라스투주맙 당쇄 분석
총 단백질의 N-글리칸 프로파일을 매트릭스-보조 레이저 탈착 이온화(MALDI)-비행 시간형(TOF) 질량 분석(MS)으로 결정하였다. 구체적으로, Nb wt 식물 및 NbFT KO 식물(#37)의 동결된 잎을 막자사발과 막자를 이용하여 분쇄하였다. 2 부피의 포스페이트 완충된 염수 용액(GE Healthcare Life Sciences, USA)을 분말에 첨가하고 반복적으로 교반하며 10분 동안 혼합하였다. 이어서, 혼합물을 4℃ 온도에서 20분 동안 원심분리하고, 상청액을 회수하였다. 상청액을 Minisart RC4 주사기 필터(0.45 ㎛, Sartorius Stedim Lab Ltd, UK)를 사용하여 여과하고, VIVASPIN 500 농축기(30 kDa, PES, Sartorius Stedim Lab Ltd, UK)를 사용하여 농축하였다. 여과물 중의 총 가용성 단백질의 양을 브래드포드 분석으로 측정하였다.
50 ㎍의 TSP를 37℃ 온도에서 16시간 동안 PNGase A(10 U, NEB, USA)와 반응시켰다. 방출된 N-글리칸을 Extract-Clean SPE 카트리지(S* Pure Pte Ltd., Singapore)를 사용하여 다음과 같이 추출하였다: 카트리지를 10 ㎖의 용액 I(80% 아세토니트릴, 0.1% 트리플루오로아세트산)로 활성화시키고 10 ㎖의 물로 세척하였다. N-글리칸 혼합물을 카트리지 상에 탑재하고, 10 ㎖의 물로 세척하고, 1 ㎖의 용액 II(25% 아세토니트릴, 0.075% 트리플루오로아세트산)로 용리하였다. 용리된 N-글리칸을 고속 진공(HyperVAC-MAX, Labex, South Korea)을 사용하여 건조시켰다.
건조된 N-글리칸을 65℃ 온도에서 3시간 동안 2-아미노벤즈아미드(2-AB, Sigma-Aldrich, USA)로 표지하고, 표지된 N-글리칸을 Bond Elut-CN 카트리지(Agilent technologies, USA)를 사용하여 다음과 같이 추출하였다: 카트리지를 1 ㎖의 용액 I(25% 아세토니트릴)로 활성화시키고 1 ㎖의 용액 II(96% 아세토니트릴)로 세척하였다. 표지된 N-글리칸을 카트리지 상에 탑재하고, 2 ㎖의 용액 II로 세척하고, 용액 III(60% 아세토니트릴)으로 용리하였다. 용리된 N-글리칸을 고속 진공을 사용하여 건조시키고, 물에 용해시키고, 양성 반사기(reflectron) 모드를 사용하여 MALDI-TOF 질량 분석기(ultraflex III, Bruker Daltonics, Germany)로 분석하였다. 이때, 아세토니트릴 및 물을 Millipore(USA)로부터 구입하고, 2-AB 및 트리플루오로아세트산을 Sigma-Aldrich(USA)로부터 각각 구입하였다.
그 결과, Nbwt에서 N-글리칸의 MALDI-TOF MS 분석은 7개의 주요 N-글리칸, MUX, MUFX, MMXF, GnMx/mGnX, GnMXF/mGnXF, Gn, 및(FA)GnXF/Gn(FA)XF의 존재를 나타냈다(도 22; a). #37 식물에서, MUX, MMX, 및 GnMX/mGnX의 3개의 주요 피크가 검출되었다(도 22; b). 푸코스와 자일로스가 Nbwt의 N-글리칸에서 검출되었다. 식물 #37의 N-글리칸에서 푸코스는 검출되지 않았고, 자일로스는 검출되었다. 재조합 트라스투주맙은 Nbwt와 계통 #37에서 일시적으로 발현되었다.
실시예 12. NbFucT13 에 대해 게놈 편집된 계통으로부터 생산된 트라스투주맙의 세포-매개 세포독성(ADCC) 분석
정제된 트라스투주맙/Nbwt 및 트라스투주맙/#37을 항체-의존 세포-매개 세포독성(ADCC) 검정법에 의해 양성 대조군으로서 트라스투주맙을 사용하여 약물 효능에 대해 조사하였다.
구체적으로, 분석 하루 전날 타겟세포(target cell, T)인 SKBR3 암세포주(ATCC)를 1×104 cells/100 ㎕/well로 필요한 샘플 수를 고려하여 96-웰-플레이트(SPL, South Korea)에 분주하였다. 다음날, 효과세포(effector cell)인 Jurkat T세포주의 세포수를 측정하여 E:T=15:1의 비율이 되도록 10% low IgG FBS-RPMI1640에 재분주하였다. 이때, FBS는 분석에 영향을 줄 수 있으므로, low IgG FBS를 사용하였으며, 히그로마이신(hygromycin) 및 G418 항생제는 SKBR3 암세포주를 죽일 수 있으므로 사용하지 않았다. 구체적으로, E:T=15:1의 비율이 되도록 효과세포인 jurkat T세포를 1.5×105 cells을 처리하기 위해 1.5×106 cells/㎖로 10% low IgG FBS-RPMI1640에 재분주하였다.
96-웰-플레이트의 각 웰의 배지를 제거하고 Jurkat T세포에 시판되는 트라스투주맙(Herceptin, Avastin; Roche, Switzerland), 상기 실시예 11에서 Nbwt에서 분리한 트라스투주맙 및 NbFT KO 식물(#37)에서 분리한 트라스투주맙 10 ㎍/㎖로부터 시작하여 연속 희석시켜 15:1(1.5Х106/㎖: 이펙터 세포, 1Х105/㎖: 표적 세포; 최종 부피: 100 ㎕)의 E/T 비율로 첨가하였다.
96-웰-플레이트에 있던 SKBR3 암세포주의 배지를 제거하고, jurkat T세포와 상기 각각의 트라스투주맙의 총 부피가 100 ㎕가 되도록 하여 SKBR3 암세포주에 넣어주었다. Bio-Glo™ 루시퍼라제 시약(Promega, USA)을 첨가하기 전에 5% CO2의 가습 대기에서 37℃ 온도에서 하룻밤 동안 배양하였다. 다음 날, 각 웰당 70 ㎕의 Bio-Glo™ 루시퍼라제 시약을 첨가하여 FLUO star Omega Plate 계수기(PerkinElmer, USA)를 사용하는 발광값(luminescence)을 상대 루시퍼라제 단위(RLU)로 표시하였다. GraphPAD PRISM 프로그램을 사용하여 IC50의 농도 값을 구하였다.
그 결과, 트라스투주맙, 트라스투주맙/Nbwt, 및 트라스투주맙/#37에서 IC50은 4 ng/㎖, 11 ng/㎖, 및 1 ng/㎖이었다. 정제된 트라스투주맙/#37은 ADCC 검정법에서 다른 트라스투주맙들보다 높은 항체의존세포독성 효과를 나타내는 것을 확인하였다(도 23).
실시예 13. 트라스투주맙 유전자의 식물 코돈 최적화
서열번호 3 및 4에 해당하는 유전자는 식물에서 이종 단백질의 발현을 개선시키기 위해 코돈 최적화된 염기서열로서, 하기 방법을 통해 코돈 최적화하였다.
서열번호 1로 표시되는 아미노산 서열로 이루어진 중쇄 및 서열번호 2로 표시되는 아미노산 서열로 이루어진 경쇄를 포함하는 트라스투주맙의 아미노산 서열로부터 기계적으로 얻은 염기서열에 대한 코돈 사용량, 아미노산 별 코돈 빈도를 CAIcal SERVER를 이용하여 분석하였다. 그 후, 식물의 대표 모델식물인 애기장대와 담배의 레퍼런스 유전자에 대한 코돈 분석하고, 그 결과를 트라스투주맙의 분석결과와 비교하여 레퍼런스의 코돈 분석 결과와 비슷해지도록 하나하나의 코돈을 최적화하였다.
구체적으로, 하나의 아미노산을 암호화하는 코돈에 대하여 유전자 내에 편중되어 있는 코돈을 GC 함유율과 희귀코돈 빈도를 고려하여 서열을 최적화하였다. 최종적으로, 플라스미드 재조합 시 사용될 제한효소 인식부위가 있는지 확인 후, 코돈을 변형하고 전체 아미노산 서열이 바뀌지 않았는지 확인하였다.
실시예 14. 식물에 최적화된 재조합 유전자를 포함하는 재조합 유전자 제조
코돈 최적화된 유전자의 염기서열을 IDT(Integrated DNA Technologies, Inc.)에 합성을 의뢰하여 기본적인 클로닝 벡터에 재조합된 플라스미드를 수득하였다.
실시예 15. 유전자를 포함하는 재조합 벡터 제조
합성되어 얻은 플라스미드를 Bsa I 제한효소를 첨가하여 트라스투주맙의 중쇄 유전자(서열번호 3)와 경쇄 유전자(서열번호 4)만을 아가로즈 젤 추출하였다. Bsa I으로 절단된 식물 발현벡터(pICH31070, pICH31180)에 각 유전자 절편을 T4 리가아제를 이용하여 연결하였다.
실시예 16. 발현벡터로 형질전환된 아그로박테리아 제조
트라스투주맙의 중쇄 유전자(서열번호 3)와 경쇄 유전자(서열번호 4)를 갖는 각각의 발현벡터(pICH31070, pICH31180)를 아그로박테리움 세포(GV3101)에 각각 형질전환 시킨 후 배지(YEP agar plate)에 도말하고 28℃ 온도에서 약 2일간 배양하였다. 그 후, 생성된 단일 콜로니를 액체 배지(YEP broth)에 접종하고 28℃ 온도에서 200 rpm 조건으로 약 2일간 전배양하였다. 전배양액을 새 액체 배지 양의 0.5% 비율로 접종하고 28℃ 온도에서 200 rpm 조건으로 O.D.값이 1.2 내지 1.8이 될 때까지 배양하였다.
실시예 17. 형질전환 식물세포를 이용한 트라스투주맙 생산
상기 진탕 배양한 형질전환 아그로박테리아를 함침용 완충용액(10 mM MES, pH 5.6, 10 mM MgSO4)을 첨가하여 O.D.값이 0.02가 되도록 희석하였다. 중쇄와 경쇄를 포함하는 희석된 형질전환 아그로박테리아를 1:1 비율로 섞고, 진공 챔버 내에서 이 혼합액에 담배 잎을 담궜다. 진공 챔버에 진공을 걸고 목표 압력에 도달한 후 압력을 풀어주어 담배 잎을 꺼내서 말렸다. 그 후, 말린 담배 잎을 24℃ 온도 및 상대습도 41% 조건의 전용 배양실에 넣었다. 침윤 7일 후에 조직을 회수하여 발현된 단백질의 양을 확인하였다.
실시예 18. 웨스턴 블랏을 통한 형질전환 식물세포로부터 생산된 트라스투주맙의 발현량 확인
상기 회수한 식물체를 액체질소로 냉동시킨 후 유리막대로 파쇄하였다. 그 후, 단백질 추출용 완충용액(50 mM Sodium phosphate, pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.1%(v/v) Triton X-100)을 넣어 혼합하고 4℃ 온도에서 10분간 정치한 후, 4℃ 온도 및 13,000 rpm 조건으로 10분간 원심분리하여 상등액을 회수하였다.
회수한 상등액을 적정량 취하여 8% SDS-PAGE겔(80 V, 30 min / 120 V, 1 hr)에 약 1시간 30분 동안 전기영동하였다. 양성 대조군으로 시판중인 trastuzumab, Herceptin 0.5 ㎍을 사용하였다. 전기영동이 끝난 겔을 분리한 후, PVDF 멤브레인을 이용해 웨스턴 블롯팅하여 트라스투주맙의 발현양을 확인하였다(도 24). 도 24에서 PH와 TH는 각각 PVX vector:: trastuzumab HC- TMV vector:: trastuzumab LC 쌍과 TMV vector:: trastuzumab HC- PVX vector:: trastuzumab LC 쌍을 의미한다.
그 결과, 도 24 및 도 25에 나타난 바와 같이, 코돈 최적화된 염기서열이 발현되는 형질전환 식물체의 경우 트라스투주맙의 발현양이 대조군 대비 2.5배 이상 증가하였다. 특히, PVX vector:: trastuzumab HC- TMV vector:: trastuzumab LC 쌍의 경우 7배 내지 17배까지 발현양이 증가하는 것을 확인하였다. 반면, 코돈 최적화되지 않은 염기서열이 발현되는 형질전환 식물체의 경우 대조군에 비해 트라스투주맙의 발현양이 적었다.
실시예 19. 형질전환 식물세포로부터 생산된 트라스투주맙의 당쇄 분석
효소를 이용하여 당쇄를 트라스투주맙으로부터 분리하기 위해, 50 ㎍의 형질전환 식물세포로부터 생산된 트라스투주맙을 변성 완충액(0.1% RapiGest, 5 mM DTT, 20mM IAA)에 1 시간 반응시켰다. 피히아 파스토리스(Pichia pastoris) 에서 발현된 재조합 PNGase A(peptide N-glycosidase A; 5,000 units/㎖, New England BioLabs) 10 units를 가하고 혼합액을 37℃ 온도의 인큐베이터에서 16시간 동안 배양하였다.
PNGase A로 분리된 당쇄 함유 시료를 흑연 처리한 탄소 카트리지 SPE(Extract-clean SPE carbo; 충진량 150 ㎎, 카트리지 부피 4 ㎖)로 정제하였다. 0.1% 트리플루오로초산(TFA) 함유 80%(v/v) 아세토나이트릴(ACN) 10 ㎖로 활성화 시킨 후 초순수 10 ㎖로 세척하였다. 당쇄 함유 시료를 흘려 흡착시킨 후 카트리지 부피 수배의 초순수를 흘려주어 염을 제거하였다. N-당쇄는 25%(v/v) ACN과 0.075%(v/v) TFA로 당쇄를 용출시켜 원심식 증발기로 건조하였다.
아세트산(Acetic acid, Sigma-aldrich)과 DMSO(Sigma-aldrich)를 1:2 비율로 제조한 완충용액 100 ㎕ 에 5 ㎎ 2-AB(Anthanilamide, Sigma-aldrich)와 6 ㎎ sodium cyanoborohydride(Sigma-aldrich)를 완전히 용해시켜 형광표지 용액을 제조하였다. 건조된 당쇄시료에 10㎕ 의 형광표지 용액을 첨가하고 65℃ 온도에서 3시간 동안 배양하였다. Cyano 카트리지를 25% ACN으로 활성화 시킨 후 96% ACN 으로 세척하였다. 형광표지 된 당쇄시료를 흘려 흡착시킨 후 카트리지 부피 수배의 96% ACN을 흘려주었다. 60%(v/v) ACN으로 당쇄 용출 후 원심식 증발기로 건조하였다. 형광표지된 당쇄는 MALDI-TOF 양성 이온 모드로 질량 분광측정(Ultraflex?Bruker Daltonics)으로써 분석했다.
그 결과, 도 26 및 도 27에 나타난 바와 같이, 기존의 트라스투주맙(Herceptin)과 본 발명의 형질전환 식물세포로부터 생산된 트라스투주맙(GF003)의 당쇄 형태가 상이한 것을 확인하였다. 또한, 본 발명의 형질전환 식물세포로부터 생산된 트라스투주맙의 경우, 당쇄에 푸코스 잔기가 포함되어 있지 않은 것을 확인하였다.
실시예 20. 형질전환 식물세포로부터 생산된 트라스투주맙의 당쇄의 항암효과 확인: in vivo
마우스(암컷, 7주)를 7일의 적응기간을 거친 후에 5×106 세포수의 인간 폐암세포주인 Calu-3 암세포(한국세포주은행)로 이종이식을 수행하였다. 종양의 크기가 100 ㎜3 내지 150 ㎜3에 도달할 때까지 관찰한 뒤 기존의 트라스투주맙(Herceptin)과 본 발명의 형질전환 식물세포로부터 생산된 트라스투주맙(GF003)의 항암효과를 비교하였다.
상기 제작한 Calu-3 암세포 이식 마우스를 5개 그룹(n=10)으로 분류하였다. PBS를 복강 내 투여받는 그룹을 음성대조군으로 설정하였으며, 기존의 트라스투주맙(Herceptin) 30 ㎎/㎏을 복강 내 투여받는 그룹을 양성대조군으로 설정하였다. 본 발명의 형질전환 식물세포로부터 생산된 트라스투주맙(GF003) 10 ㎎/㎏, 15 ㎎/㎏ 또는 30 ㎎/㎏을 복강 내 투여받은 그룹을 실험군으로 설정하였다. 상기 각 군의 마우스에 약물을 투여한 후 0일, 4일, 7일, 11일, 14일, 18일 22일 및 25일째에 종양의 크기를 측정하였다. 그 결과, 실험군 마우스 및 양성 대조군 마우스의 종양의 크기가 음성 대조군 마우스의 종양의 크기에 비해 현저하게 억제되는 것을 확인하였으며, 특히, 본 발명의 형질전환 식물세포로부터 생산된 트라스투주맙(GF003) 30 ㎎/㎏을 복강 내 투여받은 실험군의 경우 양성 대조군보다 종양의 크기가 감소하는 것을 확인하였다(도 28).
III. 비푸코실화, 비자일로실화 및/또는 비갈라토실화된 담배( N . benthamiana ) 제조
실시예 21. 비푸코실화, 비자일로실화 및/또는 비갈락토실화된 담배 제조
2개의 XylT12 및 2개의 GalT13의 게놈 DNA를 Sol Genomics Network(https://solgenomics.net)에서 블라스팅하여 담배에서 동정한 후에 시퀀싱하였다.
구체적으로, NbXylT12_1(Niben101Scf04551)은 4개의 엑손(검은 박스) 및 3개의 인트론(흰 박스)을 포함하는 3632 bp의 길이를 가지며, 코딩 영역 1542 bp의 cDNA로 스플라이싱되어 513개의 아미노산으로 번역된다. 또한, NbXylT12_2(Niben101Scf04205)는 3개의 엑손 및 2개의 인트론을 포함하는 3426 bp의 길이를 가지며, 코딩 영역 1551 bp의 cDNA로 스플라이싱되어 516개의 아미노산으로 번역된다. NbGalT13_1(Niben101Scf04082)은 6개의 엑손 및 6개의 인트론을 포함하는 1878 bp의 길이를 가지며, 코딩 영역 1128 bp의 cDNA로 스플라이싱되어 375 개의 아미노산으로 번역된다. NbGalT13_2(Niben101Scf09597)는 7개의 엑손 및 6개의 인트론을 포함하는 3336 bp의 길이를 가지며, 코딩 영역 1104 bp의 cDNA로 스플라이싱되어 367개의 아미노산으로 번역된다(도 29).
실시예 22. 조직에 따른 5개의 NbFucT13, 2개의 NbXylT12 및 2개의 NbGalT13 의 상대적인 발현 패턴 분석
5개의 NbFucT13, 2개의 NbXylT12 및 2개의 NbGalT13의 정량적인 전사를 측정하기 위해, 프라이머를 각각의 유전자 발현을 나타내는 유전자 특이적 영역 상에 설계하였다. 2개의 NbXylT12 및 2개의 NbGalT13에 대해 설계한 프라이머는 하기 표 12에 나타내었다. 하기 표 12에 기재된 프라이머 및 상기 표 2에 기재된 프라이머를 이용하여 실시예 2와 동일한 방법으로 5개의 NbFucT13, 2개의 NbXylT12 및 2개의 NbGalT13의 정량적인 전사를 측정하였다.
Gene Name Sequence Tm Sequence
number
PP2A PP2A_RT-For 5’-GACCCTGATGTTGATGTTCGCT-3’ 58 37
PP2A_RT-Rev 5’-GAGGGATTTGAAGAGAGATTTC-3’ 38
FucT13_1 NbFTa13_1/2 qRT-PCR F 5’-CCACCCATGTGCAAAATTTGAAGCC-3’ 55 39
NbFTa13_1 qRT-PCR R 5’-GGATTCACCATTGGTAAGACT-3’ 40
FucT13_2 NbFTa13_1/2 qRT-PCR F 5’-CCACCCATGTGCAAAATTTGAAGCC-3’ 55 41
NbFTa13_2 qRT-PCR R 5’-GGAGAGAATGAGAGTTACAC-3’ 42
FucT13_3 NbFTa13_3 qRT-PCR F 5’-AAGATCACATCTTTACCTAT-3’ 55 43
NbFTa13_3/4 qRT-PCR R 5’-CCAATTGGACCATTTCTTTT-3’ 44
FucT13_4 NbFTa13_4 qRT-PCR F 5’-TAGCTTCATTACTTCAAGAC-3’ 55 45
NbFTa13_3/4 qRT-PCR R 5’-CCAATTGGACCATTTCTTTT-3’ 46
FucT13_5 NbFTa13_5 qRT-PCR F 5’-TTTCTAATTGTGGTGCTCGT-3’ 55 47
NbFTa13_5 qRT-PCR R 5’-GGAAGAATTTTTCGGTGTCC-3’ 48
XylT12-1 NbXTb12_1 qRT-PCR F 5’-GTGAGAGAGAGAGAGAGAGAGGAGAAG-3’ 55 49
NbXTb12_1 qRT-PCR R 5’-GTGGTTTTGGGGGGATTTGTG-3’ 50
XylT12-2 NbXTb12_2 qRT-PCR F 5’-GCCAGTCGGAGAGAGAAGAAG-3’ 55 51
NbXTb12_2 qRT-PCR R 5’-GGTTCTGGGGGGATTTGCGACGAGA-3’ 52
GalT13-1 NbGTb13_1 qRT-PCR F 5’-AAGAGTAAGAAAGATGGTGGGA-3’ 55 53
NbGTb13_1/2 qRT-PCR R 5’-CCATCAACTGTCATCTGAATTCC-3’ 54
GalT13-2 NbGTb13_2 qRT-PCR F 5’-TGGATGAATTGGAACAATGCAATGAG-3’ 55 55
NbGTb13_2/2 qRT-PCR R 5’-CCATCAACTGTCATCTGAATTCC-3’ 56
그 결과, NbFucT13는 뿌리, 줄기, 4주령 잎, 6주령 잎 및 꽃에서 보편적으로 존재하였다. 두드러진 발현 패턴 없이 상이한 조직에서 일관되게 발현되는 전사체 수준을 기준으로 하였다. 또한, NbXylT12는 주로 뿌리, 6주령 잎 및 꽃에서 보편적으로 존재하였으며, NbGalT13는 주로 뿌리, 4주령 잎, 6주령 잎에서 보편적으로 존재하였다(도 30).
실시예 23. 다중 녹아웃 생성을 위한 sgRNA의 설계 및 선별
고도로 보존된 엑손 서열을 정렬하여 CRISPR/Cas9 RNP의 결합 부위인 sgRNA 표적 영역을 동정하였다. 이때, CHOPCHOP(https://chopchop.cbu.uib.no/) 사이트를 이용해서 sgRNA를 선별하였으며, IVT(in vitro DNA cleavage assay) 이용하여 sgRNA 활성을 검증하였다. 상기 선별된 sgRNA 및 활성 검증 결과를 하기 표 13에 나타내었다.
Gene sgRNA
(primer name)
sgRNA
(sub name)
In Vitro
assay
sgRNA sequence sgRNA localization Sequence
number
β-1,2 xylosyltransferase
(XylT12)
NbXTb12-1-1 AXT1 TTGCAGAGTTCGATCTGCGAGGG Exon1 57
NbXTb12-1-2 AXT2 GATATTTTGATGTCTCGTGGAGG Exon1 58
NbXTb12-2-1 AXT3 GTTGCTTGGAGATCATGCGAGGG Exon1 59
NbXTb12-1/2-3 AXT4 GTCTCGTGGAGGTGAGAAATTGG Exon1 60
NbXTb12-1/2-1 AXT5 GTAGGAGGGCAAAATAGGCCAAGG Exon1 61
NbXTb12-1/2-4 AXT6 GAGAAATTGGAGTCGGTTATTGG Exon1 62
β-1,3 galactosyltransferase
(GalT13)
NbGTb13_2-1 AGT1 GATCTGGACAAGTTGCGGTGCGG Exon1 63
NbGTb13_2-2 AGT2 GTTGCGGTGCGGTTTTTTGTCGG Exon1 64
NbGTb13_1-1 AGT3 GAATCTAGCCTGGATCAGGACGG Exon1 65
NbGTb13_1-2 AGT4 GATCAGGACGGGTCTAAATCAGG Exon1 66
NbGTb13_1/2-1 AGT5 GGAATTCAGATGACAGTTGATGG Exon1 67
NbGTb13_1/2-2 AGT6 GTAAGTGAAGTGAGGATATCTGG Exon2 68
NbGTb13_1/2-3 AGT7 CGTGGCTTGTAAGTGAAGTGAGG Exon2 69
그 결과, AXT1 내지 AXT6은 NbXylT12_1 NbXylT12_2의 엑손 1을 표적화하였다(도 31a 내지 도 31c). AGT1 내지 AGT5는 NbGalT13_1 NbGalT13_2의 엑손 1을 표적화하였으며, AGT6 및 AGT7은 NbGalT13_1 NbGalT13_2의 엑손 2를 표적화하였다(도 32a 내지 도 32c).한편, pNGPJ0014 벡터는 pCAMBIA(Abcam)를 바탕으로 제작하였다. 상기 pNGPJ0014 벡터는 카나마이신(Kanamycin)과 히그로마이신(Hygromycin) 항생제에 의해 선별되도록 항생제에 대한 카세트를 가지며, Cas9과 합성된 폴리시스트로닉 tRNA-gRNA 카세트를 갔도록 제작하였다. 이때, Cas9은 애기장대 유비퀴틴 10 프로모터에 의해, tRNA-gRNA는 애기장대 유비퀴틴 6 프로모터에 의해 발현되도록 제작되었다. Cas9 단백질을 핵으로 전달하기 위해 Cas9의 N-말단에 SV40(PKKKRKV, 서열번호 70) 핵이행신호 서열과 C-말단에 Bipartite (KEPAATKKAGQAKKKK, 서열번호 71) 핵이행신호 서열을 추가하였다.
구체적으로, 3개의 sgRNA(AXT1 내지 AXT3)를 모두 일렬로(tandemly) 배열된 tRNA-표적 23bp-sgRNA 스캐폴드 시스템으로 제작하였고, 골든-게이트 클로닝 시스템을 사용하여 각각의 일렬의 tRNA-sgRNA를 또 다른 일렬의 tRNA-sgRNA와 결합시켰다. 3개의 일렬 반복을 AtU6 프로모터 아래에 배치하였다(도 33a). 또한, 3개의 sgRNA(AXT4 내지 AXT6)를 모두 일렬로(tandemly) 배열된 tRNA-표적 23/24bp-sgRNA 스캐폴드 시스템으로 제작하였고, 골든-게이트 클로닝 시스템을 사용하여 각각의 일렬의 tRNA-sgRNA를 또 다른 일렬의 tRNA-sgRNA와 결합시켰다. 3개의 일렬 반복을 AtU6 프로모터 아래에 배치하였다(도 33b). 나아가, 7개의 sgRNA(AGT1 내지 AGT3 및 AXT1 내지 AXT4)를 모두 일렬로(tandemly) 배열된 tRNA-표적 23bp-sgRNA 스캐폴드 시스템으로 제작하였고, 골든-게이트 클로닝 시스템을 사용하여 각각의 일렬의 tRNA-sgRNA를 또 다른 일렬의 tRNA-sgRNA와 결합시켰다. 7개의 일렬 반복을 AtU6 프로모터 아래에 배치하였다(도 33c). 또한, 3개의 sgRNA(AGT4 내지 AGT6)를 모두 일렬로(tandemly) 배열된 tRNA-표적 23bp-sgRNA 스캐폴드 시스템으로 제작하였고, 골든-게이트 클로닝 시스템을 사용하여 각각의 일렬의 tRNA-sgRNA를 또 다른 일렬의 tRNA-sgRNA와 결합시켰다. 3개의 일렬 반복을 AtU6 프로모터 아래에 배치하였다(도 33d).
실시예 24. 아그로박테리움 매개 형질감염 후 식물재생
먼저, 상기 실시예 23에서 제조한 발현벡터(pNGPJ0014)를 아그로박테리움 세포(GV3101)에 각각 형질전환 시킨 후, 배지(YEP agar plate)에 도말하고 28℃ 온도에서 약 2일간 배양하였다. 그 후, 생성된 단일 콜로니를 액체 배지(YEP broth)에 접종하고 28℃ 온도에서 200 rpm 조건으로 약 2일간 전배양하였다. 전배양액을 새 액체 배지 양의 0.5% 비율로 접종하고 28℃ 온도에서 200 rpm 조건으로 O.D.값값이 1.2 내지 1.8이 될 때까지 배양하였다. 상기 진탕 배양한 형질전환 아그로박테리아를 함침용 완충용액(10 mM MES, pH 5.6, 10 mM MgSO4)을 첨가하여 O.D.값이 0.02가 되도록 희석하였다.
구체적으로, 상기 6주령의 야생형 또는 계통 #37의 담배 잎을 이용하였으며, 먼저 잎 표면 소독은 0.1% Tween 20를 포함하는 20% Clorox에 10분간 담가두었다. 담궈둔 잎을 세척하기위해 0.1% Tween 20를 포함된 증류수로 4회 씻어 준비한 후, 잎 표면의 물기가 마르게 필터페이퍼로 덮어두었다. 상기 진탕배양한 아그로박테리아는 형질전환 배지(1MS, 3% Sucrose, 2mg/L 6-BA, 0.2mg/L NAA, pH5.8)를 이용해서 OD값이 0.6으로 맞춰 희석하였다. 표면소독이 된 잎을 사방 1 ㎝로 잘라서 미리 준비된 아그로박테리아 형질전환 배양액에 10분 담궈두었다. 그 후, 담궈둔 잎을 배지(1MS, 3% Sucrose, 2mg/L 6-BA, 0.2mg/L NAA, 1% Agar, pH5.8)로 옮겨 2일 동안 암배양하였다. 2일 후 항생제 배지(1MS, 3% Sucrose, 2mg/L 6-BA, 0.2mg/L NAA, 25mg/L Hygromycin, 200mg/L Timentin, 1% Agar, pH5.8) 로 옮겼으며, 항생제의 효율성을 유지하기 위해서 2주에 한 번씩 새로운 배지로 옮겨주었다. 캘러스가 생성되고 잎과 줄기들이 나오면 뿌리를 유도하는 배지(1MS, 3% Sucrose, Hygromycin, 200 mg/L Timentin, 1% Agar, pH5.8)로 옮겨주었다. 2-3주 뒤에는 뿌리가 유도되고, 큰 용기로 옮겨 4주 뒤에는 새로운 개체를 수득하였다(도 34).
실시예 25. NbXylT12 NbGalT13에 대해 추가 게놈 편집된 계통의 동정
상기 실시예 24에서 제조한 NbXylT12 NbGalT13에 대해 추가 게놈 편집된 계통에 대해 타겟 영역의 생어-염기서열 분석을 진행하였다. 상기 생거-시퀀싱은 gRNA 표적 영역을 20 ㎕ 부피에서 Q5 Hot Start High-Fidelity 2x Master Mix(NewEngland Biolabs)를 사용하여 제조사에 매뉴얼에 따라 게놈 DNA를 추출하였다. 상기 게놈 DNA 추출물로부터 타겟 영역의 유전자를 증폭하였다. 그 후, PCR 증폭물을 All in one Cloning Kit(Biofact, South Korea)를 사용하여 제조사에 매뉴얼에 따라 TA 벡터에 클로닝하였으며, 15-20개의 클론을 각각의 샘플에 대해 개별적으로 시퀀싱하였다.
상기 생어 염기서열 분석을 통해 각 T0 내지 T3 세대의 계통을 동정하여 하기 표 14 내지 표 16에 나타내었다. 이때, T1은 형질전환 식물체의 다음 세대를 의미하며, transformed plant 1 generation, 줄여서 T1으로 표기하였다.
T0 Generation
Line No. Background Genotype XylT12-1 XylT12-2 GalT13-1 GalT13-2 phenotype
#103 WT Mutation -5/-81/+1/WT None -1/+1/WT +1 Single KO
Zygosity Hetero Hetero Mono-allelic Homo
#123 ΔFucT
(#37-1)
Mutation None -1/WT -6/WT +1/+1 Single KO
Zygosity Hetero Hetero Bi-allelic Homo
#274 ΔFucT
(#37-1)
Mutation -3/-6/-7/-9/+1/+2/WT -3/-4/-156/-209/+1/+3/WT -1/-2/-3/-5/-7/-10/-11/+1/WT -1/-6 Single KO
Zygosity Hetero Hetero Hetero Bi-allelic Homo
#276 ΔFucT
(#37-1)
Mutation +1/+1 -1/-2/+1/+2/WT -3/-5/-7/-10/+1/WT -1/-4 Double KO
Zygosity Bi-allelic homo Hetero Hetero Bi-allelic Homo
#310 WT Mutation +1/-1/WT +1/WT None -1/+1
Zygosity Hetero Hetero Bi-allelic Homo
#405 WT Mutation -3/-4/-5/-40/+1/WT -8/-2/+1 None None Single KO
Zygosity Hetero Bi-allelic Homo
#412 WT Mutation -4/+1/WT -1/+1 None None Single KO
Zygosity Hetero Bi-allelic Homo
#421 ΔFucT
(#37-1)
Mutation -1/-2/-3/-4/-6/-31/WT -1/-6/-8/-13/WT None None
Zygosity Hetero Hetero
#452 WT Mutation None None -2/-5/-9/-35/WT -1/-3/-9/+1/WT
Zygosity Hetero Hetero
상기 표 14에서 Background는 형질전환시 사용된 식물체의 유전자형을 나타내며, WT은 야생형을 나타내며, △FucT는 비푸코실화된 식물체를 나타낸다. 상기 표 14에 나타난 바와 같이 T0 세대에서는 단일 또는 이중 녹아웃(knock-out)을 생성하는 것을 확인하였다. 다만, 호모(homo) 라인으로 준비해야 T1 세대에서 다양한 식물체를 얻을 수 있었다.
T1 Generation
Line Background Genotype XylT12-1 XylT12-2 GalT13-1 GalT13-2 Note
#405-18 WT Mutation -5 -8 None None Double KO
Zygosity Mono-homo Mono-homo
#412-49 WT Mutation -8 +1 None None Double KO
Zygosity Mono-homo Mono-homo
#103-38 WT Mutation None None +1 +1 Double KO
Zygosity Mono-homo Mono-homo
#452-32 WT Mutation None None -2/+1 +1 Double KO
Zygosity Bi-homo Mono-homo
#310-4 WT Mutation +1 +1 +1/WT +1 Triple KO
Zygosity Mono-homo Mono-homo Hetero Mono-homo
#123-76 ΔFucT
(#37-1)
Mutation None -1/WT -9 -1 Sextuple KO
Zygosity Hetero Mono-homo Mono-homo
#274-106 ΔFucT
(#37-1)
Mutation -7/-12/+1/WT +1/-10/WT -9 -1/-6 Sextuple KO
Zygosity Hetero Hetero Mono-homo Bi-homo
#274-181 ΔFucT
(#37-1)
Mutation +1 None -9 -6 Septuple KO
Zygosity Mono-homo Mono-homo Mono-homo
#276-113 ΔFucT
(#37-1)
Mutation +1 +1/WT +1 -1 Septuple KO
Zygosity Mono-homo Hetero Mono-homo Mono-homo
#421-50 ΔFucT
(#37-1)
Mutation -3 -2/-4/WT None None Quintuple KO
Zygosity Mono-homo Hetero
#421-142 ΔFucT
(#37-1)
Mutation -2 -7/-13 None None Sextuple KO
Zygosity Mono-homo Bi-homo
상기 표 15에 나타난 바와 같이, T0 세대의 다음 세대인 T1 세대에서 이중부터 7중(septuple) 녹아웃을 생성하는 것을 확인하였다.
T2 Generation
Line Background Genotype XylT12-1 XylT12-2 GalT13-1 GalT13-2 Note
#310-4-60 WT Mutation +1 +1 +1/WT +1 Triple KO
Zygosity Mono-homo Mono-homo Hetero Mono-homo
#276-113-8 ΔFucT
(#37-1)
Mutation +1 +1 +1 -1 Octuple KO
Zygosity Mono-homo Mono-homo Mono-homo Mono-homo
#276-113-13 ΔFucT
(#37-1)
Mutation +1 +1 +1 -1 Octuple KO
Zygosity Mono-homo Mono-homo Mono-homo Mono-homo
#421-142-52 ΔFucT
(#37-1)
Mutation -2 -7 None None Sextuple KO
Zygosity Mono-homo Mono-homo
#421-142-56 ΔFucT
(#37-1)
Mutation -2 -13 None None Sextuple KO
Zygosity Mono-homo Mono-homo
T3 Generation
#310-4-60-3 WT Mutation +1 +1 +1 +1 Quadruple KO
Zygosity Mono-homo Mono-homo Mono-homo Mono-homo
#310-4-60-69 WT Mutation +1 +1 +1 +1 Quadruple KO
Zygosity Mono-homo Mono-homo Mono-homo Mono-homo
상기 표 16에 나타난 바와 같이, T1 세대의 다음 세대인 T2 및 T3 세대에서 8중(Octuple) 녹아웃을 생성하는 것을 확인하였다.
실시예 26. NbXylT12 NbGalT13에 대해 추가 게놈 편집된 계통의 유전형 검증
상기 실시예 25의 T1 세대의 생어-염기서열 분석결과를 통해 mono-allelic homo와 bi-allelic homo를 찾아서 정리하였다. 이를 통해, 이중 또는 삼중으로 당이 제거된 식물체를 나열하였다(도 35 내지 도 38). 이때, mono-allelic homo는 다음 세대에서도 지속적으로 같은 유전자 편집을 형태를 유지하면 유전되어 KO 식물체로 유지되는 식물체 계통을 의미한다.
구체적으로, 도 35에 나타난 바와 같이, 단일 또는 이중으로 당이 제거된 식물체가 분류되었으며, 각 유전자의 인델(indel)을 확인한 결과, β-1,2 자이로스 당 제거된 식물체의 mono-allelic homo 라인은 #405-18 및 #405-59이며, α1, 3- 푸코스와 β-1,2 자이로스 당이 제거된 식물체의 mono-allelic homo 라인은 없어서 #142-142-52을 T2 세대에서 얻을 수 있는 것을 확인하였다. 이때, 상기 인델이란, 유전자 편집에서 결실(deletion)과 삽입(insertion)이 이뤄지는데 이것을 총칭해서 인델이라고 표현하며, 인델 효율(indel efficiency)을 퍼센트로 나타내어 유전자 편집의 효율을 정한다.
또한, 도 36에 나타난 바와 같이, 단일 또는 이중으로 당이 제거된 식물체가 분류되었으며, 각 유전자의 인델을 확인한 결과, β-1,3 갈락토오스 당이 제거된 식물체의 mono-allelic homo 라인은 #103-38 이며, α1,3-푸코스와 β-1,3 갈락토오스 당이 제거된 식물체의 mono-allelic homo 라인은 #123-76, #123-81, #274-181 및 #274-186인 것을 확인하였다.
나아가, 도 37에 나타난 바와 같이, 이중으로 당이 제거된 식물체가 분류되었으며, 각 유전자의 인델을 확인한 결과, 자이로스와 β-1,3 갈락토오스 당이 제거된 식물체의 mono-allelic homo 라인은 T3 세대 #310-4-60-3 및 #310-4-60-69인 것을 확인하였다.
또한, 도 38에 나타난 바와 같이, 삼중으로 당이 제거된 식물체가 분류되었으며, 각 유전자의 인델을 확인한 결과, α-1,3 푸코스, β-1,2 자이로스 와 β-1,3 갈락토오스 당이 제거된 식물체의 mono-allelic homo 라인은 T2 세대 #276-113-8, #276-113-13, #276-113-29 및 #276-113-32인 것을 확인하였다.
실시예 27. NbGalT13에 대해 추가 게놈 편집된 계통을 이용한 트라스투주맙 생산 및 당쇄 분석
상기 실시예 24에서 제작된 비푸코실화 및 비갈락토실화된 담배를 이용하여 실시예 16 및 실시예 17과 동일한 방법으로 형질전환시켜 트라스투주맙을 생산하였다. 액체질소로 얼린 식물체(N.benthamiana) 잎을 막자사발에서 분쇄하여 회수한 후, 분말에 2배 부피의 인산 완충 용액(pH 7.2)을 첨가하고 혼합하였다. 얼음에서 10분 간 정치하고 원심분리하여(15,000×g, 20분, 4℃) 투명한 상층액을 1차 회수하였다. 남은 분말에 2배 부피의 인산 완충 용액(pH 7.2)을 추가로 첨가하고 상기 기술한 방법과 동일한 과정을 반복하여 상층액을 회수한 다음, 1차 회수한 상층액과 혼합하였다.
총 수용성 단백질(Total soluble protein)을 0.45 ㎛ 필터에 여과하여 큰 불용성 입자들을 제거한 후 농축하였다(30 kDa, 15,000×g, 30분, 4℃). 농축한 TSP를 초순수로 3회 반복 처리하여 인산 완충 용액을 초순수로 교체하고(30 kDa, 15,000×g, 30분, 4℃), 브래드포드 분석을 통해 단백질 양을 정량하였다.
상기 수득한 TSP 시료 50 ㎍을 변성 용액(0.1% RapiGest SF, 10 mM DTT)을 첨가하고 56℃ 온도에서 45분간 반응시킨 후, 요오드아세트아마이드(iodoacetamide, 20 mM)를 추가로 첨가하고 암조건(상온)에서 1시간 동안 반응시켰다. 그 후, 반응액에 당 절단 효소(2 ㎕, 5 U/㎕, PNGase A)를 첨가하고 37℃ 온도에서 하룻밤 동안 반응 시켰다. N-당사슬을 PGC 카트리지(Porous graphitize carbon SPE cartridge)를 사용하여 추출하고 진공 원심분리 방법으로 건조하였다.
건조된 N-당사슬에 10 ㎕의 형광 표지 용액(5 ㎎; 2-aminobezoic acid, 6 ㎎; sodium cyanoborohydride/100 ㎕ acetic acid & DMSO)을 첨가하고 65℃ 온도에서 3시간 동안 반응시켰다. 형광이 표지된 N-당사슬은 시아노 카트리지(Cyano SPE cartridge)를 사용하여 추출하고 진공 원심분리 방법으로 건조시켰다. 건조한 2-AB 표지된 N-당사슬은 20 ㎕ 초순수를 첨가하여 녹이고 질량분석기(Ultraflex III TOF/TOF, Bruker Daltonics)를 이용하여 분석하였다. 분석 조건은 하기 표 17에 나타내었다.
Instrument control Flex Control 3.0 (Bruker Daltonics)
Analysis mode Reflectron mode
Polarity Positive
Detection m/z 100~4,000
Laser repetition rate 100 Hz
Number of shot 500 shots
Deflection On, 500 Da
Voltage Part Voltage
Ion Source I 25.00 kV
Ion Source II 21.90 kV
Lens 9.00 kV
Reflector I 26.00 kV
Reflector II 13.60 kV
Reflector Detector 1.803 kV
그 결과, 야생형에서 N-글리칸의 MALDI-TOF MS 분석은 8개의 N-글리칸(MUX, MUF, GnGnX2, GnGnX2F3, MMX2, MMX2F3, GnMX2/MGnX2 및 GnMX2F3/MGnX2F3)의 존재를 나타내었다. 구체적으로, 도 39에 나타난 바와 같이, α-1,3 푸코실트랜스퍼라제가 녹아웃된 #37 식물에서 MUF 및 GnGnX2F3는 검출되지 않았고, MUX 및 GnGnX2만이 검출되었다. 또한, ß-1,3 갈락토실트랜스퍼라제가 녹아웃된 #103 식물에서 MUX, MUF, GnGnX2 및 GnGnX2F3가 모두 검출되었다. 또한, α-1,3 푸코실트랜스퍼라제 및 ß-1,3 갈락토실트랜스퍼라제가 모두 녹아웃된 #123 및 #247 식물에서 MUF 및 GnGnX2F3는 검출되지 않았고, MUX 및 GnGnX2만이 검출되었다.또한, 도 40에 나타난 바와 같이, α-1,3 푸코실트랜스퍼라제가 녹아웃된 #37 식물에서 MMX2F3 및 GnMX2F3/MGnX2F3는 검출되지 않았고, MMX2 및 GnMX2/MGnX2만이 높게 검출되었다. 또한, β-1,3 갈락토실트랜스퍼라제가 녹아웃된 #103 식물에서 MMX2, MMX2F3, GnMX2/MGnX2 및 GnMX2F3/MGnX2F3이 모두 검출되었다. 또한, α-1,3 푸코실트랜스퍼라제 및 β-1,3 갈락토실트랜스퍼라제가 모두 녹아웃된 #123 및 #247 식물에서 MUF 및 GnGnX2F3는 검출되지 않았고, MUX 및 GnGnX2만 검출되었다.
상기 결과를 통해, 비푸코실화된 담배에서는 푸코스가 존재하지 않고, 비갈락토실화된 담배에서는 갈락토스가 존재하지 않으며, 비푸코실화 및 비갈락토실화된 담배에서는 푸코스 및 갈락토스가 모두 존재하지 않음을 확인하였다.
실시예 28. NbXylT12 NbGalT13에 대해 추가 게놈 편집된 계통을 이용한 트라스투주맙 생산 및 당쇄 분석
상기 실시예 24에서 제조한 다양한 계통의 식물체를 실시예 16 및 실시예 17과 동일한 방법으로 형질전환시켜 트라스투주맙을 생산하였다. 그 후, 상기 실시예 27과 동일한 방법으로 당패턴을 분석하였다.
그 결과, 비푸코실화, 비자이로실화된 기주식물에서는 야생형 담배에서는 나타나지 않는 GnGn 형태의 단백질 구조로만 나타나며, 이것은 GF003 항체 단백질을 분석했을 때 95.3%로 야생형 31%에 배해 3배 높게 나타났다(도 41 및 도 42).
실시예 29. NbXylT12 NbGalT13에 대해 추가 게놈 편집된 계통으로부터 생산된 트라스투주맙의 발현량 확인
상기 실시예 24에서 제조한 다양한 계통의 식물체를 실시예 16 및 실시예 17과 동일한 방법으로 형질전환시켜 트라스투주맙을 생산하였다. 그 후, 실시예 18과 동일한 과정의 전기영동을 이용해 트라스투주맙의 발현량을 확인하였다.
그 결과, 도 43에 나타난 바와 같이, 각 기주식물에서 모두 트라스투주맙이 잘 발현하는 것을 확인하였다.
실시예 30. NbXylT12 NbGalT13에 대해 추가 게놈 편집된 계통으로부터 생산된 트라스투주맙의 당쇄의 항암효과 확인: in vitro
상기 실시예 28에서 생산한 트라스투주맙의 항체의존세포독성(antibody-dependent cellular cytotoxicity, ADCC)을 확인하기 위해, 분석 하루 전날 타겟세포(target cell, T)인 SKBR3 암세포주를 1×104 cells/100 ㎕/well로 필요한 샘플 수를 고려하여 96-웰-플레이트에 분주하였다.
효과세포(effector cell)인 jurkat T세포주의 세포수를 측정하여 E:T=15:1의 비율이 되도록 10% low IgG FBS-RPMI1640에 재분주하였다. 이때, FBS는 분석에 영향을 줄 수 있으므로, low IgG FBS를 사용하였으며, 히그로마이신(hygromycin) 및 G418 항생제는 SKBR3 암세포주를 죽일 수 있으므로 사용하지 않았다. 구체적으로, E:T=15:1의 비율이 되도록 효과세포인 jurkat T세포를 1.5×105 cells을 처리하기 위해 1.5×106 cells/㎖로 10% low IgG FBS-RPMI1640에 재분주하였다.
시판되고 있는 트라스투주맙(A-trastuzumab, B-trastuzumab) 및 실시예 27에서 생산한 각각의 트라스투주맙(GF003/△F, GF003/△FX, GF003/△FG, GF003/△X, GF003/△G, GF003/Nbwt)은 최고 농도 1 ㎍/㎖이 되게 하고, 1/3 연속 희석(serial dilution)하여 총 10가지 다른 농도로 처리되도록 설정하였다.
96-웰-플레이트에 있던 SKBR3 암세포주의 배지를 제거하고, jurkat T세포와 상기 각각의 트라스투주맙의 총 부피가 100 ㎕가 되도록 하여 SKBR3 암세포주에 넣어주었다. 이때, e-tube에 11.5×106 cells/㎖의 jurkat T세포 1 ㎖에 항체 1 ㎍을 넣고, 96-웰-플레이트에 200 ㎕를 넣었다. 그 후, 다음 9개 웰에 120 ㎕의 jurkat T세포를 넣고, 처음 1 ㎍/㎖ 농도인 웰에서 60 ㎕씩 순차적으로 희석하여 하여 총 10가지 농도의 항체가 들어있는 샘플을 준비하였다.
다음 날, 루시퍼라아제 기질 용액(Luciferase substrate solution)을 Multi-channel pipette을 이용하여, 60 ㎕/well을 넣고 CO2 인큐베이터에서 2분 동안 배양하였다. FLUO STAR OMEGA microplate reader에서 Luciferase assay protocol로 발광값(luminescence)를 측정하였으며, GraphPAD PRISM 프로그램을 사용하여 IC50의 농도 값을 구하였다.
그 결과, 도 44에 나타난 바와 같이, GF003/△FX(0.38 ng/㎖)가 표준폼인 A-trastuzumab(1.05 ng/㎖)에 비해 3배 가량 낮은 농도에서 항체의존세포독성 효과를 나타내는 것을 확인하였다.
<110> G+FLAS Life Sciences Seoul National University R&DB Foundation <120> ANTIBODY PRODUCED BY USING AFUCOSYLATED N.BENTHAMIANA AND USES THEREOF <130> FPD/202009-0082 <150> KR 10-2019-0150743 <151> 2019-11-21 <160> 82 <170> KoPatentIn 3.0 <210> 1 <211> 469 <212> PRT <213> Artificial Sequence <220> <223> amino acid sequence for trastuzumab(heavy chain) <400> 1 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Asn Ile 35 40 45 Lys Asp Thr Tyr Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60 Glu Trp Val Ala Arg Ile Tyr Pro Thr Asn Gly Tyr Thr Arg Tyr Ala 65 70 75 80 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn 85 90 95 Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val 100 105 110 Tyr Tyr Cys Ser Arg Trp Gly Gly Asp Gly Phe Tyr Ala Met Asp Tyr 115 120 125 Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 130 135 140 Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly 145 150 155 160 Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val 165 170 175 Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe 180 185 190 Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val 195 200 205 Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val 210 215 220 Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys 225 230 235 240 Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu 245 250 255 Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr 260 265 270 Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val 275 280 285 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val 290 295 300 Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser 305 310 315 320 Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu 325 330 335 Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala 340 345 350 Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro 355 360 365 Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 370 375 380 Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 385 390 395 400 Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 405 410 415 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 420 425 430 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 435 440 445 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 450 455 460 Leu Ser Pro Gly Lys 465 <210> 2 <211> 233 <212> PRT <213> Artificial Sequence <220> <223> amino acid sequence for trastuzumab(light chain) <400> 2 Met Gly Trp Ser Cys Ile Ile Leu Phe Leu Val Ala Thr Ala Thr Gly 1 5 10 15 Val His Ser Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala 20 25 30 Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val 35 40 45 Asn Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys 50 55 60 Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg 65 70 75 80 Phe Ser Gly Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser 85 90 95 Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr 100 105 110 Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 115 120 125 Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 130 135 140 Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 145 150 155 160 Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly 165 170 175 Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 180 185 190 Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 195 200 205 Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 210 215 220 Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 <210> 3 <211> 1410 <212> DNA <213> Artificial Sequence <220> <223> nucleotide seqeunce of optimized trastuzumab(heavy chain) <400> 3 atgggatgga gctgcatcat cctctttttg gttgctactg ctactggtgt ccactccgag 60 gtgcagcttg ttgaatccgg aggaggcctc gtgcaaccag gtggatcact taggctctcc 120 tgcgccgcct ccggtttcaa catcaaggac acttacattc actgggtgag acaggcaccc 180 ggcaagggct tggagtgggt ggcaaggatt tacccaacca acggttacac ccgctacgca 240 gactcagtta agggaagatt cactatttca gctgacacct ccaagaacac agcttacctt 300 cagatgaact ctttgagggc cgaggacacc gctgtttact actgctcccg ttggggtgga 360 gatggatttt acgctatgga ttactggggc cagggtactc tcgttaccgt gtccagcgct 420 agtaccaagg ggccatctgt ttttcccttg gctccttcct caaagtctac ctcaggaggt 480 acagctgccc tcgggtgcct tgtcaaagac tacttcccag agcctgttac cgtttcttgg 540 aacagtggtg ctttgacaag cggcgtccac acttttcccg ccgtgttgca gtcatctgga 600 ttgtactccc ttagctctgt ggtgactgtc ccatcctctt ctttgggtac ccagacttac 660 atctgcaacg tcaatcacaa gcctagcaat accaaagtcg ataaaaaggt tgaacctaaa 720 agttgcgata agacccacac ctgcccccct tgccctgcac cggagttgtt ggggggccca 780 tctgtcttcc ttttcccacc taagccaaaa gacactctta tgatttcaag aacccctgag 840 gttacttgcg tcgtggttga tgtctctcac gaggacccag aagtgaagtt taactggtac 900 gttgatgggg tcgaggtgca caatgccaag accaagccta gggaggagca gtacaactcc 960 acttaccgcg tcgtttcagt gctcaccgtt ttgcaccagg attggcttaa cggcaaggag 1020 tacaagtgca aagtctccaa taaggctctc cccgccccaa tcgaaaaaac catctccaag 1080 gcaaagggcc agccacgtga gcctcaggtg tacaccttgc ccccatctcg tgaagagatg 1140 actaagaatc aagttagtct cacatgcttg gtcaagggat tctacccaag cgacatcgct 1200 gtggagtggg aatccaatgg ccagcctgag aataactaca agaccactcc cccagtgctt 1260 gactcagatg gctccttttt cctctactct aagttgactg tcgataagtc acgttggcaa 1320 caaggtaatg tgtttagttg cagtgtcatg cacgaagccc ttcacaacca ctacactcag 1380 aagtcattgt ctcttagtcc tggcaaatga 1410 <210> 4 <211> 702 <212> DNA <213> Artificial Sequence <220> <223> nucleotide seqeunce of optimized trastuzumab(light chain) <400> 4 atgggatgga gctgcatcat cctctttttg gttgctactg ctactggtgt ccactccgat 60 atccagatga cccagtctcc atcctctctc tccgcaagcg tgggtgacag ggtcaccatt 120 acttgccgcg ctagtcagga tgttaacact gccgtggcat ggtaccagca aaagcctggc 180 aaggcaccca aactcttgat ctactcagcc agctttttgt actccggggt cccaagtaga 240 ttctcaggga gccgttcagg caccgacttt actttgacta tttcctccct ccaaccggaa 300 gattttgcca cctactattg ccaacagcac tacactacac cacctacttt cggacaggga 360 acaaaggttg aaatcaaacg taccgtcgct gccccaagtg tatttatttt ccctccatcc 420 gacgagcagt tgaagtctgg cactgctagt gttgtttgcc ttcttaataa cttctaccca 480 agggaggcca aggttcagtg gaaggtggat aatgctcttc agagtggtaa ctcccaggag 540 agcgtgaccg agcaagactc caaggattcc acttacagtc tatctagcac actcaccctg 600 tccaaagccg attacgagaa gcacaaggtc tacgcttgcg aggttaccca ccagggtttg 660 tcttcacccg tcaccaagtc cttcaatcgt ggagaatgct ga 702 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for PP2A_RT-For <400> 5 gaccctgatg ttgatgttcg ct 22 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for PP2A_RT-Rev <400> 6 gagggatttg aagagagatt tc 22 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1/2 qRT-PCR F <400> 7 ccacccatgt gcaaaatttg aagcc 25 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1 qRT-PCR R <400> 8 ggattcacca ttggtaagac t 21 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1/2 qRT-PCR F <400> 9 ccacccatgt gcaaaatttg aagcc 25 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_2 qRT-PCR R <400> 10 ggagagaatg agagttacac 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3 qRT-PCR F <400> 11 aagatcacat ctttacctat 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3/4 qRT-PCR R <400> 12 ccaattggac catttctttt 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_4 qRT-PCR F <400> 13 tagcttcatt acttcaagac 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3/4 qRT-PCR R <400> 14 ccaattggac catttctttt 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_5 qRT-PCR F <400> 15 tttctaattg tggtgctcgt 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_5 qRT-PCR R <400> 16 ggaagaattt ttcggtgtcc 20 <210> 17 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1 SPF1 <400> 17 gcagaattag ttgagcgcca ccagata 27 <210> 18 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1 SPR2 <400> 18 gtgcaaaaca acagcaaaag aagataacaa taacaataac 40 <210> 19 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_2 SPF2 <400> 19 gtagttgaga ttttagcatc atcttgc 27 <210> 20 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_2 SPR2 <400> 20 gggttcaatg tccttttcct ttagtttcgt tactccg 37 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3 5UTR F <400> 21 cccatctcca actgtcccac caaatgaaga at 32 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3 SPR1 <400> 22 aaattcaaaa tgatcaagaa gagcacg 27 <210> 23 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_4_FUT1 F <400> 23 caatgcagaa tatttttatc catg 24 <210> 24 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_4_FUT2 R <400> 24 aagcacgaca aattgatgca tacc 24 <210> 25 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3/4/5 SPF1 <400> 25 taccaagatt tgaaggtgtt gggtcat 27 <210> 26 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_5 R <400> 26 cttgaaaatg taaaagatca gaacttcgcc g 31 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13-1-1272-F <400> 27 aatactttac gaatccactt cgc 23 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13-1_R <400> 28 caaaaacaac tactactact acgcctc 27 <210> 29 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_2 5'utr F1 <400> 29 gtacctatga acttagaatc agcaactctg 30 <210> 30 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13-2_R <400> 30 gagacaacaa caactactac tactaatcct c 31 <210> 31 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13-3_F <400> 31 gttgggtcat catcacctac aaacgca 27 <210> 32 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3 SPR2 <400> 32 ctgctctatt caccccattt attagta 27 <210> 33 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_4_F <400> 33 gttgggtcat tatcacctac aaacg 25 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_4_R1 <400> 34 cagaaaaaga gcaatcaact atgcc 25 <210> 35 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3/4/5 F1 <400> 35 taccaagatt tgaaggtgtt gggtcat 27 <210> 36 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFT13-5-R <400> 36 cttgaaaatg taaaagatca gaacttcgcc g 31 <210> 37 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for PP2A_RT-F <400> 37 gaccctgatg ttgatgttcg ct 22 <210> 38 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for PP2A_RT-R <400> 38 gagggatttg aagagagatt tc 22 <210> 39 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1/2 qRT-PCR F <400> 39 ccacccatgt gcaaaatttg aagcc 25 <210> 40 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1 qRT-PCR R <400> 40 ggattcacca ttggtaagac t 21 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_1/2 qRT-PCR F <400> 41 ccacccatgt gcaaaatttg aagcc 25 <210> 42 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_2 qRT-PCR R <400> 42 ggagagaatg agagttacac 20 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3 qRT-PCR F <400> 43 aagatcacat ctttacctat 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3/4 qRT-PCR R <400> 44 ccaattggac catttctttt 20 <210> 45 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_4 qRT-PCR F <400> 45 tagcttcatt acttcaagac 20 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_3/4 qRT-PCR R <400> 46 ccaattggac catttctttt 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_5 qRT-PCR F <400> 47 tttctaattg tggtgctcgt 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbFTa13_5 qRT-PCR R <400> 48 ggaagaattt ttcggtgtcc 20 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12_1 qRT-PCR F <400> 49 gtgagagaga gagagagaga ggagaag 27 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12_1 qRT-PCR R <400> 50 gtggttttgg ggggatttgt g 21 <210> 51 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12_2 qRT-PCR F <400> 51 gccagtcgga gagagaagaa g 21 <210> 52 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12_2 qRT-PCR R <400> 52 ggttctgggg ggatttgcga cgaga 25 <210> 53 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1 qRT-PCR F <400> 53 aagagtaaga aagatggtgg ga 22 <210> 54 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1/2 qRT-PCR R <400> 54 ccatcaactg tcatctgaat tcc 23 <210> 55 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_2 qRT-PCR F <400> 55 tggatgaatt ggaacaatgc aatgag 26 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_2/2 qRT-PCR R <400> 56 ccatcaactg tcatctgaat tcc 23 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12-1-1 <400> 57 ttgcagagtt cgatctgcga ggg 23 <210> 58 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12-1-2 <400> 58 gatattttga tgtctcgtgg agg 23 <210> 59 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12-2-1 <400> 59 gttgcttgga gatcatgcga ggg 23 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12-1/2-3 <400> 60 gtctcgtgga ggtgagaaat tgg 23 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12-1/2-1 <400> 61 gtaggagggc aaaataggcc aagg 24 <210> 62 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbXTb12-1/2-4 <400> 62 gagaaattgg agtcggttat tgg 23 <210> 63 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_2-1 <400> 63 gatctggaca agttgcggtg cgg 23 <210> 64 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_2-2 <400> 64 gttgcggtgc ggttttttgt cgg 23 <210> 65 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1-1 <400> 65 gaatctagcc tggatcagga cgg 23 <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1-2 <400> 66 gatcaggacg ggtctaaatc agg 23 <210> 67 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1/2-1 <400> 67 ggaattcaga tgacagttga tgg 23 <210> 68 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1/2-2 <400> 68 gtaagtgaag tgaggatatc tgg 23 <210> 69 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence for NbGTb13_1/2-3 <400> 69 cgtggcttgt aagtgaagtg agg 23 <210> 70 <211> 1503 <212> DNA <213> Artificial Sequence <220> <223> NbFucT13_1 <400> 70 atgagatcgg cgtcaaattc aaacgcaccc aataagcaat ggcgcaattg gttgcctctg 60 ttcgttgccc tagtgattat agctgagttt tcttttctgg ttcgactcga cgtagctgaa 120 aaagccaact cttgggccga atcgttttat cagttcacca cggcctcttg gtccacctct 180 aaactggctg ttgaccacgg cgacgttgag gaggtccagt tgggtgtttt gagtggtgag 240 ttcgatcatg gcttcgtacc tgggagttgc gaggagtggt tggaaaggga agattctgtg 300 gcttattcga gggattttga taatgaacca atttttgttc atgggcctgg acaggaattg 360 aaatcttgtt ccataggatg taagtttgga acagattcca ataagaagcc tgatgcagca 420 tttcggctac cacaacaagc tggcacagct agtgtgctac ggtcgatgga gtcagctcaa 480 tactatgcag agaacaacat tactttggca cgacgaaggg gatatgatgt tgtaatgaca 540 acaagcctct cttcagatgt tcctgttgga tacttctctt gggctgagta tgatatcatg 600 gctccagtag aacctaaaac agagaatgcc ttggcagcgg ctttcatttc taattgtggt 660 gctcgcaact tccgtttgca agctttagaa gcccttgaaa gggcaaatat cagaattgac 720 tcttatggaa gttgtcatca taacagggat ggaagagttg acaaagtggc agcactgaag 780 cgttaccagt ttagcttggc ttttgagaat tctaatgagg aggactatgt aactgaaaaa 840 ttctttcagt ctctggtagc tgggtcaatc cctgtggtgg ttggtgctcc aaacatccaa 900 gactttgcgc cttctcctaa ttcagtttta cacattaaag agataaaaga tgctgaatca 960 attgccaata ccatgaagta ccttgctcaa aaccctattg catataatga gtcattaagg 1020 tggaagtttg agggcccatc tgatgccttc aaagcccttg ttgatatggc agcagttcat 1080 tcatcttgtc gtttgtgcat cttcttggca agtaggatcc gggaaagaga agagcagagt 1140 ccaaaattta tgaagcgtcc ctgcaaatgt accagaggga ctgaaactgt atatcatgta 1200 tatgtaggtg aaagaggcag gtttgagatg gattccattt tcttaaggtc gagtgatttg 1260 tctttgaagg cgtttgaatc tgctatcctc tcgaggttca agtctgttaa acatgttcct 1320 gtttggaagg aggaaagacc tcaagtacta cgaggtggtg atgaactcaa actttacaaa 1380 gtatatcctg ttggcttgac acagagacaa gcattgtttt ccttcagatt caacggggat 1440 actgagttta acaattacat tcaaagccac ccatgtgcaa aatttgaagc catcttcgta 1500 tag 1503 <210> 71 <211> 1503 <212> DNA <213> Artificial Sequence <220> <223> NbFucT13_2 <400> 71 atgagatcgt cgtcaaattc aaacgcaccc gataaacaat ggcgcaattg gttgcctctg 60 ttcgttgccc tagttgttat agcagaaatt tcttttctgg ttcgactcga cgtggctgaa 120 aaagccaact cttgggctga gtcgttttat cagttcacca cggcgtcttg gtcaacctcc 180 aaactggctg ttgacggcgg cgatgttgat gaggtcctgt tgggtgtttt gagtggtgag 240 tttgatcagg gcttcctacc ttggagttgc gaggagtggt tggaaaggga agattatgtg 300 gcttatgcga gggattttga taatgaacca atttttgttc atgggcctgg acaggaattg 360 aaatcttgtt ccataggatg taagtttgga acagattcca ataagaagcc tgatgcagca 420 tttcggctac cacaacaagc tggcacagct agtgtgctac ggtccatgga gtcagctcaa 480 tactatgcag agaacaacat tactttggca cgacgaaggg gatatgatgt tgtaatgaca 540 acaagcctct cttcagatgt tcctgttgga tacttctctt gggctgagta tgatatcatg 600 gctccagtag aacctaaaac agagaatgcc ttggcagccg ctttcatttc taattgcggt 660 gctcgcaact tccgtttgca agctttagaa gcccttgaaa gggcaaatat cagaattgac 720 tcttatggca gttgtcatca taacagggat ggaagagtag acaaagtggc agcactgaag 780 cgttacaagt ttagcttggc ttttgagaat tctaatgagg aggactatgt aaccgaaaaa 840 ttctttcagt ctctggtagc tgggtcaatc cctgtggtgg ttggtgctcc aaacatccaa 900 gactttgcgc cttctcctaa ttcagtttta cacattaaag agataaaaga tgctgaatta 960 attgccaata ccatgacgta ccttgctcaa aaccctattg catctaatga gtcattaagg 1020 tggaagtttg agggcccatt tgatgccttc aaagccctgg ttgatatggc agcagttcat 1080 tcatcttgcc gtttgtgcat cttcttggca agtaggatcc aggaaagaga agagcatagt 1140 ccaaaattta cgaagcgccc ctgcaaatgt accagagaga ctgaaactgt ctatcatgta 1200 tatgtacgtg aaagagggag gtttgagatg gattccattt tcttaaggtc gagtgatttg 1260 tctttaaagg cgtttgaatc tgctattctc tcgaggttca agtctgttaa acatgttcct 1320 gtttggaggg aggaaagacc tcaagtacta cgaggtggtg atgaactcaa actttactaa 1380 gtatatcctg ttggcttgac acagagacaa gcattgtttt ccttcagatt caacggggat 1440 actgagttta agaattacat tcaaagccac ccatgtgcaa aatttgaagc catcttcgta 1500 tag 1503 <210> 72 <211> 1504 <212> DNA <213> Artificial Sequence <220> <223> NbFucT13_3 <400> 72 atggcaacag ttattccaat tcaaagatta ccaagatttg aaggtgttgg gtcatcatca 60 cctacaaacg caccccaaaa gaaatggtcc aattggctac ctctagtagt tggacttgtg 120 gttttagtgg aaattgcatt tctgggtcga ttggacatgg ctgaaaaagc caacctagtc 180 aactcttgga ctgactcatt ttaccagttt acgacgtcgt cttggtcaac ctccaaagtg 240 gaaattaatg aggctgggtt gggtgtgttg aggagtagtg aggttgatca gaatttggaa 300 actgggagct gtgaggagtg gttggaaaag gaggattctg tggagtattc tagagatttt 360 gataaagatc caatttttgt tcatggcggc gaaaagattc tgataagaag cctgacgcgg 420 catttgggac accacaacag actggcacag ctagcgtgct tcggtcaatg gagtcttctc 480 aatactatcc tgagaacaac atcgttaccg cacgacgaag gggatatgat attataatga 540 caacaagcct ctcttcagat gttcctgttg ggtacttctc ttgggcggag tacgatataa 600 tggctccggt gcaacctaaa actgagaatg cattagcagc tgcttttatt tctaattgtg 660 gtgctcgcaa cttccggttg caggctcttg aagtccttga aagggcaaat atcaagattc 720 attcttttgg cagttgtcat cgtaaccggg atggaaatgt ggacaaagtg gaaactctca 780 agcactacaa atttagcttc gcttttgaga attctaatga ggaggattat gtcaccgaaa 840 aattcttcca gtctttagta gctggatcag tccccgtggt gattggtgct ccaaacatcc 900 tagactttgc tccttctcct acttcacttt tacacattaa agagctgaaa gacggtgcat 960 cagttgccaa gactatgaag taccttgcag aaaatcctag tgcatataat gagtcattag 1020 gtggaaattt gagggtccat ctgactcttt caaagccctg gttgacatgg cagcagttca 1080 ctcttcttgt cgtttgtgta tcttcttagc aactagtatt agggagaaag aagagaagag 1140 tccaaaattt acgaaacgtc cctgcaaatg taccagaggt tcagaaactg tctatcatgt 1200 atatgtacgt gaaagaggga ggtttgacat ggagtccgtt ttcctaaggt catctaattt 1260 gtcactggag gcttttgaat ctgcagtact gtcgaagctc aaatctctaa agcatgttcc 1320 tatttggaaa gacgaaagac ctcaaatact tcatggaggg gatgaactaa agctctacag 1380 aatatatcct cttggcatga cacaacgaca ggcattgtac acctttaaat tcaaaggaga 1440 cgcagatttt aggaatcaca tcgaaagcca cccatgcgca aactttgaag ccatatttgt 1500 atag 1504 <210> 73 <211> 1779 <212> DNA <213> Artificial Sequence <220> <223> NbFucT13_4 <400> 73 atggcaacag ttattccaat tcaaagaata ccaagatttg aaggtgttgg gtcattatca 60 cctacaaacg ttccccaaaa gaaatggtcc aattggttac ctctagtagt tgcacttgtg 120 gttatagttg aaattgcatt tctgggtcga ctggacatgg ctgaaaaagc caacctggtc 180 aactcttgga ctgactcatt ttaccagttt acgacgtcgt cttggtcaac ctccaacgtg 240 gaaattaatg aggctgggtt gggtgtgttg aggagtagtg aggttgatcg gaatttggca 300 actgggagct gtgaggagtg gttggaaaag gaagattctg tagagtattc tagagatttt 360 gacaaagatc caatttttgt tcatggcggc gaaaaggatt ggaagtcttg tgcagtagga 420 tgtaactttg gtgtggattc tgataagaag cctgatgcgg catttgggac accacaacag 480 gctggcacgg ctagcgtgct tcggtcaatg gagtctgctc aatactatcc ggagaacaac 540 atcgttaccg cacgacgaag gggatatgat attgtaatga cagcaagcct ctcttcggat 600 gttcctgttg ggtacttctc ttgggcggag tatgatataa tggctccagt gcaacctaaa 660 actgagaatg cattagcagc tgcttttatt tctaattgtg gtgcttgcaa cttccggttg 720 caggctcttg aagtccttga aagggcaaat atcaagattg attcttttgg cagttgtcat 780 cgtaaccggg acggaaatgt ggacaaagtg gaaactctca agtgctacaa atttagcttc 840 gcttttgaga attctaatga ggaggattat gtcaccgaaa aattcttcca gtctttagta 900 gctggtaata atttgatcag tccccgtggt gattggtgct ccaaacatcc tagactttgc 960 tccttctcct aattcacttt tacacattaa agagctgaaa gacgctgcat cagttgccaa 1020 gattatgaag taccttgcag aacatcctag tgcatataac gagtcattaa gttggaaatt 1080 tgagggtcca tctgactcgt tcaaagccct ggttgacatg gcagcagttc actcttcttg 1140 tcgtttgtgt atcttcttag caactagtat tagggagaaa gaagagaaga gtccaaaatt 1200 tacgaaacgt ccctgcaaat gtaccagagg ttcagaaact gtctatcatg tatatgtacg 1260 tgaaagaggg aggtttgaca tggagtccgt tttcctaagg tcatctaatt tgtcattgga 1320 ggcttttgaa tctgcagtac tgtcaaagtt caaatctcta aagcatgttc ccatttggaa 1380 agaagaaaga cctcaaatac tacgtggagg ggatgaacta aagctctaca gagtatatcc 1440 tctcggcatg acacagcgtc aggcattgta cacctttaaa ttcaaaggag acgcagattt 1500 taggaatcac attgaaagcc acccatgcgc aaactttgaa gccatatttg tatagatcaa 1560 gtccaaacct gagagtctcg acagcagctt gttgtaggcc atagcgtaat gctcattctt 1620 actatccgcc ccactgccta acatcattct ggttatgatt tttgcagtac aaactggtgt 1680 ctgggaagtt ctgatctttt acattttcaa gtaaaaagga acaaactctg aaccttgaat 1740 ggacatgcct aacctcccaa agtagtgcgt tgcaaaatt 1779 <210> 74 <211> 1779 <212> DNA <213> Artificial Sequence <220> <223> NbFucT13_5 <400> 74 atggcaacag ttattccaat tcaaagaata ccaagatttg aaggtgttgg gtcattatca 60 cctacaaacg ttccccaaaa gaaatggtcc aattggttac ctctagtagt tgcacttgtg 120 gttatagttg aaattgcatt tctgggtcga ctggacatgg ctgaaaaagc caacctggtc 180 aactcttgga ctgactcatt ttaccagttt acgacgtcgt cttggtcaac ctccaacgtg 240 gaaattaatg aggctgggtt gggtgtgttg aggagtagtg aggttgatcg gaatttggca 300 actgggagct gtgaggagtg gttggaaaag gaagattctg tagagtattc tagagatttt 360 gacaaagatc caatttttgt tcatggcggc gaaaaggatt ggaagtcttg tgcagtagga 420 tgtaactttg gtgtggattc tgataagaag cctgatgcgg catttgggac accacaacag 480 gctggcacgg ctagcgtgct tcggtcaatg gagtctgctc aatactatcc ggagaacaac 540 atcgttaccg cacgacgaag gggatatgat attgtaatga cagcaagcct ctcttcggat 600 gttcctgttg ggtacttctc ttgggcggag tatgatataa tggctccagt gcaacctaaa 660 actgagaatg cattagcagc tgcttttatt tctaattgtg gtgcttgcaa cttccggttg 720 caggctcttg aagtccttga aagggcaaat atcaagattg attcttttgg cagttgtcat 780 cgtaaccggg acggaaatgt ggacaaagtg gaaactctca agtgctacaa atttagcttc 840 gcttttgaga attctaatga ggaggattat gtcaccgaaa aattcttcca gtctttagta 900 gctggtaata atttgatcag tccccgtggt gattggtgct ccaaacatcc tagactttgc 960 tccttctcct aattcacttt tacacattaa agagctgaaa gacgctgcat cagttgccaa 1020 gattatgaag taccttgcag aacatcctag tgcatataac gagtcattaa gttggaaatt 1080 tgagggtcca tctgactcgt tcaaagccct ggttgacatg gcagcagttc actcttcttg 1140 tcgtttgtgt atcttcttag caactagtat tagggagaaa gaagagaaga gtccaaaatt 1200 tacgaaacgt ccctgcaaat gtaccagagg ttcagaaact gtctatcatg tatatgtacg 1260 tgaaagaggg aggtttgaca tggagtccgt tttcctaagg tcatctaatt tgtcattgga 1320 ggcttttgaa tctgcagtac tgtcaaagtt caaatctcta aagcatgttc ccatttggaa 1380 agaagaaaga cctcaaatac tacgtggagg ggatgaacta aagctctaca gagtatatcc 1440 tctcggcatg acacagcgtc aggcattgta cacctttaaa ttcaaaggag acgcagattt 1500 taggaatcac attgaaagcc acccatgcgc aaactttgaa gccatatttg tatagatcaa 1560 gtccaaacct gagagtctcg acagcagctt gttgtaggcc atagcgtaat gctcattctt 1620 actatccgcc ccactgccta acatcattct ggttatgatt tttgcagtac aaactggtgt 1680 ctgggaagtt ctgatctttt acattttcaa gtaaaaagga acaaactctg aaccttgaat 1740 ggacatgcct aacctcccaa agtagtgcgt tgcaaaatt 1779 <210> 75 <211> 513 <212> PRT <213> Artificial Sequence <220> <223> NbXylT12_1 <400> 75 Met Asn Lys Lys Lys Leu Lys Ile Leu Val Ser Leu Phe Ala Leu Asn 1 5 10 15 Ser Ile Thr Leu Tyr Leu Tyr Phe Ser Ser His Pro Asp His Lys Ser 20 25 30 Pro Gln Asn His Phe Ser Leu Ser Glu Asn His His His Asn Phe His 35 40 45 Ser Ser Ile Thr Ser Gln Tyr Ser Lys Pro Trp Pro Ile Leu Pro Ser 50 55 60 Tyr Leu Pro Trp Ser Gln Asn Pro Asn Val Ala Trp Arg Ser Cys Glu 65 70 75 80 Gly Tyr Phe Gly Asn Gly Phe Thr Leu Lys Val Asp Leu Leu Lys Thr 85 90 95 Ser Pro Glu Phe His Arg Lys Phe Gly Asp Asn Thr Val Ser Gly Asp 100 105 110 Gly Gly Trp Phe Arg Cys Phe Phe Ser Glu Thr Leu Gln Ser Ser Ile 115 120 125 Cys Glu Gly Gly Ala Ile Arg Met Asn Pro Asp Asp Ile Leu Met Ser 130 135 140 Arg Gly Gly Glu Lys Leu Glu Ser Val Ile Gly Arg Asn Glu Asp Asp 145 150 155 160 Glu Leu Pro Met Phe Lys Asn Gly Ala Phe Gln Ile Glu Val Thr Asp 165 170 175 Lys Leu Lys Ile Gly Lys Lys Leu Val Asp Lys Lys Phe Leu Asn Lys 180 185 190 Tyr Leu Pro Gly Gly Ala Ile Ser Arg His Thr Met Arg Glu Leu Ile 195 200 205 Asp Ser Ile Gln Leu Val Gly Ala Asp Glu Phe His Cys Ser Glu Trp 210 215 220 Val Glu Glu Pro Ser Leu Leu Ile Thr Arg Phe Glu Tyr Ala Asn Leu 225 230 235 240 Phe His Thr Val Thr Asp Trp Tyr Ser Ala Tyr Ala Ala Ser Arg Val 245 250 255 Thr Gly Leu Pro Ser Arg Pro Asn Leu Val Phe Val Asp Gly His Cys 260 265 270 Glu Thr Gln Leu Glu Glu Thr Trp Lys Ala Leu Phe Ser Ser Leu Thr 275 280 285 Tyr Ala Lys Asn Phe Ser Gly Pro Val Cys Phe Arg His Ala Val Leu 290 295 300 Ser Pro Leu Gly Tyr Glu Thr Ala Leu Phe Lys Gly Leu Ser Glu Thr 305 310 315 320 Ile Asp Cys Asn Gly Ala Ser Ala His Asp Leu Trp Gln Lys Pro Asp 325 330 335 Asp Lys Lys Thr Ala Arg Leu Ser Glu Phe Gly Glu Met Ile Arg Ala 340 345 350 Ala Phe Gly Phe Pro Val Asp Arg Gln Asn Ile Pro Arg Thr Val Thr 355 360 365 Gly Pro Asn Val Leu Phe Val Arg Arg Glu Asp Tyr Leu Ala His Pro 370 375 380 Arg His Gly Gly Lys Val Gln Ser Arg Leu Ser Asn Glu Glu Leu Val 385 390 395 400 Phe Asp Ser Ile Lys Ser Trp Ala Leu Asn His Ser Glu Cys Lys Leu 405 410 415 Asn Val Ile Asn Gly Leu Phe Ala His Met Ser Met Lys Glu Gln Val 420 425 430 Arg Ala Ile Gln Asp Ala Ser Val Ile Val Gly Ala His Gly Ala Gly 435 440 445 Leu Thr His Ile Val Ser Ala Ala Pro Lys Ala Val Ile Leu Glu Ile 450 455 460 Ile Ser Ser Glu Tyr Arg Arg Pro His Phe Ala Leu Ile Ala Gln Trp 465 470 475 480 Lys Gly Leu Glu Tyr His Pro Ile Tyr Leu Glu Gly Ser Tyr Ala Asp 485 490 495 Pro Pro Val Val Ile Asp Lys Leu Ser Ser Ile Leu Arg Ser Leu Gly 500 505 510 Cys <210> 76 <211> 516 <212> PRT <213> Artificial Sequence <220> <223> NbXylT12_2 <400> 76 Met Asn Lys Lys Lys Leu Lys Ile Leu Val Ser Leu Phe Ala Leu Asn 1 5 10 15 Ser Ile Thr Leu Tyr Leu Tyr Phe Ser Ser His Pro Asp His Ser Arg 20 25 30 Arg Lys Ser Pro Gln Asn His Phe Ser Ser Ser Glu Asn His His His 35 40 45 Asn Phe His Ser Ser Ile Thr Ser Gln Tyr Ser Arg Pro Trp Pro Ile 50 55 60 Leu Pro Ser Tyr Leu Pro Trp Ser Gln Asn Pro Asn Val Ala Trp Arg 65 70 75 80 Ser Cys Glu Gly Tyr Phe Gly Asn Gly Phe Thr Leu Lys Val Asp Leu 85 90 95 Leu Lys Thr Ser Pro Glu Leu His Arg Lys Phe Gly Glu Asn Thr Val 100 105 110 Phe Gly Asp Gly Gly Trp Phe Arg Cys Phe Phe Ser Glu Thr Leu Gln 115 120 125 Ser Ser Ile Cys Glu Gly Gly Ala Ile Arg Met Asn Pro Asp Glu Ile 130 135 140 Leu Met Ser Arg Gly Gly Glu Lys Leu Glu Ser Val Ile Gly Arg Ser 145 150 155 160 Glu Asp Asp Glu Val Pro Ala Phe Lys Thr Gly Ala Phe Gln Ile Lys 165 170 175 Val Thr Asp Lys Leu Lys Phe Gly Lys Lys Leu Val Asp Glu Asn Phe 180 185 190 Leu Asn Lys Tyr Leu Pro Glu Gly Ala Ile Ser Arg His Thr Met Arg 195 200 205 Glu Leu Ile Asp Ser Ile Gln Leu Val Gly Ala Asn Asp Phe His Cys 210 215 220 Ser Glu Trp Ile Glu Glu Pro Ser Leu Leu Ile Thr Arg Phe Glu Tyr 225 230 235 240 Ala Asn Leu Phe His Thr Ile Thr Asp Trp Tyr Ser Ala Tyr Val Ala 245 250 255 Ser Arg Val Thr Gly Leu Pro Ser Arg Pro His Leu Val Phe Val Asp 260 265 270 Gly His Cys Glu Thr Gln Leu Glu Glu Thr Trp Lys Ala Leu Phe Ser 275 280 285 Ser Leu Thr Tyr Ala Lys Asn Phe Ser Gly Pro Val Cys Phe Arg His 290 295 300 Ala Val Leu Ser Pro Leu Gly Tyr Glu Thr Ala Leu Phe Lys Gly Leu 305 310 315 320 Ser Glu Thr Ile Asp Cys Asn Gly Ala Ser Ala His Asp Leu Trp Gln 325 330 335 Asn Pro Asp Asp Lys Lys Thr Ala Arg Leu Ser Glu Phe Gly Glu Met 340 345 350 Ile Arg Ala Ala Phe Gly Phe Pro Val Asp Arg Gln Asn Ile Pro Arg 355 360 365 Thr Val Thr Gly Pro Asn Val Leu Phe Val Arg Arg Glu Asp Tyr Leu 370 375 380 Ala His Pro Arg His Gly Gly Lys Val Gln Ser Arg Leu Ser Asn Glu 385 390 395 400 Glu Gln Val Phe Asp Ser Ile Lys Ser Trp Ala Leu Asn His Ser Glu 405 410 415 Cys Lys Leu Asn Val Ile Ser Gly Leu Phe Ala His Met Ser Met Lys 420 425 430 Glu Gln Val Arg Ala Ile Gln Asp Ala Ser Val Ile Val Gly Ala His 435 440 445 Gly Ala Gly Leu Thr His Ile Val Ser Ala Ala Pro Lys Ala Val Ile 450 455 460 Leu Glu Ile Ile Ser Ser Glu Tyr Arg Arg Pro His Phe Ala Leu Ile 465 470 475 480 Ala Gln Trp Lys Gly Leu Glu Tyr His Pro Ile Tyr Leu Glu Gly Ser 485 490 495 Tyr Ala Asp Pro Pro Val Val Ile Asp Lys Leu Ser Ser Ile Leu Arg 500 505 510 Ser Leu Gly Cys 515 <210> 77 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> NbXylT12_1 <400> 77 atgaacaaga aaaagctgaa aattcttgtt tctctcttcg ctctcaactc aatcactctc 60 tatctctact tctcttccca ccctgatcac aaatcccccc aaaaccactt ttccttgtcg 120 gaaaaccacc atcataattt ccactcttca atcacttctc aatattccaa gccttggcct 180 attttgccct cctacctccc ttggtctcaa aaccctaatg ttgcttggag atcgtgcgag 240 ggttacttcg gtaatgggtt tactctcaaa gttgaccttc tcaaaacttc gccggagttt 300 caccggaaat tcggcgataa caccgtctcc ggtgacggcg gatggtttag gtgttttttc 360 agtgagactt tgcagagttc gatctgcgag ggaggcgcaa tacgaatgaa tccggacgat 420 attttgatgt ctcgtggagg tgagaaattg gagtcggtta ttggtaggaa tgaagatgat 480 gagctgccca tgttcaaaaa tggagctttc caaattgaag ttactgataa actgaaaatt 540 gggaaaaaac tagtggataa aaaattcttg aataaatact taccgggagg tgcgatttca 600 aggcacacta tgcgtgagtt aattgactct attcagttgg ttggcgccga tgaatttcac 660 tgttctgagt gggttgagga gccgtcactt ttgattacac gatttgagta tgcaaacctt 720 ttccacacag ttaccgattg gtatagtgca tacgcggcat ccagggttac tggtttgccc 780 agtcggccaa atttggtttt tgtagatggc cattgtgaga cacaattgga ggaaacatgg 840 aaagcacttt tttcaagcct cacttatgct aagaacttta gtggcccagt ttgtttccgt 900 catgccgtcc tctcgccttt aggatatgaa actgccctgt ttaagggact gtcagaaact 960 atagattgta atggagcttc tgctcatgat ttgtggcaaa agcctgatga taaaaaaact 1020 gcacggttgt ccgagtttgg ggagatgatc agggcagcct ttggatttcc tgtggataga 1080 cagaacatcc caaggacagt cacaggccct aatgtcctct ttgttagacg tgaggattat 1140 ttagctcacc cacgtcatgg tggaaaggta cagtctaggc ttagcaatga agagctagta 1200 tttgattcca taaagagctg ggccttgaac cactcggagt gtaaattaaa tgtaattaac 1260 ggattgtttg cccacatgtc catgaaagag caagttcgag caatccaaga tgcttctgtc 1320 attgttggtg ctcatggagc aggtctaact cacatagttt ctgcagcacc aaaagctgta 1380 atactagaaa ttataagcag cgaatatagg cgcccccatt ttgctctgat tgcacaatgg 1440 aaaggattgg agtaccatcc catatatttg gaggggtctt atgcggatcc tccagttgtg 1500 atcgacaagc tcagcagcat tttgaggagt cttgggtgct aa 1542 <210> 78 <211> 1551 <212> DNA <213> Artificial Sequence <220> <223> NbXylT12_2 <400> 78 atgaacaaga aaaagctgaa aattcttgtt tctctcttcg ctctcaactc aatcactctc 60 tatctctact tctcttccca ccctgatcac tctcgtcgca aatcccccca gaaccacttt 120 tcctcgtcgg aaaaccacca tcataatttc cactcttcaa tcacttccca atattccagg 180 ccttggccta ttttgccctc ctacctccct tggtctcaaa accctaatgt tgcttggaga 240 tcatgcgagg gttacttcgg taatggtttt actctcaaag ttgatcttct caaaacttcg 300 ccggagcttc accggaaatt cggcgaaaac accgtcttcg gagacggcgg atggtttagg 360 tgtttcttca gtgagacttt gcagagttcg atctgcgagg gaggcgcaat acgaatgaat 420 ccagacgaga ttttgatgtc tcgtggaggt gagaaattgg agtcggttat tggtaggagt 480 gaagatgatg aggtgcccgc gttcaaaact ggagcttttc agattaaagt tactgataaa 540 ctgaaatttg ggaaaaaatt agtggatgaa aacttcttga ataaatactt accggaaggt 600 gcaatttcaa ggcacactat gcgtgagtta atcgactcta ttcagttggt tggcgccaat 660 gattttcact gttctgagtg gattgaggag ccgtcacttt tgattacacg atttgagtat 720 gcaaaccttt tccacacaat taccgattgg tatagtgcat acgtggcatc gagggttact 780 ggcttgccca gtcggccaca tttggttttt gtagatggcc attgtgagac acaattggag 840 gaaacatgga aagcactttt ttcaagcctc acttatgcta agaactttag tggcccagtt 900 tgtttccgtc atgccgtcct ctcgcctttg ggatatgaaa ctgccctgtt taagggactg 960 tcagaaacta tagattgtaa tggagcttct gctcatgatt tgtggcaaaa tcctgatgat 1020 aagaaaactg cacggttatc cgagtttggg gagatgatca gggcagcctt tggatttcct 1080 gttgatagac agaacatccc aaggacagtc acaggcccta atgtcctctt tgttagacgt 1140 gaggattatt tagctcaccc acgtcatggt ggaaaggtac agtctaggct tagcaatgaa 1200 gagcaagtat ttgattccat aaagagctgg gccttaaacc actcggagtg caaattaaat 1260 gtaattagtg gattgtttgc ccacatgtcc atgaaagagc aagttcgagc aatccaagat 1320 gcttctgtca ttgttggtgc tcatggagca ggtctaaccc acatagtttc tgcagcacca 1380 aaagctgtaa tactagaaat tataagcagc gaatataggc gcccccattt tgctctgatt 1440 gctcaatgga aaggattgga gtaccatccc atatatttgg aggggtctta tgcggatcct 1500 ccagtcgtga tcgacaagct cagcagcatt ttgaggagtc ttgggtgcta a 1551 <210> 79 <211> 375 <212> PRT <213> Artificial Sequence <220> <223> NbGalT13_1 <400> 79 Met Val Gly Asn Val Met Ala Ala Arg His Val Ile Ala Thr Asn Glu 1 5 10 15 Ser Ser Leu Asp Gln Asp Gly Ser Lys Ser Gly Lys Tyr Phe Pro Phe 20 25 30 Lys Gln Gly Tyr Leu Ser Val Ala Thr Leu Arg Val Gly Ser Glu Gly 35 40 45 Ile Gln Met Thr Val Asp Gly Lys His Ile Thr Ser Phe Ala Phe Arg 50 55 60 Glu Ile Leu Glu Pro Trp Leu Val Ser Glu Val Arg Ile Ser Gly Asp 65 70 75 80 Ile Lys Leu Ile Ser Val Val Ala Ser Gly Leu Pro Thr Ser Glu Asp 85 90 95 Ser Asp His Ile Ser Asp Leu Glu Ala Leu Lys Ala Ala Pro Leu Pro 100 105 110 Pro Arg Lys Lys Leu Asp Leu Phe Val Gly Val Phe Ser Thr Ala Asn 115 120 125 Asn Phe Lys Arg Arg Met Ala Val Arg Arg Thr Trp Met Gln Tyr Asp 130 135 140 Ala Val Arg Ser Gly Lys Val Ala Val His Phe Phe Val Gly Leu His 145 150 155 160 Lys Asn Gln Met Val Asn Glu Glu Leu Trp Lys Glu Ala Arg Thr Tyr 165 170 175 Met Asp Ile Gln Leu Met Pro Phe Val Asp Tyr Tyr Ser Leu Ile Ala 180 185 190 Trp Lys Thr Ile Ala Ile Cys Val Phe Gly Thr Glu Val Val Ser Ala 195 200 205 Lys Phe Val Met Lys Thr Asp Asp Asp Ala Phe Val Arg Val Asp Glu 210 215 220 Ile Leu Ser Ser Met Gln Arg Ile Asn Ala Thr Arg Gly Leu Leu Tyr 225 230 235 240 Gly Leu Ile Asn Ser Asp Ser His Pro His Arg Ser Pro Asp Ser Lys 245 250 255 Trp Phe Ile Ser Pro Glu Glu Trp Pro Glu Glu Thr Tyr Pro Pro Trp 260 265 270 Ala His Gly Pro Gly Tyr Val Val Ser Ser Asp Ile Ala Lys Thr Ile 275 280 285 Ser Ser Lys Gln Lys Lys Arg Pro Pro Lys Val Thr Ser Leu Leu Lys 290 295 300 Met Gln Met Phe Lys Leu Glu Asp Val Ala Met Gly Ile Trp Ile Ser 305 310 315 320 Glu Met Asn Lys Lys Gly Leu Glu Val Lys Tyr Glu Lys Glu Glu Arg 325 330 335 Ile Phe Asn Glu Gly Cys Arg Asp Gly Tyr Val Ile Ala His Tyr Gln 340 345 350 Gly Pro Arg Glu Met Leu Cys Leu Trp Gln Lys Ile Glu Glu Lys Lys 355 360 365 Arg Ala Leu Cys Cys Gly Glu 370 375 <210> 80 <211> 367 <212> PRT <213> Artificial Sequence <220> <223> NbGalT13_2 <400> 80 Met Val Gly Asn Ile Met Ala Thr Arg His Val Ile Ala Thr Asn Lys 1 5 10 15 Ser Ser Leu Ala Gln Asp Arg Ser Lys Ser Arg Lys Tyr Phe Pro Phe 20 25 30 Lys Gln Gly Tyr Leu Ser Val Ala Thr Leu Arg Val Gly Ser Glu Gly 35 40 45 Ile Gln Met Thr Val Asp Gly Lys His Ile Thr Ser Phe Ser Phe Arg 50 55 60 Glu Thr Leu Glu Pro Trp Leu Val Ser Glu Val Arg Ile Ser Gly Asp 65 70 75 80 Ile Lys Leu Ile Ser Val Val Ala Ser Gly Leu Pro Thr Ser Glu Asp 85 90 95 Ser Glu His Ile Ser Asp Leu Glu Ala Leu Lys Ala Ala Pro Leu Pro 100 105 110 Pro Arg Lys Arg Leu Asp Leu Phe Val Gly Val Phe Ser Thr Ala Asn 115 120 125 Asn Phe Lys Arg Arg Met Ala Val Arg Arg Thr Trp Met Gln Tyr Asp 130 135 140 Ala Val Arg Ser Gly Gln Val Ala Val Arg Phe Phe Val Gly Leu His 145 150 155 160 Lys Asn Gln Met Val Asn Glu Glu Leu Trp Asn Glu Ala Arg Thr Tyr 165 170 175 Met Asp Ile Gln Leu Met Pro Phe Val Asp Tyr Tyr Ser Leu Ile Ala 180 185 190 Trp Lys Thr Ile Ala Ile Cys Val Phe Gly Thr Glu Val Val Ser Ala 195 200 205 Lys Phe Val Met Lys Thr Asp Asp Asp Ala Phe Val Arg Val Asp Glu 210 215 220 Ile Leu Ser Ser Met Gln Arg Ile Asn Val Thr Arg Gly Leu Leu Tyr 225 230 235 240 Gly Leu Ile Asn Ser Asp Ser His Pro His Arg Ser Pro Asp Ser Lys 245 250 255 Trp Phe Ile Ser Pro Glu Glu Trp Pro Glu Glu Asn Tyr Pro Pro Trp 260 265 270 Ala His Gly Pro Gly Tyr Val Val Ser Ser Asp Ile Ala Lys Thr Ile 275 280 285 Ser Ser Lys Gln Arg Lys Gly His Leu Lys Met Phe Lys Leu Glu Asp 290 295 300 Val Ala Met Gly Ile Trp Ile Ser Glu Met Asn Lys Lys Gly Leu Glu 305 310 315 320 Val Lys Tyr Glu Lys Glu Glu Arg Ile Phe Asn Glu Gly Cys Arg Asp 325 330 335 Gly Tyr Val Ile Ala His Tyr Gln Gly Pro Arg Glu Met Leu Cys Leu 340 345 350 Trp Gln Lys Ile Glu Glu Lys Lys Arg Ala Leu Cys Cys Gly Glu 355 360 365 <210> 81 <211> 1128 <212> DNA <213> Artificial Sequence <220> <223> NbGalT13_1 <400> 81 atggtgggaa atgtcatggc tgctcgacat gtcattgcaa ctaatgaatc tagcctggat 60 caggacgggt ctaaatcagg aaaatatttt cctttcaagc aaggatatct ctctgtcgca 120 actctgagag tgggatctga aggaattcag atgacagttg atggaaaaca cataacatct 180 tttgctttcc gtgaaatttt ggaaccgtgg cttgtaagtg aagtgaggat atctggagac 240 ataaaattaa tttctgttgt cgcaagtggt ttgccaacat ctgaggattc agaccatata 300 agtgacttgg aagctctaaa agcagctcct cttcctcctc ggaaaaaact agatctcttt 360 gttggtgtat tttctaccgc aaataatttt aagcgcagaa tggctgtccg tagaacttgg 420 atgcaatatg atgcagtgcg gtctggcaaa gttgcggtgc atttttttgt tggcttgcat 480 aaaaaccaaa tggtgaatga agagctctgg aaggaggcta gaacatatat ggacatccag 540 ctgatgcctt ttgttgatta ctatagtctt attgcttgga agaccattgc catatgtgtt 600 tttgggaccg aggtcgtttc ggcaaagttt gtcatgaaga cagatgatga tgcatttgtt 660 cgagtggatg aaatcttgtc ttctatgcag aggattaatg cgactcgcgg attgctctat 720 ggtcttatca actcagattc ccatcctcat aggagtccag acagcaagtg gtttatcagt 780 ccagaggaat ggcctgaaga aacttaccct ccttgggcac atggaccggg ttatgttgtg 840 tccagtgata tagcaaaaac aatcagctca aaacagaaaa aaaggccgcc taaagttaca 900 agtctgctga aaatgcagat gtttaagctg gaagatgttg ctatgggcat ctggatttca 960 gaaatgaata agaaagggtt ggaagtgaag tatgaaaagg aagagaggat ttttaatgaa 1020 ggttgccgag atggttatgt tattgcacat taccaaggcc ctagagagat gctgtgtctt 1080 tggcaaaaga ttgaagagaa aaaacgggct ttatgttgtg gcgagtaa 1128 <210> 82 <211> 1104 <212> DNA <213> Artificial Sequence <220> <223> NbGalT13_2 <400> 82 atggtgggaa atatcatggc tactcgacat gtcattgcaa caaataaatc tagcctggct 60 caggacaggt ctaaatcaag aaagtatttt cctttcaagc aaggatatct ctctgtcgcc 120 actctgagag taggatctga aggaattcag atgacagttg atggaaaaca cataacatct 180 ttttctttcc gtgaaacttt ggaaccgtgg cttgtaagtg aagtgaggat atccggagac 240 ataaaattaa tttctgttgt cgcaagtggt ttgccaacat ctgaggattc agagcatata 300 agtgatttgg aagctctaaa agcagctcct cttcctcctc ggaaaagact agatctcttt 360 gttggtgtat tttctaccgc aaataatttt aagcgcagaa tggctgtccg tagaacttgg 420 atgcaatatg atgcagtgcg atctggacaa gttgcggtgc ggttttttgt cggcttgcat 480 aaaaaccaaa tggtgaatga agagctctgg aatgaggcta ggacatatat ggacatccag 540 ttgatgcctt ttgttgatta ctatagtctt atcgcttgga agaccattgc catatgtgtt 600 tttgggaccg aggtcgtttc ggcaaagttt gtcatgaaga cagatgatga cgcatttgtt 660 cgagtggatg aaatcttgtc ttctatgcag aggattaacg tgactcgcgg attgctgtat 720 ggtcttatca actcagattc ccatcctcat aggagtccag acagcaagtg gtttatcagt 780 ccagaggaat ggcctgaaga aaattaccct ccctgggcac atggaccggg ctatgttgtg 840 tccagtgata tagcaaaaac aatcagctca aaacagagaa aaggccacct taagatgttt 900 aagctggaag atgttgctat gggcatctgg atttcagaaa tgaataagaa agggttggaa 960 gtgaagtatg aaaaggaaga gaggattttt aatgaaggtt gccgagatgg ttatgttatt 1020 gcacattacc aaggccctag agagatgctc tgtctttggc aaaagattga agagaaaaaa 1080 cgggctttat gttgtggcga gtaa 1104

Claims (25)

  1. 알파 1,3-푸코실트랜스퍼라제(alpha 1,3 fucosyltransferase, FucT13) 및 베타 1,3-갈락토실트랜스퍼라제(beta 1,3-galactosyltransferase, GalT13)의 발현이 억제된 형질전환 식물.
  2. 제1항에 있어서,
    상기 형질전환 식물이 베타 1,2-자일로실트랜스퍼라제(beta 1,2-xylosyltransferase, XylT12)의 발현이 추가적으로 억제된 것인, 형질전환 식물.
  3. 제1항에 있어서,
    상기 알파 1,3-푸코실트랜스퍼라제는 FucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494) 및 NbFucT13_4(Niben101Scf17626)인 것인, 형질전환 식물.
  4. 제1항에 있어서,
    상기 형질전환 식물은 FucT13_1(Niben101Scf01272), NbFucT13_2(Niben101Scf02631), NbFucT13_3(Niben101Scf05494) 및 NbFucT13_4(Niben101Scf17626)을 코딩하는 유전자에 상보적으로 결합하는 sgRNA 및 크리스퍼 연관 단백질의 복합체를 이용하여 제작된 것인, 형질전환 식물.
  5. 제2항에 있어서,
    상기 베타 1,2-자일로실트랜스퍼라제는 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)인 것인, 형질전환 식물.
  6. 제2항에 있어서,
    상기 형질전환 식물은 NbXylT12_1(Niben101Scf04551) 및 NbXylT12_2(Niben101Scf04205)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA 및 크리스퍼 연관 단백질의 복합체를 이용하여 제작된 것인, 형질전환 식물.
  7. 제1항에 있어서,
    상기 베타 1,3-갈락토실트랜스퍼라제는 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)인 것인, 형질전환 식물.
  8. 제1항에 있어서,
    상기 형질전환 식물은 NbGalT13_1(Niben101Scf04082) 및 NbGalT13_2(Niben101Scf09597)를 코딩하는 유전자에 상보적으로 결합하는 sgRNA 및 크리스퍼 연관 단백질의 복합체를 이용하여 제작된 것인, 형질전환 식물.
  9. 제1항에 있어서,
    상기 식물은 담배, 애기장대, 옥수수, 벼, 대두, 카놀라, 알팔파, 해바라기, 수수, 밀, 목화, 땅콩, 토마토, 감자, 상추 및 고추로 이루어진 군에서 선택되는 어느 하나로부터 유래된 것을 특징으로 하는, 형질전환 식물.
  10. 제1항에 있어서,
    상기 형질전환 식물은 목적 단백질을 코딩하는 유전자를 포함하는 발현벡터가 추가적으로 도입된 것인, 형질전환 식물.
  11. 제10항에 있어서,
    상기 목적 단백질을 코딩하는 유전자는 서열번호 3으로 표시되는 염기서열; 및 서열번호 4로 표시되는 염기서열을 포함하는 것인, 형질전환 식물.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. i) 서열번호 3으로 표시되는 염기서열; 및 서열번호 4로 표시되는 염기서열을 포함하는 유전자를 제1항의 알파 1,3-푸코실트랜스퍼라제 및 베타 1,3-갈락토실트랜스퍼라제의 발현이 억제된 형질전환 식물에 도입하는 단계; ii) 상기 형질전환 식물을 재배하는 단계; 및 iii) 상기 재배한 형질전환 식물로부터 항체를 회수하는 단계를 포함하는 변형된 당쇄를 갖는 항체의 생산방법.
  25. 제24항에 있어서,
    상기 형질전환 식물이 베타 1,2-자일로실트랜스퍼라제 유전자의 발현이 추가적으로 억제된 것인, 변형된 당쇄를 갖는 항체의 생산방법.
KR1020200158239A 2019-11-21 2020-11-23 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도 KR102348638B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210167718A KR20210150335A (ko) 2019-11-21 2021-11-29 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190150743 2019-11-21
KR1020190150743 2019-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210167718A Division KR20210150335A (ko) 2019-11-21 2021-11-29 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도

Publications (2)

Publication Number Publication Date
KR20210062588A KR20210062588A (ko) 2021-05-31
KR102348638B1 true KR102348638B1 (ko) 2022-01-11

Family

ID=76150408

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020200158239A KR102348638B1 (ko) 2019-11-21 2020-11-23 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도
KR1020210167718A KR20210150335A (ko) 2019-11-21 2021-11-29 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210167718A KR20210150335A (ko) 2019-11-21 2021-11-29 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도

Country Status (1)

Country Link
KR (2) KR102348638B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531903A (ja) * 2011-10-04 2014-12-04 アイコン・ジェネティクス・ゲーエムベーハー フコシルトランスフェラーゼ活性が欠損したニコチアナ・ベンサミアナ植物
US20180171028A1 (en) 2015-05-13 2018-06-21 Zumutor Biologics, Inc. Afucosylated protein, cell expressing said protein and associated methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878747A1 (en) * 2006-07-11 2008-01-16 greenovation Biotech GmbH Glyco-engineered antibodies
CN104195166B (zh) * 2007-04-17 2017-01-11 基金会农业研究服务中心 植物通过表达非哺乳动物糖基转移酶而表现出哺乳动物类型的糖基化作用
EP2702077A2 (en) 2011-04-27 2014-03-05 AbbVie Inc. Methods for controlling the galactosylation profile of recombinantly-expressed proteins

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014531903A (ja) * 2011-10-04 2014-12-04 アイコン・ジェネティクス・ゲーエムベーハー フコシルトランスフェラーゼ活性が欠損したニコチアナ・ベンサミアナ植物
US20180171028A1 (en) 2015-05-13 2018-06-21 Zumutor Biologics, Inc. Afucosylated protein, cell expressing said protein and associated methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Plant Biotechnol J, Vol.17, No.2, pp.350-361

Also Published As

Publication number Publication date
KR20210150335A (ko) 2021-12-10
KR20210062588A (ko) 2021-05-31

Similar Documents

Publication Publication Date Title
CN105925586B (zh) 编码调节生物碱合成之转录因子的核酸序列及其在改良植物代谢中的应用
KR102136088B1 (ko) 식물계에서의 중금속 감소
US10047370B2 (en) Tobacco enzymes for regulating content of plant metabolites, and use thereof
JP6225108B2 (ja) ニコチアナ・タバカムからのトレオニン合成酵素ならびにその方法および使用
JP2017158592A (ja) 植物の酵素活性の改変
CN102083987B (zh) 编码n‑甲基腐胺氧化酶之核酸及其应用
KR20190094161A (ko) 개화까지의 시간이 단축된 식물
US11155827B2 (en) Methods for generating transgenic plants
WO2019027861A1 (en) METHODS AND COMPOSITIONS FOR EDITING VIRUS-BASED GENES IN PLANTS
EP3052633B1 (en) Zea mays metallothionein-like regulatory elements and uses thereof
KR102348638B1 (ko) 비푸코실화된 담배를 이용하여 생산한 항체 및 이의 용도
CN107177602B (zh) 与植物耐旱相关的NtDR1基因及其应用
KR100974302B1 (ko) 페투인이 발현된 감자 식물체
KR101040579B1 (ko) 스트레스 유도성 자가-절단형 식물형질전환 벡터 및 이를이용한 선발 마커 프리 식물체의 제조방법
KR20200111121A (ko) Cgl1 및 cgl2의 발현이 억제된 형질전환 식물 및 이를 이용한 목적 단백질의 생산방법
EP4267748A1 (en) Maize regulatory elements and uses thereof
JP5019505B2 (ja) 低温ストレス耐性を有するトランスジェニック植物
JP2010029102A (ja) α1,3−フコシルトランスフェラーゼ

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant